Электронная нагрузка своими руками
Приветствую, Самоделкины!
Все мы прекрасно знаем, что китайские интернет магазины и площадки продают электронные наборы для самостоятельной сборки. Схемы, по которым они сделаны, созданы далеко не китайцами и даже не советскими инженерами. Любой радиолюбитель подтвердит, что во время повседневных изысканий очень часто приходится нагружать те или иные схемы для выявления выходных характеристик последних. Нагрузкой может являться обычная лампа, резистор или нихромовый нагревательный элемент.
Зачастую с проблемой поиска нужной нагрузки сталкиваются те радиолюбители, которые изучают силовую электронику. Проверяя выходные характеристики того или иного блока питания, будь он самодельный или промышленный необходима нагрузка, притом нагрузка с возможностью регулировки. Самым простым решением этой проблемы является использование учебных реостатов в качестве нагрузки.
Но найти мощные реостаты в наши дни проблематично, к тому же реостаты тоже не резиновые, их сопротивление ограничено. Есть только 1 вариант решения проблемы — электронная нагрузка. В электронной нагрузке вся мощность выделяется на силовых элементах – транзисторах. Фактически, электронные нагрузки можно делать на любую мощность, и они гораздо универсальнее, чем обычный реостат. Профессиональные лабораторные электронные нагрузки стоят кучу денег.
Китайцы же, как всегда, предлагают аналоги и этих аналогов бесчисленное множество. Один из вариантов такой нагрузки на 150Вт стоит всего 9-10 долларов, это немного за прибор, который по важности сопоставим, наверное, с лабораторным блоком питания.
В общем автор данной самоделки AKA KASYAN, предпочел сделать свой вариант. Найти схему устройства не составило труда.
В данной схеме применена микросхема операционного усилителя lm324, в состав которой входят 4 отдельных элемента.
Если смотреть внимательно на схему, то сразу становится ясно, что она состоит из 4-ех отдельных нагрузок, которые соединены параллельно, благодаря чему общая нагрузочная способность схемы в разы больше.
Это обычный стабилизатор тока на полевых транзисторах, которые без проблем можно заменить биполярными транзисторами обратной проводимости. Рассмотрим принцип работы на примере одного из блоков. Операционный усилитель имеет 2 входа: прямой и инверсный, ну и 1 выход, который в данной схеме управляет мощным n-канальным полевым транзистором.
Низкоомный резистор у нас в качестве датчика тока. Для работы нагрузки необходим слаботочный источник питания 12-15В, точнее он нужен для работы операционного усилителя.
Операционный усилитель всегда стремится к тому, чтобы разница напряжений между его входами равнялась нулю, и делает это путем изменения выходного напряжения. При подключении источника питания к нагрузке будет образовываться падение напряжения на датчике тока, чем больше ток в цепи, тем больше и падения на датчике.
Таким образом, на входах операционного усилителя мы получим разность напряжений, а операционный усилитель постарается скомпенсировать эту разность, изменяя свое выходное напряжение плавно открывая или закрывая транзистор, что приводит к уменьшению или увеличению сопротивления канала транзистора, а, следовательно, изменится и ток протекающий в цепи.
Нагрузка работает в линейном режиме. В отличие от импульсного, в котором транзистор либо полностью открыт, либо закрыт, в нашем случае мы можем заставить транзистор приоткрыться настолько, насколько нам нужно. Иными словами, плавно изменять сопротивление его канала, а, следовательно, изменять ток цепи буквально от 1 мА. Важно заметить, что выставленное переменным резистором значение тока не меняется в зависимости от входного напряжения, то есть ток стабилизирован.
В схеме у нас 4 таких блока. Опорное напряжение формируется с одного и того же источника, а значит все 4 транзистора будут открываться равномерно. Как вы заметили, автор использовал мощные полевые ключи IRFP260N.
Это очень хорошие транзисторы на 45А, 300Вт мощности. В схеме у нас 4 таких транзистора и по идее такая нагрузка должна рассеивать до 1200Вт, но увы. Наша схема работает в линейном режиме. Каким бы мощным не был транзистор, в линейном режиме все иначе. Мощность рассеивания ограничена корпусом транзистора, вся мощность выделяется в виде тепла на транзисторе, и он должен успеть передать это тепло радиатору. Поэтому даже самый крутой транзистор в линейном режиме не такой уж и крутой. В данном случае максимум, что может рассеивать транзистор в корпусе ТО247 — это где-то 75Вт мощности, вот так-то.
Печатная плата была разработана всего за пару часов, разводка хорошая.
Готовую плату нужно залудить, силовые дорожки армировать одножильным медным проводом и все обильно залить припоем для минимизации потерь на сопротивление проводников.
На плате предусмотрены посадочные места для установки транзисторов, как в корпусе ТО247, так и ТО220.
В случае использования последних, нужно запомнить, максимум на что способен корпус ТО220 — это скромные 40Вт мощности в линейном режиме. Датчики тока представляют из себя низкоомные резисторы на 5Вт, с сопротивлением от 0,1 до 0,22 Ом.
Операционные усилители желательно установить на панельку для беспаячного монтажа. Для более точной регулировки токов в схему стоит добавить еще 1 переменный резистор низкого сопротивления. Первый позволит осуществить грубую регулировку, второй более плавную.
Меры предосторожности. Нагрузка не имеет защиты, поэтому использовать ее нужно с умом. Например, если в нагрузке стоят транзисторы на 50В, значит запрещается подключать испытуемые блоки питания с напряжением выше 45В. ну чтобы был небольшой запас. Не рекомендуется выставить значение тока более 20А, если транзисторы в корпусе ТО247 и 10-12А, в случае если транзисторы в корпусе ТО220. И, пожалуй, самый важный момент — не превысить допустимую мощность 300Вт, в случае если использованы транзисторы в корпусе от ТО247. Для этого необходимо встроить в нагрузку ваттметр, чтобы следить за рассеиваемой мощностью и не превысить максимальное значение.
Также автор настоятельно рекомендует использовать транзисторы из одной партии, чтобы минимизировать разброс характеристик.
Место прижатия подложки ключа к радиатору необходимо тщательно очистить, обезжирить и отполировать. Даже небольшие бугорки в нашем случае могут все испортить. Если решили намазать термопасту, то делайте это тонким слоем, используя только хорошую термопасту. Не нужно использовать термопрокладки, изолировать подложки ключей от радиатора тоже не нужно, все это ухудшает теплоотдачу.
Ну а теперь, наконец-то, давайте проверим работу нашей нагрузки. Нагружать будем вот такой лабораторный блок питания, который выдает максимум 30В при токе до 7А, то есть выходная мощность около 210Вт.
В самой нагрузки в данном случае установлено 3 транзистора вместо 4-ех, поэтому все 300Вт мощности мы получить не сможем, слишком рискованно, да и лабораторник больше 210Вт не выдаст. Тут вы можете заметить 12-вольтовый аккумулятор.
В данном случае он только для питания операционного усилителя. Плавно увеличиваем ток и доходим до нужной отметки.
30В, 7А — все работает отлично. Нагрузка выдержала несмотря на то, что ключи у автора из разных партий и больно сомнительные, но походу оригинальные, если не лопнули разом.
Такую нагрузку можно использовать для проверки мощности компьютерных блоков питания и не только. А также в целях разряда аккумулятора, для выявления емкости последнего. В общем радиолюбители по достоинству оценят пользу электронной нагрузки. Штука реально полезная в лаборатории радиолюбителя, а мощность такой нагрузки можно увеличить хоть до 1000Вт, включив параллельно несколько таких плат. Схема нагрузки на 600Вт представлена ниже:
Пройдя по ссылке «Источник» в конце статьи, вы сможете скачать архив проекта со схемой и печатной платой.
Благодарю за внимание. До новых встреч!
Видео:
Источник Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Электронный резистор
Схемы для измерений
Для тестирования различных схем под нагрузкой радиолюбителю часто необходим большой магазин резисторов разных номиналов и, соответственно, различной мощности. Избавиться от громоздкого набора испытательных сопротивлений вам поможет электронный резистор, схема которого представлена ниже.
В частности, это схема поможет настроить блок питания: узнать при какой нагрузке растут пульсации, изменяется значение выходного напряжения, поможет настроить вам электронную защиту от перегрузки и т.д.
Схема эквивалента нагрузки очень проста. Основной элемент схемы транзистор MOSFET-N. Потребляемый ток регулируется путем изменения напряжения на затворе с помощью потенциометра R2. Сопротивление МОП-транзистора изменяется в зависимости от напряжения на затворе. Напряжение на входе потенциометра стабильно благодаря стабилитрону VD1.
Схема простого эквивалента нагрузки
Для того, чтобы проверить источник с небольшим выходным напряжением, вы должны использовать logic MOSFET (MOSFET предназначен для переключения с логического уровня). Он имеет более низкое значение порогового напряжения и позволяет проверить источники питания с напряжением до 4 В. Для логических транзисторов подходит стабилитрон на 5 В , для классического MOSFET — на 9 В. MOSFETы должны быть размещены на большом радиаторе. Кратковременная нагрузка для транзистора в корпусе TO220 может достигать 100 Вт. Постоянно он может работать с нагрузкой до 50 Вт, при радиаторе большого размера. Этот электронный балласт работает в диапазоне входного напряжения 4 — 25 В. Логические транзисторы имеют, как правило, максимальное напряжение между DS-выводами- 30В .
Эквивалент нагрузки | Все своими руками
Опубликовал admin | Дата 25 июня, 2014Для проверки, регулировки, замера параметров мощных блоков питания, преобразователей, стабилизаторов и т.д. необходима соответствующая нагрузка. И такая нагрузка должна быть обязательно регулируемой. Можно конечно из мощных резисторов, типа ПЭЛ, спаять магазин сопротивлений, но это будет очень громоздко.
На рисунке 1 показана схема электронного потенциометра (переменного резистора). Приемником всей энергии, подаваемой с проверяемого источника питания, является мощный транзистор VT1. В исходной схеме вместо современного составного транзистора КТ825А использовался транзистор П210ШОС и транзистор П214А, включенных по схеме составного или по другому, по схеме Дарлингтона. Сейчас более совершенные транзисторы, поэтому применяя принудительное охлаждение, можно собрать устройство небольших габаритов.
Схема не является стабилизатором тока и ведет себя, как переменный резистор. Т.е. при изменении напряжения, поданного на электронный потенциометр (далее ЭП), ток, протекающий через схему, будет меняться.
Схема работает следующим образом. После подачи напряжения на ЭП через транзистор VT1 и резистор R1 потечет ток нагрузки. При прохождении тока через R1, на нем будет создаваться падение напряжения U1, которое подается на неинвертирующий вход операционного усилителя DA1. И как только это напряжение станет чуть больше напряжения U2, выставленного переменным резистором R2 и подаваемого на инвертирующий вход, на выходе ОУ появится сигнал, препятствующий дальнейшему увеличению тока коллектора транзистора VT1. Схема будет находиться в установившемся режиме. Теперь, например, начнем увеличивать подаваемое на ЭП напряжение, будет увеличиваться и ток, протекающий через делитель напряжения R2,R3, а это вызовет увеличение падения напряжения на резисторе R2 и в свою очередь увеличение напряжения U2. Оно станет больше U1 и ОУ приоткроет VT1 до такого состояния, при котором ток, проходящий через него (VT1) и R1, создаст на резисторе R1 падение напряжения примерно равного напряжению U2. При уменьшении напряжения на ЭП, ток Iнагр через него будет уменьшаться.
Теперь о номиналах резисторов делителя напряжения R1 и R2, от которых зависят параметры ЭП. Используя этот пример, вы сами потом приспособите эту схему под свои нужды. И так резистор R2 находится в нижнем по схеме положении и на ЭП подано напряжение 30В. Сперва находим ток делителя Iдел. Для этого напряжение, поданное на ЭП — +U, делим на сумму R1,R2. Получаем Iдел = +U/R1 + R2 = 30/330 + 10000 = 0,0029А. Находим падение напряжения на R2, U2 = Iдел ? R2 = 0,0029 ? 330 = 0,958В. Примерно один вольт. Значит ОУ откроет транзисторы до такой степени, что через R1 потечет ток, создающий на нем падение напряжения примерно равное 0,958В и величина этого тока будет равна Iнагр = U1/R1 = 0,958/0,1 = 9,58А. При таком токе в десять ампер и напряжении коллектор — эмиттер в 30 вольт, на транзисторе выделится мощность в виде тепла, равная триста ватт! Наш подопечный сдохнет от теплового пробоя так быстро, что глазом моргнуть не успеем. Я специально взял такой пример, чтобы вы всегда были внимательны к своим действиям по отношению к величинам тока и напряжения. Для этого в схему введены амперметр и вольтметр.
Как рассчитать добавочное сопротивление Rдобав 1 для амперметра (в качестве шунта в данной схеме амперметра используется резистор R1, падение напряжения на котором будет явно превышать необходимое.) для вашей измерительной головки и величину добавочного сопротивления для вольтметра Rдобав 2 можно узнать… Хотя давайте прямо здесь. И так смотрим формулу 1 и подставляем в нее свои данные. У меня они такие:
Сопротивление измерительной головки амперметра …………………… 1200 Ом.
Ток полного отклонения стрелки …………………………………………… 100мкА
Максимальное измеряемое напряжение …………………………………… 1 В
Надеюсь понятно, почему 1В. Uизмеряемое = Iнагр ? R1 = 10А ? 0,1 Ом = 1В. Rдобав 1 = (1В — 0,0001А?1200) / 0,0001А = 8800Ом. Выбираем триммер с сопротивлением 10кОм. Сопротивление Rдобав 2 определите сами. Теперь интересно, а какой ток через ЭП можно пропустить, если напряжение на его входе = 30В, а транзистор VT1 имеет максимально допустимую мощность с теплоотводом — 125 ватт. При таком напряжении коллектор – эмиттер и максимальной мощности транзистор может выдержать ток W/U = 125/30 ? примерно четыре ампера. Это с хорошим радиатором, если взять, что на каждые 10 ватт тепловой мощности необходим радиатор с площадью поверхности 100… 150см?, получается, что в нашем случае радиатор должен иметь площадь S = 125/10?100 = 1250см?. Это минимум. Конечно, лучше применить еще и обдув. Минимальное напряжение, подаваемое на ЭП равно примерно десяти вольтам, это минимальное напряжение работоспособности операционного усилителя. И максимальное напряжение = 30В, тоже ограничено рабочим напряжение микросхемы DA1. Вот вроде и все. Что не понято – на форум. Успехов. К.В.Ю.
Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».
Просмотров:12 634
Простая электронная нагрузка для начинающих
РадиоКот >Схемы >Аналоговые схемы >Измерения >Простая электронная нагрузка для начинающих
Начну с цитаты: «Обычно при изготовлении (как впрочем и при ремонте) блоков питания или преобразователей напряжения требуется проверить их работоспособность под нагрузкой. И тут начинаются поиски. В ход идёт всё, что есть под рукой: различные лампочки накаливания, старые электронные лампы, мощные резисторы и тому подобное. Подбирать нужную нагрузку таким образом — это невероятно затратное (как по времени, так и по нервам) занятие. (Лучше и не скажешь! Сам сталкивался с такой проблемой.) Вместо этого очень удобно пользоваться электронной регулируемой нагрузкой. Нет, нет, не надо ничего покупать. Сделать такую нагрузку сможет даже школьник. Всё, что нужно, — это мощный полевик, операционный усилитель, несколько резисторов и радиатор побольше. Схема — более чем простая и, тем не менее, отлично работает.» — https://radiohlam.ru/raznoe/nagruzka.htmЭта статья является предисловием к более сложному устройству и предназначена для тех, кто постоянно тасует мощные резисторы и лампочки, используемые как нагрузка, а знаниями (опытом, решимостью) для сборки сложных схем еще не обладает.
Начиналось все с вышеуказаной статьи и вот такой схемы с расчетами (за описанием отсылаю к первоисточнику):
На основе этой схемы собрано устройство, практически идентичное авторскому, которое верой и правдой служило пару лет при напряжения на нем до 20-25В. Видно, что низкоомный резистор Rti собран аж из четырех! подручных.
К сожалению, при тестировании очередного блока и подаче с него напряжения более 30В нагрузка сгорела — пробился полевик, скорее всего из-за превышения напряжения затвор-сток. Кроме того, ток в этой схеме очень сильно зависит от поданого напряжения. Поэтому схема была немного доработана — добавлены стабилизаторы напряжения питания ОУ, опорного напряжения и индикатор высокого опасного (для схемы) напряжения.
Описывать здесь особо нечего. На стабилитроне VD2 собран источник опорного напряжения, который вполне сносно (достаточно для таких задач) работает при напряжениях от 7 до 30В. При напряжении менее 5В не выходит на режим стабилитрон VD2 и вследствие уменьшения напряжения на нем, а также недостаточного напряжения на выходе U1 максимальный ток, устанавливаемый нагрузкой снижается.
Операционный усилитель U1, транзистор Q1 и резисторы R6, R7 образуют источник стабильного тока, значение которого регулируется изменением напряжения, подаваемого с резистора R3.
Вспомогательными элементами схемы являются:
- диод VD1 защищающий схему от неправильной подачи питания;
- интегральный стабилизатор U2, ограничивающий напряжение питания микросхемы, вентилятора и напряжение на затворе полевого транзистора;
- светодиод HL1, индицирующий подачу питания;
- светодиод HL2, индицирующий опасно высокое входное напряжение.
Конечно, при входном напряжении менее 13В на выходе интегрального стабилизатора напряжение также будет снижено, но существенного вляиния на работу схемы это не оказывает.
Плата и расположение деталей (вид со стороны деталей, одна перемычка голубого цвета):
Рисунок платы — в прилагаемом файле, зеркалить не нужно.
Устройство собрано из того, что было под рукой вперемешку от блоков питания, мониторов и даже старых советских радиодеталей. Полевой транзистор практически любой такой структуры с током более 5А и напряжением более 30В, например IRFZ34, 44 и аналогичные — что есть под рукой. Диодная сборка — от блока питания AT(X). Радиатор и вентилятор — от процессора (побольше). Для подачи напряжения имеет разъемы — стандартный Molex от винчестера (папа) и два винтовых.
Минимальный ток определяется током вентилятора. Нагрузка достаточно уверенно держит 12В/4А т.е. рассеиваемую мощность около 50Вт. в течении 10 мин. После этого по запаху чувствуется, что не хватает охлаждения. При больших напряжениях желательно не устанавливать большие токи, чтобы не превышать эту мощность и не допустить перегрева транзистора, или применить больший радиатор и вентилятор.
Таким образом, получилось простое устройство, собираемое из «хлама», не требующее отдельного источника питания, не содержащее в себе импульсных преобразователей и в 95% случаем обеспечивающее потребности радиолюбителя при проверке и регулировке блоков питания.
А об аналогчной нагрузке с модульной структурой и расширеной функциональностью я расскажу в следующий раз.
Файлы:
Схема и плата в формате OrCAD 9
Рисунок дорожек для ЛУТ
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
ЭЛЕКТРОННЫЕ РЕОСТАТЫ И ПОТЕНЦИОМЕТРЫ С ЦИФРОВЫМ УПРАВЛЕНИЕМ В УСТРОЙСТВАХ НА МИКРОСХЕМАХ
Электронные реостаты и потенциометры с цифровым управлением выполняют функцию регулирования, аналогичную той, что выполняет обычный потенциометр с механическим управлением. Сопротивление электронного регулятора изменяется дискретно (ступенчато) при подаче тактового импульса на счетный вход CLK микросхемы, а увеличение или уменьшение сопротивления определяется уровнем сигнала на входе UP/DOWN.
Помимо электронных аналогов многопозиционных механических переключателей, предназначенных для коммутации ограниченного количества электрических цепей, в последние годы появились и электронные аналоги механически управляемых (переменных) сопротивлений — электронные реостаты и потенциометры. Эти приборы, в отличие от механических аналогов, более компактны, надежны, имеют меньший уровень собственных шумов, допускают возможность одновременного дистанционного управления неограниченного числа регулировочных элементов.
В упрощенном виде электронные реостаты и потенциометры содержат набор (линейку) последовательно соединенных резисторов, коммутируемых электронными КМОП-ключами. Ключи эти обычно управляются:
♦ либо подаваемым извне цифровым кодом;
* либо формируемым непосредственно в микросхеме в зависимости от продолжительности подачи управляющего сигнала «вверх» или «вниз» на выводы управления, предназначенные для подключения к кнопкам управления или к источникам внешних управляющих сигналов «цифрового» уровня 1/0.
Примечание.
Особенностью цифровых электронных реостатов и потенциометров является то, что изменение их электрического сопротивления осуществляется дискретно с заданным шагом по линейному, логарифмическому или иному, заданному пользователем, закону. Количество таких шагов обычно кратно двум, например, ?2, 64, 128, 256 и т. д. При отключении/включении питания у’тановленный до
отключения на электронном потенциометре уровень (положение среднего вывода) запоминается.
Электронные потенциометры используют в технике связи, телевидении, персональных компьютерах, производственной и бытовой радиоэлектронной аппаратуре. Такие потенциометры применяют для узлов электронной настройки, многоканальной регулировки громкости/тембра звуковоспроизводящей аппаратуры, в системах автоматической регулировки усиления, перестраиваемых многозвенных фильтрах, схемах управления параметрами дисплеев и т. д.
Примечание.
Применение цифровых электронных потенциометров и реостатов при их работе на переменном токе ограничено областью рабочих частот, в пределах которой сигнал после прохождения через такой регулятор ослабляется не более чем на 3 дБ. Кроме того, поскольку в состав регуляторов входят нелинейные полупроводниковые элементы, повышается уровень нелинейных искажений. Этот уровень заметно возрастает при понижении напряжения питания микросхемы регулятора. Если в составе электронного устройства содержится несколько электронных потенциометров и реостатов, негативные последствия от их совместного использования суммируются.
Рис. 24.3. Типовая схема включения цифрового электронного потенциометра DS1669 с двухкнопочным управлением
Рис. 24.2. Типовая схема включения цифрового электронного потенциометра DS 1669 с однокнопочным управлением
Рис. 24.7. Расположение выводов микросхемы DS1669:
RH — верхний; Rw — средний; R^— нижний вывод потенциометра; +V,-V — питание; UC—вход управления перемещением вверх; DC — вниз
Цифровые электронные реостаты и потенциометры фирмы Dallas Semiconductor (DS) — Maxim, например, DS1668 выпускаются с интерфейсом ручного управления (в виде кнопки) или в виде традиционной интегральной микросхемы — DS1669, рис. 24.1 [24.1]. Эти микросхемы однотипны, имеют 64 ступени изменения сопротивления и выпускаются в стандартных номиналах 10, 50 и 100 кОм.
Типовые примеры управления электронными потенциометрами DS1669 при помощи одной или двух кнопок приведены на рис. 24.2 и рис. 24.3.
Приведу далее сведения по основным разновидностям современных цифровых потенциометров.
DS1267 — двухканальный линейный цифровой потенциометр на номинал 10, 50 или 100 кОм. Имеет 256 позиций положения движка с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 5(±5) В.
DS1666 — цифровой потенциометр, предназначенный для устройств звуковоспроизведения. Он имеет логарифмическую шкалу и 128 точек позиционирования. Напряжение питания 5 В. Значения сопротивлений резистивной матрицы может быть 10, 50, 100 кОм. Затухание сигнала с амплитудой до 5 В на уровне -3 дБ на частотах 1,1; 0,2 и 0,1 МГц, соответственно.
DS1667 — представляет собой сдвоенный цифровой потенциометр. Микросхема содержит также два широкополосных операционных усилителя. Каждый потенциометр формируется из 256 элементов, резисторы могут складываться, что дает возможность получать единственный потенциометр на 512 элементов.
DS1802 — сдвоенные потенциометры, обеспечивают регулирование уровня громкости и/или тембра звукозаписи в проигрывателях компакт- дисков, звуковых платах (картах) и иных электронных устройствах. Эти потенциомеч ры имеют логарифмическую характеристику регулировки сопротивления. Весь диапазон в 45 кОм разбит на 65 позиций с приращением шага в 1 дБ. Для управления потенциометром (потенциометрами) от центрального процессора или иных микросхем используют трехпро- водный последовательный интерфейс. Потенциометрами можно управлять и при помощи обычных кнопок.
Помимо перечисленных, известны также микросхемы цифровых потенциометров:
DS1800 — сдвоенный цифровой линейный потенциометр на 128 позиций номиналом 50 кОм с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 3(5) В.
DS1801/DS1802 — сдвоенный цифровой потенциометр на 64 позиции, с логарифмической характеристикой, номиналом 50 кОм с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 3(5) В.
DS1803 — сдвоенный линейный цифровой потенциометр на 256 позиций, номиналом 10, 50 или 100 кОм с управлением по последовательному двухпроводному интерфейсу. Напряжение питания 3(5) В.
DS1804 — энергонезависимый линейный цифровой потенциометр, который имеет 100 позиционных отводов, номиналом 10, 50 или 100 кОм. Напряжение питания 3(5) В.
DS1805 — линейный цифровой потенциометр на 256 позиций номиналом 10, 50 или 100 кОм с управлением по последовательному двухпроводному интерфейсу. Напряжение питания 3(5) В.
DS1806 — линейный шестиканальный цифровой потенциометр на 64 позиции номиналом 10, 50 или 100 кОм с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 2,7—5,5 В.
DS1807 — сдвоенный цифровой потенциометр на 64 позиции каждый, с логарифмической характеристикой изменения сопротивлений для регулирования уровня звуковых сигналов. Работает с двухпроводным последовательным интерфейсом. Программно можно объединить два потенциометра в один. Напряжение питания 3(5) В.
DS1808 — сдвоенный логарифмический цифровой потенциометр на 32 позиции, номинал 45 кОм. Двухпроводное управление. Напряжение питания +4,5; ±13,2 В.
DS1809 — цифровой потенциометр на 64 позиции. Управление кнопками «вверх»/»вниз». Предусмотрена функция (авто)сохранения установленного уровня. Значения сопротивлений резистивной матрицы может быть 10, 50, 100 кОм. Затухание сигнала с амплитудой до 5 J5 на уровне —3 дБ на частотах 1,0; 0,2 и 0,1 МГц, соответственно. Напряжение питания +4,5—5,5 В.
DS1844 — счетверенный линейный потенциометр на 64 позиции с двухпроводным интерфейсом номиналом 10, 50 или 100 кОм с двухпроводным интерфейсом. Напряжение питания 2,7—5,5 В.
DS1845 — сдвоенный линейный потенциометр на 256 позиций с двухпроводным интерфейсом. Напряжение питания 3(5) В.
DS1847 и DS1848 — температурно-компенсированные двойные линейные цифровые потенциометры на 256 позиций номиналом 10 или 50 кОм. Напряжение питания +3,0—5,5 В.
Помимо перечисленных, известны также цифровые потенциометры DS1854—DS1859, DS1866—DS1870, DS2890, DS3902, DS3903—DS3905, DS3930, DS4301 и др., сведения о которых можно почерпнуть из справочной литературы или на сайтах фирм-производителей. Отметим также в порядке сопоставления некоторые цифровые потенциометры иных фирм [24.2—24.4].
МАХ5160/МАХ5161 — линейный цифровой потенциометр фирмы ΜΑΧΙΜ-DALLAS на 32 позиции, номиналы 50,100,200 кОм. Напряжение питания от 2,7 до 5,5 В. Трехпроводный интерфейс.
МАХ5400—МАХ5405 — линейные цифровые потенциометры на 256 позиции. Напряжение питания от 2,7 до 5,5 В.
МАХ5407 — цифровой потенциометр на 32 позиции с логарифмической шкалой, номинал 20 кОм. Область рабочих частот до 500 кГц. Напряжение питания от 2,7 до 5,5 В.
МАХ5408—МАХ5411 — сдвоенные цифровые потенциометры на 32 позиции с логарифмической шкалой, номинал 10 кОм. Напряжение питания ότ 2,7 до 3,6 В для МАХ5408, МАХ5409 и от 4,5 до 5,5 В для МАХ5410, МАХ5411.
МАХ5413—МАХ5415 — сдвоенные линейные цифровые потенциометры на 256 позиций, номинал, соответственно, 10, 50 и 100 кОм. Напряжение питания от 2,7 до 5,5 В.
Кроме перечисленных в линейке подобных изделий этой фирмы можно назвать микросхемы МАХ5417—МАХ5439, МАХ5450—МАХ5457, МАХ5460—МАХ5468, МАХ5471—МАХ5472, МАХ5474—МАХ5475, МАХ5477—МАХ5479, МАХ5481—МАХ5484, МАХ5487— МАХ5492 и др„ каждая, из которых имеет индивидуальные отличия и развивает области применения цифровых потенциометров и способов их управления.
Так, например:
МАХ5471, МАХ5472, MAXS474, МАХ5475 — энергонезависимые 32-х позиционные линейные цифровые потенциометры с последовательным трехпроводным интерфейсом. МАХ5471/МАХ5474 имеют сопротивление 50 кОм, а МАХ5472/МАХ5475 — 100 кОм. Напряжение питания от 2,7 до 5,25 В.
Упомянем также для сравнения некоторые цифровые потенциометры фирмы Analog Device [24.3].
AD5200/AD5201 — цифровые потенциометры номиналами 10,50 кОм на 256 и 33 позиции, соответственно.
AD5231/AD5235 — цифровые потенциометры на 1024 позиции.
AD5232 — цифровой двухканальный потенциометр на 256 позиций.
AD5234 — цифровой четырехканальный потенциометр на 64 позиции.
AD5291/AD5292 — цифровые потенциометры на 256/1024 позиции на номинал 20,50,100 кОм.
AD7376 — цифровой потенциометр на 128 позиций на номинал 10, 50, 100, 1000 кОм.
AD8400/AD8402/AD8403 — 1, 2 или 4-х канальные цифровые потенциометры на 1,10,50 или 100 кОм, 256 позиций, с трехпроводным интерфейсом.
Цифровые программируемые потенциометры фирмы ON Semiconductor САТ5270 и САТ5271 – двухканальные цифровые потенциометры на 50 и 100 кОм для точной настройки с 256 ступенями регулирования и интерфейсом 12С.
Цифровые программируемые потенциометры фирмы Catalyst Semiconductor САТ5111 и САТ5113 [24.4] на 100 позиций при напряжении питания 2,5—6,0 В потребляют ток 0,1 мА.
Несколько иной принцип работы у другого управляемого извне прибора — электронного аттенюатора. Пример практической реализации одного из них — МС3340 фирмы Motorola приведен на рис. 24.4. Аттенюатор позволяет осуществлять дистанционное или непосредственное управление коэффициентом передачи (ослабления) сигнала до 80 дБ в полосе частот до 1 МГц. Напряжение питания аттенюатора — 9—18(20) В. Максимальное напряжение входного сигнала — до 0,5 В.
Типовая схема использования электронного аттенюатора МС3340 приведена на рис. 24.5.
Примечание.
Особое положение в ряду электрически регулируемых пассивных элементов занимает специализированная микросхема МАХ1474с электрически переключаемыми конденсаторами— аналог миниатюрного конденсатора переменной емкости, рис. 24.6 [24.2].
Рис. 24.5. Типовая схема включения электронного аттенюатора МС3340
Рис. 24.4. Эквивалентная схема электронного аттенюатора МС3340
Применение такой микросхемы вместо традиционных варикапов или конденсаторов переменной емкости предпочтительнее ввиду идентичности емкостных параметров микросхемы, синхронности изменения емкости при одновременном использовании нескольких аналогов управляемых конденсаторов, лучшей температурной стабильности.
Примечание.
Рис. 24.6. Схема электрически управляемого конденсатора переменной емкости на м икросхеме МАХ 1474
Возможная область применения микросхем с электрически переключаемыми конденсаторами— синхронная настройка колебательных контуров входных цепей радиоприемных устройств, фильтров промежуточной и иной частоты.
Управление батареей конденсаторов от встроенной схемы управления позволяет ступенчато с минимальным шагом в 0,22 пФ менять в 32 ступени ее емкость в пределах от 6,4 до 13,3 пФ на выводе СР относительно общего провода при заземленном выводе СМ.
Возможна эксплуатация конденсаторной батареи при подключении ее через выводы СР и СМ с изменением емкости в пределах от 0,42 до 10,9 пФ с шагом 0,34 пФ. Температурный коэффициент емкости управляемого конденсатора равен 3,3·10“5 1 /град.
Напряжение питания микросхемы 2,7—5,5 В при потребляемом токе 10 мкА. Микросхему можно применять до частот в несколько сотен мегагерц. Так, эквивалентная добротность контура порядка 100 на частотах ниже 20 МГц падает с ростом частоты до 359 МГц в 10 раз.
Микросхемы МАХ1474 можно применять в узлах электронной настройки, в емкостных аттенюаторах, в генераторах и других радиоэлектронных устройствах.
Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. — СПб.: Наука и Техника, 2013. —352 с.
USB электронная нагрузка своими руками
Приветствую, Самоделкины!
Наверняка у вас дома куча USB источников питания: пауэрбанки, зарядки для смартфонов и так далее. Как мы знаем, очень часто китайские производители завышают их реальные выходные характеристики. Для того чтобы оценить и понять на что способен тот или иной блок питания или powerbank, а также примерно узнать емкость того же пауэрбанка, не разбирая его, достаточно иметь под рукой usb-тестер, с возможностью измерения емкости и простую нагрузку (резистор, лампочку и так далее).
Конечно, есть специализированные USB электронные нагрузки для этих целей, и стоят они вроде не дорого, но покупать то, что можно сделать дома, не наш стиль.
Относительно недавно автор (AKA KASYAN) получил партию powerbank’ов разных размеров и характеристик.
Оценить их реальные выходные параметры тока и напряжения дело нескольких секунд.
В качестве нагрузки автор всегда использовал старый добрый проволочный переменный резистор. Его хватает, чтобы кратковременно нагружать powerbank током до 2А и, казалось бы, он устраивает почти всем, но одним суровым зимним вечером он нечего делать, сидя возле новогоднего стола автору в голову пришла мысль — сделать USB электронную нагрузку.
Платка была разработана буквально за полчаса.
Еще полчаса ушло на печать, перенос, травление, лужение и сверление. Это довольно трудоемкий процесс.
В итоге на свет появилась очередная, весьма неплохая конструкция, которую можно смело порекомендовать для повторения.
Для начала давайте рассмотрим основные характеристики нашей токовой электронной нагрузки.
Диапазон рабочих напряжений от 4 до 15-20В;
Диапазон регулировки тока от 0 до 5А, зависит от сопротивления и мощностей токового шунта;
Максимальная расчетная мощность 20Вт, пиковая кратковременная до 40Вт.
Нагрузка не требует внешнего источника питания, питается напрямую от USB порта, который нужно нагрузить.
Давайте рассмотрим принцип работы схожей нагрузки, только на гораздо большую мощность. Если в двух словах, то имеем операционный усилитель, который сравнивает напряжение образованное опорным источником, с напряжением, которое берется с датчика тока в лице низкоомного резистора.
У нас имеется возможность принудительно менять напряжение с опорного источника, вращением переменного резистора.
Этим нарушаем баланс между входами операционного усилителя, а он в свою очередь, путем изменения своего выходного напряжения, постарается уравновесить напряжение между входами.
Изменение выходного напряжения с операционного усилителя приводит к изменению сопротивление открытого канала транзистора, а, следовательно, к изменению тока в цепи.
Важно подчеркнуть, что это стабилизатор тока, и выставленное значение не будет меняться в зависимости от напряжения, это очень важно. Все эти преимущества дают возможность использовать нашу нагрузку для разряда аккумуляторов стабильным током с целью выявления емкости. Диапазон питающих напряжений довольно широк. На схему можно подавать напряжение до 30В, но автор делать этого не советует, так как возможны нарушения в работе отдельных узлов. Предельно допустимая мощность рассеиваемая нагрузкой составляет 40Вт, но лишь в том случае, если имеется активное охлаждение и довольно массивный радиатор для транзистора, а так до 20Вт для такой нагрузки полностью безопасно.
Для того, чтобы нагрузка долговременно могла рассеять эти 20Вт мощности в виде тепла, опять же нужен небольшой вентилятор.
Насчет охлаждения. Так как автор использовал микросхему сдвоенного операционного усилителя lm358, а сама схема нагрузки построена всего на одном элементе, второй канал оставался свободным.
Недолго думая, на втором элементе автор решил собрать простенький терморегулятор оборотов вентилятора, который собственно и будет охлаждать наш транзистор.
Если радиатор транзистора нагревается выше заданной температуры, сработает вентилятор. Позже от этого узла автор решил полностью отказаться. Лучше вентилятор напрямую припаять на линию 5В, он будет постоянно вращаться. В архиве проекта, который можно скачать по этой ССЫЛКЕ, найдете плату без узла термо регулировки.
Вентилятор желательно использовать 5-вольтовый, но обычные 12-вольтовые также неплохо работают от напряжения 5В, поэтому допускается их применение.
Конечно, вентилятор нужен малогабаритный, а не такой как у автора. Силовые дорожки печатной платы автор обильно залудил припоем.
Транзистор прикручен на небольшой теплоотвод (это пилотный вариант, в дальнейшем будет установлен радиатор покрупнее и все это будет охлаждаться вентилятором).
Силовой транзистор, на котором рассеивается вся мощность в виде тепла – полевой. Нагрузка работает в линейном режиме и транзистору приходится очень несладко.
Токовый шунт.
От его сопротивления и мощности зависит максимальный ток нагрузки. Автор советует использовать smd-резисторы 2-5Вт с сопротивлением от 0,05 до 0,1Ом. Если под рукой нет мощных резисторов, то можно соединять параллельно несколько штук меньшей мощности, либо использовать обычные низкоомные резисторы выводного типа.
А теперь нагрузим несколько пауэрбанков. Первый образец имеет емкость всего 2000мАч, питание 1 литий-ионый аккумулятор стандарта 18650. Подключаем нашу нагрузку через USB измеритель и плавно увеличиваем ток, вращая переменный резистор на плате электронной нагрузки.
Выходной ток пауэрбанка около 1А. При попытке получить больший ток, выходное напряжение резко просаживается.
Второй образец более дорогой, с емкостью в 10000мАч, питание — 4 литиевых аккумулятора формата 18650.Грузим выход тем же способом. Выходной ток около 1,2А.
Третий образец питается от 6-ти аккумуляторов стандарта 18650, общая емкость около 15000мАч. Максимальный выходной ток 2,6А. Если нагружать еще больше, то произойдет просадка выходного напряжения.
Этот powerbank пока что лучше всех, целых 2 ,6А. Этого хватит для одновременной зарядки 2-3 смартфонов или планшета.
Как уже было сказано, с помощью такой нагрузки можно проверять выходные характеристики блоков питания. Вот зарядное устройство quick charger 3.0:
Оно может выдавать ток до 3А. Проверим, правда ли это?
Как видим, китайский производитель опять обманул, но в нашу пользу. Адаптер выдает 3,5А вместо заявленных 3А, и это не может не радовать.
Ну что же, на этом все. Благодарю за внимание. До новых встреч!
Видео:
Источник Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Электронная нагрузка. — Блоки питания — Источники питания
Николай Сергеев
Назначение
Данное устройство предназначено и применяется для проверки источников питания постоянного тока, напряжением до 150В. Устройство позволяет нагружать блоки питания током до 20А, при максимальной рассеиваемой мощности до 600 Вт.
Общее описание схемы
Рисунок 1 – Принципиальная электрическая схема электронной нагрузки.
Приведенная схема на рисунке 1 позволяет плавно регулировать нагрузку испытуемого блока питания. В качестве эквивалента нагрузочного сопротивления используются мощные полевые транзисторы T1-T6 включенные параллельно. Для точного задания и стабилизации тока нагрузки, в схеме применяется прецизионный операционный усилитель ОУ1 в качестве компаратора. Опорное напряжение с делителя R16, R17, R21, R22 поступает на неинвертирующий вход ОУ1, на инвертирующий вход поступает напряжение сравнения с токоизмерительного резистора R1. Усиленная ошибка с выхода ОУ1 воздействует на затворы полевых транзисторов, тем самым стабилизируя заданный ток. Переменные резисторы R17 и R22 вынесены на лицевую панель устройства с градуированной шкалой. R17 задает ток нагрузки в пределах от 0 до 20А, R22 в пределах от 0 до 570 мА.
Измерительная часть схемы выполнена на основе АЦП ICL7107 со светодиодными цифровыми индикаторами. Опорное напряжение для микросхемы составляет 1В. Для согласования выходного напряжения токоизмерительного датчика с входом АЦП применяется неинвертирующий усилитель с регулируемым коэффициентом усиления 10-12, собранный на прецизионном операционном усилителе ОУ2. В качестве датчика тока используется резистор R1, что и в схеме стабилизации. На панели индикации отображается либо ток нагрузки, либо напряжение проверяемого источника питания. Переключение между режимами происходит кнопкой S1.
В предлагаемой схеме реализованы три вида защиты: максимальная токовая защита, тепловая защита и защита от переполюсовки.
В максимальной токовой защите предусмотрена возможность задания тока отсечки. Схема МТЗ состоит из компаратора на ОУ3 и ключа, коммутирующего цепь нагрузки. В качестве ключа используется полевой транзистор T7 с низким сопротивлением открытого канала. Опорное напряжение (эквивалент току отсечки) подается с делителя R24-R26 на инвертирующий вход ОУ3. Переменный резистор R26 вынесен на лицевую панель устройства с градуированной шкалой. Подстроечный резистор R25 задает минимальный ток срабатывания защиты. Сигнал сравнения поступает с выхода измерительного ОУ2 на неинвертирующий вход ОУ3. В случае превышения тока нагрузки заданного значения, на выходе ОУ3 появляется напряжение близкое к напряжению питания, тем самым включается динисторное реле MOC3023, которое в свою очередь запирает транзистор T7 и подает питание на светодиод LED1, сигнализирующий о срабатывании токовой защиты. Сброс происходит после полного отключения устройства от сети и повторного включения.
Тепловая защита выполнена на компараторе ОУ4, датчике температуры RK1 и исполнительном реле РЭС55А. В качестве датчика температуры используется терморезистор с отрицательным ТКС. Порог срабатывания задается подстроечным резистором R33. Подстроечный резистор R38 задает величину гистерезиса. Датчик температуры установлен на алюминиевой пластине, являющейся основанием для крепления радиаторов (Рисунок 2). В случае превышения температуры радиаторов заданного значения, реле РЭС55А своими контактами замыкает неинвертирующий вход ОУ1 на землю, в результате транзисторы T1-T6 запираются и ток нагрузки стремится к нулю, при этом светодиод LED2 сигнализирует о срабатывании тепловой защиты. После охлаждения устройства, ток нагрузки возобновляется.
Защита от переполюсовки выполнена на сдвоенном диоде Шоттки D1.
Питание схемы осуществляется от отдельного сетевого трансформатора TP1. Операционные усилители ОУ1, ОУ2 и микросхема АЦП подключены от двухполярного источника питания собранного на стабилизаторах L7810, L7805 и инверторе ICL7660.
Для принудительного охлаждения радиаторов используется в непрерывном режиме вентилятор на 220В (в схеме не указан), который подключается через общий выключатель и предохранитель напрямую к сети 220В.
Настройка схемы
Настройка схемы проводится в следующем порядке.
На вход электронной нагрузки последовательно с проверяемым блоком питания подключается эталонный миллиамперметр, например мультиметр в режиме измерения тока с минимальным диапазоном (мА), параллельно подключается эталонный вольтметр. Ручки переменных резисторов R17, R22 выкручиваются в крайнее левое положение соответствующее нулевому току нагрузки. На устройство подается питание. Далее подстроечным резистором R12 задается такое напряжение смещения ОУ1, чтобы показания эталонного миллиамперметра стали равны нулю.
Следующим этапом настраивается измерительная часть устройства (индикация). Кнопка S1 переводится в положение измерения тока, при этом на табло индикации точка должна переместиться в положение сотых. Подстроечным резистором R18 необходимо добиться, чтобы на всех сегментах индикатора, кроме крайнего левого (он должен быть неактивен), отображались нули. После этого эталонный миллиамперметр переключается в режим максимального диапазона измерений (А). Далее регуляторами на лицевой панели устройства задается ток нагрузки, подстроечным резистором R15 добиваемся одинаковых показаний с эталонным амперметром. После калибровки канала измерения тока, кнопка S1 переключается в положение индикации напряжения, точка на табло должна переместиться в положение десятых. Далее подстроечным резистором R28 добиваемся одинаковых показаний с эталонным вольтметром.
Настройка МТЗ не требуется, если соблюдены все номиналы.
Настройка тепловой защиты проводится экспериментальным путем, температурный режим работы силовых транзисторов не должен выходить за регламентируемый диапазон. Так же нагрев отдельного транзистора может быть неодинаковым. Порог срабатывания настраивается подстроечным резистором R33 по мере приближения температуры самого горячего транзистора к максимальному документированному значению.
Элементная база
В качестве силовых транзисторов T1-T6 (IRFP450) могут применяться MOSFET N-канальные транзисторы с напряжением сток-исток не менее 150В, мощностью рассеивания не менее 150Вт и током стока не менее 5А. Полевой транзистор T7 (IRFP90N20D) работает в ключевом режиме и выбирается исходя из минимального значения сопротивления канала в открытом состоянии, при этом напряжение сток-исток должно быть не менее 150В, а продолжительный ток транзистора должен составлять не менее 20A. В качестве прецизионных операционных усилителей ОУ 1,2 (OP177G) могут применяться любые аналогичные операционные усилители с двухполярным питанием 15В и возможностью регулирования напряжения смещения. В качестве операционных усилителей ОУ 3,4 применяется достаточно распространенная микросхема LM358.
Конденсаторы C2, С3, С8, C9 электролитические, C2 выбирается на напряжение не менее 200В и емкостью от 4,7µF. Конденсаторы C1, С4-С7 керамические либо пленочные. Конденсаторы C10-C17, а так же резисторы R30, R34, R35, R39-R41 поверхностного монтажа и размещаются на отдельной плате индикатора.
Подстроечные резисторы R12, R15, R18, R25, R28, R33, R38 многооборотные фирмы BOURNS типа 3296. Переменные резисторы R17, R22 и R26 отечественные однооборотные типа СП2-2, СП4-1. В качестве токоизмерительного резистора R1 использован шунт, выпаянный из нерабочего мультиметра, сопротивлением 0,01 Ом и рассчитанный на ток 20А. Постоянные резисторы R2-R11, R13, R14, R16, R19-R21, R23, R24, R27, R29, R31, R32, R36, R37 типа МЛТ-0,25, R42 – МЛТ-0,125.
Импортная микросхема аналого-цифрового преобразователя ICL7107 может быть заменена на отечественный аналог КР572ПВ2. Вместо светодиодных индикаторов BS-A51DRD могут применяться любые одиночные или сдвоенные семисегментные индикаторы с общим анодом без динамического управления.
В схеме тепловой защиты используется отечественное слаботочное герконовое реле РЭС55А(0102) с одним перекидным контактом. Реле выбирается с учетом напряжения срабатывания 5В и сопротивления катушки 390 Ом.
Для питания схемы может быть применен малогабаритный трансформатор на 220В, мощностью 5-10Вт и напряжением вторичной обмотки 12В. В качестве выпрямительного диодного моста D2 может использоваться практический любой диодный мост с током нагрузки не менее 0,1A и напряжением не менее 24В. Микросхема стабилизатора тока L7805 устанавливается на небольшой радиатор, приблизительная мощность рассеивания микросхемы 0,7Вт.
Конструктивные особенности
Основание корпуса (рисунок 2) изготовлено из алюминиевого листа толщиной 3мм и уголка 25мм. К основанию прикручиваются 6 алюминиевых радиаторов, ранее применявшихся для охлаждения тиристоров. Для улучшения теплопроводности используется термопаста Алсил-3.
Рисунок 2 – Основание.
Общая площадь поверхности собранного таким образом радиатора (рисунок 3) составляет около 4000 см2. Приблизительная оценка мощности рассеивания взята из расчета 10см2 на 1Вт. С учетом применения принудительного охлаждения с использованием 120мм вентилятора производительностью 1,7 м3/час, устройство способно продолжительно рассеивать до 600Вт.
Рисунок 3 – Радиатор в сборе.
Силовые транзисторы T1-T6 и сдвоенный диод Шоттки D1, у которого основанием является общий катод, крепятся к радиаторам напрямую без изоляционной прокладки с использованием термопасты. Транзистор T7 токовой защиты крепится к радиатору через теплопроводящую диэлектрическую подложку (рисунок 4).
Рисунок 4 – Крепление транзисторов к радиатору.
Монтаж силовой части схемы выполнен термостойким проводом РКГМ, коммутация слаботочной и сигнальной части выполнена обычным проводом в ПВХ изоляции с применением термостойкой оплетки и термоусадочной трубки. Печатные платы изготовлены методом ЛУТ на фольгированном текстолите, толщиной 1,5 мм. Компоновка внутри устройства изображена на рисунках 5-8.
Рисунок 5 – Общая компоновка.
Рисунок 6 – Главная печатная плата, крепление трансформатора с обратной стороны.
Рисунок 7 – Вид в сборе без кожуха.
Рисунок 8 – Вид в сборе сверху без кожуха.
Основа передней панели изготовлена из электротехнического листового гетинакса толщиной 6мм фрезерованного под крепления переменных резисторов и затемненного стекла индикатора (рисунок 9).
Рисунок 9 – Основа передней панели.
Декоративный внешний вид (рисунок 10) выполнен с использованием алюминиевого уголка, вентиляционной решетки из нержавеющей стали, оргстекла, подложки из бумаги с надписями и градуированными шкалами, скомпилированными в программе FrontDesigner3.0. Кожух устройства изготовлен из миллиметрового листа нержавеющей стали.
Рисунок 10 – Внешний вид готового устройства.
Рисунок 11 – Схема соединений.
Схему соединений добавил Дмитрий Майтов (bocem).
Печатные платы разработаны в формате Sprint-Layout 6.0 и имеются в архиве, так же в архиве вложен файл передней панели в формате FrontDesigner_3.0.
Архив для статьи
Если у Вас возникнут какие либо вопросы по конструкции электронной нагрузки, задавайте их ЗДЕСЬ на форуме, постараюсь помочь и ответить.
Новокузнецк 2014.