Обозначение термистора на схеме
Что такое резистор
Резистор – это самый распространенный радиоэлемент во всей радиоэлектронной промышленности. Я могу со 100% уверенностью сказать, что абсолютно на любой плате какого-либо устройства вы найдете хотя бы один резистор. Резистор имеет важное свойство – он обладает активным сопротивлением электрическому току. Существует также и реактивное сопротивление. Подробнее про реактивное и активное сопротивление.
Постоянные резисторы
Постоянное резисторы выглядят примерно вот так:
Слева мы видим большой зеленый резистор, который рассеивает очень большую мощность. Справа – маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию. Про то, как определить сопротивление резистора, можно прочитать в статье маркировка резисторов.
Вот так выглядит постоянный резистор на электрических схемах:
Наше отечественное изображение резистора изображают прямоугольником (слева), а заморский вариант (справа), или как говорят – буржуйский, используется в иностранных радиосхемах.
Вот так маркируются мощности на советских резисторах:
Далее мощность маркируется с помощью римских цифр. V – 5 Ватт, X – 10 Ватт, L -50 Ватт и тд.
Какие еще бывают виды резисторов? Давайте рассмотрим самые распространенные:
20 ваттный стекловидный с проволочными выводами, 20 ваттный с монтажными лепестками,30 ваттный в стекловидной эмали, 5 ваттный и 20 ваттный с монтажными лепестками
1, 3, 5 ваттные керамические; 5,10,25, 50 ваттные с кондуктивным теплообменом
2, 1, 0.5, 0.25, 0.125 ваттные углеродной структуры; SMD резисторы типоразмеров 2010, 1206, 0805, 0603,0402; резисторная SMD сборка, 6,8,10 выводные резисторные сборки для сквозного монтажа, резистор в DIP корпусе
Переменные резисторы
Переменные резисторы выглядят так:
На схемах обозначаются так:
Соответственно отечественный и зарубежный вариант.
А вот и их цоколевка (расположение выводов):
Переменный резистор, который управляет напряжением называется потенциометром, а который управляет силой тока – реостатом. Здесь заложен принцип делителя напряжения и делителя тока соответственно. Различие между потенциометром и реостатом в схеме подключения самого переменного резистора. В схеме с реостатом в переменном резисторе соединяется средний и крайний выводы.
Переменные резисторы, у которых сопротивление можно менять только при помощи отвертки или шестигранного ключика, называются подстроечными переменными резисторами. У них есть специальные пазы для регулировки сопротивления (отмечены красной рамкой):
А вот так обозначаются подстроечные резисторы и их схемы включения в режиме реостата и потенциометра.
Термисторы
Термисторы – это резисторы на основе полупроводниковых материалов. Их сопротивление резко зависит от температуры окружающей среды. Есть такой важный параметр термисторов, как ТКС – тепловой коэффициент сопротивления. Грубо говоря, этот коэффициент показывает на сколько изменится сопротивление термистора при изменении температуры окружающей среды.
Этот коэффициент может быть как отрицательный, так и положительный. Если ТКС отрицательный, то такой термистор называют термистором, а если ТКС положительный, то такой термистор называют позистором. У термисторов при увеличении температуры окружающей среды сопротивление падает. У позисторов с увеличением температуры окружающей среды растет и сопротивление.
Так как термисторы обладают отрицательным коэффициентом (NTC — Negative Temperature Coefficient — отрицательный ТКС), а позисторы положительным коэффициентом (РТС
Варисторы
Есть также особый класс резисторов, которые резко изменяют свое сопротивление при увеличении напряжения – это варисторы.
Это свойство варисторов широко используют от защиты перенапряжений в цепи, а также от импульсных скачков напряжения. Допустим у нас “скакануло” напряжение. Все это дело “чухнул” варистор и сразу же резко изменил сопротивление в меньшую сторону. Так как сопротивление варистора стало очень маленьким, то весь электрический ток сразу же начнет протекать через него, тем самым защищая основную цепь радиоэлектронного устройства. При этом варистор берет всю мощность импульса на себя и очень часто платит за это своей жизнью, то его выгорает наглухо
На схемах варисторы обозначаются вот таким образом:
Фоторезисторы
Большой популярностью также пользуются фоторезисторы. Они изменяют свое сопротивление, если на них посветить. В этих целях можно применять как солнечный свет, так и искусственный, например, от фонарика.
На схемах они обозначаются вот таким образом:
Тензорезисторы
Принцип действия их работы основан на растяжении тонких печатных проводников. При растяжении они становятся еще тоньше. Это все равно, что вытягивать жевательную резинку. Чем больше вы ее вытягиваете, тем тоньше она становится. А как вы знаете, чем тоньше проводник, тем бОльшим сопротивлением он обладает.
На схемах тензорезистор выглядит вот так:
Вот анимация работы тензорезистора, позаимствованная с Википедии.
Ну и как вы догадались, тензорезисторы используются в электронных весах, а также в различных датчиках, где применяется какое-либо давление, либо сила.
Последовательное и параллельное соединение резисторов
Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.
В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где сопротивление между точками А и В (RAB) и есть то самое R общее:
При последовательном соединении номиналы резисторов просто тупо суммируются
Резюме
Резистор – это радиокомпонент электронной промышленности, который используется абсолютно во всей радиоэлектронной аппаратуре. Он используется для создания делителей тока, делителя напряжения, в качестве шунта и, конечно же, для ограничения силы тока.
Резистор обладает активным сопротивлением, в отличие от катушки индуктивности и конденсатора.
По конструктивному исполнению резисторы делятся на два класса: переменные и постоянные.
Существуют также подвиды резисторов – это фоторезисторы, термисторы, варисторы, тензорезисторы и другие специфические редко используемые подвиды резисторов.
Термистор представляет собой резистивный термометр или резистор, сопротивление которого зависит от температуры. Термин представляет собой комбинацию термо и резистор. Он изготовлен из оксидов металлов, спрессован в шарики, диски или цилиндрическую форму, а затем герметизирован непроницаемым материалом, таким как эпоксидная смола или стекло.
Существует два типа термисторов: отрицательный температурный коэффициент (NTC) и положительный температурный коэффициент (PTC). С термистором NTC, когда температура увеличивается, сопротивление уменьшается. И наоборот, когда температура снижается, сопротивление увеличивается. Этот тип термистора используется чаще всего.
Термистор PTC работает немного по-другому. Когда температура увеличивается, сопротивление увеличивается, а когда температура уменьшается, сопротивление уменьшается. Этот тип термистора обычно используется в качестве предохранителя. Огромный выбор терморезисторов вы можете посмотреть и приобрести на Алиэкспресс:
Как правило, термистор достигает высокой точности в ограниченном температурном диапазоне около 50ºC относительно целевой температуры. Этот диапазон зависит от базового сопротивления.
Термистор на схеме
Стрелка Т обозначает, что сопротивление является переменным в зависимости от температуры. Направление стрелки или полосы не имеет значения.
Термисторы просты в использовании, недороги, прочны и предсказуемо реагируют на изменения температуры. Хотя они не очень хорошо работают при чрезмерно высоких или низких температурах, они являются предпочтительным датчиком для применений, которые измеряют температуру в желаемой базовой точке. Они идеальны, когда требуются очень точные температуры.
Некоторые из наиболее распространенных применений термисторов используются в цифровых термометрах, в автомобилях для измерения температуры масла и охлаждающей жидкости, а также в бытовых приборах, таких как духовки и холодильники, но они также встречаются практически в любом приложении, где для обеспечения безопасности требуются защитные контуры отопления или охлаждения. Для более сложных приложений, таких как детекторы лазерной стабилизации, оптические блоки и устройства с зарядовой связью, встроен термистор. Например, термистор 10 кОм является стандартом, который встроен в лазерные пакеты.
История термистора
Майкл Фарадей — английский ученый впервые открыл понятие термисторов в 1833 году, сообщая о полупроводниковом поведении сульфида серебра. Благодаря своим исследованиям он заметил, что устойчивость к сульфидам серебра снижалась с повышением температуры. Это открытие впоследствии привело к коммерческому производству термисторов в 1930-х годах, когда Сэмюэль Рубен изобрел первый коммерческий термистор. С тех пор технология улучшилась; прокладывать дорогу к совершенствованию производственных процессов; наряду с доступностью более качественного материала.
Как работает термистор
Термистор на самом деле ничего не «читает», вместо этого сопротивление термистора меняется в зависимости от температуры. Степень изменения сопротивления зависит от типа материала, используемого в термисторе.
В отличие от других датчиков, термисторы являются нелинейными, то есть точки на графике, представляющие взаимосвязь между сопротивлением и температурой, не будут образовывать прямую линию. Расположение линии и степень ее изменения определяется конструкцией термистора. Типичный график термистора выглядит следующим образом:
Как изменение сопротивления преобразуется в измеримые данные, будет подробно рассмотрено ниже.
Разница между термистором и другими датчиками
В дополнение к термисторам используются несколько других типов датчиков температуры. Наиболее распространенными являются резистивные датчики температуры (RTD) и интегральные схемы (IC), такие как типы LM335 и AD590. Какой датчик лучше всего подходит для конкретного использования, зависит от многих факторов. В приведенной ниже таблице дано краткое сравнение преимуществ и недостатков каждого из них.
Параметр | Термистор | RTD | LM335 | AD592 |
Разница температур | В пределах |
50° С от заданной центральной температуры
0.05° С
0.01° С
0.01° С
Долгоиграющий
Высокочувствительный
Маленький размер
Самая низкая
СтоимостьЛучше всего подходит для измерения температуры в одной точке
Линейный выход
Самый широкий диапазон рабочих температур
Лучше всего для измерения диапазона температур
Линейный выход
Линейный выход
Ограниченный температурный диапазон
Медленное время отклика
Низкая чувствительность
Низкая чувствительность
Большой размер
Ограниченный температурный диапазон
Низкая чувствительность
Большой размер
Температурный диапазон: приблизительный общий диапазон температур, в которых может использоваться тип датчика. В пределах заданного температурного диапазона некоторые датчики работают лучше, чем другие.
Относительная стоимость: относительная стоимость, поскольку эти датчики сравниваются друг с другом. Например, термисторы недороги по отношению к термометрам сопротивления, отчасти потому, что предпочтительным материалом для термопреобразователей сопротивления является платина.
Постоянная времени: приблизительное время, необходимое для перехода от одного значения температуры к другому. Это время в секундах, которое термистору требуется для достижения 63,2% разницы температур от начального показания до окончательного.
Стабильность: способность контроллера поддерживать постоянную температуру на основе обратной связи датчика температуры.
Чувствительность: степень реакции на изменение температуры.
Преимущества и недостатки NTC и PTC
Термисторы NTC прочны, надежны и стабильны, и они оборудованы для работы в экстремальных условиях окружающей среды и помехоустойчивости в большей степени, чем другие типы датчиков температуры.
- Компактный размер: варианты упаковки позволяют им работать в небольших или ограниченных пространствах; тем самым занимая меньше места на печатных платах.
- Быстрое время отклика: небольшие размеры позволяют быстро реагировать на изменение температуры, что важно, когда требуется немедленная обратная связь.
- Экономичность: термисторы не только дешевле, чем другие типы датчиков температуры; Если приобретенный термистор имеет правильную кривую RT, никакая другая калибровка не требуется во время установки или в течение срока ее эксплуатации.
- Совпадение точек: способность получить определенное сопротивление при определенной температуре.
- Соответствие кривой: сменные термисторы с точностью от + 0,1 ° C до + 0,2 ° C.
Какие типы и формы термистора доступны на рынке
Термисторы бывают разных форм — дисковые, микросхемы, шариковые или стержневые и могут монтироваться на поверхности или встраиваться в систему. Они могут быть заключены в эпоксидную смолу, стекло, обожжены в феноле или окрашены. Наилучшая форма часто зависит от того, какой материал контролируется, например, от твердого вещества, жидкости или газа.
Например, терморезистор с бусинками идеально подходит для встраивания в устройство, а стержень, диск или цилиндрическая головка лучше всего подходят для оптических поверхностей. Термисторный чип обычно монтируется на печатной плате (PCB). Существует много, много разных форм термисторов, и некоторые примеры:
Выберите форму, которая обеспечивает максимальный контакт поверхности с устройством, температура которого контролируется. Независимо от типа термистора, соединение с контролируемым устройством должно быть выполнено с использованием теплопроводящей пасты или эпоксидного клея. Обычно важно, чтобы эта паста или клей не были электропроводящими.
Какое сопротивление термистора и ток смещения следует использовать
Термисторы классифицируются по величине сопротивления, измеренной при комнатной температуре окружающей среды, которая считается 25° C. Устройство, температуру которого необходимо поддерживать, имеет определенные технические характеристики для оптимального использования, как определено производителем. Они должны быть определены до выбора датчика. Поэтому важно знать следующее.
Каковы максимальные и минимальные температуры для устройства
Термисторы идеально подходят для измерения температуры в одной точке, которая находится в пределах 50 ° C от температуры окружающей среды. Если температура слишком высокая или низкая, термистор не будет работать. Хотя есть исключения, большинство термисторов работают лучше всего в диапазоне от -55 ° C до + 114 ° C.
Поскольку термисторы являются нелинейными, то есть значения температуры и сопротивления изображены на графике в виде кривой, а не прямой линии, очень высокие или очень низкие температуры регистрируются неправильно. Например, очень небольшие изменения при очень высоких температурах будут регистрировать незначительные изменения сопротивления, которые не приведут к точным изменениям напряжения.
Каков оптимальный диапазон термисторов
В зависимости от тока смещения от контроллера каждый термистор имеет оптимальный полезный диапазон, то есть диапазон температур, в котором небольшие изменения температуры точно регистрируются.
В таблице ниже приведены наиболее эффективные диапазоны температур для термисторов с длиной волны при двух наиболее распространенных токах смещения.
Лучше всего выбрать термистор, где заданная температура находится в середине диапазона. Чувствительность термистора зависит от температуры. Например, термистор может быть более чувствительным при более низких температурах, чем при более высоких температурах, как в случае с термистором TCS10K5 10 кОм длины волны. В TCS10K5 чувствительность составляет 162 мВ на градус Цельсия в диапазоне от 0 до 1° C, и 43 мВ / °C в диапазоне от 25 до 26 ° C, и 14 мВ ° C в диапазоне от 49 до 50 ° C. C.
Каковы верхний и нижний пределы напряжения на входе датчика регулятора температуры
Пределы напряжения обратной связи датчика к регулятору температуры устанавливаются производителем. В идеале следует выбрать комбинацию термистора и тока смещения, которая создает напряжение в пределах диапазона, разрешенного регулятором температуры.
Напряжение связано с сопротивлением по закону Ома. Это уравнение используется для определения того, какой ток смещения необходим. Закон Ома гласит, что ток через проводник между двумя точками прямо пропорционален разности потенциалов между двумя точками и для этого тока смещения записывается как:
Где:
V — напряжение, в вольтах (В)
I BIAS — ток, в амперах или амперах (A)
I BIAS — постоянный ток,
R — сопротивление, в Ом (Ом)
Контроллер генерирует ток смещения для преобразования сопротивления термистора в измеряемое напряжение. Контроллер принимает только определенный диапазон напряжения. Например, если диапазон контроллера составляет от 0 до 5 В, напряжение термистора должно быть не ниже 0,25 В, чтобы электрические помехи на нижнем конце не мешали считыванию, и не должно превышать 5 В для считывания.
Предположим, что используется вышеуказанный контроллер и термистор 100 кОм, такой как TCS651 длины волны, и температура, которую необходимо поддерживать устройству, составляет 20° C. Согласно спецификации TCS651, сопротивление составляет 126700 Ом при 20 ° C. Чтобы определить, может ли термистор работать с контроллером, нам нужно знать полезный диапазон токов смещения. Используя закон Ома, чтобы решить для I BIAS , мы знаем следующее:
0,25 / 126700 = 2 мкА — нижний
предел диапазона 5,0 / 126700 = 39,5 мкА — верхний предел
Да, этот термистор будет работать, если ток смещения регулятора температуры можно установить в диапазоне от 2 мкА до 39,5 мкА.
При выборе термистора и тока смещения лучше всего выбрать тот, в котором развиваемое напряжение находится в середине диапазона. Входной сигнал обратной связи контроллера должен быть под напряжением, которое выводится из сопротивления термистора.
Поскольку люди наиболее легко относятся к температуре, сопротивление часто нужно менять на температуру. Наиболее точная модель, используемая для преобразования сопротивления термистора в температуру, называется уравнением Стейнхарта-Харта.
Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ
В блоках питания помимо использования обыкновенных резисторов используются два типа специализированных резисторов — Варистор и Термистор.
Также, кроме обыкновенных конденсаторов используются специализированные помехоподавляющие конденсаторы: конденсаторы типа Y и конденсаторы типа X (их еще называют конденсаторы класса защиты X/Y)
В качестве примера приведем кусок реальной схемы до выпрямительного мостика, хочется повторится – схема реальная, хотя впечатление такое, что этот шедевр — сборище пассивных элементов защиты от ВЧ помех со страниц какого то учебника по борьбе с помехами.
Рис. Пример реального участка схемы блока питания — фильтра от ВЧ помех.
Варистор
Варистор – полупроводниковый резистор, сопротивление которого изменяется при изменении приложенного напряжения. Основная задача варистора в блоках питания – защита цепей от перенапряжения.
Рис. Принцип работы варистора в блоках питания, увеличение скорости срабатывания предохранителя или защита от импульсных бросков напряжения.
Варистор включается параллельно входному напряжению 220В, и фактически постоянно находится под этим напряжением, однако ток в этом состоянии через варистор очень мал. В случае возникновения выброса по напряжению, сопротивление варистора резко падает и шунтирует защищаемые цепи, ток в этом состоянии может достигать нескольких тысяч ампер. Несмотря на свою эффективность варистор в блоках питания АТХ довольно редкий гость, чаще его можно увидеть в сетевых фильтрах или в некомпьютерных блоках питания.
Рис. Для увеличения скорости срабатывания защиты, предохранитель и варистор объеденяют вместе.
Обозначение варистора на плате.
Обозначение варистора на схеме.
Рис. Условное обозначение варистора на схеме
Особенности применения варисторов.
- Варисторы являются безинерционным элементом. Полностью восстанавливает свои свойства мгновенно, в результате чего чрезвычайно эффективен при борьбе с импульсными выбросами напряжения.
- Количество импульсов прикладываемых к варистору ограничено, фактически это значит, что со временем варистор теряет свои свойства.
Терморезистор
Терморезистор – полупроводниковый резистор, сопротивление которого изменяется при изменении температуры.
Различают два вида терморезисторов
Термистор (NTC-термистор) — сопротивление терморезистора с повышением температуры уменьшается.
Позистор (PTC-позистор) — сопротивление терморезистора с повышением температуры увеличивается
Применение терморезисторов в блоках питания
Рис. Принцип работы NTC-термистора в блоках питания, мягкий пуск.
Основная задача термистора в блоках питания — ограничение пускового тока. При включении блока питания термистор имеет температуру окружающей среды и сопротивление в несколько Ом. Конденсатор выпрямителя в момент включения представляет из себя короткозамкнутую нагрузку, в цепи происходит скачок тока, но термистор не даёт ему подняться выше предела, зависящего от сопротивления термистора. При прохождении тока через термистор, последний разогревается и его сопротивление падает почти до десятых долей Ома, и далее он не влияет на работу устройства. Происходит так называемый мягкий пуск.
Обозначение термистора на плате.
Обозначение термистора на схеме.
Рис. Условное обозначение терморезистора на схеме
На практике может встречаться комбинация состоящая, из двух или более приведенных обозначений.
Рис. Пример комбинации при обозначении терморезистора
Особенности применения термисторов.
- Термисторы являются инерционным элементом. Полностью восстанавливает свои свойства только через 5-10 мин. Фактически при кратковременном отключении питания, при повторном пуске термистор не работает как элемент защиты.
- Выводы термистора являются радиаторами, необходимо оставлять выводы как можно длиннее.
- Температура термистора в состоянии сопротивления близкого к нулю может доходить до 250 градусов, нежелательно устанавливать корпус термистора в непосредственной близости от других элементов.
Помехоподавляющие конденсаторы
Помехоподавляющие конденсаторы делятся на два типа X и Y, для подавления синфазной и противофазной составляющей помехи. Каждый тип для своего типа помехи.
Как практик, могу сказать, название помехи не играет большой роли на принцип борьбы с помехой. Как теоретик, лично я, всегда путаю термины синфазной и противофазной помехи между собой, поэтому дальше обе помехи мы будем разделять по принципу возникновения. |
Конденсатор X типа
Конденсатор X типа – конденсатор для подавления помехи возникающей между фазой и нулем (не путать с заземлением). Задача Х конденсатора не пропускать помеху из внешней сети в блок питания, а так же не выпускать помеху созданную блоком питания во внешнюю сеть.
Рис. Принцип работы Х конденсатора.
Обозначение X конденсатора на плате.
Cx | С |
Обозначение X конденсатора на схеме.
Обосначается как обычный конденсатор, с суффиксом x, например Cx
Рис. Обозначение Х конденсатора на схеме .
Особенности применения Х конденсаторов.
- Конденсатор невозгораемый при любых условиях
- Неисправность конденсатора не приведет к поражению электрическим током.
- Емкость Х конденсатора, чем больше — тем лучше.
- X2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 2.5кВ.
- Какая бы не была емкость Х конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.
Конденсатор Y типа
Конденсатор Y типа – конденсатор для подавления помехи возникающей между
- фазой и землей (не путать с нулем)
- нулем и землей.
Рис. Принцип работы Y конденсатора.
Обозначение Y конденсатора на плате.
Нет изображения | Нет изображения |
CY | С |
Обозначение Y конденсатора на схеме.
Обозначается как обычный конденсатор, с суффиксом Y, например Cy рядом с номиналом может стоять напряжение.
Рис. Обозначение Y конденсатора на схеме .
Особенности применения Y конденсаторов.
- Конденсатор в случае пробоя уходит в обрыв
- Неисправность конденсатора может привести к поражению электрическим током.
- Емкость Y конденсатора, чем меньше — тем лучше.
- Y2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 5кВ.
- Y конденсатор можно применять вместо X конденсатора, наоборот нет.
- Какая бы не была емкость Y конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.
Быстродействующие диоды.
В блоках питания используются два типа выпрямительных диодов – общего назначения и импульсные. Импульсные диоды можно отнести к быстродействующим.
Термометр сопротивления — Википедия
Условное графическое обозначение термометра сопротивленияТермо́метр сопротивле́ния — электронный компонент, датчик, предназначенный для измерения температуры.
Принцип действия основан на зависимости электрического сопротивления металлов, сплавов и полупроводниковых материалов от температуры[1].
При применении в качестве резистивного элемента полупроводниковых материалов его обычно называют термосопротивле́нием, терморезистором или термистором[2].
Металлический термометр сопротивления[править | править код]
Представляет собой резистор, изготовленный из металлической проволоки или металлической плёнки на диэлектрической подложке и имеющий известную зависимость электрического сопротивления от температуры.
Наиболее точный и распространённый тип термометров сопротивления — платиновые термометры. Это обусловлено тем, что платина имеет стабильную и хорошо изученную зависимость сопротивления от температуры и не окисляется в воздушной среде, что обеспечивает их высокую точность и воспроизводимость. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом 0,003925 1/К при 0 °C.
В качестве рабочих средств измерений применяются также медные и никелевые термометры сопротивления. Технические требования к рабочим термометрам сопротивления изложены в стандарте ГОСТ 6651-2009 (Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы номинальных статических характеристик (НСХ) и стандартные зависимости сопротивление-температура. ГОСТ 6651-2009 соответствует международному стандарту МЭК 60751 (2008). В этих стандартах, в отличие от ранее действующих стандартов не нормированы номинальные сопротивления при нормальных условиях. Начальное сопротивление изготовленного термосопротивления может быть произвольным с некоторым допуском.
Промышленные платиновые термометры сопротивления в большинстве случаев считаются имеющими стандартную зависимость сопротивление-температура (НСХ), что обеспечивает погрешность не более 0,1 °C (класс термосопротивлений АА при 0 °C).
Термометры сопротивления изготовленные в виде напыленной на подложку металлической плёнки отличаются повышенной вибропрочностью, но меньшим диапазоном рабочих температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов, составляет 660 °C (класс С), для плёночных — 600 °C (класс С).
Терморезистор — полупроводниковый резистор, электрическое сопротивление которого зависит от температуры. Для терморезисторов характерны большой температурный коэффициент сопротивления, простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени. Они могут иметь весьма малые размеры, что существенно для измерений температуры малых объектов и снижения инерционности измерения. Обычно терморезисторы имеют отрицательный температурный коэффициент сопротивления, в отличие от большинства металлов и металлических сплавов. Позисторы – имеют положительный температурный коэффициент сопротивления, то есть при увеличении температуры, сопротивление также возрастает.[3]
Зависимость сопротивления платинового термосопротивления от температуры[править | править код]
Для промышленных платиновых термометров сопротивления используется уравнение Каллендара-Ван Дьюзена (en), с известными коэффициентами, которые установлены экспериментально и нормированы в стандарте DIN EN 60751-2009 (ГОСТ 6651-2009):
- RT=R0[1+AT+BT2+CT3(T−100)](−200∘C<T<0∘C),{\displaystyle R_{T}=R_{0}\left[1+AT+BT^{2}+CT^{3}(T-100)\right]\;(-200\;{}^{\circ }\mathrm {C} <T<0\;{}^{\circ }\mathrm {C} ),}
- RT=R0[1+AT+BT2](0∘C≤T<850∘C),{\displaystyle R_{T}=R_{0}\left[1+AT+BT^{2}\right]\;(0\;{}^{\circ }\mathrm {C} \leq T<850\;{}^{\circ }\mathrm {C} ),}
- здесь RT{\displaystyle R_{T}} — сопротивление при температуре T{\displaystyle T} °C,
- R0{\displaystyle R_{0}} сопротивление при 0 °C,
- A,B,C{\displaystyle A,B,C} — коэффициенты — константы, нормированные стандартом:
- A=3.9083×10−3∘C−1{\displaystyle A=3.9083\times 10^{-3}\;{}^{\circ }\mathrm {C} ^{-1}}
- B=−5.775×10−7∘C−2{\displaystyle B=-5.775\times 10^{-7}\;{}^{\circ }\mathrm {C} ^{-2}}
- C=−4.183×10−12∘C−4.{\displaystyle C=-4.183\times 10^{-12}\;{}^{\circ }\mathrm {C} ^{-4}.}
Поскольку коэффициенты B{\displaystyle B} и C{\displaystyle C} относительно малы, сопротивление растёт практически линейно при увеличении температуры.
Для платиновых термометров повышенной точности и эталонных термометров выполняется индивидуальная градуировка в ряде температурных реперных точек и определяются индивидуальные коэффициенты вышеприведенной зависимости[4].
Подключение термометров сопротивления в электрическую измерительную схему[править | править код]
Используется 3 схемы включения датчика в измерительную цепь:
Схема подключения терморезистора по двухпроводной схеме.- 2-проводная.
В схеме подключения простейшего термометра сопротивления используется два провода. Такая схема используется там, где не требуется высокой точности измерения. Точность измерения снижается за счёт сопротивления соединительных проводов, суммирующегося с собственным сопротивлением термометра и приводит к появлению дополнительной погрешности. Такая схема не применяется для термометров классов А и АА.
- 3-проводная.
Эта схема обеспечивает значительно более точные измерения за счёт того, что появляется возможность измерить в отдельном опыте сопротивление подводящих проводов и учесть их влияние на точность измерения сопротивления датчика.
- 4-проводная.
Является наиболее точной схемой измерения, обеспечивающей полное исключение влияния на результат измерения подводящих проводов. При этом по двум проводникам подается ток на терморезистор, а два других, в которых ток равен нулю, используются для измерения напряжения на нём. Недостаток такого решения — увеличение объёма используемых проводов, стоимости и габаритов изделия. Эту схему Невозможно использовать в четырехплечем мосте Уитстона.
В промышленности наиболее распространенной является трёхпроводная схема. Для точных и эталонных измерений используется только четырёхпроводная схема.
Преимущества и недостатки термометров сопротивления[править | править код]
Преимущества термометров сопротивления[править | править код]
- Высокая точность измерений (обычно лучше ±1 °C), может доходить до 13 тысячных °C (0,013).
- Возможность исключения влияния изменения сопротивления линий связи на результат измерения при использовании 3- или 4-проводной схемы измерений.
- Практически линейная характеристика.
Недостатки термометров сопротивления[править | править код]
- Относительно малый диапазон измерений (по сравнению с термопарами)
- Дороговизна (в сравнении с термопарами из неблагородных металлов, для платиновых термометров сопротивления типа ТСП).
- Требуется дополнительный источник питания для задания тока через датчик.
Таблица сопротивлений некоторых термометров сопротивления[править | править код]
Температура в °C | Pt100 | Pt1000 | нем. PTC | нем. NTC | NTC | NTC | NTC | NTC |
Typ: 404 | Typ: 501 | Typ: 201 | Typ: 101 | Typ: 102 | Typ: 103 | Typ: 104 | Typ: 105 | |
−50 | 80,31 | 803,1 | 1032 | |||||
−45 | 82,29 | 822,9 | 1084 | |||||
−40 | 84,27 | 842,7 | 1135 | 50475 | ||||
−35 | 86,25 | 862,5 | 1191 | 36405 | ||||
−30 | 88,22 | 882,2 | 1246 | 26550 | ||||
−25 | 90,19 | 901,9 | 1306 | 26083 | 19560 | |||
−20 | 92,16 | 921,6 | 1366 | 19414 | 14560 | |||
−15 | 94,12 | 941,2 | 1430 | 14596 | 10943 | |||
−10 | 96,09 | 960,9 | 1493 | 11066 | 8299 | |||
−5 | 98,04 | 980,4 | 1561 | 31389 | 8466 | |||
0 | 100,00 | 1000,0 | 1628 | 23868 | 6536 | |||
5 | 101,95 | 1019,5 | 1700 | 18299 | 5078 | |||
10 | 103,90 | 1039,0 | 1771 | 14130 | 3986 | |||
15 | 105,85 | 1058,5 | 1847 | 10998 | ||||
20 | 107,79 | 1077,9 | 1922 | 8618 | ||||
25 | 109,73 | 1097,3 | 2000 | 6800 | 15000 | |||
30 | 111,67 | 1116,7 | 2080 | 5401 | 11933 | |||
35 | 113,61 | 1136,1 | 2162 | 4317 | 9522 | |||
40 | 115,54 | 1155,4 | 2244 | 3471 | 7657 | |||
45 | 117,47 | 1174,7 | 2330 | 6194 | ||||
50 | 119,40 | 1194,0 | 2415 | 5039 | ||||
55 | 121,32 | 1213,2 | 2505 | 4299 | 27475 | |||
60 | 123,24 | 1232,4 | 2595 | 3756 | 22590 | |||
65 | 125,16 | 1251,6 | 2689 | 18668 | ||||
70 | 127,07 | 1270,7 | 2782 | 15052 | ||||
75 | 128,98 | 1289,8 | 2880 | 12932 | ||||
80 | 130,89 | 1308,9 | 2977 | 10837 | ||||
85 | 132,80 | 1328,0 | 3079 | 9121 | ||||
90 | 134,70 | 1347,0 | 3180 | 7708 | ||||
95 | 136,60 | 1366,0 | 3285 | 6539 | ||||
100 | 138,50 | 1385,0 | 3390 | |||||
105 | 140,39 | 1403,9 | ||||||
110 | 142,29 | 1422,9 | ||||||
150 | 157,31 | 1573,1 | ||||||
200 | 175,84 | 1758,4 |
виды, типы конструкции, классы допуска
Термометрия относится к наиболее простым и эффективным методам измерений. Она основана на том, что физические свойства материала меняются в зависимости от температуры. В частности, измеряя сопротивление металла, сплава или полупроводникового элемента, можно определить его температуру с высокой степенью точности. Датчики такого типа называются термоэлектрическими или термосопротивлениями. Предлагаем рассмотреть различные виды этих устройств, их принцип работы, конструкции и особенности.
Виды термодатчиков
Наиболее распространенными считаются следующие типы термометров сопротивления (далее ТС):
- Полупроводниковые датчики. Отличительные особенности этих приборов заключается в высокой точности и стабильной чувствительности, а также в возможности измерения быстротечных процессов. Благодаря низкому измерительному току имеется возможность работы со сверхнизкими температурами (до -270°С). Пример конструкции полупроводникового ТС. Конструкция термистора
Обозначения:
- А – Выводы измерителя.
- В – Стеклянная пробка, закрывающая защитную гильзу.
- С – Защитная гильза, наполненная гелием.
- D – Электроизоляционная пленка, покрывающая внутреннюю часть гильзы.
- E – Полупроводниковый чувствительный элемент (далее ЧЭ), в приведенном примере это германий, легированный сурьмой.
- Металлические датчики. У таких измерителей в качестве ЧЭ выступает проволочный или пленочный резистор, помещенный в керамический или металлический корпус. Металл, используемый для изготовления чувствительного элемента, должен быть технологичен и устойчив к окислению, а также обладать достаточным температурным коэффициентом. Таким критериям практически идеально отвечает платина. Там, где не столь высокие требования к измерениям, может использоваться никель или медь. В качестве примера можно привести термодатчики: PT1000, PT500, ТСП 100 П, ТСП pt100, ТСП 50П, ТСМ 296, ТСМ 045, ТС 125, Jumbo, ДТС Овен и т.д.
Расшифровка аббревиатур
Чтобы не возникало вопросов, что такое ТСМ, приведем расшифровку этой и других аббревиатур:
- ТСМ это термометр сопротивления (ТС), в чувствительном элементе (ЧЭ) которого используется медная проволока (М).
- ТСП, в применяется платиновый (проволока из платины) ЧЭ.
- КТС б – обозначение комплекта из нескольких платиновых ТС., позволяющих провести многозонные измерения, как правило, монтаж таких устройств производится на вход и выход системы отопления, чтобы установить разность температур.
- ТПТ – технический (Т) платиновый термометр (ПТ).
- КТПТР – комплект из ТПТ приборов, буква «Р» в конце указывает, что может производиться не только измерение разницы температур между различными датчиками.
- ТСПН – «Н» в конце ТСП, обозначает, что датчик низкотемпературный.
- НСХ – под данным сокращением подразумевается «номинальная статическая характеристика», соответствующая стандартной функции «температура-сопротивление». Достаточно посмотреть таблицу НСХ для pt100 или любого другого датчика (например, pt1000, rtd, ntc и т.д.), чтобы иметь представление о его характеристиках.
- ЭТС – эталонные приборы, служащие для калибровки датчиков.
Чем отличается термосопротивление от термопары?
Схема термопары, ее конструкция, а также принцип работы существенно отличается от термометра сопротивления, расскажем об этом простыми словами. У устройства pt100, а также других датчиков, принцип действия основан на сопоставимости между изменением температуры металла и его сопротивлением.
Принцип термопары построен на различных свойствах двух металлов собранных в единую биметаллическую конструкцию. Устройство, подключение, назначение термопары, а также описание погрешности этих приборов будет рассмотрено в отдельной статье.
Сейчас достаточно понимать, что термопара и ТСП, например pt100, это совершенно разные приборы, отличающиеся принципом работы.
Платиновые измерители температуры
Учитывая распространенность металлических датчиков, имеет смысл привести краткое описание этих устройств, чтобы наглядно показать сравнительные характеристики различных видов, особенности, а также описать сферу применения.
В соответствии с нормами ГОСТ 6651 2009 и МЭК 60751, у рабочих приборов данного типа значение температурного коэффициента должно быть 0,00385°С-1, эталонных – 0,03925°С-1. Диапазон измеряемой температуры: от-196,0°С до 600,0°С. К несомненным достоинствам следует отнести высокий коэффициент точности, близкую к линей характеристику «Температура-сопротивление», стабильные параметры. Недостаток – наличие драгметаллов увеличивает стоимость конструкции. Необходимо заметить, что современные технологии позволяют минимизировать содержание этого металла, что делает возможным снижение стоимости продукции.
Основная область применения – контроль температуры различных технологических процессов. Например, такой прибор может быть установлен в трубопроводе, в котором плотность рабочей среды сильно зависит от температуры. В этом случае показания вихревой расходометра корректируются информацией о температуре рабочей среды.
Датчик термопреобразователь ТСП 5071 производства ЭлемерНикелевые термометры сопротивления
Температурный коэффициент (далее ТК) у данного типа измерительных устройств самый высокий — 0,00617°С-1. Диапазон измеряемых температур также существенно уже, чем у платиновых ЧЭ (от -60,0°С до 180,0°С). Основное достоинство данных приборов – высокий уровень выходного сигнала. В процессе эксплуатации следует учитывать особенность, связанную с приближением температуры нагрева к точке Кюри (352,0°С), вызывающую существенное изменение параметров ввиду непредсказуемого гистерезиса.
Данные устройства практически не используются, поскольку в большинстве случаев их можно заменить приборами с медными чувствительными элементами, которые существенно дешевле и технологичнее (проще в производстве).
Медные датчики (ТСМ)
ТК медных измерительных приборов – 0,00428°С-1, диапазон измеряемых температур немного уже, чем у никелевых аналогов (от -50,0°С до 150°С). К несомненным преимуществам медных измерителей следует отнести их относительно невысокую стоимость и наиболее близкую к линейной характеристику «температура-сопротивление». Но, узкий диапазон измеряемых температур и низкие параметры удельного сопротивления существенно ограничивают сферу применения термопреобразователей ТСМ.
Внешний вид термопреобразователя ТСМ 1088 1Но, тем не менее, медные датчики рано списывать, есть немало примеров удачных реализаций, например, ТХА Метран 2700, который предназначен как для различных видов промышленности, но также удачно используется в ЖКХ.
Учитывая, что платиновые терморезисторы наиболее востребованы, рассмотрим варианты их конструктивного исполнения.
Типовые конструкции платиновых термосопротивлений
Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.
Конструктивное исполнение «Strain free»Обозначения:
- А – Выводы термоэлектрического элемента.
- В – Защитный корпус.
- С – Спираль из платиновой проволоки.
- D – Мелкодисперсный наполнитель.
- E – Глазурь, герметизирующая ЧЭ.
Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al2O3). Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева. Для герметизации отверстий в защитном корпусе применяется специальная глазурь.
На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.
Исполнение Hollow Annulus.
Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий. Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.
Пример исполнения «Hollow Annulus»Обозначения:
- А – Выводы с ЧЭ.
- В – Изоляция выводов ЧЭ.
- С – Изолирующий мелкодисперсный наполнитель.
- D – Защитный корпус датчика.
- E – Проволока из платины.
- F – Металлическая трубка.
ЧЭ данной конструкции представляет собой металлическую трубку (полый цилиндр), покрытый слоем изоляции, сверху которой наматывается платиновая проволока. В качестве материала цилиндра используется сплав с температурным коэффициентом близким к платине. Изоляционное покрытие (Al2O3) наносится горячим напылением. Собранный ЧЭ помещается с защитный корпус, после чего его герметизируют.
Для данной конструкции характерна низкая инерционность, она может быть в диапазоне от 350,0 миллисекунд до 11,0 секунд, в зависимости от того используется погружаемый или монтированный ЧЭ.
Пленочное исполнение (Thin film).
Основное отличие от предыдущих видов заключается в том, что платина тонким слоем (толщиной в несколько микрон) напыляется на керамическое или пластиковое основание. На напыление наносится стеклянное, эпоксидное или пластиковое защитное покрытие.
Миниатюрный пленочный датчикЭто наиболее распространенный тип конструкции, основные достоинства которой заключаются в невысокой стоимости и небольших габаритах. Помимо этого пленочные датчики обладают низкой инерционностью и относительно высоким внутренним сопротивлением. Последнее практически полностью нивелирует воздействие сопротивления выводов на показания прибора (таблицы термосопротивлений можно найти в сети).
Что касается стабильности, то она уступает проволочным датчикам, но следует учитывать, что пленочная технология усовершенствуется год от года, и прогресс довольно ощутим.
Стеклянная изоляция спирали.
В некоторых дорогих ТС платиновую проволоку покрывают стеклянной изоляцией. Такое исполнение обеспечивает полную герметизацию ЧЭ и увеличивает влагостойкость, но сужает диапазон измеряемой температуры.
Класс допуска
Согласно действующим нормам допускается определенное отклонение от линейной характеристики «температура-сопротивление». Ниже представлена таблица соответствия класса точности.
Таблица 1. Классы допуска.
Класс точности | Нормы допуска °C |t | | Диапазон измерения температуры | |||
Платиновые датчики | Медные | Никелевые | |||
Проволочные | Пленочные | ||||
AA | ±0,10+0,0017 | -50°C …250°C | -50°C …150°C | x | x |
A | ±0,15+0,002 | -100°C …450°C | -30°C …300°C | -50°C …120°C | x |
B | ±0,30+0,005 | -196°C …660°C | -50°C …500°C | -50°C …200°C | х |
С | ±0,60+0,01 | -196°C …660°C | -50°C …600°C | -180°C …200°C | -60°C …180°C |
Приведенная в таблице погрешность отвечает текущим нормам.
Схемы включения ТСМ/ТСП
Существует три варианта подключения:
- 2-х проводное (см. А на рис. 7), этот наиболее простой способ используется в тех случаях, когда точность результатов не критична. Дополнительную погрешность создает номинальное сопротивление проводников, которыми подключается датчик. Обратим внимание, что для классов точности A и AA данная схема включения неприемлема. Рисунок 7. Двухпроводная, трехпроводная и четырехпроводная схема включения термометра сопротивления
- 3-х проводное (В). Такой вариант обладает более высокой точностью, чем 2-х проводная схема вариант подключения. Это происходит за счет того, что появляется возможность измерить сопротивление монтажных проводов, чтобы учесть их воздействие.
- 4-х проводное. Этот вариант позволяет полностью исключить воздействие сопротивления монтажных проводов на результаты измерений.
В измерительных приборах ТС, как правило, включен по мостовой схеме.
Пример подключения по мостовой схеме вторичного прибора (pt100) для измерения температуры воздухаОбратим внимание, что под rл.с. в электрической схеме подразумевается сопротивление линий связи, то есть проводов, которыми подключен датчик.
Обслуживание
Информация о ТО температурного датчика указана в паспорте прибора или инструкции эксплуатации, там же приводится типовые неисправности и способы их ремонта, рекомендуемая длина кабеля для подключения, а также друга полезная информация.
Термометры сопротивления не требуют специального ТО, в задачу обслуживающего персонала входит:
- Проверка условий, в которых эксплуатируется датчик.
- Внешний осмотр на предмет целостности конструкции и кабельных соединений, проверка хода подвижного штуцера (если таковой имеется).
- Помимо этого проверяется наличие пломб.
- Проверяется заземление.
Такой осмотр должен проводиться с периодичностью один раз в месяц или чаще.
Помимо этого должна проводиться поверка приборов, с использованием эталонного датчика, например, ЭТС 100.
Платиновый эталонный ПТС (датчик ЭТС 100)Для градуировки датчиков используются специальные таблицы, в качестве примера приведена одна из них для термосопротивления pt100. Саму методику калибровки мы приводить не будем, ее описание несложно найти в сети.
Градуировочная таблица для терморезистора pt100 (фрагмент, без указания пределов градуировки измерений)Что касается методики поверки эталонных платиновых датчиков, то она должна производиться на специальных реперных точках.
Обозначение резисторов и их виды
В данной статье мы наглядно посмотрим основные виды резисторов и их обозначения на схеме. Резисторы бывают постоянными, переменными, подстроечными, термисторы, варисторы, фоторезисторы.
Постоянные резисторы. Самый распространенный вид, используемый в электронике.
Обозначаются на схеме следующим образом:
Выглядят постоянные резисторы так:
Данные элементы могут отличаться мощностью, которая на схеме тоже может быть указана следующим образом:
Вот наглядные примеры резисторов различной мощности:
На 0.125 Вт резисторы у нас не продают в городе, так как они в корпусе 0.25 Вт и с виду их не различить. Привожу пример зарубежных резисторов, так как, элементы времен СССР уже в большинстве случаев не применяются. Резисторы могут быть и более 2 Ватт, и 10, и 25 Ватт, вот например на 7 Ватт:
Данные сопротивления я использовал для измерения мощности импульсного блока питания.
Пример постоянных сопротивлений на плате:
Высокоточные сопротивления, с погрешностью 0.25%:
Также есть чип резисторы, еще их называют SMD резисторами, они применяются в поверхностном монтаже. Они различаются по размерам и рассеиваемой мощностью.
Переменные резисторы. Резисторы, изменяющие свое сопротивление, при вращении рукоятки называются переменными. На схеме они отображаются следующим образом:
Так же переменники могут выполнять две роли, роль реостата и потенциометра, все зависит от соединения:
В роли потенциометра, резистор работает как делитель напряжения, а в роли реостата как делитель тока.
Выглядят переменные резисторы вот так:
Подстроечные резисторы. Они похожи на переменные, могут быть потенциометрами, либо реостатами. Отличаются размерами и тем , что у подстроечных резисторов вместо рукояти пазы под отвертку, шестигранник и так далее. Хотя есть и с рукоятью, но с пазом под отвертку.
На схеме обозначаются следующим образом:
Выглядят так:
Варистор. Является полупроводниковым резистором, который изменяет свое сопротивление от приложенного к нему напряжения. Изменение сопротивления происходит нелинейно. Например, варистор, рассчитанный на напряжение 275 Вольт, при скачке напряжение более 275 Вольт, сопротивление варистора будет резко (нелинейно) уменьшаться, от сотни МОм до нескольких Ом.
Обозначаются на схеме варисторы следующим образом:
Выглядят так:
Применяются варисторы в основном для защиты цепей от перенапряжения. Варистор ставят параллельно в цепь, а до варистора в цепи ставят последовательно предохранитель. При скачке напряжения, сопротивление варистора падает до десятков Ом, тем самым варистор замыкает цепь, вследствие короткого замыкания (К.З.), сгорает предохранитель.
Термистор. Также является резистором на основе полупроводниковых материалов, сопротивление которого зависит от температуры полупроводника. Одним из важных параметров термисторов является- тепловой коэффициент сопротивления (ТКС). ТКС может быть положительным и отрицательным. У термисторов с отрицательным ТКС, при увеличении температуры, сопротивление падает, называют такие термисторы – термисторами. У термисторов с положительным ТКС, при увеличении температуры, сопротивление увеличивается и такие термисторы называют – позисторами.
Термисторы NTC (Negative Temperature Coefficient) и позисторы PTC (Positive Temperature Coefficient) на схеме обозначаются следующим образом:
Выглядит термистор так:
Фоторезистор. Является полупроводниковым элементом, который изменяет свое сопротивление при попадании на него лучей света, в том числе искусственных. Фоторезисторы можно увидеть в видеокамерах с инфракрасной подсветкой, среди инфракрасных светодиодов стоит один фоторезистор, который является датчиком света, управляющий реле. Реле в свою очередь включает подсветку, когда видеокамера в темноте.
Так же фоторезистор может использоваться в автоматах ночного освещения, регуляторах мощности фар автомобиля, фотоэлектронном контроле оборотов, датчиках дыма и других электронных устройствах.
На схеме отображаются следующим образом:
Внешне выглядят так:
Резисторная сборка. Это сборка из нескольких постоянных резисторов. Вот пример резисторной сборки на 15 кОм с общим выводом:
Теперь вы имеете представление о том, как выглядят различные сопротивления.
Похожие статьи
Температурные датчики. Терморезисторы в схемах на МК
Терморезисторы изготавливаются из специальных полупроводниковых сплавов или чистых металлов, у которых сопротивление значительно изменяется от температуры. Терморезисторы также называют термосопротивлениями или сокращённо термисторами (терм^Р^^истор).
Основным параметром термисторов считается температурный коэффициент сопротивления (ТКС). Чем он больше, тем легче регистрировать отклонение температуры. Чем он стабильнее во времени, тем достовернее будут показания.
По знаку ТКС различают NTC- и РТС-термисторы.
В термисторах NTC-типа (англ. NTC — Negative Temperature Coefficient) сопротивление уменьшается с повышением температуры окружающей среды. Типичный NTC-термистор при 0°С имеет сопротивление 7… 16 кОм, а при +100°С — 152…339 Ом (Табл. 3.11).
Таблица 3JL Параметры NTC-термисторов (NTC-Thermistor)
NTC- термисторы | Материал | Диапазон сопротивлений [кОм] | Допуск [%] | Мощность [Вт] | ТКС [%/°С] | Диапазон температур [°С] |
КМТ-1 | Со, Мп | 22… 1000 | ±20 | 1 | -4.2…-8.4 | -60…+ 155 |
ММТ-1 | Си, Мп | 1…220 | ±20 | 0.6 | -2.4…-5.6 | -60…+ 125 |
СТЗ-1 | Си, Со, Мп | 0.68…2.2 | ±10; ±20 | 0.6 | -3.35…-3.95 | -60…+ 125 |
«NTC» (фирма EPCOS) | Си, Со, Мп, Ni, Fe | 0.001…470 | ±(1…20) | 0.45…2 | -2…-6 | -40…+200 |
В термисторах РТС-типа или, по-другому, позисторах (англ. РТС — Positive Temperature Coefficient) сопротивление увеличивается с повышением температуры окружающей среды (Табл. 3.12).
Таблица 3,12, Параметры позисторов (Posistor)
Позисторы | Диапазон сопротивлений [Ом] | Допуск [%] | Мощность [Вт] | ТКС [%/°С] | Диапазон температур [°С] |
СТ5-1 | 20… 150 | ±20 | 0.7 | +20 | -20…+200 |
«РТС» (импорт) | 1…80 | ±20 | 1.6…6.7 | + 10 | -55…+ 170 |
ТКС в процентном отношении у позисторов выше, чем у NTC-термисторов. С другой стороны, позисторы не бывают высокоомными. Отсюда вытекает раздел сфер их применения. Термисторы NTC-типа чаще всего используются для измерения температуры, а позисторы — для систем тепловой защиты и ограничения пускового тока в силовых цепях.
Главные достоинства термисторов перед другими датчиками температуры — это низкая стоимость и высокая чувствительность, позволяющая регистрировать быстрые колебания температуры. Недостатки: относительно узкий диапазон рабочих температур, «хрупкость» конструкции и нелинейность характеристики. Если температуру измеряет МК, то нелинейность легко учитывается программным путём.
На Рис. 3.64, а…т приведены схемы подключения NTC-термисторов к МК.
Рис. 3.64. Схемы подключения NTC-термисторов к МК {начало)’.
а) базовая схема измерения температуры через АЦП МК. Зависимость сопротивления тер- мистора от температуры в общем случае носит нелинейный характер, поэтому используется табличный метод с заранее подобранными коэффициентами. Таблица преобразования напряжения АЦП в температуру предварительно заносится в ПЗУ МК;
б) если термистор R} подключается к цепи питания, а не к общему проводу, то изменяется наклон зависимости напряжения АЦП от температуры в противоположную сторону;
в) измерение температуры проводится только при ВЫСОКОМ уровне на выходе МК, что экономит ток через делитель /?/, в ждущем режиме. Резистор /?/должен быть точным;
г) усилитель постоянного тока на транзисторе VT1 повышает чувствительность, но сужает температурный диапазон. Ток базы VT1 может выйти за норму при низком сопротивлении RL Шкалу резистора (характеристика поворота «В») размечают в градусах температуры. МК следит за уровнем на входе и в момент «перескока» включает внешний индикатор;
д) МК измеряет разность напряжений на двух делителях: R1, R2w R3, R4. Используются два канала АЦП в дифференциальном режиме. Термисторы R1 и физически устанавливают в разных местах с разной температурой окружающей среды;
Рис. 3.64. Схемы подключения NTC-термисторов к МК {продолжение)’.
е) сначала конденсатор С1 разряжается через резистор R1 НИЗКИМ уровнем с выхода «О/Z» МК. Затем линии «О/Z» и «1/Z» настраиваются в режим входа, а линия «Z/1» в режим выхода с ВЫСОКИМ уровнем. МК измеряет по таймеру время заряда конденсатора С/ через резистор R2JX0 определённого порога (входом служит линия «О/Z»). Конденсатор вновь разряжается через линию МК, после чего аналогичным образом измеряется время заряда конденсатора через термистор R3. Разность двух отсчётов времени пропорциональна разности температур нагрева резисторов R2w R3, которые должны находиться физически в разных местах. Резистор /?/ можно заменить перемычкой при малой ёмкости конденсатора С/;
ж) метод уравновешивания зарядов. В МК на входе может использоваться АЦП или обычная линия порта с фиксированным порогом срабатывания. Если напряжение на конденсаторе С/больше порогового, то на линии «Z/О» устанавливается НИЗКИЙ уровень и происходит разряд ёмкости через резистор R2. Если напряжение меньше порогового, то линия «Z/О» переводится в режим входа без «pull-up» резистора. Конденсатор С/ заряжается через термистор RI. Среднее число циклов «заряд-разряд» за единицу времени пропорционально температуре. Достоинство метода — компенсация наводок с частотой питающей сети и её гармоник;
з) двухдиапазонное измерение температуры через АЦП МК. При низких температурах используется делитель RI, R3, при высоких — R2, R3. Число диапазонов можно увеличить, задей- ствуя другие выходные линии портов МК. Достоинство — компенсация естественной нелинейности термистора R3, повышенная точность измерений;
и) терморезистор /?/ автоматически включается в разрыв между резистором R2 и общим проводом при соединении с розеткой XSI. Резистором R3 выставляется рабочее напряжение на входе МК, близкое к половине питания. Кроме того, этим резистором можно сымитировать процесс быстрого изменения температуры при тестовых проверках;
к) ОУ DAI включается по схеме повторителя напряжения. NTC-термистор R2 (фирма BCcomponents, номер по каталогу 2322-633-83033) изменяет своё сопротивление от 941 кОм до 191 Ом при температуре от-40 до+200°С. Промежуточные значения указаны вдаташите;
Рис. 3.64. Схемы подключения NTC-термисторов к МК (продолжение): л) точное измерение температуры через 22-битный АЦП DA1. Платиновый термистор R2 W2102 (фирма Omega Engineering) обеспечивает высокую стабильность и линейность;
м) оригинальное включение двух половинок микросхемы DAI. Резистором RI устанавливают температурный порог срабатывания, вплоть до полного отключения термистора
н) измерение температуры при помощи термистора Я2и аналогового компаратора МК; о) аналогичнРис. 3.64, н, но с подключением термистора RI к цепи питания (а не к общему проводу) и с возможностью калибровки температуры подстроечным резистором R2\
п) повыщение точности измерения температуры с помощью интегрального стабилизатора напряжения DA /. Внутренний АЦП М К переводится в режим измерения от внешнего ИОН. Резистор /?/линеаризирует температурную характеристику термистора R3 в узком диапазоне; р) аналогичнРис.3.64, п, но со стабилитроном VD1 и без линеаризации характеристики;
Рис. 3.64. Схемы подключения ЫТС-термисторов к МК {окончание)-. с) резистором R4 производится балансировка моста, содержащего термистор R2. Резисторы /?/, R3, рекомендуется применить высокоточные, например, ± 1 %. Термистор R2— про
волочный ТСМ-ЮОМ (медный, -50…+200°С), ТСМ-ЮОП (платиновый, -200…+750°С) или самодельный, состоящий из 11 м медного провода ПЭВ-0.05. При подборе замены следует знать стандартный ряд номиналов проволочных измерительных термисторов: 100; 500; 1000 Ом;
т) термистор R1 входит в состав делителя, напряжение на котором измеряется через АЦП МК. Конденсатор С/ снижает помехи при значительном удалении /?/ от МК и при большом уровне наводок. Термистор R1 самодельный проволочный с ТКС примерно 10 Ом/°С. Он содержит 1300 витков медного провода ПЭЛ-0.05, намотанных на каркасе диаметром 7 мм. Достоинство проволочного датчика — стабильный и предсказуемый ТКС, широкий диапазон измеряемых температур -100…+500°С. Если требуется расширить диапазон до -200…+850°С, то следует применить промышленный платиновый термистор.
мир электроники — Терморезистор
Электронные компоненты
материалы в категории
Терморезистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году.
Терморезистор — полупроводниковый резистор, в котором используется зависимость электрического сопротивления полупроводникового материала от температуры.
Главный параметр терморезистора это большой температурный коэффициент сопротивления (ТКС) (в десятки раз превышающий этот коэффициент у металлов)- то есть его сопротивление очень сильно зависит от температуры и может изменяться в десятки а то и сотни раз.
Достоинства терморезисторов— простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, относительно невысокая долговременная стабильность характеристик.
Основная область применения терморезисторов это температурные датчики в различных устройствах или защитные функции (при большом токе через него происходит разогрев и изменение сопротивления)
Терморезистор изготавливают в виде стержней, трубок, дисков, шайб, бусинок и тонких пластинок преимущественно методами порошковой металлургии. Их размеры могут варьироваться в пределах от 1–10 мкм до 1–2 см.
Основными параметрами терморезистора являются: номинальное сопротивление, температурный коэффициент сопротивления, интервал рабочих температур, максимально допустимая мощность рассеяния.
Терморезисторы по своим рабочим параметрам делятся на две категории:
1. При нагреве сопротивление уменьшается. Такие терморезисторы называют термистор или NTC-термисторы (Negative temperature coefficient).
2. При нагреве сопротивление увеличивается. Такие терморезисторы называют позистор или PTC-термисторы (Positive temperature coefficient). Они применяются в системе размагничивания кинескоп телевизоров
Обозначение терморезисторов на схеме
На схеме терморезисторы (не важно термистор это или позистор) обозначается так:
Терморезисторы бывают низкотемпературные (рассчитанные на работу при температуpax ниже 170 К), среднетемпературные (170–510 К) и высокотемпературные (выше 570 К). Кроме того, существуют терморезисторы, предназначенные для работы при 4,2 К и ниже и при 900–1300 К. Наиболее широко используются среднетемпературные терморезисторы с ТКС от −2,4 до −8,4 %/К и номинальным сопротивлением 1–106 Ом.
Изготовляются также терморезисторы специальной конструкции — с косвенным подогревом. В таких терморезисторах имеется подогревная обмотка, изолированная от полупроводникового резистивного элемента (если при этом мощность, выделяющаяся в резистивном элементе, мала, то тепловой режим терморезистора определяется температурой подогревателя, то есть током в нём). Таким образом, появляется возможность изменять состояние терморезистора, не меняя ток через него. Такой терморезистор используется в качестве переменного резистора, управляемого электрически на расстоянии.
Тензорезистор — Википедия
Тензорези́стор (от лат. tensus — напряжённый и лат. resisto — сопротивляюсь) — резистор, сопротивление которого изменяется в зависимости от его деформации[1]. Тензорезисторы используются в тензометрии. С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов[2]. Тензорезистор является основной составной частью тензодатчиков, применяющихся для косвенного измерения силы, давления, веса, механических напряжений, крутящих моментов и пр.
При растяжении проводящих элементов тензорезистора увеличивается их длина и уменьшается поперечное сечение, что увеличивает сопротивление тензорезистора, при сжатии — уменьшает.
Принцип действия проиллюстрирован на анимированном изображении. Для наглядности на изображении величина деформации тензорезистора утрированно увеличена, как и изменение сопротивления. В реальности относительные изменения сопротивления весьма малы (менее ~10−3) и для их измерений требуются чувствительные вольтметры или прецизионные усилители или прецизионные усилители + АЦП. Таким образом, деформации преобразуются в изменение электрического сопротивления проводников или полупроводников и далее — в электрический сигнал, обычно сигнал напряжения.
Полупроводниковый тензорезистор обладает гораздо большей чувствительностью из-за изменения свойств полупроводникового материала при деформации.[3]
Чувствительность[править | править код]
Чувствительность тензорезистора характеризуется безразмерным параметром — коэффициентом тензочувствительности Kf,{\displaystyle K_{f},} который определяется как:
- Kf=ΔR/R0ϵ,{\displaystyle K_{f}={\frac {\Delta R/R_{0}}{\epsilon }},}
где:
- ΔR{\displaystyle \Delta R} — абсолютное изменение сопротивления, вызванное деформацией, Ом;
- R0{\displaystyle R_{0}} — начальное сопротивление недеформированного тензорезистора, Ом;
- ϵ{\displaystyle \epsilon } — относительная деформация.
Относительная деформация определяется как:
- ϵ=ΔL/L0,{\displaystyle \epsilon =\Delta L/L_{0},}
где
- ΔL{\displaystyle \Delta L} — абсолютное изменение длины, м;
- L0{\displaystyle L_{0}} — длина недеформированного тензорезистора, м.
Для плёночных металлических тензорезисторов параметр Kf{\displaystyle K_{f}} слабо зависит от деформации и немного превышает 2[4].
При включении тензорезистора в мост Уитстона, в котором остальные 3 резистора постоянны (не имеют возможности регулирования сопротивления), выходное напряжение диагонали этого моста выражается формулой:
- v=Vb⋅Kf⋅ϵ4,{\displaystyle v={\frac {V_{b}\cdot K_{f}\cdot \epsilon }{4}},}
где:
- Vb{\displaystyle V_{b}} — напряжение питания моста, В.
Типичные значения коэффициента тензочувствительности для разных материалов приведены в таблице.
Материал | Коэффициент тензочувствительности |
---|---|
Металлическая фольга | 2-5 |
Тонкая металлическая плёнка (например, константановая) | 2 |
Монокристаллический кремний | От −125 до +200 |
Поликристаллический кремний | ±30 |
Тонкоплёночные резистивные материалы | 100 |
Температурный коэффициент[править | править код]
При изменении температуры изменяется сопротивление тензорезистора, не связанное с деформацией. Это является вредным побочным эффектом. Через коэффициент тензочувствительности относительное изменение сопротивления выражается формулой:
- ΔRR=Kf⋅ε+α⋅θ,{\displaystyle {\frac {\Delta R}{R}}=K_{f}\cdot \varepsilon +\alpha \cdot \theta ,}
где:
Электрическая схема подключения тензорезистора[править | править код]
Обычно тензорезисторы включают в одно или два плеча сбалансированного моста Уитстона, питаемого от источника постоянного тока (диагональ моста A—D). С помощью переменного резистора R2{\displaystyle R_{2}} производится балансировка моста, так, чтобы в отсутствие приложенной силы напряжение диагонали сделать равным нулю. С диагонали моста B—C снимается сигнал, далее подаваемый на измерительный прибор, дифференциальный усилитель или АЦП.
При выполнении соотношения R1R2=RxR3{\displaystyle {\frac {R_{1}}{R_{2}}}={\frac {R_{x}}{R_{3}}}} напряжение диагонали моста равно нулю. При деформации изменяется сопротивление Rx{\displaystyle R_{x}} (например, увеличивается при растяжении), это вызывает снижение потенциала точки соединения резисторов Rx{\displaystyle R_{x}} и R3{\displaystyle R_{3}} (точки B) и изменение напряжения диагонали B—C моста — полезный сигнал.
Изменение сопротивления Rx{\displaystyle R_{x}} может происходить не только от деформации, но и от влияния других факторов, главный из них — изменение температуры, что вносит погрешность в результат измерения деформации. Для снижения влияния температуры применяют сплавы с низким ТКС, термостатируют объект, вносят поправки на изменение температуры и/или применяют дифференциальные схемы включения тензорезисторов в мост.
Например, в схеме на рисунке вместо постоянного резистора R3{\displaystyle R_{3}} включают такой же тензорезистор, как и Rx{\displaystyle R_{x}}, но при деформации детали этот резистор изменяет своё сопротивление с обратным знаком. Это достигается наклейкой тензорезисторов на поверхности по-разному деформируемых зон детали, например, с разных сторон изгибаемой балки или с одной стороны, но со взаимно перпендикулярной ориентацией. При изменении температуры, если температура обоих резисторов равна, знак и величина изменения сопротивления, вызванного изменением температуры, равны, и температурный уход при этом компенсируется.
Также промышленностью выпускаются специализированные микросхемы для работы совместно с тензорезисторами, в которых помимо усилителей сигнала часто предусмотрены источники питания моста, схемы термокомпенсации, АЦП, цифровые интерфейсы для связи с внешними цифровыми системами обработки сигналов и другие полезные сервисные функции.
Плёночный тензорезистор. На подложку через фигурную маску в вакууме напылена или сформирована методами фотолитографии плёнка металла. Для подключения электродов выполнены контактные площадки (снизу). Метки облегчают ориентацию при монтаже.Обычно современные тензорезисторы представляют собой чувствительный элемент в виде зигзагообразного проводника, нанесённого на гибкую подложку. Тензорезистор приклеивается подложкой на поверхность исследуемого на деформации объекта. Проводники тензорезисторов обычно изготавливаются из тонкой металлической проволоки, фольги, или напыляются в вакууме для получения плёнки полупроводника или металла. В качестве подложки обычно используют ткань, бумагу, полимерную плёнку, слюду и др. Для присоединения чувствительного элемента в электрическую цепь тензорезистор имеет выводные проволочные концы или контактные площадки.
Плёночные металлические тензорезисторы имеют площадь около 2‑10 мм2.
Тензорезисторы используются в качестве первичных преобразователей в тензометрах и тензостанциях при измерениях механических величин (деформации, силы, крутящего момента, перемещения, также, для измерения давления в манометрах и пр.)