Site Loader

Содержание

Лабараторный ЛАТР своими руками: схема и сборка

Трансформатор имеющий электрическую связь между обмотками называют лабораторным автотрансформатором, или ЛАТРом. Вольтаж цепи нагрузки прямо пропорционален обмотке вторичной цепи. В зависимости от конструкции, получение нужного выходного напряжения производиться подключением к соответствующим выводам или вращением ручного регулятора (рис. 1). В этой статье описывается как сделать ЛАТР в домашних условиях.

сделать ЛАТР

Подготовка материала

Для сборки ЛАТРа понадобятся следующие материалы и устройства:

  • Медная обмотка;
  • Тороидальный или стержневой магнитопровод. Можно приобрести в специализированном магазине или извлечь из испорченной техники;
  • Термоустойчивый лак;
  • Тряпичная изолента;
  • Корпус с закрепленными разъемами для подключения нагрузки и питания.

Для лабораторного ЛАТРа с переменным коэффициентом трансформации могут дополнительно понадобиться:

  1. Цифровой или аналоговый вольтметр.
  2. Поворотный механизм, включающий в себя ручку и ползунок с угольной щеткой. Он будет регулировать напряжение.

Расчет провода

Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:

  • Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
  • Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.

Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.

Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:

I = I2 – I1 = P / U2  –  P / U1 = 300 / 127  –  300 / 220  = 1 А

  • где  I, I2, I3 – токи в соответствующих участках цепи, А;
  • P – мощность, Вт;
  • U1, U2 – напряжения первичной и вторичной цепи, В.

Автотрансформатор схема

Диаметр провода рассчитываем по формуле:

d = 0,8 * √I = 1 мм.

Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².

Таблица тип провода и сечение

Коэффициент трансформации ЛАТРа n вычисляем по формуле:

n = U1 / U2 = 220 / 127 = 1,73

Для дальнейшего расчета вычисляем расчетную мощность Pр:

Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт

где  к – коэффициент, учитывающий КПД автотрансформатора.

Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:

S = √ Pр = √ 151,92 = 12,325 см²

W0 = m / S = 35 / 12,325 = 2,839

  • где  W0 – количество витков, приходящихся на 1 вольт;
  • m – 50 для стержневого и 35 для тороидального магнитопроводов.

Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:

w = W0 * U

Получаем 360, 511, 624 и 710 витков.

Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.

Процесс сборки

Для сборки регулируемого ЛАТРа выбираем тороидальный магнитопровод (рис. 2). Место наложения обмотки изолируем тряпичной изолентой.  Выводим провод для первой клеммы питания. Все последующие провода выводим не разрывая. Закрепляем первый виток на магнитопроводе и начинаем накручивать рассчитанное количество. При достижении витка соответствующего одному из выбранных напряжений, выводим петлю, и продолжаем наматывать провод. На рисунке 3 изображен процесс намотки на деревянном каркасе.

магнитопровод

Петли

После наложения обмотки лакируем ЛАТР. Наполняем емкость выбранным лаком, и окунаем в него автотрансформатор. Оставляем на длительную просушку.

После просушки помещаем автотрансформатор в корпус. Первый выведенный провод присоединяем к разъему питания. Этот разъем должен быть электрически связан с общей клеммой нагрузки, поэтому соединяем их между собой каким-нибудь проводником. Петлю выведенную для 220 В, соединяем со второй клеммой питания. Остальные провода подключаем к соответствующим клеммам вторичной цепи. На “схеме” 2 изображены выводы проводов.

выводы проводов

Для лабораторного автотрансформатора с переменным коэффициентом трансформации добавляем корпус, и делаем крепление для ручки регулятора. К ручке прикрепляем ползунок с угольной щеткой. Щетка должна плотно касаться верхней части обмотки. Помечаем область по которой будет передвигаться щетка, и в этом месте избавляемся от изоляции. Так щетка будет иметь прямой электрический контакт с вторичной обмоткой. Клеммы вторичных напряжений, кроме общей, заменяем одной, соединенной с угольной щеткой (схема 3). При подсоединяем закрепляем вольтметр.

Если следовать написанной статье, то ЛАТР можно с легкостью сделать своими руками.

Схема сборки латра

Проверка

Что бы убедиться в бесперебойной и надежной работе устройства, выполняем следующие пункты:

  1. Подключаем автотрансформатор к сети 220 В;
  2. Проверяем на отсутствие задымления, запаха гари, сильных шумов;
  3. Вольтметром проверяем соответствие выходных значений;
  4. Через 10 — 20 минут работы отключаем ЛАТР. Проверяем не перегрелась ли обмотка.
  5. Снова включаем ЛАТР в сеть и подключаем нагрузку на длительное время.

При отсутствии проблем автотрансформатор готов к работе.

Электронный латр своими руками (схемы)

Основным поводом для создания электронного ЛАТРа своими руками является избыток на рынке электротоваров ненадежных регуляторов. Выходом из ситуации может быть образец промышленного типа, но такие экземпляры стоят дорого и обладают внушительными габаритами, что затрудняет его использование в домашних условиях.

Схема устройства электронного ЛАТРа

Схема устройства электронного ЛАТРа.

Что представляет собой прибор

Стоит упомянуть, что лабораторные автотрансформаторы (ЛАТР) широко использовались еще полвека тому назад. Прежние варианты прибора обладали токосъемным контактом, который был расположен на вторичной обмотке. Это позволяло плавно изменять выходное напряжение (его значение).

Если подключались всевозможные лабораторные приборы, был вариант оперативной смены напряжения. Например, при необходимости легко можно было повлиять на степень нагрева паяльника, регулировать яркость освещения, обороты электродвигателя и многое другое. Вот такой своеобразный регулирующий блок питания.

Схема простого варианта ЛАТРа

Рисунок 1. Схема простого варианта ЛАТРа.

Нынешний вариант ЛАТРа обладает различными модификациями. В целом его можно считать трансформатором, в котором происходит трансформация переменного напряжения одной величины в переменное напряжение другой. Устройство широко используется в качестве стабилизатора напряжения. Основной особенностью является возможность изменения напряжения на выходе из прибора. ЛАТРы бывают нескольких вариантов исполнения:

  • однофазного;
  • трехфазного.

Трехфазный вариант представляет собой вмонтированные в едином корпусе три однофазных лабораторных автотрансформатора. Кстати, желающих стать обладателем трехфазного варианта значительно меньше.

Простой прибор для регулирования

Существует весьма простенький вариант ЛАТРа, который доступен даже для начинающих, его схема изображена на рис. 1. Регулируемый таким прибором диапазон напряжений находится в пределах 0-220 вольт. Данный самодельный регулятор обладает мощностью 25-500 Вт. Увеличение мощности устройства может быть проведено посредством установки тиристоров VD1 и VD2 на радиаторы.

Полупроводниковые приборы (речь идет о тиристорах ВД1 и ВД2) следует подключить параллельно с нагрузкой R1. Пропускаемый ими ток имеет противоположные направления. Когда прибор включается в сеть, тиристоры остаются закрытыми, в отличие от конденсаторов С1 и С2, зарядка которых производится резистором R5. Если есть потребность, с помощью резистора R5 можно изменить напряжение, которое получается во время нагрузки. Резистор и конденсаторы создают фазосдвигающую цепь.

ЛАТР с биполярным транзистором

Рисунок 2. ЛАТР с биполярным транзистором.

Фазосдвигающая цепь – это электрический четырехполюсник, гармонический сигнал на выходе которого сдвигается по фазе относительно входного сигнала. Распространены в САУ в качестве устройств корректировки, которые обеспечивают устойчивость и необходимое качество управления. Частными случаями являются дифференцирующие и интегрирующие цепи.

Данное техническое решение позволяет использовать для нагрузки не половинную мощность, а полную. Достигается это благодаря тому, что используются оба полупериода переменного тока.

К недостаткам можно отнести форму переменного напряжения на нагрузке. В этом варианте она не строго синусоидальная. Специфика работы полупроводниковых приборов является основной причиной. Наличие такой особенности способно вызвать помехи в сети. Но их можно устранить путем дополнительной установки дросселей (фильтров последовательной нагрузки) на схему. Такие фильтры можно найти даже в неисправном телевизоре.

Регулятор напряжения: вариант с трансформатором

Лабораторный автотрансформатор, который не станет причиной помех в сети и способный на выходе давать синусоидальное напряжение, устроен немного сложнее предыдущего.

Его схема (рис. 2) содержит биполярный транзистор VТ1. Он выступает в роли регулирующего элемента в таком устройстве. Мощность этого транзистора определяется в зависимости от необходимой нагрузки. В схеме он включен последовательно с нагрузкой и функционирует как реостат. Такой вариант предоставляет способность производить регулировку рабочего напряжения как во время активных, так и реактивных нагрузок.

К сожалению, и тут имеется свой недостаток. Он заключается в том, что задействованный регулирующий транзистор выделяет слишком большое количество тепла. Чтобы устранить его, понадобится теплоотводящий радиатор, который будет обладать достаточной мощностью. В данном случае площадь такого радиатора должна составлять как минимум 250 см².

В такой модели используется трансформатор Т1, который должен обладать мощностью от 12 и до 15 Вт и вторичным напряжением от 6 до 10 В. Выпрямление тока происходит с помощью диодного моста VD6. Выпрямленный ток к транзистору VТ1 в любом варианте полупериода проходит через мост диодов VD2 и VD5. Чтобы произвести регулировку базового тока транзистора VТ1, необходимо прибегнуть к помощи переменного резистора R1. Таким образом происходит изменение параметров тока нагрузки.

С помощью вольтметра РV1 осуществляется контроль величины напряжения на выходе из устройства. Вольтметр берется с расчетом на напряжение от 250 до 300 В. Если есть необходимость повышения мощности нагрузки, следует произвести замену транзистора VD1 и диодов VD2-VD5 более мощными. За этим, разумеется, последует увеличение площади радиатора.

Как можно заметить, самостоятельная сборка ЛАТРа возможна, необходимо лишь обладать знаниями в этой области и обзавестись нужными материалами.

Вместо ЛАТРа

  Предлагаю схему регулируемого источника переменного напряжения. Указанный регулятор можно использовать вместо лабораторного автотрансформатора (ЛАТРа) для регулирования освещения лампами накаливания, температуры жала паяльника, скорости вращения электродвигателя и т.д. Особенностью данной схемы является использование в качестве регулирующего элемента мощного биполярного транзистора VT1, который выполняет функцию переменного резистора, включенного последовательно с нагрузкой. Предлагаемый регулятор дает возможность регулировать напряжение как при активной, так и при реактивной нагрузке. К недостаткам регулятора можно отнести выделение большого количества тепла регулирующим транзистором и проблему его отвода. Преимущества такого технического решения перед регуляторами на тиристорах или на ЛАТРе следующие:
— отсутствие помех в электросеть от его работы;
— получение на выходе синусоидального напряжения;
— малые габариты и небольшой вес;
— простота схемного решения и не дефицитность деталей.

  Диодный мост VD2…VD5 обеспечивает протекание прямого тока через транзистор VT1 при любом полупериоде переменного напряжения сети. Трансформатор Т1 — мощностью 12…15 Вт со вторичным напряжением 6…10 В. Это напряжение выпрямляется диодным мостом VD6 и сглаживается конденсатором С1. Изменяя сопротивление переменного резистора R2, мы тем самым регулируем базовый ток транзистора VT1, а следовательно — и его сопротивление в цепи переменного тока.

  Сопротивление R1, включенное в базу транзистора VT1 — токоограничивающее. Диод VD1 — защитный. Он предотвращает попадание на базу транзистора VT1 напряжения отрицательной полярности. Напряжение на выходе регулятора контролируют вольтметром PV1. Как видно из схемы, ток нагрузки (потребителя) зависит от величины управляющего напряжения на базе транзистора. Изменяя это напряжение, мы тем самым управляем током его коллектора, а следовательно — и величиной тока нагрузки. В крайнем нижнем (по схеме) положении движка резистора R2 транзистор VT1 будет полностью открыт, и напряжение на нагрузке — максимальное. В крайнем верхнем положении движка транзистор закрыт, ток через нагрузку — минимальный, и напряжение на выходе регулятора равно нулю.

  Конструкция регулятора и его детали. Монтаж — навесной. Диоды — большой мощности (Д245, Д246, Д247, Д248, Д223 и т.д.), и поэтому при данном токе не требуют теплоотводов. Транзистор VT1 установлен на радиатор площадью не менее 250 см2. Выпрямительные диоды (блоки) VD6 — КЦ 405 с любой буквой. Переменное сопротивление R2 — обязательно проволочное ППБ15, ППБЗ мощность не менее 2,5 Вт. Вольтметр переменного тока — на напряжение 250…300 В. Если возникнет необходимость увеличения мощности нагрузки, то потребуется замена регулирующего транзистора VT1 и диодов VD2…VD5 на более мощные. В крайнем случае, можно включать несколько транзисторов в параллель, стараясь подбирать их с одинаковыми коэффициентами усиления h31э. Транзистор КТ856 позволяет подключать нагрузку 150 Вт, КТ834 — 200 Вт, КТ847 — 250 Вт.Соответственно необходимо увеличивать площадь радиаторов или устанавливать небольшой вентилятор для обдува. Диод VD1 тоже необходимо заменить на более мощный с номинальным током 1 А.

  Внимание! Данный источник гальванически связан с электросетью 220 В. Корпус источника желательно сделать из диэлектрика, а на ось резистора R2 одеть хорошо изолированную ручку. Необходимо соблюдать меры безопасности при его наладке — все изменения в конструкцию вносить только в отключенном от сети состоянии. Подробнее…

  Литература
1. Горшков Б.И. Элементы радиоэлектронных устройств: Справочник. — М.: Радио и связь, 1988.
2. Боровской В.П. Справочник по схемотехнике для радиолюбителя. — Технiка, 1987.

В. БАШКАТОВ
Донецкая обл.
г. Горловка-46
Радиолюбитель №2, 1998

Источник: shems.h2.ru

Электронный латр своими руками схема, что такое латер?

ПРОЕКТ №25: транзисторный «ЛАТР»
Историческая справка.
ЛАТР – лабораторный автотрансформатор регулируемый. Это такое устройство на основе трансформатора с одной обмоткой, которое позволяет получать на выходе регулируемое напряжение. Помню, в детстве у нас был телевизор «Старт-3», который подключался к сети через специальный автотрансформатор:

Напряжение в сети вечерами падало, потому что увеличивалась нагрузка. А электричество вырабатывал местный генератор. Вот и приходилось с помощью автотрансформатора повышать напряжение до нормы. Позже появился феррорезонансный стабилизатор. ЛАТР – устройство довольно громоздкое и тяжёлое. НО, если на входе ЛАТРа синусоидальное напряжение, то и на выходе точно такой же формы – вот что важно! Регулировка напряжения осуществляется за счёт скольжения подвижного контакта по оголённым частям витков обмотки автотрансформатора, в результате чего возникает искрение и, соответственно, помехи.
Подробнее о ЛАТРе см., например, на сайте http://www.avellinfo.ru/elektronika/avtotrans.html
Моя цель – не повествование о ЛАТРе. Я хочу поведать об ином… ЛАТРе! Тема не новая, тем не менее, попытаюсь внести в неё нечто для разнообразия.
1. После распайки платы CRT-монитора на радиаторе остались элементы:

С5129 – мощный биполярный низкочастотный N-P-N транзистор:
макс. напр. к-б при заданном обратном токе к и разомкнутой цепи э. (Uкбо макс) 1500 В;
макс. напр. к-э при заданном токе к и разомкнутой цепи б. (Uкэо макс) 800 В;
максимально допустимый ток к ( Iк макс.) 10 А;
статический коэффициент передачи тока h31э (мин) 30;
граничная частота коэффициента передачи тока fгр. 1,7МГц;
максимальная рассеиваемая мощность 50Вт.

5TUZ47 –демпфирующий HOTдиод:

D1417 – это Silicon NPN Darlington (составной) Transistor:
Ucb: 60V
Ic: 7A
β (Ic/Ib): 6000 ?!
N: 30W

Я не стал долго и досконально докапываться до всех параметров, их можно посмотреть в Datasheet’ах.
Возникла идея дурацкая (а, может быть, и не совсем?) собрать на транзисторе С5129 регулятор переменного напряжения (аналог ЛАТРа) ~0…220В.
2. Я вспомнил, что когда-то давно мне встретилась схема регулятора напряжения:

в журнале «Юный техник», №9, 1988г, стр.78, В. Янцев, «Сколько нужно ватт?»
Поp;t в журнале «Моделист-Конструктор», №4, 1990 г, стр.21, В.Янцев, «Электричество по дозе» предложил более совершенную схему:
Надо полагать, регулятор оказался настолько хорош, что в «РАДИО», №9, 1991г, стр. 32, В. Янцев опубликовал продолжение «Комбинированный блок питания», совместив вышеупомянутый регулятор с обычным компенсационным стабилизатором:

Позднее в журнале «РАДИО», №11, 1999г, стр. 40 появился материал А. Чекарова, «Безпомеховый регулятор напряжения»

REM: Как говорится, найди пару отличий от схемы Янцева! По правде говоря, меня несколько удивил тот факт, что редакция cnjkm авторитетного издания пропустила явный плагиат.

3. В настоящее время в Сети имеется масса «вариаций» на тему последней схемы В. Янцева:

И что же мы видим? Вот типические примеры:
на сайте http://www.cxema73.narod.ru/ представлен «комбинированный блок питания», который автор выдаёт за собственное творение, не ссылаясь ни на что и ни на кого:

на сайте http://radiolub.ru/category/bloki-pitanija/ представлен «регулируемый стабилизатор переменного напряжения». Хотя о стабилизации напряжения «автор» имеет такое же cvenyjt представление, как «слушательница курсов имени Леонардо да Винчи о сельском хозяйстве» (Ильф и Петров, «12 стульев»). И, что характерно, «автор» также выдаёт схему за собственное творение, не ссылаясь ни на что и ни на кого:
Вот такие дела. Предполагается, что достаточно немного изменить расположение деталей, подкрасить их и ты, якобы, ТВОРЕЦ!
«Грустно, девушки!», как говорил великий комбинатор.
4. Хочу заметить, что все регуляторы, выполненные по данной схеме, собраны на отечественной элементной базе. Есть попытки применить буржуйские диоды, но не более того.
Смотрим параметры транзистора КТ840Б:
максимально допустимое (импульсное) напряжение коллектор-база 350 В;
максимально допустимое (импульсное) напряжение коллектор-эмиттер 350 В;
максимально допустимый постоянный(импульсный) ток коллектора 6 (8) А;
максимально допустимая постоянная рассеиваемая мощность коллектора с теплоотводом 60 Вт;
статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером =>10;
обратный ток коллектора <=3 мА;
граничная частота коэффициента передачи тока в схеме с общим эмиттером =>8 МГц;
коэффициент шума биполярного транзистора <3 дБ.
И сравниваем их с параметрами транзистора С5129. По основным – вполне соответствует. Полагаю, граничная частота, в данном случае, параметр не столь важный.
Так что, значит, можно?
5. Подтверждением (или опровержением) любых предположений (или гипотез) такого рода является ЭКСПЕРИМЕНТ, а не многословная болтовня на форумах. Итак, приступим.
5.1. Проверка транзистора С5129 мультиметром:

Запись, например, «B+ —> C-» означает: к БАЗЕ ПЛЮС мультиметра, к КОЛЛЕКТОРУ МИНУС мультиметра.
Транзистор стопудово исправен.
5.2. Теперь, по прошествии некоторого времени, я могусовершенно чётко заявить: чёрт меня дёрнул попытаться проверить вариант из журнала «Юный техник», №9, 1988г! Накатили ностальгические чувства… Наверное потому, что я раньше не собрал это устройство. Теперьэто история, и она требует того, чтобы данный факт зафиксировать в сетевых скрижалях (как в дебильной рекламе: «Запостил – было, а не запостил – и не было!»).
Регулятор на транзисторе КТ812Б собран и включен. При замкнутом SA2 и R1=10 кОм (другого номинала не нашлось) напряжение на нагрузке никак не менялось.
Заменил R1 на два последовательно включенных подстроечных 220 Ом и 330 Ом – снова никакого результата, хотя напряжение на вторичной обмотке Т1 более ~12В,
Напряжение на базе почти не менялось. Всё это делалось, повторяю, с VT1 отечественным КТ812Б. Я заменил его на буржуйский С5129.
Результат тот же – ничего! На базе напряжение меняется от 0,05 до 0,61 В. На выходе – никак. Я плюнул на это дело и…

5.3. Приступил к тому, что хотел, собственно, сделать с самого начала: регулятор из журнала «РАДИО», №11, 1999г.
Вот детали для регулятора; далее – они распаяны в 3D:
Первое включение разочаровало – напряжение на нагрузке нулевое. Но я ведь поставил движок переменникана половину! Стоило его немного повернуть (вниз по схеме), и регулятор заработал! В смысле: он заработал сразу после включения, посто ток базы был слишком мал.
Напряжение регулируется от 0 до 240В, правда, при R1=10 кОм его изменение происходит где-то на ¼ R, т.е. на 2,2 – 2,5 кОм.
К сожалению, поиски R1 нужного номинала пока не увенчались успехом. Один «умник» мне заявил, что такое барахло он выкинул лет 10 назад, ведь «теперь всё на процессорАХ» (ударение его). Интересно посмотреть, какой дурак возьмётся городить подобное устройство на процессоре, пусть и «микро»? Пришлось напомнить ему, что и «на херАХ» пока ещё делается тоже немало. Если он упустил данный факт из виду, то это его проблема.
Итак, эксперимент показал, что транзистор С5129 можно использовать в качестве регулирующего элемента в транзисторном ЛАТРе. Нагрев вполне терпимый, палец не обжигает (ощущение субъективное). Следует иметь в виду, что чем больше радиатор транзистора, тем лучше. Но без фанатизма. Кулер тоже будет не лишним, но требует отдельного питания, а если без оного, то… у меня, например, не нашлось небольшого малошумящего вентилятора на сетевое напряжение.
Понятно, что и другие аналогичные транзисторы также подойдут для такого «ЛАТРа».
Схема:

Детали:
VD1: мост B250C5000/3300 на 3,3/5А 600В
VD2: мост D2SBA60 на 1,5А 800В
Т1: небольшой силовой трансформатор от какого импортного устройства; на вторичной обмотке около 12В
VT1: транзистор C5129
VD3: диод1N4007 на 1А 700В
R1: переменный проволочный ППБ-25Г13 на 10 кОм
R2: я вообще решил не ставить, т.к. сопротивление R1 и так довольно велико, и ток базы уменьшать нет смысла
С1: электролитический 470 мк х 25 В
Как видно, только R1 – отечественный, всё остальное – буржуинское. Таким образом, я тоже внёс свою лепту в развитие данной конструкции:

7. Создание законченной конструкции.
Как я упоминал, у меня накопилась масса РАДИОхабара, из которого я время от времени извлекаю нечто подходящее для той или иной конструкции. К сожалению, свободного времени я имею, наоборот, слишком мало для изготовления сложных конструкций, поэтому некоторое количество проектов находится в «замороженном» состоянии. Вот и занимаюсь иногда «для души» мелочёвкой. Но это всё лирика. «Ближе к телу, как говорил Мопасан» устами великого комбинатора.
Очень кстати нашёлся корпус от древнего фильмоскопа. Были такие аппараты для демонстрации диафильмов. В этот корпус, как по заказу, вписываются вольтметр и радиатор мощного транзистора.

Вот так ЛАТР будет смотреться в перспективе:

Ставлю транзистор C5129 на радиатор, заполировав место касания и смазав термопастой:

Думаю, что делать плату для нескольких деталей смысла не имеет. Тем более, что есть идея по установке и креплению вольтметра. Там будет достаточно просторная площадка, где я и размещу все детали. Примерно так:

Соединение:

Подключение и проверка:

В корпусе сделаны нужные отверстия:

Выходные клеммы должны быть рассчитаны на подключение сетевой вилки, однополюсных вилок и просто поводов:

Выключатель, предохранитель, выходные клеммы и регулятор напряжения закреплены:

Вставляю основной блок:

Всё припаяно:

Проверка:

«ЛАТР» собран:

Расчет провода

Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:

  • Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
  • Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.

Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.

Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:

I = I2 – I1 = P / U2 – P / U1 = 300 / 127 – 300 / 220 = 1 А

  • где I, I2, I3 – токи в соответствующих участках цепи, А;
  • P – мощность, Вт;
  • U1, U2 – напряжения первичной и вторичной цепи, В.

Диаметр провода рассчитываем по формуле:

d = 0,8 * √I = 1 мм.

Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².

Коэффициент трансформации ЛАТРа n вычисляем по формуле:

n = U1 / U2 = 220 / 127 = 1,73

Для дальнейшего расчета вычисляем расчетную мощность Pр:

Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт

где к – коэффициент, учитывающий КПД автотрансформатора.

Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:

S = √ Pр = √ 151,92 = 12,325 см²

W0 = m / S = 35 / 12,325 = 2,839

  • где W0 – количество витков, приходящихся на 1 вольт;
  • m – 50 для стержневого и 35 для тороидального магнитопроводов.

Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:

w = W0 * U

Получаем 360, 511, 624 и 710 витков.

Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.

Электронный ЛАТР


В настоящее время производится много регуляторов напряжения и большинство из них изготовлены на тиристорах и симисторах, которые создают значительный уровень радиопомех. Предлагаемый регулятор помех не даёт совсем и может использоваться для питания различных устройств переменного тока, без каких – либо ограничений, в отличие от симисторных и тиристорных регуляторов.
В Советском Союзе выпускалось очень много автотрансформаторов, которые, в основном, применялись для повышения напряжения в домашней электрической сети, когда по вечерам напряжение очень сильно падало, и ЛАТР (лабораторный автотрансформатор) был единственным спасением для людей, желающих посмотреть телевизор. Но главное в них то, что на выходе из этого автотрансформатора получается такая же правильная синусоида, как и на входе, не зависимо от напряжения. Этим свойством активно пользовались радиолюбители.
Выглядит ЛАТР так:

Напряжение в этом приборе регулируется при помощи качения графитового ролика по оголённым виткам обмотки:

Помехи в таком ЛАТРе, всё же были из — за искрения, в момент качения ролика по обмоткам.
В журнале «РАДИО», №11, 1999г на странице 40 была напечатана статья «Беспомеховый регулятор напряжения».
Схема этого регулятора из журнала:

В предлагаемом журналом регуляторе не искажается форма выходного сигнала, но низкий коэффициент полезного действия и невозможность получения повышенного напряжения (выше напряжения сети), а также устаревшие комплектующие, которые найти сегодня проблематично, сводят на нет все преимущества данного прибора.

Схема электронного ЛАТРа

Я решил по возможности избавиться от некоторых недостатков регуляторов, перечисленных выше и сохранить их главные достоинства.
От ЛАТРа возьмём принцип автотрансформации и применим его на обычном трансформаторе, тем самым повысим напряжение выше напряжения сети. Мне понравился трансформатор от блока бесперебойного питания. В основном тем, что его не нужно перематывать. Всё нужное в нём есть. Марка трансформатора: RT-625BN.

Вот его схема:

Как видно из схемы, в нём присутствует, помимо основной обмотки на 220 вольт, ещё две, выполненные обмоточным проводом того же диаметра, и две вторичные мощные. Вторичные обмотки отлично подходят для питания цепи управления и работы кулера охлаждения силового транзистора. Две дополнительные обмотки соединяем последовательно с первичной обмоткой. На фотографиях видно, как это сделано по цветам.

На красный и чёрный провода подаём питание.

Добавляется напряжение с первой обмотки.
Плюс две обмотки. Итого получается 280 вольт.
Если нужно большее напряжение, то можно домотать ещё провода до заполнения окна трансформатора, предварительно сняв вторичные обмотки. Только мотать нужно обязательно в том же направлении, что и предыдущая обмотка, и соединять конец предыдущей обмотки с началом следующей. Витки обмотки должны, как бы продолжать предыдущую обмотку. Если намотаете навстречу, то при включении нагрузки будет большая неприятность!
Повышать напряжение можно, лишь бы регулирующий транзистор выдержал это напряжение. Транзисторы из импортных телевизоров встречаются до 1500 вольт, так что простор есть.
Трансформатор можно взять и любой другой, подходящий вам по мощности, удалить вторичные обмотки и домотать провод до нужного вам напряжения. В этом случае, напряжение управления можно получить от дополнительного вспомогательного маломощного трансформатора на 8 – 12 вольт.
Если кому – то захочется повысить КПД регулятора, то можно и здесь найти выход. Транзистор бесполезно расходует электроэнергию на нагрев тогда, когда ему приходится сильно убавлять напряжение. Чем сильнее нужно убавить напряжение, тем сильнее нагрев. В открытом состоянии, нагрев незначителен.
Если изменить схему автотрансформатора и сделать на нём много выводов нужных вам уровней напряжения, то можно при помощи переключения обмоток подать на транзистор напряжение близкое к нужному вам в данный момент. Ограничения в количестве выводов трансформатора не имеется, нужен только соответствующий количеству выводов переключатель.
Транзистор в этом случае будет нужен только для незначительной точной корректировки напряжения и КПД регулятора повысится, а нагрев транзистора уменьшится.

Понадобится

Нам понадобятся детали:

  • Радиатор охлаждения с кулером (любой).
  • Макетная плата.
  • Контактные колодки.
  • Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что первым под руку попало, но выбирал более или менее подходящее.
  • Диодные мосты VD1 – на 4 — 6А – 600 В. Из телевизора, кажется. Или собрать из четырёх отдельных диодов.
  • VD2 — на 2 — 3 А – 700 В.
  • T1 – C4460. Транзистор я поставил от импортного телевизора на 500V и мощностью рассеяния 55W. Можете попробовать любой другой подобный высоковольтный, мощный.
  • VD3 – диод 1N4007 на 1A 1000 В.
  • C1 – 470mf х 25 В, лучше ёмкость ещё увеличить.
  • C2 – 100n.
  • R1 – 1 кОм потенциометр любой проволочный, от 500 Ом и выше.
  • R2 – 910 — 2 Вт. Подбор по току базы транзистора.
  • R3 и R4 — по 1 кОм.
  • R5 – подстрочный резистор на 5 кОм.
  • NTC1 — терморезистор на 10 кОм.
  • VT1 – любой полевой транзистор. Я поставил RFP50N06.
  • M – кулер на 12 В.
  • HL1 и HL2 – любые сигнальные светодиоды, их можно вовсе не ставить вместе с гасящими резисторами.

Первым делом нужно приготовить плату для размещения деталей схемы и закрепить её на месте в корпусе.
Размещаем на плате детали и припаиваем их.
Когда схема собрана, настаёт время её предварительного испытания. Но нужно это делать очень осторожно. Все детали находятся под напряжением сети.
Для испытания устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не сгорели, когда на них пойдёт напряжение 280 вольт. Одинаковой мощности лампочек не нашлось и поэтому накал спиралей сильно различается. Нужно иметь ввиду, что без нагрузки регулятор работает очень некорректно. Нагрузка в данном устройстве является частью схемы. При первом включении лучше поберегите глаза (вдруг что – то напутали).
Включаем напряжение и потенциометром проверяем плавность регулировки напряжения, но не долго, во избежание перегрева транзистора.
После испытаний начинаем собирать схему автоматической работы кулера, в зависимости от температуры.
У меня не нашлось терморезистора на 10 кОм, пришлось взять два по 22 кОм и соединить их параллельно. Получилось около десяти кОм.
Крепим терморезистор рядом с транзистором с применением теплопроводной пасты, как и для транзистора.
Устанавливаем остальные детали и припаиваем. Не забудьте удалить медные контактные площадки макетной платы между проводниками, как на фото, иначе при включении высокого напряжения может произойти замыкание в этих местах.
Осталось отрегулировать подстроечным резистором начало работы кулера, когда температура радиатора возрастёт.
Помещаем всё в корпус на штатные места и закрепляем. Окончательно проверяем и закрываем крышку.
Смотрите, пожалуйста, видео работы беспомехового регулятора напряжения.
Удачи вам.

Подготовка к работе и подключение

После пребывания автотрансформатора в условиях низкой температуры, его нужно выдержать в условиях будущей эксплуатации как минимум 4 часа.

Перед подключением производится осмотр корпуса трансформатора на предмет отсутствия видимых внешних повреждений. После этого, схема подключения ЛАТР предполагает подключение кабеля нагрузки и сетевого кабеля. После всех подключений, осуществляется подача к автотрансформатору питающего напряжения.

Для того, чтобы подключение было выполнено правильно, при отключенной нагрузке, на шкале прибора устанавливается половинное значение напряжения. Затем, необходимо включить вольтметр, первый щуп соединить с нулевым проводом сети, а второй щуп должен контролировать напряжение на выходе автотрансформатора. На одном контакте напряжение будет иметь нулевое, а на втором контакте половинное значение. Это означает, что прибор подключен правильно. В случае неправильного подключения, напряжение на выходе будет таким же, как и в электрической сети, в пределах 220 вольт.

При подключении ЛАТР необходимо соблюдать правила электробезопасности. Внутри прибора существует опасное значение напряжения свыше 220 вольт, при частоте 50 герц. Поэтому, работать с автотрансформатором могут только специалисты с допуском, разрешающим работать с оборудованием при напряжении до 1000 вольт.

С самим трансформатором нужно обращаться бережно, избегать ударов, перегрузок, воздействия агрессивной среды.

как сделать, схемы, пошаговая инструкция

Кроме обычных трансформаторов, в которых несколько обмоток, есть автотрансформаторы, в которых всего одна катушка. При необходимости можно произвести сборку автотрансформатора своими руками.

Принцип действия

Основной принцип действия автотрансформатора аналогичен обычному аппарату:

  • ток, протекающий по первичной обмотке, создает магнитное поле и магнитный поток в магнитопроводе;
  • величина этого поля зависит от силы тока и от числа витков;
  • изменения магнитного потока наводят ЭДС во вторичной обмотке;
  • величина наведенной ЭДС зависит от числа витков во вторичной обмотке.

Особенность автотрансформатора в том, что часть витков первичной обмотки является также вторичной. В связи с тем, что ЭДС в первичной и вторичной обмотках направлены встречно, ток в общей части катушки I¹² равен разнице I¹ и I². При равенстве входного и выходного напряжения или Ктр=1 I¹² определяется индуктивным сопротивлением катушки.

Автотрансформатор

Основные плюсы и минусы

В связи с особенностями конструкции автотрансформатор обладает преимуществами и недостатками по сравнению с обычными устройствами.

Достоинства автотрансформатора, проявляющиеся при Ктр0,5-2:

  • меньший вес и габариты;
  • более высокий КПД, связанный с пониженными потерями в обмотках и магнитопроводе.

Кроме достоинств, эти устройства имеют недостатки:

  • Повышенный ток КЗ. Это связано с тем, что ток нагрузки ограничен не насыщением магнитопровода, а сопротивлением нескольких витков вторичной обмотки.
  • Электрическая связь между первичной и вторичной обмотками. Это делает невозможным применение этих аппаратов в качестве разделительных и для питания низковольтных устройств в опасных условиях, требующих низкого напряжения согласно ПУЭ.

Мощность автотрансформатора

Мощность любого электроаппарата равна произведению тока на напряжение Р=I*A. В обычном трансформаторе она равна мощности нагрузки с учетом КПД.

Мощность автотрансформатора рассчитывается немного иначе.  В повышающем напряжение аппарате она складывается из мощности первичной обмотки части Р¹²=I¹²*U¹² и мощности повышающей обмотки Р²=I²*U⅔. В связи с тем, что ток, протекающий через первичную катушку меньше, чем ток нагрузки, то мощность автотрансформатора меньше мощности нагрузки. Фактически, мощность аппарата определяется разностью первичного и вторичного напряжений и током вторичной обмотки P=(U¹-U²)*I².

Автотрансформатор однофазный

Особенно это заметно при небольших (10-20%) отклонениях выходного напряжения. Аналогичным образом рассчитывается понижающий автотрансформатор.

Информация! Это позволяет уменьшить сечение магнитопровода и диаметр провода обмотки. В связи с этим автотрансформатор легче и дешевле обычного устройства.

Что такое ЛАТР

Кроме силовых аппаратов, заменяющих обычные трансформаторы, в школах, институтах и лабораториях используются ЛАТРы – Лабораторные АвтоТРанформаторы. Эти устройства используются для плавного изменения напряжения на выходе аппарата. Самые распространенные конструкции представляют из себя катушку, намотанную на тороидальном магнитопроводе. С одной из сторон провод очищен от лака и по нему при помощи поворотного механизма двигается графитный ролик.

Питающее напряжение подаётся на концы катушки, а вторичное снимается с одного из концов и графитного ролика. Поэтому ЛАТР не может поднимать напряжение выше сетевого, в некоторых модификациях выше 250В.

Кроме катушечных, есть электронные ЛАТРы. Фактически, это не автотрансформатор, а регулятор напряжения. Есть разные виды таких устройств:

  • Тиристорный регулятор. В этих аппаратах в качестве силового элемента установлены тиристор и диодный мост или симистор. Недостаток в отсутствии синусоидальной формы выходного напряжения. Самый известный прибор такого типа – диммер ламп освещения.
  • Транзисторный регулятор. Дороже тиристорного, требует установки транзисторов на радиаторы. Обеспечивает синусоидальную форму выходного напряжения.
  • ШИМ-контроллер.

Старый латр

Совет! Для того, чтобы получить напряжение выше сетевого, ЛАТР подключается ко вторичной обмотке повышающего трансформатора.

Область применения

Особенности автотрансформатора позволяют применять его в быту и разных областях промышленности.

Металлургическое производство

Регулируемые автотрансформаторы в металлургии применяются для проверки и настройки защитной аппаратуры прокатных станов и трансформаторных подстанций.

Коммунальное хозяйство

До появления автоматических стабилизаторов эти аппараты применялись для обеспечения нормальной работы телевизоров и другой аппаратуры. Они представляли из себя обмотку с большим числом отводов и переключателем. Он переключал вывода катушки, а выходное напряжение контролировалось при помощи вольтметра.

В настоящее время автотрансформаторы используются в релейных стабилизаторах напряжения.

Справка! В трехфазных стабилизаторах установлены три однофазных автотрансформатора, и регулировка производится в каждой фазе по-отдельности.

Латр

Химическая и нефтяная промышленность

В химической и нефтяной промышленности эти аппараты применяются для стабилизации и регулировки химических реакций.

Производство техники

В машиностроении такие аппараты используются для пуска электродвигателей станков и управления скоростью вращения дополнительных приводов.

Учебные заведения

В школах, техникумах и институтах ЛАТРы применяются при выполнении лабораторных работ и демонстрации законов электротехники, и опытах по электролизу.

Изготовление самодельного ЛАТРа

В продаже есть достаточно готовых устройств, но при необходимости его можно сделать самостоятельно. За основу лучше взять трансформатор на О- или Ш-образном магнитопроводе. Изготовление ЛАТРа на тороидальном железе сводится к его перемотке и требует очень высокой аккуратности при наматывании катушки.

Подготовка материала

Для изготовления регулируемого автотрансформатора необходимы:

  • Магнитопровод. Его сечение определяет мощность автотрансформатора.
  • Обмоточный провод. Его сечение зависит от мощности и потребляемого тока устройства.
  • Термоустойчивый лак. Необходим для пропитки катушки после намотки проводов. Допускается замена масляной краской.
  • Тряпичная изолента или киперная лента и корпус с закрепленными разъемами для подключения нагрузки и питания. Желательно разместить в корпусе цифровой или аналоговый вольтметр
  • Многопозиционный переключатель. Его допустимый ток должен соответствовать току аппарата. При необходимости допускается производить переключение выводов автотрансформатора при помощи пускателей.

Расчет провода

Перед началом намотки катушки необходимо определить сечение провода и необходимое количество витков/вольт (n/v). Этот расчёт производится по поперечному сечению магнитопровода при помощи онлайн-калькуляторов или по специальным таблицам.

Если для изготовления устройства используется исправный трансформатор, то эти параметры определяются по имеющимся обмоткам:

  • подключить трансформатор к сети 220В;
  • вольтметром измерить выходное напряжение V;
  • отключить аппарат;

ЛАТР дома

  • разобрать магнитопровод;
  • размотать вторичную обмотку, считая количество витков N;
  • по формуле n/v=N/V вычислить количество витков/вольт – основной параметр для расчета катушки;
  • измерить сечение провода первичной обмотки.

Совет! Если первичная обмотка не была пропитана лаком и разматывается без нарушения изоляции, то допускается использовать её для намотки катушки автотрансформатора.

Схема

Перед началом работ составляется схема обмотки с указанием количества витков и напряжением на каждом из выводов. В отличие от обычного трансформатора автотрансформатор имеет только одну обмотку, которая изображается с одной из сторон черты, символизирующей магнитопровод.

Для расчетов витков необходимо определить число выводов. Оно зависит от количества положений многопозиционного переключателя. Один из отводов может совпадать с сетевым выводом:

  • определить и указать на схеме напряжение V каждого из положений переключателя;
  • рассчитать необходимое число витков между отводами по формуле N=(n/v)*(V²-V³), где V¹, V², V³ и т.д. – напряжение на последующих выводах;
  • указать на схеме количество витком между каждыми из отводов.

Схема автотрансформатора

Совет! При необходимости сделать повышающий автотрансформатор к первичной обмотке добавляется необходимое количество витков. Для этого допускается использовать провод, снятый со вторичной обмотки.

Намотка катушки

После выполнения всех расчётов производится намотка катушки. Она выполняется на готовом или специально изготовленном каркасе вручную или при помощи намоточного станка:

  • наматывается необходимое число витков в секции;
  • выполняется ответвление – из обмоточного провода, не обрывая его, делается петля длиной 5-20 см и скручивается в жгут;
  • после изготовления отвода продолжается намотка катушки;
  • операции 1-3 повторяются до завершения намотки;
  • готовая обмотка закрепляется киперной лентой и покрывается лаком или краской.

Процесс сборки

После завершения намотки и высыхания лака производится сборка автотрансформатора:

  • собирается магнитопровод;
  • собранный аппарат устанавливается в корпус;
  • подключаются многопозиционный переключатель и вольтметр;
  • собранный автотрансформатор подключается к клеммам.

Катушка трансформатора

Проверка

После сборки работоспособность устройства необходимо проверить:

  • первичная обмотка аппарата подключается к сети;
  • измеряются напряжения при каждом из положений переключателя и данные сравниваются с расчетными;
  • через 20 минут трансформатор отключается и проверяется на нагрев – при его отсутствии производятся повторные испытания под нагрузкой.

Как сделать трансформатор из автотрансформатора

Кроме изготовления ЛАТРа из обычного трансформатора возможно обратная операция – изготовление трансформатора из ЛАТРа. Такие устройства обладают более высоким КПД из-за лучших свойств тороидального сердечника по сравнению с Ш-образным магнитопроводом.

Для такой переделки достаточно намотать вторичную обмотку:

  • посчитать количество витков между выводами 220В;
  • определить число витков/вольт

Электронный автотрансформатор

Более современным способом регулировки является использование электронных устройств. Любое из них можно изготовить своими руками.

Тиристорный регулятор

Простейшая схема такого приспособления представляет собой переменный резистор, включенный между анодом и управляющим электродом тиристора. Это позволяет получать пульсирующее постоянное напряжение и управлять им в диапазоне 0-110В.

Для регулировки переменного напряжения 0-220В применяется встречно-параллельная схема соединения, а резистор включается между управляющими электродами.

Вместо двух тиристоров целесообразно применение симистора, а в качестве схемы управления использовать диммер для ламп накаливания.

Тиристорный регулятор

Транзисторное управление

Самая качественная регулировка получается при использовании транзисторного регулятора. Он обеспечивает плавное изменение и правильную форму выходного напряжения.

Недостаток этой схемы в нагреве выходных транзисторов. Для его уменьшения и повышения КПД целесообразно подключить регулятор к выходным клеммам автотрансформатора – грубая регулировка осуществляется переключением обмоток, а плавная при помощи транзисторов.

ШИМ-регулятор

Самым современным способом является применение ШИМ-контроллера (широтно-импульсная модуляция). В качестве силовых элементов полевые или биполярные транзисторы с изолированным затвором (IGBT).

ШИМ-регулятор

Электронной ЛАТР – Sam-Sdelay.RU – Сделай сам!


В настоящее время производится много регуляторов напряжения и большинство из них изготовлены на тиристорах и симисторах, которые создают значительный уровень радиопомех. Предлагаемый регулятор помех не даёт совсем и может использоваться для питания различных устройств переменного тока, без каких – либо ограничений, в отличие от симисторных и тиристорных регуляторов.
В Советском Союзе выпускалось очень много автотрансформаторов, которые, в основном, применялись для повышения напряжения в домашней электрической сети, когда по вечерам напряжение очень сильно падало, и ЛАТР (лабораторный автотрансформатор) был единственным спасением для людей, желающих посмотреть телевизор. Но главное в них то, что на выходе из этого автотрансформатора получается такая же правильная синусоида, как и на входе, не зависимо от напряжения. Этим свойством активно пользовались радиолюбители.
Выглядит ЛАТР так:

Напряжение в этом приборе регулируется при помощи качения графитового ролика по оголённым виткам обмотки:

Помехи в таком ЛАТРе, всё же были из – за искрения, в момент качения ролика по обмоткам.
В журнале «РАДИО», №11, 1999г на странице 40 была напечатана статья «Беспомеховый регулятор напряжения».
Схема этого регулятора из журнала:

В предлагаемом журналом регуляторе не искажается форма выходного сигнала, но низкий коэффициент полезного действия и невозможность получения повышенного напряжения (выше напряжения сети), а также устаревшие комплектующие, которые найти сегодня проблематично, сводят на нет все преимущества данного прибора.
Схема электронного ЛАТРа
Я решил по возможности избавиться от некоторых недостатков регуляторов, перечисленных выше и сохранить их главные достоинства.
От ЛАТРа возьмём принцип автотрансформации и применим его на обычном трансформаторе, тем самым повысим напряжение выше напряжения сети. Мне понравился трансформатор от блока бесперебойного питания. В основном тем, что его не нужно перематывать. Всё нужное в нём есть. Марка трансформатора: RT-625BN.

Вот его схема:

Как видно из схемы, в нём присутствует, помимо основной обмотки на 220 вольт, ещё две, выполненные обмоточным проводом того же диаметра, и две вторичные мощные. Вторичные обмотки отлично подходят для питания цепи управления и работы кулера охлаждения силового транзистора. Две дополнительные обмотки соединяем последовательно с первичной обмоткой. На фотографиях видно, как это сделано по цветам.

На красный и чёрный провода подаём питание.

Добавляется напряжение с первой обмотки.

Плюс две обмотки. Итого получается 280 вольт.
Если нужно большее напряжение, то можно домотать ещё провода до заполнения окна трансформатора, предварительно сняв вторичные обмотки. Только мотать нужно обязательно в том же направлении, что и предыдущая обмотка, и соединять конец предыдущей обмотки с началом следующей. Витки обмотки должны, как бы продолжать предыдущую обмотку. Если намотаете навстречу, то при включении нагрузки будет большая неприятность!
Повышать напряжение можно, лишь бы регулирующий транзистор выдержал это напряжение. Транзисторы из импортных телевизоров встречаются до 1500 вольт, так что простор есть.
Трансформатор можно взять и любой другой, подходящий вам по мощности, удалить вторичные обмотки и домотать провод до нужного вам напряжения. В этом случае, напряжение управления можно получить от дополнительного вспомогательного маломощного трансформатора на 8 – 12 вольт.

Если кому – то захочется повысить КПД регулятора, то можно и здесь найти выход. Транзистор бесполезно расходует электроэнергию на нагрев тогда, когда ему приходится сильно убавлять напряжение. Чем сильнее нужно убавить напряжение, тем сильнее нагрев. В открытом состоянии, нагрев незначителен.
Если изменить схему автотрансформатора и сделать на нём много выводов нужных вам уровней напряжения, то можно при помощи переключения обмоток подать на транзистор напряжение близкое к нужному вам в данный момент. Ограничения в количестве выводов трансформатора не имеется, нужен только соответствующий количеству выводов переключатель.
Транзистор в этом случае будет нужен только для незначительной точной корректировки напряжения и КПД регулятора повысится, а нагрев транзистора уменьшится.

Изготовление ЛАТРа
Можно приступать к сборке регулятора.
Схему из журнала я немного доработал, и получилось вот что:

С такой схемой можно значительно повышать верхний порог напряжения. С добавлением автоматического кулера, снизился риск перегрева регулирующего транзистора.
Корпус можно взять от старого компьютерного блока питания.

Сразу нужно прикинуть порядок размещения блоков устройства внутри корпуса и предусмотреть возможность их надёжного закрепления.

Если нет предохранителя, то обязательно нужно предусмотреть другую защиту от короткого замыкания.

Высоковольтный клеммник надёжно крепим к трансформатору.

На выход я поставил розетку для подключения нагрузки и контроля напряжения. Вольтметр можно поставить любой другой, на соответствующее напряжение, но не меньше 300 Вольт.

Понадобится
Нам понадобятся детали:

  • Радиатор охлаждения с кулером (любой).
  • Макетная плата.
  • Контактные колодки.
  • Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что первым под руку попало, но выбирал более или менее подходящее.
  • Диодные мосты VD1 – на 4 – 6А – 600 В. Из телевизора, кажется. Или собрать из четырёх отдельных диодов.
  • VD2 – на 2 – 3 А – 700 В.
  • T1 – C4460. Транзистор я поставил от импортного телевизора на 500V и мощностью рассеяния 55W. Можете попробовать любой другой подобный высоковольтный, мощный.
  • VD3 – диод 1N4007 на 1A 1000 В.
  • C1 – 470mf х 25 В, лучше ёмкость ещё увеличить.
  • C2 – 100n.
  • R1 – 1 кОм потенциометр любой проволочный, от 500 Ом и выше.
  • R2 – 910 – 2 Вт. Подбор по току базы транзистора.
  • R3 и R4 – по 1 кОм.
  • R5 – подстрочный резистор на 5 кОм.
  • NTC1 – терморезистор на 10 кОм.
  • VT1 – любой полевой транзистор. Я поставил RFP50N06.
  • M – кулер на 12 В.
  • HL1 и HL2 – любые сигнальные светодиоды, их можно вовсе не ставить вместе с гасящими резисторами.

Первым делом нужно приготовить плату для размещения деталей схемы и закрепить её на месте в корпусе.



Размещаем на плате детали и припаиваем их.






Когда схема собрана, настаёт время её предварительного испытания. Но нужно это делать очень осторожно. Все детали находятся под напряжением сети.
Для испытания устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не сгорели, когда на них пойдёт напряжение 280 вольт. Одинаковой мощности лампочек не нашлось и поэтому накал спиралей сильно различается. Нужно иметь ввиду, что без нагрузки регулятор работает очень некорректно. Нагрузка в данном устройстве является частью схемы. При первом включении лучше поберегите глаза (вдруг что – то напутали).
Включаем напряжение и потенциометром проверяем плавность регулировки напряжения, но не долго, во избежание перегрева транзистора.

После испытаний начинаем собирать схему автоматической работы кулера, в зависимости от температуры.
У меня не нашлось терморезистора на 10 кОм, пришлось взять два по 22 кОм и соединить их параллельно. Получилось около десяти кОм.

Крепим терморезистор рядом с транзистором с применением теплопроводной пасты, как и для транзистора.

Устанавливаем остальные детали и припаиваем. Не забудьте удалить медные контактные площадки макетной платы между проводниками, как на фото, иначе при включении высокого напряжения может произойти замыкание в этих местах.


Осталось отрегулировать подстроечным резистором начало работы кулера, когда температура радиатора возрастёт.

Помещаем всё в корпус на штатные места и закрепляем. Окончательно проверяем и закрываем крышку.



Смотрите, пожалуйста, видео работы беспомехового регулятора напряжения.
Удачи вам.
Смотрите видео

Источник

Электронный латр — РадиоСхема

В нынешнее время большое распространение получили автотрансформаторы (ЛАТР — лабораторные автотрансформаторы). Это тип обычного трансформатора в котором первичная и вторичная обмотки друг от друга не изолированы, а соеденены электрически напрямую, следовательно в них используется не только электрическая, но и электромагнитная связь. Общая обмотка трансформатора имеет несколько разных выводов (2, 3, 4 и более), при подключении к ним можно получить разные напряжения.

На рисунке показана схема электронного ЛАТРа, с обмотки III сетевого трансформатора Т1 переменное напряжение (0,5…1В) поступает через делитель напряжения (R15 R16 R3) на УНЧ. Данный УНЧ выполнен по схеме упрощенного УМЗЧ, мощности УНЧ достаточно для питания небольшого по мощности устройства подключенного к ЛАТРу, если необходима большая мощность то надо применить долее мощный УМЗЧ и трансформатора Т2. Непосредственно с выхода УНЧ снимается переменное напряжение величина которого от 0 до максимального питающего напряжения.

Обмотка II Т1 должна выдавать напряжение 22…24В. VT1…VT4 должны быть установлены на общем радиаторе. R3 должен быть расположен на лицевой панели корпуса ЛАТРа.

Схема Электронного ЛАТРа

Напряжение питания ОУ должно быть в пределах +/-13…14В. Падение напряжения на R13 R14 должно быть в пределах 0,34…0,4В. На выходе УЧН должна быть синусоида 50Гц (для этого надо подключить нагрузку 16 Ом мощностью не менее 10…15Вт). Т2 пита ТВ3-1-9 от лампового ТВ УЛПЦТИ.

Или любой другой трансформатор с напряжением на первичной обмотке 6В (то есть подавая на его первичную обмотку (на схеме это вторичная) 222В на выходе должно быть 6В, которая является первичной в схеме ЛАТРа, то есть на выходе УНЧ регуляторами настройки R15 R4 и регулятором выходного напряжения R3 мы должны получить максимальное неискаженное синусоидальное напряжение с частотой 50 Гц в пределах 6,2В, при этом напряжение на выходе Т2 должно быть не менее 230В.) Регулятор R3 позволяет получить на выходе Т2 напряжение от 0 до 230 В с частотой 50Гц.

Литература Ж. Радиосхема 2006-5 Автор: А.Н. Маньковский, пос. Шевченко, Донецкая обл

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.