Типовые схемы пуска синхронных электродвигателей | Полезные статьи
На сегодняшний день использование синхронных двигателей получило широкое распространение в сфере производства оборудования, работающего с постоянной скоростью, которое применяется в разных сферах человеческой деятельности. В связи с этим, существует несколько способов запуска синхронных электродвигателей, наиболее распространенные варианты которых будут представлены ниже.
Способы пуска синхронного электродвигателя
Способы пуска синхронного электродвигателя достаточно сложны, в этом заключается один из основных недостатков электродвигателей данного типа. Запуск синхронных электродвигателей осуществляется либо посредством воздействия вспомогательного пускового двигателя, либо с помощью асинхронного пуска. Рассмотрим каждый из способов в отдельности.
Асинхронный пуск синхронного электродвигателя
Асинхронный пуск синхронного электродвигателя предполагает расположение дополнительной короткозамкнутой обмотки в полюсных наконечниках полюсов ротора. Это необходимо, чтобы обеспечить во время пуска вывод чрезмерно большой Э.Д.С., образующейся в обмотке (1), что является возможным благодаря замыканию рубильника (2) на соединение (3). Благодаря тому, что магнитное поле, возникающее в результате включения напряжения трехфазной сети в обмотке статора (4), пересекает короткозамкнутую обмотку (пусковую обмотку), находящуюся в полюсных наконечниках ротора, индуктируются токи.
Действие этих токов в сочетании с вращающимся полем статора, запускают во вращение ротор, который постепенно набирает обороты. Достигнув 95-97% количества оборотов рубильник (2) ротора переходит в состояние, которое вынуждает обмотку ротора включить сеть постоянного напряжения.
Асинхронный пуск синхронного электродвигателя не лишен недостатков, точнее сказать, недостатка, которым является большой пусковой ток, который по значению может превышать в 7 раз рабочий ток. Столь высокое значение пускового тока является причиной падения напряжения в сети, что негативно сказывается на функционировании других потребителей энергии. Одним из наиболее распространенных вариантов решения упомянутого недостатка является использование автотрансформатора для понижения напряжения, а также использование тиристорных возбудителей для пуска синхронных электродвигателей, которые отличаются высоким К.П.Д. Именно высокое значение К.П.Д. во многом определило выбор тиристорных возбудителей в качестве комплектов большей части выпускаемых синхронных электродвигателей крупных размеров. К тому же, применение тиристорных возбудителей позволяет автоматизировать процесс подачи возбуждения синхронному двигателю. Автоматизация может быть реализована 2-мя способами: подача возбуждения синхронному двигателю в функции скорости и подача возбуждения синхронному двигателю в функции тока. При этом контроль подачи возбуждения синхронному двигателю в функции тока осуществляется с помощью реле тока.
На сегодняшний момент именно асинхронный пуск синхронных двигателей получил наибольшее распространение, так как его достаточно просто реализовать, а работает он крайне надежно.
Пуск синхронного двигателя при помощи вспомогательного двигателя
Пуск синхронного двигателя при помощи вспомогательного двигателя предполагает запуск синхронного электродвигателя благодаря работе другого двигателя, работа которого позволяет ротору синхронного двигателя развернуть полюса, осуществляя дальнейшее вращение совершенно самостоятельно. Чтобы запуск произошел, нужно создать условия, при которых количество пар полюсов асинхронного двигателя было бы меньше количества пар полюсов синхронного двигателя. Порядок запуска синхронного двигателя предполагает включение рубильника (3), пуск вспомогательного асинхронного двигателя (2), осуществляющего разворот ротора синхронного двигателя (1) до скорости, которая соответствует скорости поля статора. Далее включаются полюсы ротора после включения рубильника (4). При включении синхронного двигателя в сеть трехфазного тока, требуется синхронизация, осуществляемая реостатом (5). Реостат организует возбуждение, позволяющее установить напряжение обмотки статора, определяемое вольтметром V, равное напряжению в сети, которое указывает вольтметр V1.
При разомкнутом рубильнике лампы (6), расположенные параллельно ножам рубильника (7), буду мигать. По мере того, как будет меняться скорость ращения вспомогательного асинхронного двигателя, лампы будут постепенно начинать мигать все реже, пока все они не погаснут в раз. Это сигнал того, что синхронный двигатель пора включать в сеть трехфазного тока рубильником (7). Так как ротор двигателя далее может вращаться без помощи, то вспомогательный двигатель (2) пора отключать от сети посредством рубильника (3).
Это сложная процедура, являющаяся самым главным недостатком такого варианта асинхронного электродвигателя, что определяет крайне редкие случаи ее практической реализации.
Как подключить однофазный двигатель
Сегодня мы рассмотрим подключение однофазного двигателя переменного тока. К таким относят асинхронные и синхронные моторы, питающиеся от одной фазы, которая обычно имеет напряжение 220 Вольт. Они очень распространены в бытовой сфере и мелком производстве, частном предпринимательстве.
Подключение однофазного асинхронного двигателя
Для разгона асинхронного двигателя требуется создать вращающееся магнитное поле. С этим легко справляется трехфазный источник питания, где фазы сдвинуты друг относительно друга на 120 градусов. Но если речь идет о том, как подключить однофазный электродвигатель, то встает проблема: без сдвига фаз вал не начнет вращаться.
Внутри однофазного асинхронного мотора располагаются две обмотки: пусковая и рабочая. Если обеспечить сдвиг фаз в них, то магнитное поле станет вращающимся. А это главное условие для запуска электродвигателя. Сдвигать фазы можно путем добавочного сопротивления (резистора) или индуктивной катушки. Но чаще всего используют емкости – пусковой и/или рабочий конденсаторы.
С пусковой емкостью
В большинстве случаев схема включает в себя только пусковой конденсатор. Он активен только во время запуска мотора. Поэтому способ хорош, когда пуск обещает быть тяжелым, в противном случае вал не сможет разгоняться из-за небольшого начального момента. После разгона пусковой конденсатор отключается, и работа продолжается без него.
Схема подключения двигателя со вспомогательной емкостью представлена на рисунке выше. Для ее реализации вам потребуется реле или, как минимум, одна кнопка, которую вы будете зажимать на 3 секунды во время запуска мотора в ход. Вспомогательный конденсатор вместе со вспомогательной обмоткой включаются в цепь лишь на некоторое время.
Такая схема обеспечивает оптимальный начальный крутящий момент, если имеют место незначительные броски переменного тока во время пуска. Но есть и недостаток – при работе в номинальном режиме технические характеристики падают. Это обусловлено формой магнитного поля рабочей обмотки: оно у нее овальное, а не круговое.
С рабочей емкостью
Если пуск легкий, а работа тяжелая, то вместо пускового конденсатора понадобится рабочий. Схема подключения показана ниже. Особенность заключается в том, что рабочая емкость вместе с рабочей обмоткой включена в цепь постоянно.
Схема обеспечивает хорошие характеристики при работе в номинальном режиме.
С обоими конденсаторами
Компромиссное решение – использование вспомогательной и рабочей емкости одновременно. Этот способ идеален, если двигатель переменного тока пускается в ход уже с нагрузкой, и сама работа тяжела для него. Посмотрите, схема ниже – это словно две схемы (с рабочей и вспомогательной емкостью), наложенные друг на друга. При запуске на несколько секунд будет включаться пусковой механизм, а второй накопитель будет активен все время: от пуска до завершения работы.
Расчет емкостей
Наибольшую сложность для начинающих представляет расчет емкости конденсаторов. Профессионалы подбирают их опытным путем, прислушиваясь к мотору во время запуска и работы. Так они определяют, подходит накопитель, или нужно поискать другой. Но с небольшой погрешностью в большинстве случаев емкость можно рассчитать так:
- Для рабочего накопителя: 0,7-0,8 мкФ на 1000 Ватт мощности электрического двигателя;
- Для пускового конденсатора: больше в 2,5 раза.
Пример: у вас асинхронный однофазный электродвигатель на 2 кВт. Это 2000 Ватт. Значит, при подключении с рабочей емкостью нужно запастись накопителем 1,4-1,6 мкФ. Для пусковой потребуется 3,5-4 мкФ.
Подключение однофазного синхронного электродвигателя
Несмотря на сложность конструкции синхронных двигателей, они имеют много преимуществ перед асинхронными. Главное – это низкая чувствительность к скачкам напряжения, ведущих к резкому уменьшению или увеличению силы тока. Не менее значим и тот факт, что синхронные моторы могут работать даже с перегрузкой, не говоря уже об оптимальном режиме реактивной энергии и вращении вала с постоянной скоростью. Однако подключение – трудоемкий процесс, и это уже недостаток.
Метод разгона
Нельзя пустить в ход однофазный синхронный двигатель, просто подав питание на его обмотки. Потому что в момент включения направление питающего тока в статорных намотках соответствует рисунку (а). В это время на ротор, который еще находится в состоянии покоя, действует пара сил, которая будет пытаться крутить вал по часовой стрелке. Но через половину периода в статорных намотках ток поменяет свое направление. Поэтому пара сил будет уже действовать в обратном направлении, поворачивая вал против часов стрелки, как на рисунке (б). Поскольку ротор обладает большой инертностью, он так и не сдвинется с места.
Чтобы заставить ротор вращаться, необходимо, чтобы он успевал сделать хотя бы половину оборота, чтобы изменение направления тока не повиляло на его вращение. Это возможно, если разогнать вал при помощи посторонних сил. Это можно сделать двумя путями:
- Вручную;
- С использованием второго двигателя.
Собственной силой рук можно разогнать только маломощные синхронные электродвигатели. А для средне- и высокомощных агрегатов придется использовать другой мотор.
При разгоне с посторонней силой ротор начинает вращаться со скоростью, близкой к синхронной. Потом только включается обмотка возбуждения, и затем – статорная намотка.
Асинхронный пуск синхронного мотора
Если в наконечниках на полюсах ротора уложены стержни из металла, и они соединены между собой по бокам кольцами, то мотор должен запускаться асинхронным методом. Эти стержни играют роль вспомогательной обмотки, которая есть у асинхронного двигателя. При этом намотку возбуждения закорачивают с помощью разрядного резистора, а статорную обмотку подключают к сети. Только так можно обеспечить такой же разгон, как и у асинхронного электродвигателя. Но после того, как скорость вращения максимально приблизится к синхронной (достаточно 95% от нее), намотку возбуждения соединяют с источником постоянного тока. Скорость становится полностью синхронной, что влечет за собой снижение ЭДС индукции вспомогательной обмотки вплоть до нуля. И она отключается автоматически.
Важно! Вспомогательные металлические стержни должны обладать высоким активным сопротивлением. В противном случае пусковой момент будет недостаточным для разгона ротора. А закорачивать намотку возбуждения необходимо по одной простой причине: если этого не сделать, то у нее в момент пуска случится пробой, потому что она задает вращение в том же направление, что и пусковая обмотка.
Схема и способ подключения вашего двигателя будет зависеть от того, какой он у вас: синхронный или асинхронный. В учет идет также мощность мотора, а также способ пуска: с нагрузкой или без. Разобраться в рисунках вам поможет элементарное понимание механики и электромагнитных явлений.
Схема подключения синхронного двигателя переменного тока
Прежде чем рассматривать принцип действия синхронного двигателя, необходимо помнить, что это электрическая машина, работающая на переменном токе, у которой ротор вращается с частотой, которая равна частоте вращения магнитного поля в воздушной прослойке.
Синхронный двигатель состоит из основных частей – якоря и индуктора. Обычно, его исполнение сделано таким образом, что якорь расположен на статоре, а индуктор – на роторе, отделенном воздушной прослойкой. Данные агрегаты обладают высоким коэффициентом мощности. Существенным плюсом является возможность их использования в сетях с любым напряжением.
Устройство синхронного двигателя
Конструкция синхронного двигателя состоит из двух основных частей – статора и ротора. Статор является неподвижной частью агрегата, а ротор – подвижной. В состав якоря входят одна или несколько обмоток переменного тока. При работе двигателя токи, поступающие в якорь, приводят к вращению магнитного поля, пересекающегося с полем индуктора и преобразующего энергию. Поле якоря носит другое название – поле реакции якоря. В генераторе такое поле создается с помощью индуктора.
В состав индуктора входят электромагниты постоянного тока, называемые полюсами. Во всех синхронных электродвигателях индукторы бывают двух конструкций – явнополюсная и не явнополюсная, отличающиеся расположением полюсов. Конструкция статора включает в себя корпус и сердечник, в состав которого входят двух- и трехфазные обмотки. Сами обмотки могут быть распределенными и сосредоточенными.
Чтобы уменьшить магнитное сопротивление и улучшить прохождение магнитного потока, используются ферромагнитные сердечники, расположенные в роторе и статоре, для изготовления которых используется электротехническая сталь. Она обладает интересными свойствами, например, повышенным содержанием кремния, с целью повышения ее электрического сопротивления и уменьшения вихревых токов.
Каждый синхронный электродвигатель обладает важным параметром – электромагнитным моментом. Он возникает в том случае, когда магнитный поток ротора начинает взаимодействовать с вращающимся магнитным полем. Данное поле образуется под влиянием трехфазного тока, протекающего по обмотке якоря.
В режиме холостого хода происходит совпадение осей магнитных полей ротора и статора. Поэтому электромагнитные силы, возникающие между их полюсами, принимают радиальное направление и значение электромагнитного момента агрегата становится равным нулю. При переходе устройства в двигательный режим, на ротор начинает воздействовать внешние нагрузочный момент, приложенный к валу. В результате, происходит смещение ротора на величину определенного угла против направления вращения.
Подобное электромагнитное взаимодействие между ротором и статором приводит к созданию электромагнитных сил, направленных в сторону вращения. Таким образом, действие вращающегося электромагнитного момента стремится к преодолению действия внешнего момента. Максимальное значение электромагнитного момента образует угол 90 градусов, при расположении полюсов ротора между осями полюсов статора.
Если значение нагрузочного момента, приложенного к валу двигателя, превысит максимальный электромагнитный момент, в этом случае двигатель остановится под влиянием внешнего момента. Из-за этого в неподвижном двигателе по обмотке якоря будет проходить очень высокий ток. Данный режим является аварийным, он представляет собой выпадение из синхронизма и на практике не должен допускаться.
Как работает синхронный двигатель
Принцип действия синхронного двигателя основывается на взаимном влиянии магнитных полей якоря и полюсов индуктора. При обращенной конструкции агрегата расположение якоря и индуктора выполнено наоборот, то есть, первый расположен на роторе, а другой – на статоре. Такой вариант используют криогенные синхронные машины, у которых в состав обмоток возбуждения входят материалы со свойствами сверхпроводимости.
При запуске двигателя его разгоняют до частоты близкой к той, с которой в зазоре вращается магнитное поле. Только после этого он переходит в синхронный режим. В данной ситуации происходит пересечение магнитных полей якоря и индуктора. Этот момент получил название входа в синхронизацию.
При разгоне используется состояние асинхронного режима, когда происходит замыкание обмоток индуктора с помощью реостата или короткозамкнутым путем, подобно асинхронным машинам. Для того, чтобы осуществлять запуск в таком режиме, ротор оснащается короткозамкнутой обмоткой, которая одновременно является успокоительной обмоткой, способной устранить раскачивание ротора во время синхронизации. После того, как скорость становится близко к номинальной, в индуктор подается постоянный ток.
Таким образом, синхронный двигатель это не только двигатель, но и своеобразный генератор, поскольку у них одинаковое конструктивное исполнение. Схема работы двигателя будет следующей. Обмотка якоря подключается к трехфазному переменному току, а к обмотке возбуждения от постороннего источника подается постоянный ток. Вращающееся магнитное поле, созданное трехфазной обмоткой и поле, созданное обмоткой возбуждения, взаимодействуют между собой. Это вызывает появление электромагнитного момента, приводящего ротор во вращающееся состояние.
Для двигателей, где установлены постоянные магниты, применяются специальные внешние разгонные двигатели. В отличие от асинхронных устройств, разгон ротора в синхронном двигателе должен достигнуть частоты вращения магнитного поля. Это связано с подачей в обмотку ротора тока из постороннего источника, а не индуцируется в нем под действием магнитного поля статора, следовательно, на него не влияет частота вращения вала. В результате, синхронный двигатель переменного тока приобретает постоянную частоту вращения ротора вне зависимости от нагрузки. Специфический принцип работы этих устройств оказал влияние на их пуск и регулировку частоты вращения.
Схема запуска двигателя и его регулировка
У синхронных двигателей отсутствует начальный пусковой момент. При подключении якорной обмотки к источнику переменного тока, электромагнитный момент дважды изменить свое направление за один период изменения тока. Это происходит, когда ротор находится в неподвижном состоянии, а в обмотке возбуждения протекает постоянный ток.
Таким образом, величина среднего момента в течение одного периода будет иметь нулевое значение. Чтобы увидеть, как работает синхронный двигатель при пуске, нужно выполнить разгон его ротора под действием внешнего момента до вращения с частотой, приближенной к синхронной.
Сам запуск агрегата может производиться разными способами:
- В первом случае используется схема асинхронного включения, основой которой служит глухо подключенный возбудитель. Данный способ применяется при статическом моменте нагрузки ниже 0,4, когда отсутствует падение напряжения. Сопротивление разряда замыкается в обмотке возбуждения, за счет чего исключаются перебои с возбуждением обмотки во время впуска, поскольку незначительная скорость вращения ротора приводит к перенапряжению. Когда скорость становится близкой к синхронной, контактор реагирует на это изменение, в результате происходит переключение обмотки возбуждения из разрядного сопротивления непосредственно на якорь возбудителя.
- Во втором варианте пуска используется тиристорный возбудитель. Этот способ считается более надежным из-за высокого КПД. Управление возбуждением значительно облегчается. Подача возбуждение осуществляется автоматически с помощью электромагнитного реле.
Различия синхронных и асинхронных двигателей
Все электродвигатели переменного тока по принципу действия могут быть асинхронными и синхронными. В первом случае вращение ротора будет медленнее, по сравнению с магнитным полем, а во втором – вращение ротора и магнитного поля происходит с одинаковой скоростью.
В асинхронном двигателе вращающееся переменное магнитное поле создается обмотками, закрепленными на статоре. Концы этих обмоток выведены в общую клеммную коробку. Во избежание перегрева на валу двигателя устанавливается вентилятор. Ротор выполнен из металлических стержней, замкнутых с двух сторон между собой. Он представляет единое целое с валом и получил название короткозамкнутого ротора.
Вращение магнитного поля происходит под действием постоянной смены полюсов. Соответственно, в обмотках изменяется направление тока. На скорость вращения вала оказывает влияние количество полюсов магнитного поля.
Синхронный электродвигатель конструктивно отличается от асинхронных агрегатов. Здесь вращение ротора и магнитного поля происходит с одинаковой скоростью. Напряжение на ротор для зарядки обмоток подается с помощью щеток, а не индуцируется действием переменного магнитного поля. Направление тока в обмотках изменяется одновременно с направлением магнитного поля, поэтому вал синхронного двигателя всегда вращается в одну сторону.
Схемы управления синхронными двигателями можно условно разделить на релейно-контакторные, применяемые для пуска, синхронизации с сетью и останова нерегулируемых по скорости электроприводов, и схемы с силовыми преобразователями, предназначенные для регулирования переменных ЭП с синхронными двигателями.
Релейно-контакторные схемы управления двигателей кроме операций по включению и отключению двигателя, ограничению пусковых токов и его синхронизации с сетью должны обеспечивать и соответствующее регулирование тока возбуждения. Электротехническая промышленность выпускает широкую номенклатуру типовых панелей и шкафов управления для синхронных двигателей различных мощностей и уровней номинального напряжения.
Типовая схема управления возбуждением двигателя в функции скорости. Подключение обмотки возбуждения к источнику питания UB осуществляется контактором КМ2 (рис. 6.10, а), который управляется реле скорости KR. Катушка этого реле связана с частью разрядного резистора Rp через диод VD.
При включении контактора КМ1 (его цепи управления на рисунке не показаны) обмотка статора двигателя подключается к сети переменного тока и образует вращающееся магнитное поле, под действием которого он начнет разбег и которое наведет ЭДС в обмотке возбуждения двигателя. Под действием ЭДС по катушке реле KR начнет протекать выпрямленный ток, оно включится и разомкнет цепь питания контактора КМ2. Разбег двигателя будет происходить без тока возбуждения с закороченной на разрядный резистор Rp обмоткой возбуждения.
По мере роста скорости ротора его ЭДС и ток в катушке реле KR, снижаются. При подсинхронной скорости ток в катушке реле KR станет меньше тока отпускания, реле отключится и вызовет тем самым включение контактора КМ2. Контактор КМ2 подключит обмотку возбуждения к источнику питания. Далее происходит процесс синхронизации СД с сетью.
Схема управления возбуждением двигателя в функции тока (рис. 6.10, б) содержит реле тока КА, обмотка которого питается от трансформатора тока ТА, и реле времени КТ. При подключении двигателя к сети контактором КМ1 в цепи обмотки статора возникает бросок пускового тока, что приводит к срабатыванию реле КА. Контакт этого реле замыкает цепь питания реле времени КТ, что вызывает отключение контактора возбуждения КМ2. Разбег двигателя, как и в предыдущем случае, осуществляется с закороченной на разрядный резистор Rp обмоткой возбуждения.
Рис. 6.10. Схемы управления пуском двигателя с использованием принципа
скорости (а) и тока (б)
В конце пуска при подсинхронной скорости двигателя и уменьшении тока в статоре реле КА отключается и катушка реле времени КТ теряет питание. Через заданную выдержку времени включается контактор КМ2, и через его контакты обмотка возбуждения подключается к источнику питания U , после чего двигатель втягивается в синхронизм.
Отметим, что в рассмотренных схемах после срабатывания контактора возбуждения КМ2 разрывается цепь разрядного резистора Rp, что облегчает тепловой режим его работы и повышает экономичность схемы.
Электротехническая промышленность выпускает типовые панели и шкафы управления синхронными двигателями разных типов. Рассмотрим в качестве примера схему одной из таких панелей.
Схема типовой панели ПУ 7502управления низковольтным синхронным двигателем приведена на рис. 6.11. Панель управления обеспечивает прямой (без токоограничения) пуск с глухоподключенным возбудителем G и форсировку возбуждения при снижении уровня питающего напряжения. В схеме предусмотрены также защиты: тепловая (реле КК и трансформаторы тока ТА1 и ТА2), токовая (автоматы QF1 и QF2), от снижения напряжения сети переменного тока (реле KV2, KV3) и постоянного тока (реле KV1).
Пуск двигателя может быть осуществлен только при нормальных уровнях питающих схему напряжений постоянного и переменного тока. В этом случае, если рукоятка командоконтроллера SA находится в среднем положении и включены автоматы QF1 и QF2, срабатывают реле напряжения KV2, KV3 и реле времени КТ, что подготавливает схему к пуску двигателя.
При переводе рукоятки SA в положение «Включено» срабатывает реле KV1 и катушка линейного контактора КМ1 подключается к ис-
Рис. 6.11. Схема синхронного электропривода с использованием типовой панели управления
точнику питания, к обмотке статора двигателя подводится напряжение переменного тока, и он начинает разбег. При подсинхронной скорости происходит возбуждение возбудителя G и соответственно двигателя, который втягивается в синхронизм.
При резком снижении питающего напряжения происходит включение контактора КМ2, который при этом шунтирует резистор форсировки /?ф. В результате возрастают токи возбуждения возбудителя и двигателя, увеличивается его ЭДС, что приводит к увеличению максимального момента и соответственно перегрузочной способности двигателя. О включении контактора форсировки КМ2 сигнализирует указательное реле КН.
Для контроля тока статора двигателя в схеме предусмотрен амперметр РА1, а тока возбуждения — амперметр РА2, питаемый от шунта RS.
Замкнутая схема ЭП с вентильным двигателем, предназначенная для регулирования его скорости (рис. 6.12), построена по принципу подчиненного регулирования координат и включает в себя управляемый выпрямитель УВ, коммутатор (инвертор) К, реактор L, регуляторы тока РТ и скорости PC, датчики тока ДТ, скорости ДС и положения ДП. Схема обеспечивает механические характеристики ЭП, аналогичные показанным на рис. 5.36, б.
По замкнутым структурам построены схемы автоматического регулирования возбуждения (АРВ) синхронных двигателей.
Рис. 6.12. Замкнутая схема вентильного двигателя
Особенностью работы двигателя является равенство скорости вращения ротора и скорости вращения магнитного потока. Поэтому скорость вала двигателя не зависит и не изменяется от величины подключаемой нагрузки. Это достигается за счет того, что индуктор синхронного электродвигателя является электромагнитом, в некоторых случаях постоянным магнитом.
Количество пар полюсов ротора одинаково с числом пар полюсов у движущегося магнитного поля. Взаимное воздействие этих полюсов дает возможность выравнивания скорости ротора. На валу в этот момент может быть любая по величине нагрузка. Она не влияет на скорость вращения индуктора.
Конструктивные особенности и принцип работы
Основными составными частями синхронного электродвигателя являются: статор, который неподвижен, и ротор, иными словами называемый индуктором. Статор имеет другое название – якорь, но от этого его суть не меняется. Эти части двигателя разделены прослойкой воздуха. Между пазами заложена трехфазная обмотка, которая чаще всего имеет соединение по схеме звезды.
Когда двигатель после запуска начал работать, токи якоря образуют движущееся магнитное поле, его вращение дает пересечение поля индуктора. В итоге такой работы двух полей возникает энергия. Магнитное поле статора по своей сути является полем его реакции. В работе генераторов такую энергию получают с помощью индукторов.
Полюсами являются электромагниты статора, работающие на постоянном токе. Статоры синхронных моторов могут выполняться по различным схемам: неявнополюсной, а также явнополюсной. Они отличаются положением полюсов.
Для снижения магнитного сопротивления и оптимизации условий прохода магнитного поля используют сердечники из ферромагнитного материала. Они находятся в роторе и якоре. Производятся они из электротехнической стали, которая содержит большое количество кремния. Это дает возможность снизить вихревые токи и увеличить электрическое сопротивление стали.
Синхронные электродвигатели имеют в своей основе принцип взаимодействия полюсов индуктора и статора. Во время пуска двигатель ускоряется до скорости вращения магнитного потока. Только при таком условии электродвигатель начинает действовать в синхронном режиме. При таком процессе магнитные поля образуют пересечение, возникает вход в синхронизацию.
Долгое время для разгона мотора применяли отдельный пусковой двигатель. Его соединяли механическим путем с синхронным мотором. При запуске ротор мотора ускорялся и достигал синхронной скорости. Далее мотор самостоятельно втягивался в синхронное движение. При выборе мощности пускового мотора руководствовались 15% мощности от номинала разгоняемого двигателя. Этого резерва мощности было достаточно для запуска синхронного двигателя, даже при наличии небольшой нагрузки.
Такой метод разгона более сложный, значительно повышает стоимость оборудования. В современных конструкциях синхронные электродвигатели не имеют такой схемы разгона. Применяют другую систему разгона. Реостатом замыкают обмотки индуктора по аналогии с асинхронным двигателем. Для запуска на ротор монтируют короткозамкнутую обмотку, являющуюся также и успокоительной обмоткой, которая предотвращает раскачивание ротора при синхронизации.
При достижении ротором номинальной скорости, к индуктору подключают постоянный ток. Однако, для пуска моторов с постоянными магнитами не обойтись без применения пусковых внешних двигателей.
В криогенных синхронных электродвигателях применяется обращенная конструкция. В ней якорь и индуктор размещены наоборот, индуктор находится на статоре, а якорь расположен на роторе. У таких машин возбуждающие обмотки состоят из сверхпроводимых материалов.
Достоинства и недостатки
Синхронные двигатели имеют основное преимущество по сравнению с асинхронными моторами тот факт, что возбуждение от постоянного тока внешнего источника дает возможность работы при значительной величине коэффициента мощности. Эта особенность дает возможность увеличить значение коэффициента мощности для общей сети благодаря включению синхронного мотора.
Синхронные электродвигатели имеют и другие достоинства:
- Электродвигатели синхронного типа работают с повышенным коэффициентом мощности, что создает уменьшение расхода энергии и снижает потери. КПД синхронного мотора выше при той же мощности асинхронного двигателя.
- Синхронные электродвигатели имеют момент вращения, который прямо зависит от напряжения сети. Поэтому он при уменьшении напряжения сохраняет свою мощность больше асинхронного. Это является фактором надежности подобных конструкций моторов.
Недостатками являются следующие отрицательные моменты:
- При проведении сравнительного анализа конструкций двух моторов, можно отметить, что синхронные электродвигатели выполнены по более сложной схеме, поэтому их стоимость будет выше.
- Следующим недостатком для синхронных моторов стала необходимость в источнике тока в виде выпрямителя, либо другого блока питания постоянного тока.
- Запуск двигателя происходит по сложной схеме.
- Регулировка скорости вала двигателя возможна только одним способом, с помощью применения частотного преобразователя.
В итоге можно сказать, что все-таки преимущества синхронных двигателей перекрывают недостатки. Поэтому двигатели такого вида широко применяются в технологических процессах, где идет постоянный непрерывный процесс, и не требуется частая остановка и запуск оборудования: на мельничном производстве, в компрессорах, дробилках, насосах и так далее.
Выбор двигателя
К вопросу приобретения синхронного электродвигателя нужно подходить, основываясь на следующие факторы:
- Условия эксплуатации электродвигателя. По условиям выбирают тип двигателя, который может быть защищенным, открытым или закрытым. А также синхронные электродвигатели отличаются по защите токовых частей от влаги, температуры, агрессивных сред. Для взрывоопасного производства существуют специальные защиты, предотвращающие образование искр в двигателе.
- Особенности выполнения подключения электродвигателя с потребителем.
Синхронные компенсаторы
Они служат для компенсирования коэффициента мощности в электрической сети и стабилизации номинального значения напряжения в местах подключения нагрузок к двигателю. Нормальным режимом синхронного компенсатора является режим перевозбуждения в момент отдачи в электрическую сеть реактивной мощности.
Такие компенсаторы еще называют генераторами реактивной мощности, так как они предназначены для выполнения такой же задачи, как батареи конденсаторов на подстанциях. Когда мощность нагрузок уменьшается, то часто необходимо действие синхронных компенсаторов в невозбужденном режиме при их потреблении реактивной мощности и индуктивного тока, потому что напряжение в сети старается увеличиться, а для его стабилизации на рабочем уровне нужно нагрузить сеть током индуктивности, который вызывает в сети снижение напряжения питания.
Для таких целей синхронные компенсаторы обеспечиваются регулятором автоматического возбуждения. Регулятор изменяет ток возбуждения таким образом, что напряжение на компенсаторе не изменяется.
Сфера применения
Широкое использование электродвигателей асинхронного типа со значительными недогрузками делает работу станций и энергосистем сложнее, так как уменьшается коэффициент мощности системы, это ведет к незапланированным потерям, к их неполному использованию по активной мощности. В связи с этим появилась необходимость в использовании двигателей синхронного типа, особенно для приводов механизмов значительной мощности.
Если сравнивать синхронные электродвигатели с асинхронными, то достоинством синхронных стала их работа коэффициентом мощности равном 1, благодаря действию возбуждения постоянным током. При этом они не расходуют реактивную мощность из питающей сети, а если работают с перевозбуждением, то даже отдают некоторую величину реактивной мощности для сети.
В итоге коэффициент мощности сети улучшается, и снижаются потери напряжения, увеличивается коэффициент мощности генераторов электростанций. Наибольший момент синхронного электродвигателя прямо зависит от напряжения, а у синхронного электромотора – от квадрата напряжения.
Поэтому, при уменьшении напряжения синхронный электромотор имеет по-прежнему значительную нагрузочную способность. Также, применение возможности повышения возбуждающего тока синхронных моторов дает возможность повышать их надежность эксплуатации при внезапных снижениях напряжения, и оптимизировать в таких случаях работу всей энергосистемы.
Из-за большой величины воздушного промежутка дополнительные потери в стальных сердечниках и в роторе синхронных моторов меньше, чем у двигателей асинхронного вида. Поэтому КПД синхронных моторов чаще бывает больше.
Однако устройство синхронных моторов намного сложнее, а также необходим возбудитель или другое устройство питания возбуждения. Поэтому синхронные моторы имеют более высокую стоимость по сравнению с асинхронными с короткозамкнутым ротором.
Запуск и регулировка скорости у синхронных электродвигателей имеет свои сложности. Но при больших мощностях их преимущества превосходят недостатки. Поэтому они применяются во многих местах, где не нужны частые пуски, остановки оборудования, а также нет необходимости в регулировки оборотов двигателя с приводом механизмов насосов, компрессоров, мельниц и т.д.
Пуск синхронных двигателей: особенности и способы пуска
Для обеспечения работы мощных электроприводов применяются синхронные электродвигатели. Они нашли применение в компрессорных установках, насосах, в системах, прокатных станах, вентиляторах. Применяются в металлургической, цементной, нефтегазовой и других отраслях промышленности, где необходимо использовать оборудование большой мощности. В этой статье мы решили рассказать читателям сайта Сам Электрик, как может выполняться пуск синхронных двигателей.
Преимущества и недостатки
Конструктивно синхронные двигатели сложнее асинхронных, но они имеют ряд преимуществ:
- Работа синхронных электродвигателей в меньшей степени зависит от колебания напряжения питающей сети.
- По сравнению с асинхронными, они имеют больший КПД и лучшие механические характеристики при меньших габаритах.
- Скорость вращения не зависит от нагрузки. То есть колебания нагрузки в рабочем диапазоне не влияют на обороты.
- Могут работать со значительными перегрузками на валу. Если возникают кратковременные пиковые перегрузки, повышением тока в обмотке возбуждения компенсируют эти перегрузки.
- При оптимально подобранном режиме тока возбуждения, электродвигатели не потребляют и не отдают в сеть реактивную энергию, т.е. cosϕ равен единице. Двигатели, работая с перевозбуждением, способны вырабатывать реактивную энергию. Что позволяет их использовать не только в качестве двигателей, но и компенсаторов. Если необходима выработка реактивной энергии, на обмотку возбуждения подается повышенное напряжение.
При всех положительных качествах синхронных электродвигателей у них имеется существенный недостаток – сложность пуска в работу. Они не имеют пускового момента. Для запуска требуется специальное оборудование. Это долгое время ограничивало использование таких двигателей.
Способы пуска
Пуск синхронных электродвигателей можно осуществить тремя способами – с помощью дополнительного двигателя, асинхронный и частотный запуск. При выборе способа учитывается конструкция ротора.
Он выполняется с постоянными магнитами, с электромагнитным возбуждением или комбинированным. Наряду с обмоткой возбуждения на роторе смонтирована короткозамкнутая обмотка – беличья клетка. Её также называют демпфирующей обмоткой.
Запуск с помощью разгонного двигателя
Этот метод пуска редко применяется на практике, потому что его сложно реализовать технически. Требуется дополнительный электродвигатель, который механически соединен с ротором синхронного двигателя.
С помощью разгонного двигателя раскручивается ротор до значений близких к скорости вращения поля статора (к синхронной скорости). После чего на обмотку возбуждения ротора подают постоянное напряжение.
Контроль осуществляется по лампочкам, которые включены параллельно рубильнику, подающему напряжение на обмотки статора. Рубильник должен быть отключен.
В первоначальный момент лампы мигают, но при достижении номинальных оборотов они перестают гореть. В этот момент подают напряжение на обмотки статора. После чего синхронный электродвигатель может работать самостоятельно.
Затем дополнительный мотор отключается от сети, а в некоторых случаях его отсоединяют механически. В этом состоят особенности пуска с разгонным электродвигателем.
Асинхронный запуск
Метод асинхронного пуска на сегодня самый распространенный. Такой запуск стал возможен после изменения конструкции ротора. Его преимущество в том, что не нужен дополнительный разгонный двигатель, так как дополнительно к обмотке возбуждения в ротор вмонтировали короткозамкнутые стержни беличьей клетки, что дало возможность запускать его в асинхронном режиме. При таком условии этот способ пуска и получили широкое распространение.
Сразу же рекомендуем просмотреть видео по теме:
При подаче напряжения на обмотку статора происходит разгон двигателя в асинхронном режиме. После достижения оборотов близких к номинальным, включается обмотка возбуждения.
Электрическая машина входит в режим синхронизма. Но не все так просто. Во время пуска в обмотке возбуждения возникает напряжение, которое возрастает с ростом оборотов. Оно создает магнитный поток, который воздействует на токи статора.
При этом возникает тормозящий момент, который может приостановить разгон ротора. Для уменьшения вредного воздействия обмотки возбуждения подключают к разрядному или компенсационному резистору. На практике эти резисторы представляют собой большие тяжелые ящики, где в качестве резистивного элемента используются стальные спирали. Если этого не сделать, то из-за возрастающего напряжения может произойти пробой изоляции. Что повлечет выход оборудования из строя.
После достижения подсинхронной частоты вращения, от обмотки возбуждения отключаются резисторы, и на нее подается постоянное напряжение от генератора (в системе генератор-двигатель) или от тиристорного возбудителя (такие устройства называются ВТЕ, ТВУ и так далее, в зависимости от серии). В результате чего двигатель переходит в синхронный режим.
Недостатками этого метода являются большие пусковые токи, что вызывает значительную просадку напряжения питающей сети. Это может повлечь за собой остановку других синхронных машин, работающих на этой линии, в результате срабатывания защит по низкому напряжению. Для уменьшения этого воздействия цепи обмоток статора подключают к компенсационным устройствам, которые ограничивают пусковые токи.
Это могут быть:
- Добавочные резисторы или реакторы, которые ограничивают пусковые токи. После разгона они шунтируются, и на обмотки статора подается сетевое напряжение.
- Применение автотрансформаторов. С их помощью происходит понижение входного напряжения. При достижении скорости вращения 95-97% от рабочей, происходит переключение. Автотрансформаторы отключаются, а на обмотки подается напряжение сети переменного тока. В результате электродвигатель входит в режим синхронизации. Этот метод технически более сложный и дорогостоящий. А автотрансформаторы часто выходят из строя. Поэтому на практике этот метод редко применяют.
Частотный пуск
Частотный пуск синхронных двигателей применяется для запуска устройств большой мощности (от 1 до 10 МВт) с рабочим напряжением 6, 10 Кв, как в режиме легкого запуска (с вентиляторным характером нагрузки), так и с тяжелым пуском (приводов шаровых мельниц). Для этих целей выпускаются устройства мягкого частотного пуска.
Принцип работы аналогичен высоковольтным и низковольтным устройствам, работающим по схеме преобразователя частоты. Они обеспечивают пусковой момент до 100% от номинала, а также обеспечивают запуск нескольких двигателей от одного устройства. Пример схемы с устройством плавного пуска вы видите ниже, оно включается на время запуска двигателя, а затем выводится из схемы, после чего двигатель включается в сеть напрямую.
Системы возбуждения
До недавнего времени, для возбуждения применялся генератор независимого возбуждения. Он располагался на одном валу с синхронным электродвигателем. Такая схема еще применяется на некоторых предприятиях, но она устарела и теперь не применяется. Сейчас для регулировки возбуждения используются тиристорные возбудители ВТЕ.
Они обеспечивают:
- оптимальный режим пуска синхронного двигателя;
- поддержание заданного тока возбуждения в заданных пределах;
- автоматическое регулирование напряжения возбуждения в зависимости от нагрузки;
- ограничение максимального и минимального тока возбуждения;
- мгновенное увеличение тока возбуждения при понижении питающего напряжения;
- гашение поля ротора при отключении от питающей сети;
- контроль состояния изоляции, с оповещением о неисправности;
- обеспечивают проверку состояния обмотки возбуждения при неработающем электродвигателе;
- работают с высоковольтным преобразователем частоты, обеспечивая асинхронный и синхронный запуск.
Эти устройства отличаются высокой надежностью. Основным недостатком является высокая цена.
В заключение отметим, что самый распространенный способ пуска синхронных двигателей — это асинхронный запуск. Практически не нашел применения пуск с помощью дополнительного электродвигателя. В то же время частотный запуск, который позволяет в автоматическом режиме решить проблемы пуска, довольно дорогостоящий.
Материалы по теме:
типы моторов, их особенности и инструкция по работе
Вначале рассмотрим разницу между устройствами 380 и 220 вольт. Настолько очевидна, насколько непонятна непосвященным. Привыкли, каждый домашний прибор подключается двумя проводами, один является фазой, второй – схемной землей. Большая часть техники заземляется. Если речь касается однофазных двигателей, делается на случай пробоя обмотки-корпус. Фаза появится на кожухе – хорошего мало. Рассмотрим способы подключения электродвигателей согласно типу, начнем количеством фаз – одна или три.
Трехфазные и однофазные двигатели
Схемы подключения двигателя звезда, треугольник
Предваряя обсуждение подключения двигателя звезда/треугольник, начитаем теорию. Трехфазный и однофазный двигатели снабжены иногда тремя проводами подключения. Бросьте далеко ходить. Возьмем следующие два случая:
- Трехфазный двигатель имеет внутреннюю коммутацию обмоток схемой звезда. Полюсы снабжены одной общей точкой. Три фазы подключаются к противоположным концам обмоток. Катушки абсолютно идентичные, одинаковые. Внутри создается вращающееся движущееся поле, за счет которого движется вал. Ротор представлен барабаном силумина с медными прожилками. Ток не подводится, магнитные полюсы образуют путем наведенных токов. Захватываются вращающим полем ротора, начинается движение. Особенностью конструкции назовем невозможность (без специальных мер) подключения сети 230 вольт. Потребовалось бы соединить обмотки схемой треугольника, сделать невозможно. Разумеется, статор можно вскрыть, найти общую точку, сделать три отвода, разорвав контакты меж катушками. Второй особенностью двигателя является отсутствие нулевого провода. Многих положение дел ставит в тупик – куда девается ток? Заряды двигаются по проводам меж фазами. Закон электротехники гласит: для подключения трех фаз нагрузке необязательно иметь общий провод, если потребление трех ветвей одинаковое. В противном случае понадобится нейтраль предоставить. Жизненный пример: допустим, нужно подключить на 380 вольт электрочайник. Маразм? Каждая фаза амплитудой 230 вольт, рабочие хотят кипятку – невозможно отказать. Берем одну из фаз, другой вывод вилки вешаем на нейтраль. Учтите, фазы в пределах одного потребителя нужно нагружать поровну (грубо говоря, по чайнику каждой линии дайте), иначе негативные последствия коснутся питающего трансформатора подстанции.
Электрические коммутации двигателя
- Однофазный двигатель может иметь три вывода. Заземление ни при чем, идет отдельно ушком на корпус. Что касается трех выводов, питают пусковую (либо конденсаторную), рабочую обмотку. Одни провод общий, будет схемная земля. Без сего двигатель работать откажется. Правда, трехфазный двигатель проще? Потому используют производства. Что касается подключения однофазного двигателя, одна катушка обычно имеет большее сопротивление. Разница значительнее, двукратной показывает пусковую обмотку. Сопротивление большего номинала. Нужно параллельно повесить конденсатор (емкость определяется, например, минимальным потребляемым током), когда вал раскрутится, цепь обрывается. Иначе, спустя промежуток времени, пусковая обмотка выйдет из строя вследствие чрезмерного перегрева. Если двигатель конденсаторный (бифилярный), цепь с конденсатором работает постоянно. Нормальный режим, благодаря сдвигу фаз, созданному реактивным элементом, образуется вращающееся поле статора нужной формы.
Итак, лежит два двигателя, видом похожие, подключать нужно разным образом. Важной частью корпуса выступает схема подключения электродвигателя. Расположена на шильдике, выбита на кожухе. Становится понятно, на сколько фаз рассчитан мотор, как врубить в цепь. Информация отсутствует – попробуем доработать недочет своими руками. Понадобится китайский тестер.
У трехфазного двигателя три контакта попарно будут давать одинаковое сопротивление, равное удвоенному значению номинала обмотки. Мотор 230 вольт результаты измерений даст неодинаковые:
- Самый большой показатель тестера меж фазными концами. Напряжение 220 вольт подается напрямую одному, другому через конденсатор. Емкость сильно зависит от мощности, скорости вращения вала. Параметр определяет средняя нагрузка вала в рабочем режиме.
- Наименьшее значение образуется меж концами рабочей обмотки.
- Третий номинал занимает промежуточное положение. Сумма с сопротивлением рабочей обмотки равняется первому пункту списка.
Нейтраль присоединяем меж обмотками, отводит ток дисбаланса. Толщина проводки вдвое меньше, нежели фаз. Методика отключения в нужный момент пусковой обмотки использует пускозащитные реле. Вручную не контролируют.
Вопрос приобретения узла тесно касается использования специальных справочников. Чужеродное пускозащитное реле с данным типом электродвигателя использовать категорически нельзя. Велика вероятность некорректной работы, выхода прибора из строя. Практически умельцы вручную обрывают цепь. Способ неправильный, имеет право существовать.
Добавим, что пропадание одной фазы может негативно сказаться на некоторых типах моторов. Экспериментируя с агрегатом, реализуя подключение двигателя звезда-треугольник, старайтесь избегать ситуаций. Принято осуществлять пуск специальными защитными автоматами, вырубающими питание при возникновении опасности.
Синхронные, асинхронные, коллекторные двигатели
Помимо количества фаз видим конструктивный признак. С точки зрения потребителя момент является главным. Коллекторные двигатели используются бытовой техникой преимущественно. Поставить на замену асинхронные с аналогичными параметрами, нерентабельно. Коллекторный двигатель получается намного меньшего размера (зато перегревается сильнее). Важно определить тип. Хотя по большому счету трехфазные электродвигатели асинхронного типа являются доминирующим звеном сельскохозяйственных, гаражных, других применений. Вопрос питания обсуждается отдельно.
Обсудим три типа двигателей:
Электродвигатель
- Коллекторные снабжают двумя-четырьмя выводами. Последнее делает возможным реверс. Поменяем полярность включения статора, ротора. Коллекторные двигатели отличаются возможность работы от переменного и постоянного тока. В последнем случае характеристики получаются оптимальными. Становится возможным благодаря постоянно переключающимся рабочим обмоткам ротора (секции коллектора). Поле статора постоянное. Главное, чтобы присутствовала нужная полярность. Схема подключения электродвигателя постоянного тока напоминает переменный. Скорость вращения вала регулируется амплитудой питающего напряжения. Либо берется делитель, сформированный силовым ключом, либо отсекается часть цикла синусоиды. Эффект получается схожий: падает действующее значение напряжения.
- Асинхронные двигатели по факту доминирующими в промышленности. Реверс образуется изменением полярности включения пусковой обмотки однофазных двигателей, коммутацией последовательности фаз трехфазных. Изменение скорости реализуется аналогичным путем. Варьирование амплитуды питающего напряжения. Асинхронные двигатели обладают плохой приспособленностью к смене скоростей. Очередная причина редкого применения в бытовой технике. Пришла пора сказать: коллекторные двигатели обычно рассчитаны на одну фазу, асинхронные питаются напряжением 380 вольт. Расстановка сил образуется, благодаря соответствующей коммутации обмоток. На практике реализуется подключением электродвигателя треугольником, звездой. Удается воспроизвести вращающееся поля внутри статора. Почему схема подключения асинхронного двигателя звездой непригодна напряжению 230 вольт. Приходится создать сдвиги фаз, становится возможным для схемы треугольника. На одну обмотку подается сетевое напряжение 230 вольт, на вторую – сдвинутое конденсатором на 90 градусов, на третьей образуется разница, изменяемая по нужному закону. Далеко от идеала: подключения электродвигателя звездой и треугольником неравноценны.
Синхронный двигатель
- Синхронные двигатели называются за вращение вала по закону изменения питающего напряжения. В бытовой технике, промышленности используется редко, исключая область сервоприводов. Асинхронные двигатели названы за скорость вращения вала, отличающуюся от частоты питающего напряжения. Вал проскальзывает, эффект используется регулировать обороты. Синхронные двигатели стоят особняком, сфера использования ограничена. Чем отличаются таким особенным. Хороший КПД. Ротор выполняется по схеме с токосъемником, лишен щеток, отсутствует необходимость разделения поверхности сегментами (ток поступает постоянно). Вроде делает возможным применение, где коллекторные моторы пасуют. Замечены некоторые проблемы. Трехфазный синхронный двигатель невозможно запустить вращением фаз статора. Вал за счет инерционности не поддается полю. Приходится применять изыски раскрутки. Тема интересная. Ротор синхронного двигателя питается постоянным током, обмотки – одной-тремя фазами, определяется типом мотора.
Давайте пойме отличие синхронных двигателей от асинхронных. Литература вопрос тщательно обходит. Ответ лежит на поверхности: поле статора синхронного двигателя намного сильнее, ротор намагничен (либо фазный) поэтому вращение не проскальзывает. Обеспечивается синхронность вращения вала питающему напряжению. Частота определена количества полюсов. Чтобы решить проблемы со стартом (см. выше), используются, например, такие методики:
- Вал синхронного двигателя с барабаном, снабженным беличьей клеткой, врубается при пуске через реостат. Образуется поле, как в асинхронном двигателе, захватывающее вал, служит стартовым рычагом. Обороты набраны – цепь разрывается. Реостат нужен погасить токи индукции. Выбирайте сопротивление в 7-8 больше, нежели номинал «беличьей клетки».
- Иногда заметите на роторе синхронного двигателя – не поверите – коллектор. Старт выполняется за счет щеток, в дальнейшем из работы выключаются.
И если подключение асинхронного двигателя звезда-треугольник изъедено сполна, синхронные двигатели обсуждаются мало. Встречаются нечасто.
Схемы подключения электродвигателей к сети переменного тока 220 вольт
Для того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.
Принцип действия
Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.
Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?
Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.
Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.
Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.
Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.
Двухфазный синхронный электродвигатель
Расположим на статоре две обмотки под углом в 90 градусов, то есть взаимно перпендикулярно. Подадим в них синусоидальный переменный ток. Фазы токов сдвинем на 90 градусов. Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Суммарный вектор будет вращаться подобно часовой стрелке, делая один полный оборот за период частоты переменного тока.
У нас получился двухфазный синхронный электродвигатель. Откуда взять токи, сдвинутые по фазе для питания обмоток? Наверное, не всем известно, что вначале распределительные сети переменного тока были двухфазными. И лишь позднее, не без борьбы, уступили место трехфазным. Если бы не уступили, то наш двухфазный электромотор можно было подключить напрямую к двум фазам.
Но победили трехфазные сети, для которых были разработаны трехфазные электродвигатели. А двухфазные электромоторы нашли свое применение в однофазных сетях в виде конденсаторных двигателей.
Трехфазный синхронный двигатель
Современные распределительные сети переменного тока выполнены по трехфазной схеме.
- По сети передаются сразу три синусоиды со сдвигом фаз на треть периода или на 120 градусов относительно друг друга.
- Трехфазный двигатель отличается от двухфазного тем, что у него не две, а три обмотки на статоре, повернутых на 120 градусов.
- Три катушки, подключенные к трем фазам, создают в сумме вращающееся магнитное поле, которое поворачивает ротор.
Трехфазный асинхронный двигатель
Ток в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.
- В момент старта ротор неподвижен, а поле статора вращается.
- Поле в контуре ротора меняется, наводя электрический ток.
- Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
- В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
- Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.
У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.
Однофазный асинхронный электродвигатель
Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.
На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.
Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.
Попутный вектор будет тянуть ротор за собой, встречный — тормозить.
Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.
Схема включения
Возможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.
В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.
При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.
Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.
Подсоединение к однофазной сети
Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.
Подключение на 220 вольт
В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Для получения сдвига фаз между обмотками включается рабочий конденсатор, поэтому двухфазные двигатели называют еще конденсаторными.
Емкость рабочего конденсатора рассчитывается по формулам для номинального рабочего режима. Но при отличии режима от номинального, например, при пуске баланс обмоток нарушается. Для обеспечения пускового режима на время старта и разгона параллельно рабочему подключается дополнительный пусковой конденсатор, который должен отключаться при выходе на номинальные обороты.
Как включить однофазный асинхронный двигатель
Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.
Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.
Как подключить электродвигатель
В промышленности и быту используются электродвигатели разных типов. Схемы подключения этих машин зависят от конструкции двигателей.
Как подключить асинхронный электродвигатель
Самыми распространёнными типами электродвигателей являются асинхронные электромашины.
Виды асинхронных электромашин
В каждом электродвигателе есть две части:
- неподвижная, или статор;
- вращающаяся, которая в электромашинах переменного тока называется ротор.
Справка! Статор и ротор изготавливаются из тонких пластин трансформаторного железа.
В статоре уложены обмотки, которые подключаются к сети. При протекании через них переменного электрического тока в статоре наводится вращающееся магнитное поле, которое взаимодействует с ротором и приводит его в движение. Это поле в трёхфазных машинах создаётся за счёт сдвига фаз на 120° относительно друг друга. В однофазных двигателях такое поле создаётся пусковыми обмотками, дополнительными конденсаторами или особенностями конструкции.
При работе скорость ротора отстаёт от частоты вращения поля статора, поэтому такие электромашины называются асинхронные.
Асинхронные электродвигатели есть разных типов:
- С короткозамкнутым ротором. В этих электромашинах обмотки ротора отливаются из алюминия при изготовлении аппарата.
- С фазным ротором. В этих двигателях обмотки ротора мотаются аналогично обмоткам статора. К ним вместо трёхфазного напряжения подключаются сопротивления, позволяющие регулировать скорость вращения аппарата.
- Однофазные. Эти машины включаются в бытовую сеть 220В.
Подключение трёхфазных электродвигателей
Есть две основные схемы подключения статора электродвигателей:
- Звезда. При этом начало всех обмоток соединяется вместе. Схема такого соединения похожа на трёхлучевую звезду, а условное обозначение — «Y». Трёхфазное напряжение подключается к вершинам звезды.
- Треугольник. При этом начало одной обмотки соединяется с концом следующей. На схеме такое соединение похоже на треугольник, а условное обозначение — «Δ». Напряжение подаётся на вершины треугольника.
Выбор схемы соединений производится в зависимости от номинального напряжения сети и электромашины. Например, электродвигатель 380/660 вольт в сети 380В подключается треугольником, а в сети 660В звездой. Переключение выполняется перемычками на клеммнике, а при его отсутствии вывода соединяются болтами.
Важно! Многоскоростные двигатели подключаются по схеме, которая находится в паспорте устройства и на внутренней стороне крышки клеммной коробки.
В электромашинах с фазным ротором кроме статора подключается также обмотки ротора. На валу ротора находятся токосъёмные кольца, которые через щёточный механизм перемычками соединяются с клеммником на корпусе аппарата. Для уменьшения скорости вращения можно подключить только две клеммы ротора.
Для того чтобы изменить направление вращения необходимо поменять местами два провода, по которым подаётся напряжение.
Схемы подключения к однофазной сети
Проще всего подключить маломощный (до 100Вт) однофазный двигатель без пусковой обмотки — просто включить в розетку.
Более мощные машины требуют подключения на время пуска пусковой обмотки. Это осуществляется вручную или при помощи пускового реле. Такое устанавливается на компрессорах холодильников и старых стиральных машинах типа «бак с мотором». Для изменения направления вращения нужно поменять местами подключение конца и начала пусковой или рабочей обмотки.
Для подключения в сеть 220В трёхфазного электродвигателя мощностью до 5кВт его обмотки соединяются треугольником. К одной из его сторон подаётся напряжение, а параллельно любой из оставшихся подключаются пусковые и рабочие конденсаторы. Для изменения направления вращения конденсаторы переключаются на другую сторону (не сетевую) треугольника.
Запуск асинхронных электромашин
Схемы пуска таких аппаратов зависят от мощности и конструкции:
- Однофазные, в том числе переделанные из трёхфазных. На время пуска производится подключение пусковой обмотки или конденсаторов.
- Трёхфазные с короткозамкнутым ротором мощностью до 50кВт. Запускаются прямым включением.
- Мощностью более 50кВт. Пуск производится включением последовательно с обмотками статора добавочных сопротивлений.
- Трёхфазные с фазным ротором. Запускаются последовательным уменьшением сопротивлений в цепи ротора.
- Многоскоростные. При пуске производится переключение с пониженной скорости на повышенную.
Справка! Для пуска можно использовать УПП — устройство плавного пуска, электронное или механическое.
Как подключить синхронный электродвигатель
Кроме асинхронных, есть синхронные электромашины. В роторе таких двигателей находятся обмотка, на которую подаётся постоянное напряжение. Создаваемое этой обмоткой электромагнитное поле взаимодействует с вращающимся полем статора, что обеспечивает постоянную скорость вращения.
Устроены такие машины сложнее и стоят дороже обычных, но у них есть преимущества перед асинхронниками:
- стабильная скорость;
- меньшие габариты;
- более высокий КПД;
- за счёт регулировки тора ротора могут компенсировать cosφ в сети.
Эти двигатели делятся на две группы:
- Мощностью до 100Вт. Применяются в измерительных приборах и других механизмах, в которых важна стабильность скорости вращения. Вместо обмотки в якоре находятся постоянные магниты.
- Электродвигатели мощностью более 100кВт. Применяются в компрессорах, приводах генераторов и других механизмах большой мощности.
В схемах включения этих аппаратов кроме переменного трёхфазного напряжения, которое подаётся на статор, должен быть источник регулируемого постоянного напряжения для обмотки ротора.
Схемы запуска синхронных электромашин
Запускаются синхронные машины без нагрузки, в режиме холостого хода. Подача напряжения в обмотку ротора и подключение к исполнительному механизму производится после разгона машины до скорости, близкой к синхронной.
Этот разгон осуществляется:
- дополнительным асинхронным электрическим двигателем;
- наличием в роторе не только обмоток, но и «беличьей клетки»;
- замыканием дополнительным контактором выводов обмотки ротора.
Схема управления такими аппаратами переключается с пускового режима на рабочий через ранее заданное время или по показаниям тахогенератора.
Устройства защиты
Схема подключения электродвигателя состоит из различных элементов:
- Автоматы защиты. Питание на электросхему приходит через силовой автомат. Его номинал должен быть не больше допустимого тока подходящего кабеля.
- Пускатели. Подают напряжение на электромашину. Номинальный ток пускателя должен соответствовать параметрам двигателя. Если запуск аппарата длительный, частый или с большими пусковыми токами, то пускатель устанавливается большей величины.
- Тепловое реле. Для защиты электромашины от перегрузки пускатели включаются через тепловое реле. Внутри него находится биметаллическая пластинка, которая при длительном прохождении через неё повышенного тока, нагревается. Пластина при этом изгибается и отключает устройство.
- Прочие элементы. Это кнопки, конечные выключатели, промежуточные реле и другие детали, обеспечивающие запуск и работу механизма.
Схема подключения электродвигателя выбирается исходя из конкретных условий. Это необходимо учесть при монтаже аппарата и его эксплуатации.