Site Loader

Содержание

Собираем переносной магнитометр / Habr

Перевод статьи с сайта обучающих материалов Instructables

Магнитометр, который иногда ещё называют гауссометром, измеряет силу магнитного поля [в данном случае магнитную индукцию / прим. перев.]. Это прибор, необходимый при измерении силы постоянных магнитов и электромагнитов, а также для установления формы поля нетривиальных комбинаций из магнитов. Он достаточно чувствительный для того, чтобы определить намагниченность металлических предметов. В случае, если зонд будет работать достаточно быстро, он сможет определять изменяющиеся во времени поля от моторов и трансформаторов.

В мобильных телефонах обычно есть трёхосевой магнитометр, однако он оптимизирован для слабого магнитного поля Земли силой в 1 Гаусс = 0,1 мТл [миллитесла] и насыщается в полях с индукцией в несколько мТл. Где именно в телефоне расположен этот датчик, обычно непонятно, и расположить его внутри узкого места типа разреза магнита часто невозможно. Более того, лучше вообще не подносить смартфон к сильным магнитам.


В данной статье я опишу, как сделать простейший переносной магнитометр из распространённых комплектующих: нам потребуются линейный датчик Холла, Arduino, дисплей и кнопка. Общая стоимость прибора не выходит за пределы €5, а измерять он будет индукцию от -100 до +100 мТл с погрешностью в 0,01 мТл – гораздо лучше, чем можно было ожидать. Для получения точных абсолютных показателей его понадобится откалибровать: я опишу, как это делается при помощи длинного самодельного соленоида.

Шаг 1: датчик Холла


Эффект Холла часто применяется для измерения магнитных полей. Когда электроны проходят через проводник, помещённый в магнитное поле, их относит в сторону, в результате чего в проводнике появляется поперечная разность потенциалов. Правильно выбрав материал и геометрию полупроводника, можно получить измеряемый сигнал, который затем можно будет усилить и выдать измерение одной компоненты магнитного поля.

Я использую SS49E, поскольку он дешёвый и доступный. Что стоит отметить из его документации:

  • Питание: 2.7 — 6.5 В, что прекрасно совместимо с 5 В для Arduino.
  • Нулевой сигнал: 2.25-2.75 В, примерно посередине между 0 и 5 В.
  • Чувствительность: 1.0-1.75 мВ/Гс, поэтому для получения точных результатов потребуется калибровка.
  • Выходное напряжение: 1,0 – 4,0 В (при работе от 5 В): диапазон покрывается АЦП Arduino.
  • Диапазон: минимум ± 650 Гс, обычно +/1 1000 Гс.
  • Время отклика: 3 мкс, то есть можно проводить измерения с частотой в десятки кГц.
  • Рабочий ток: 6-10 мА, достаточно немного для батарейки.
  • Температурная ошибка: 0,1% на градус Цельсия. Вроде немного, однако отклонение на 0,1% даёт ошибку в 3 мТл.

Датчик компактный, 4х3х2 мм, и измеряет компоненту магнитного поля, перпендикулярную его лицевой стороне. Он выдаёт положительное значение для полей, идущих от задней части к передней – к примеру, когда он стоит лицом к южному полюсу магнита. У датчика есть три контакта, +5 В, 0 В и выход – слева направо, если смотреть с лица.

Шаг 2: Требуемые материалы


  • Линейный датчик Холла SS49E. €1 за 10 штук.
  • Arduino Uno с доской для прототипирования или Arduino Nano без штырьков для портативного варианта.
  • Монохромный OLED дисплей SSD1306 0.96” с интерфейсом I2C.
  • Кнопка.

Для зонда:
  • Шариковая ручка или другая прочная трубка.
  • 3 тонких провода чуть длиннее трубки.
  • 12 см термоусадки диаметром 1,5 мм.

Для портативной версии:

  • Большая коробка Tic-Tac (18x46x83) или нечто похожее.
  • Контакты для батарейки на 9 В.
  • Выключатель.

Шаг 3: Первая версия – с использованием доски для прототипирования


Сначала всегда собирайте прототип, чтобы проверить работу всех компонентов и софта! Подключение видно на картинке: датчик Холла соединяется с контактами Arduino +5V, GND, A1 (слева направо). Дисплей соединяется с GND, +5V, A5, A4 (слева направо). Кнопка при нажатии должна замыкать землю и A0.

Код написан в Arduino IDE v. 1.8.10. Требуется установка библиотек Adafruit_SSD1306 и Adafruit_GFX.

Если всё сделано правильно, то дисплей должен выдавать значения DC и AC.

Шаг 4: Немного о коде


Если вам неинтересен код, эту часть можно пропустить.

Ключевая особенность кода состоит в том, что магнитное поле измеряется 2000 раз подряд. На это уходит 0,2 – 0,3 сек. Отслеживая сумму и квадрат суммы измерений, можно вычислять среднее и стандартное отклонения, которые выдаются как DC и AC. Усредняя по большому количеству измерений мы увеличиваем точность, теоретически на √2000 ≈ 45. Получается, что используя 10-битное АЦП, мы получаем точность 15-битного АЦП! И это имеет значение: 1 шаг АЦП – 4 мВ, то есть, ~ 0,3 мТл. Благодаря усреднению, мы уменьшаем ошибку от 0,3 мТл до 0,01 мТл.

В качестве бонуса мы получаем стандартное отклонение, определяя таким образом изменяющееся поле. Поле, колеблющееся с частотой 50 Гц проходит порядка 10 циклов за время измерения, поэтому можно измерить величину AC.

У меня после компиляции получилась следующая статистика: Sketch uses 16852 bytes (54%) of program storage space. Maximum is 30720 bytes. Global variables use 352 bytes (17%) of dynamic memory, leaving 1696 bytes for local variables. Maximum is 2048 bytes.

Большую часть места занимают библиотеки Adafruit, однако ещё полно места для добавления функциональности.

Шаг 5: Готовим зонд


Зонд лучше всего закреплять на конце узкой трубки: так его просто будет помещать и удерживать в узких местах. Подойдёт любая трубка из немагнитного материала. Мне идеально подошла старая шариковая ручка.

Подготовьте три тонких гибких провода чуть длиннее трубки. В моём кабеле логики в цветах проводов нет (оранжевый +5 В, красный 0 В, серый – сигнал), просто так мне их проще запомнить.

Чтобы использовать зонд с прототипом, припаяйте кусочки проводов на конец кабеля и заизолируйте их термоусадкой. Позже их можно отрезать и припаять провода прямо к Arduino.

Шаг 6: Собираем переносной прибор


Батарейка на 9В, OLED-экран и Arduino Nano с комфортом умещаются внутри большой коробки Tic-Tac. Её преимущество в прозрачности – экран легко читается, даже находясь внутри. Все фиксированные компоненты (зонд, выключатель и кнопка) ставятся на крышку, чтобы всё можно было вынимать из коробки для замены батареи или обновления кода.

Я никогда не любил батарейки на 9В – у них высокая цена и малая ёмкость. Но в моём супермаркете внезапно стали продавать их перезаряжаемую версию NiMH по €1, и я обнаружил, что их легко зарядить, если подать 11 В через резистор на 100 Ом и оставить на ночь. Я заказал себе дешёвые разъёмы для батареек, но мне их так и не прислали, поэтому я разобрал старую батарейку на 9 В, чтобы сделать из неё коннектор. Плюс батарейки на 9В в её компактности, и в том, что на ней хорошо работает Arduino при подключении её к Vin. На +5 В будет регулируемое напряжение в 5 В, которое понадобится для OLED и датчика Холла.

Датчик Холла, экран и кнопка подсоединяются так же, как было на прототипе. Добавляется только кнопка выключения, между батарейкой и Arduino.

Шаг 7: Калибровка


Калибровочная константа в коде соответствует числу, прописанному в документации (1,4 мВ/Гс), однако в документации разрешён диапазон этого значения (1.0-1.75 мВ/Гс). Чтобы получать точные результаты, нужно откалибровать зонд.

Самый простой способ получить магнитное поле хорошо определённой силы – использовать соленоид. Магнитная индукция поля соленоида равняется B = μ0 * n * I. Магнитная постоянная (или магнитная проницаемость вакуума) – это природная константа: μ0 = 1,2566 x 10-6 Тл/м/А. Поле однородно и зависит только от плотности намотки n и тока I, которые можно измерить с погрешностью около 1%. Формула работает для соленоида бесконечной длины, однако служит очень хорошим приближением для поля в его центре, если соотношение его длины к диаметру превышает 10.

Чтобы собрать подходящий соленоид, возьмите полую цилиндрическую трубу, длина которой в 10 раз больше диаметра, и сделайте намотку из изолированного провода. Я использовал ПВХ-трубку с внешним диаметром 23 мм и сделал 566 витков, протянувшихся на 20,2 см, что даёт нам n = 28/см = 2800 / м. Длина провода 42 м, сопротивление – 10 Ом.

Подайте питание на катушку и измерьте ток мультиметром. Используйте либо регулируемый источник тока, либо переменный резистор, чтобы управлять током. Измерьте магнитное поле для разных значений тока и сравните показания.

Перед калибровкой я получил 6,04 мТл/A, хотя по теории должно было быть 3,50 мТл/A. Поэтому я умножил константу калибровки в 18-й строчке кода на 0,58. Готово – магнитометр откалиброван!

Принципиальные методы измерения напряженности и индукции магнитного поля в магнетиках

Прямое измерение индукции магнитного поля

Прямое измерение индукции магнитного поля при помощи витка с током основано на явлении электромагнитной индукции Фарадея.

Напомним один из основных законов электромагнетизма.

Закон электромагнитной индукции Фарадея

При изменении магнитного потока, проходящего через замкнутый контур, в контуре возникает ЭДС индукции.

Скорость изменения магнитного потока через замкнутый контур по модулю равна ЭДС индукции, возникающей в контуре.

Как измерить индукцию магнитного поля прямым методом? Сначала проводник в виде небольшой плоской петли замыкают на гальванометр и ориентируют так, чтобы линии магнитной индукции магнитного поля были перпендикулярны плоскости проводника. Затем проводник поворачивают вокруг своей оси на 90°. По закону электромагнитной индукции через гальванометр при этом должен пройти импульс тока. Измерив этот импульс, определяют среднее значение магнитной индукции B в области петли. 

Косвенные методы измерение напряженности и индукции магнитного поля

Прямое (непосредственное) измерение величины B описанным выше способом возможно не всегда. Например, так невозможно измерить индукцию магнитного поля в веществе. 

Необходимо принимать во внимание, что при переходе границы магнетика нормальные составляющие вектора магнитной индукции и тангенциальные составляющие вектора напряженности непрерывны. 

Как измеряют вектор магнитной индукции в веществе? Для этого в исследуемом материале делают полость и проводят измерение. Также при обработке результатов учитывают форму полости.

Способ 1. В магнетике делают параллельный магнитному полю и бесконечно узкий канал. Так как канал бесконечно узкий, можно принять, что напряженность поля в нем и в окружающем магнетике одинаковы. В канал помещается пробный виток, измеряется величина магнитной индукции. Так как в канале отсутствует вещество магнетика и μ=1, получаем:

B→=μ0H→.

Способ 2. В магнетике создают бесконечно узкую щель. Удаление вещества, учитывая бесконечно малый размер щели, не сказывается на магнитном поле (удалением вещества можно пренебречь). Измеряя индукцию в щели, узнаем индукцию магнитного поля в веществе.

Пример

Пусть у нас есть электромагнит, состоящий из железного сердечника и катушек с током. Число витков с током равно 

Магнитометр. Виды и работа. Применение и особенности

Магнитометр – это прибор, который применяется для разведки магнитного поля Земли или поиска скрытых предметов. По принципу действия прибор немного напоминает металлоискатель, который реагирует на металлические поверхности, за тем исключением, что он чувствителен к естественному магнитному полю Земли, а также крупным неметаллическим предметам, имеющим собственное остаточное поле. Устройство нашло свое применение в различных отраслях промышленности и науки, поскольку позволяет фиксировать природные аномалии, а также ускоряет поиски объектов.

Зачем используется магнитометр

Магнитометры реагируют на магнитное поле и выражают показатели его силы в различных физических единицах измерения. В связи с этим существует много типов данных приборов, каждый из которых адаптирован под определенную поисковую цель.

Модификации этих устройств применяются в десятках отраслях науки и промышленности:
  • Геология.
  • Археология.
  • Навигация.
  • Сейсмология.
  • Военная разведка.
  • Геохронология.

В геологии с помощью магнитометра осуществляется поиск полезных ископаемых без необходимости проводить пробное бурение для взятия образцов. Прибор позволяет зафиксировать богатую ископаемыми жилу и принять решение о целесообразности начала добычи в данном районе. Также с помощью данного оборудования можно определить, где находятся подземные источники питьевой воды, как они располагаются и их объем. Благодаря этому можно заблаговременно решить, где осуществить строительство колодца или скважины, чтобы добраться к воде без необходимости максимального углубления.

Магнитометры используются в археологии при раскопках. Они позволяют реагировать на скрытые глубоко под землей фундаменты зданий, статуи и прочие объекты, которые имеют остаточную намагниченность. В первую очередь это обожженный кирпич или камень. Устройство реагирует на скрытые глубоко под землей старинные очаги и печи. С его помощью можно искать объекты во льду или снегу.

Магнитометр также используется в навигации. С его помощью осуществляется определение магнитного поля Земли, в результате чего можно получить данные о направлении движения в случае дезориентации. Такие приборы используют в авиации и морском транспорте. Магнитометры являются обязательным оборудованием на космических станциях и шаттлах.

В сейсмологии магнитометры, которые реагируют на магнитное поле Земли, позволяют предсказывать землетрясение, поскольку при изменении характеристик тектонических плит происходит нарушение привычных показателей поля. Таким способом можно определить свежие подземные трещины, сквозь которые может начаться извержение.

В военной разведке данное оборудование позволяет искать военные объекты, скрытые от обычных радаров. С помощью магнитометра можно выявить лежащую на морском или океанском дне подводную лодку.

В геохронологии по силе остаточной намагниченности можно определить возраст горных пород. Существуют и более точные методы, но с помощью магнитометра это можно сделать за считанные секунды, без необходимости осуществления дорогостоящего анализа.

Разновидности магнитометров по принципу действия
По принципу действия магнитометры разделяют на 3 вида:
  1. Магнитостатические.
  2. Индукционные.
  3. Квантовые.

Каждая разновидность реагирует на стороннее магнитное поле, используя определенный физический принцип. На базе этих трех разновидностей созданы различные узкоспециализированные виды магнитометров, которые являются более точными для измерений в определенных условиях.

Магнитостатические

Несмотря на внешнюю сложность данного прибора, он работает по вполне понятному физическому принципу. Внутри магнитометра находится небольшой постоянный магнит, реагирующий на магнитное поле, с которым контактирует. Магнит находится в подвешенном состоянии на упругой подвеске, позволяющей ему прокручиваться. Она практически не обладает своей жесткостью, поэтому не удерживает его и позволяет прокручиваться без сопротивления. Когда постоянный магнит реагирует с чужеродным полем направление которого или сила не совпадают с его собственным, происходит реакция притяжение или отторжения. В результате подвешенный постоянный магнит начинает проворачиваться, что фиксирует чувствительный датчик. Таким образом осуществляется измерение силы и направления стороннего магнитного поля.

Чувствительность магнитостатического прибора зависит от эталонного магнита, который в него установлен. Также на точность измерения влияет упругость подвески.

Индукционные

Индукционные магнитометры имеют внутри катушку с проволочной обмоткой из токопроводящего материала. Она находится под напряжением от аккумуляторного источника питания. Катушка создает собственное магнитное поле, которое начинает контактировать со сторонними полями, проходящими через ее контур. Чувствительные датчики реагируют на изменения, которые отображаются на катушке в результате такого взаимодействия. Они могут реагировать на вращение или колебания. У более сложных устройств датчики реагируют на изменение магнитной проницаемости сердечника катушки. Независимо от того каким образом фиксируется изменение, прибор отображает показатели внешних магнитных полей и позволяет определять местонахождение объектов, их размер и отдаленность.

Квантовые

Квантовый магнитометр реагирует на магнитный момент электронов, которые двигаются под действием внешних магнитных полей. Это дорогостоящее оборудование, которое применяется для лабораторных исследований, а также сложных поисков. Устройство фиксирует магнитный момент микрочастиц и напряженность измеряемого поля. Данное оборудование позволяет измерить напряженность слабых полей, в том числе тех которые находятся в космическом пространстве. Именно это оборудование применяется в георазведке для поиска глубоких залежей полезных ископаемых.

Отличие между приборами

Магнитометр представляет собой высокотехническое оборудование, которое может отличаться от других подобных приборов не только по физическому принципу реакции на изменение магнитного поля или чувствительности, но и по прочим характеристикам.

Устройства могут отличаться друг от друга по следующим критериям:
  • Наличию дисплея.
  • Количеству датчиков.
  • Наличию звукового индикатора.
  • Погрешности измерения.
  • Способу индикации.
  • Продолжительности непрерывной работы.
  • Габаритам и весу.

Что касается количества чувствительных датчиков, то чем их больше, тем более точным будет оборудование. Магнитометр может отображать свои измерения в числовом или графическом выражении. Сказать что лучше сложно, поскольку все зависит от особенностей условий, в которых проводится измерение. В определенных случаях нужно просто получить отображение показателей магнитного поля в цифрах, в то время как иногда больше нужно визуальное определение вектора его завихрений. Оптимальным вариантом являются комбинированные устройства, которые позволяют визуализировать показатели в цифровом и графическом отображении.

Похожие темы:

Единицы измерения магнитных величин

      Закон Ампера используется для установления единицы силы тока – ампер.

      Ампер

– сила тока неизменного по величине, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого сечения, расположенным на расстоянии один метр, один от другого в вакууме, вызывает между этими проводниками силу в .

  ,  (2.4.1)  

Здесь ; ; ;

      Определим отсюда размерность и величину  в  СИ.

       , следовательно

,  или    .

      Из закона Био–Савара–Лапласа, для прямолинейного проводника с током , тоже можно найти размерность индукции магнитного поля:

      Тесла – единица измерения индукции в  СИ.    .

      Гаусс – единица измерения в Гауссовой системе единиц (СГС).

      1 Тл равен магнитной индукции однородного магнитного поля, в котором на плоский контур с током, имеющим магнитный момент , действует вращающий момент .

Тесла Никола (1856–1943) – сербский ученый в области электротехники и радиотехники. Имел огромное количество изобретений. Изобрел электрический счетчик, частотомер и др. Разработал ряд конструкций многофазных генераторов, электродвигателей и трансформаторов. Сконструировал ряд радиоуправляемых самоходных механизмов. Изучал физиологическое действие токов высокой частоты. Построил в 1899 г. радиостанцию на 200 кВт в Колорадо и радиоантенну высотой 57,6 м в Лонг-Айленде (башня Ворденклиф). Вместе с Эйнштейном и Опенгеймером в 1943 г. участвовал в секретном проекте по достижению невидимости американских кораблей (Филадельфийский эксперимент). Современники говорили о Тесле как о мистике, ясновидце, пророке, способном заглянуть в разумный космос и мир мертвых. Он верил, что с помощью электромагнитного поля можно перемещаться в пространстве и управлять временем.

      Другое определение: 1 Тл равен магнитной индукции, при которой магнитный поток сквозь площадку 1 м2, перпендикулярную направлению поля

, равен 1 Вб.

      Единица измерения магнитного потока Вб, получила свое название в честь немецкого физика Вильгельма Вебера (1804–1891) – профессора университетов в Галле, Геттингене, Лейпциге.

      Как мы уже говорили, магнитный поток Ф через поверхность S – одна из характеристик магнитного поля (рис. 2.5):

    

Рис. 2.5

      Единица измерения магнитного потока в СИ:

. ,а так как , то .

      Здесь Максвелл (Мкс) – единица измерения магнитного потока в СГС названая в честь знаменитого английского ученого Джеймса Максвелла (1831–1879), создателя теории электромагнитного поля.

      Напряженность магнитного поля Н измеряется в .

,      .

      Сведем в одну таблицу основные характеристики магнитного поля.

Таблица 2.1

Наименование

Обозначение

СИ

СГС

СИ/СГС

Магнитная индукция

В

Гс

Напряженность магнитного поля

Н

А/м

Э

Магнитная постоянная

μ0

1

Поток магнитной индукции

ФB

Вб ( )

Мкс


Эрстед (единица измерения) — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 1 февраля 2018; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 1 февраля 2018; проверки требует 1 правка. У этого термина существуют и другие значения, см. Эрстед.

Эрсте́д (русское обозначение Э, международное обозначение Oe) — единица измерения напряжённости магнитного поля в системе СГС. Введена в 1930 году Международной электротехнической комиссией[1], названа в честь датского физика Ганса Христиана Эрстеда (H. C. Ørsted).

1 эрстед равен напряжённости магнитного поля в вакууме при индукции 1 гаусс.

Согласно формуле, описывающей напряжённость магнитного поля в вакууме, создаваемую прямолинейным тонким бесконечным проводником с током,

H=2Icl,{\displaystyle H=2{\frac {I}{cl}},}

где

на расстоянии 1 см от такого проводника, по которому пропускают ток силой 5 ампер = 5·(с/10) токовых единиц СГСЭ, напряжённость магнитного поля будет равна 1 эрстеду. Также поле в 1 эрстед создаётся в центре бесконечно длинного прямого соленоида в вакууме с плотностью навивки 1000/(4π)≈79,58 витков на метр, по которому пропущен ток в 1 А.

Напряжённость магнитного поля на экваторе планет[2] H=2{\frac  {I}{cl}},

Эрстед в основных единицах СГС выражается как 1 г1/2·см−1/2·с−1.

1 эрстед = 1000/(4π) A/м ≈ 79,5774715 А/м.

В геофизике применяется также внесистемная единица измерения напряжённости магнитного поля гамма; 1 гамма = 10−5 Э.

  • Эрстед. // Физическая энциклопедия. В 5 томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

МАГНИТОМЕТР • Большая российская энциклопедия

МАГНИТО́МЕТР, при­бор для из­ме­ре­ния ха­рак­те­ри­стик маг­нит­но­го по­ля и маг­нит­ных свойств объ­ек­тов и ма­те­риа­лов. Не­ко­то­рые М. име­ют спец. на­зва­ния в за­ви­си­мо­сти от из­ме­ряе­мой ве­ли­чи­ны: эр­стед­мет­ры из­ме­ря­ют на­пря­жён­ность маг­нит­но­го по­ля, гра­ди­ен­то­мет­ры и ва­рио­мет­ры – из­ме­не­ния на­пря­жён­но­сти в про­стран­ст­ве и вре­ме­ни, инк­ли­на­то­ры и дек­ли­на­то­ры – на­прав­ле­ние век­то­ра на­пря­жён­но­сти, тес­ла­мет­ры – ве­ли­чи­ну маг­нит­ной ин­дук­ции. М. из­ме­ря­ют так­же сле­дую­щие ха­рак­те­ри­сти­ки объ­ек­тов и ма­те­риа­лов: маг­нит­ную про­ни­цае­мость и маг­нит­ную вос­при­им­чи­вость (мю-мет­ры и кап­па-мет­ры), ко­эр­ци­тив­ную си­лу (ко­эр­ци­ти­мет­ры), по­ток маг­нит­ной ин­дук­ции (ве­бер­мет­ры или флюкс­мет­ры), маг­нит­ный мо­мент, кри­вые на­маг­ни­чи­ва­ния, по­те­ри на гис­те­ре­зис и др. Час­то маг­ни­то­мет­рич. дат­чи­ки ис­поль­зу­ют­ся при кос­вен­ных из­ме­ре­ни­ях не­маг­нит­ных ве­ли­чин.

По прин­ци­пу дей­ст­вия М. мож­но раз­де­лить на маг­ни­то­ста­ти­че­ские (ме­ха­ни­чес­кие), ин­дук­ци­он­ные, кван­то­вые и др.

Магнитостатические магнитометры

Прин­цип дей­ст­вия этих М. ос­но­ван на ме­ха­нич. воз­дей­ст­вии маг­нит­но­го по­ля на маг­нит. К та­ким при­бо­рам от­но­сят­ся ком­пас маг­нит­ный и бус­соль, оп­ре­де­ляю­щие на­прав­ле­ние маг­нит­но­го по­ля Зем­ли, квар­це­вые ва­рио­мет­ры, по­зво­ляю­щие ре­ги­ст­ри­ро­вать гео­маг­нит­ные ва­риа­ции с точ­но­стью 10–3–10–4 А/м и маг­нит­ные ве­сы, при­ме­няе­мые в ла­бо­ра­тор­ных ус­ло­ви­ях для ис­сле­до­ва­ния маг­нит­ной вос­при­им­чи­во­сти об­раз­цов. В маг­нит­ных ве­сах вос­при­им­чи­вость маг­нит­но­го ма­те­риа­ла оп­ре­де­ля­ет­ся по си­ле, с ко­то­рой ис­сле­дуе­мый об­ра­зец, имею­щий фор­му длин­но­го ци­лин­д­ра, втя­ги­ва­ет­ся в по­ле элек­тро­маг­ни­та (ме­тод Гуи), или по си­ле, дей­ст­вую­щей на об­ра­зец ма­ло­го раз­ме­ра, по­ме­щён­ный в не­од­но­род­ное маг­нит­ное по­ле (ме­тод Фа­ра­дея). В ме­то­де Гуи тре­бу­ет­ся бо́льшая мас­са ве­ще­ст­ва (1–10 г), а ме­тод Фа­ра­дея по­зво­ля­ет ра­бо­тать с мил­ли­грам­ма­ми ве­ще­ст­ва и тре­бу­ет бо­лее слож­но­го обо­ру­до­ва­ния.

Индукционные магнитометры

 Ра­бо­та этих М. ос­но­ва­на на яв­ле­нии элек­тро­маг­нит­ной ин­дук­ции; они ре­ги­ст­ри­ру­ют из­ме­не­ние по­то­ка маг­нит­ной ин­дук­ции в из­ме­рит. ка­туш­ке, вы­зван­ное разл. при­чи­на­ми. Ин­дук­ци­он­ные М. ус­лов­но де­лят на пас­сив­ные и ак­тив­ные: в пер­вых эдс в ка­туш­ке воз­бу­ж­да­ет­ся из­ме­не­ни­ем во вре­ме­ни внеш­не­го маг­нит­но­го по­ля, во вто­рых – из­ме­не­ния­ми в са­мом при­бо­ре. Пас­сив­ные М. пред­став­ля­ют со­бой длин­ную ци­лин­д­рич. ка­туш­ку, на­мо­тан­ную на фер­ро­маг­нит­ный сер­деч­ник и фак­ти­че­ски яв­ля­ют­ся ан­тен­на­ми сверх­низ­кой час­то­ты. Та­кие М. ис­поль­зу­ют­ся для де­тек­ти­ро­ва­ния ядер­ных взры­вов, свя­зи с под­вод­ны­ми лод­ка­ми, маг­ни­то­тел­лу­рич. зон­ди­ро­ва­ния зем­ной ко­ры, изу­че­ния взаи­мо­дей­ст­вия сол­неч­но­го вет­ра с маг­ни­то­сфе­рой Зем­ли и вол­но­вых про­цес­сов в кос­мич. плаз­ме.

К ак­тив­ным ин­дук­ци­он­ным М. от­но­сят­ся, напр., рок-ге­не­ра­тор и фер­ро­зон­до­вый М. В рок-ге­не­ра­то­ре ис­сле­дуе­мый об­ра­зец по­ме­ща­ет­ся на спец. пло­щад­ку, вра­щаю­щую­ся в цен­тре из­ме­рит. ка­туш­ки с час­то­той 40 Гц. В ре­зуль­та­те в ка­туш­ке воз­ни­ка­ет эдс, ве­ли­чи­на ко­то­рой про­пор­цио­наль­на ве­ли­чи­не на­маг­ни­чен­но­сти об­раз­ца. Для ис­клю­че­ния влия­ния внеш­не­го маг­нит­но­го по­ля на ре­зуль­та­ты из­ме­ре­ний ка­туш­ка (вме­сте с вра­щаю­щей­ся пло­щад­кой и об­раз­цом) за­кры­та мно­го­слой­ным пер­мал­лое­вым эк­ра­ном. Рок-ге­не­ра­тор при­ме­ня­ет­ся при ис­сле­до­ва­ни­ях маг­нит­ных свойств гор­ных по­род, напр. при изу­че­нии па­лео­маг­не­тиз­ма.

Фер­ро­зон­до­вые М. ос­но­ва­ны на пе­рио­дич. из­ме­не­нии маг­нит­ной про­ни­цае­мо­сти фер­ро­маг­не­ти­ков при пе­ре­маг­ни­чи­ва­нии (до на­сы­ще­ния) пе­ре­мен­ным по­лем воз­бу­ж­де­ния. На об­мот­ку воз­буж­де­ния по­да­ёт­ся пе­ре­мен­ный ток; при этом в из­ме­рит. ка­туш­ке на­во­дит­ся пе­ре­мен­ная эдс, чёт­ные гар­мо­ни­ки ко­то­рой про­пор­цио­наль­ны про­доль­ной ком­по­нен­те внеш­не­го по­ля. Про­стей­ший фер­ро­зон­до­вый дат­чик со­сто­ит из стерж­не­во­го фер­ро­маг­нит­но­го сер­деч­ни­ка и на­хо­дя­щих­ся на нём об­мо­ток из­ме­ре­ния и воз­бу­ж­де­ния. В наи­бо­лее рас­про­стра­нён­ных фер­ро­зон­до­вых М. ис­поль­зу­ет­ся то­рои­даль­ный сер­деч­ник с об­мот­кой воз­бу­ж­де­ния или два стерж­не­вых сер­деч­ни­ка с рас­пре­де­лён­ны­ми по их дли­не об­мот­ка­ми воз­бу­ж­де­ния, вклю­чён­ны­ми по­сле­до­ва­тель­но-встреч­но (т. е. элек­три­че­ски по­сле­до­ва­тель­но, но маг­нит­ные по­ля, соз­да­вае­мые об­мот­ка­ми, име­ют про­ти­во­по­лож­ное на­прав­ле­ние). Из­ме­ре­ния про­из­во­дят­ся ли­бо при по­мо­щи од­ной об­щей сиг­наль­ной об­мот­ки, ли­бо с ис­поль­зо­ва­ни­ем двух об­мо­ток, со­еди­нён­ных так, что не­чёт­ные гар­мо­нич. со­став­ляю­щие маг­нит­но­го поля прак­ти­че­ски ком­пен­си­ру­ют­ся. Ис­поль­зо­ва­ние то­рои­даль­но­го сер­деч­ни­ка по­зво­ля­ет од­но­вре­мен­но из­ме­рять 2–3 вза­им­но ор­то­го­наль­ные ком­по­нен­ты маг­нит­но­го по­ля, что умень­ша­ет ошиб­ки в оп­ре­де­ле­нии на­прав­ле­ния век­то­ра по­ля.

Фер­ро­зон­до­вые М. при­ме­ня­ют для из­ме­ре­ния маг­нит­но­го по­ля Зем­ли и его ва­риа­ций, при аэ­ро­маг­нит­ных съём­ках и раз­вед­ке по­лез­ных ис­ко­пае­мых, в кос­мич. ис­сле­до­ва­ни­ях, хи­рур­гии, в сис­темах кон­тро­ля ка­че­ст­ва про­дук­ции, в элек­трон­ных ком­па­сах. Чув­ст­ви­тель­ность фер­ро­зон­до­во­го М. дос­ти­га­ет 10–4–10–5 А/м.

Квантовые магнитометры

В ра­бо­те кван­то­вых магнитометров ис­поль­зу­ют­ся кван­то­вые яв­ле­ния: сво­бод­ная упо­ря­до­чен­ная пре­цес­сия ядер­ных (ядер­ный маг­нит­ный ре­зо­нанс, ЯМР) или элек­трон­ных (элек­трон­ный па­ра­маг­нит­ный ре­зо­нанс, ЭПР) маг­нит­ных мо­мен­тов во внеш­нем маг­нит­ном по­ле, кван­то­вые пе­ре­хо­ды меж­ду маг­нит­ны­ми по­ду­ров­ня­ми ато­мов, а так­же кван­то­ва­ние маг­нит­но­го по­то­ка в сверх­про­во­дя­щем кон­ту­ре. В за­ви­си­мо­сти от спо­со­ба соз­да­ния мак­ро­ско­пич. маг­нит­но­го мо­мен­та и ме­то­да де­тек­ти­ро­ва­ния сиг­на­ла раз­ли­ча­ют: про­тон­ные М. (М. сво­бод­ной пре­цес­сии, с ди­на­ми­чес­кой и син­хрон­ной по­ля­ри­за­ци­ей), М. с оп­тич. на­кач­кой и др.

Дат­чи­ком про­тон­но­го М. слу­жит кон­тей­нер с диа­маг­нит­ной жид­ко­стью, мо­ле­ку­лы ко­то­рой со­дер­жат ато­мы во­до­ро­да. В ка­че­ст­ве та­кой жид­ко­сти мо­гут вы­сту­пать во­да, ке­ро­син, бен­зол, геп­тан и др. Ам­пу­лу с жид­ко­стью по­ме­ща­ют в ка­туш­ку, ли­бо ка­туш­ку по­гру­жа­ют в ём­кость с ра­бо­чей жид­ко­стью. Че­рез ка­туш­ку вна­ча­ле про­пус­ка­ют ток по­ля­ри­за­ции, ко­то­рый соз­да­ёт маг­нит­ное по­ле, ори­ен­ти­рую­щее маг­нит­ные мо­мен­ты про­то­нов и на­маг­ни­чи­ваю­щее жид­кость. По­сле от­клю­че­ния то­ка по­ля­ри­за­ции маг­нит­ные мо­мен­ты про­то­нов на­чи­на­ют пре­цес­си­ро­вать во­круг на­прав­ле­ния из­ме­ряе­мо­го маг­нит­но­го по­ля Низм c час­то­той ω = γpНизм, где γp – ги­ро­маг­нит­ное от­но­ше­ние для про­то­нов. Т. о., из­ме­ре­ние час­то­ты пре­цес­сии по­зво­ля­ет с вы­со­кой точ­но­стью оп­ре­де­лить ве­ли­чи­ну на­пря­жён­но­сти маг­нит­но­го по­ля.

В ра­бо­те кван­то­во­го М. мо­жет быть ис­поль­зо­ва­на так­же пре­цес­сия в маг­нит­ном по­ле маг­нит­ных мо­мен­тов не­спа­рен­ных элек­тро­нов па­ра­маг­нит­ных ато­мов. Час­то­та пре­цес­сии элек­тро­нов в сот­ни раз боль­ше час­то­ты пре­цес­сии про­то­нов. Соз­да­ны про­тон­ные М., в ко­то­рых ЭПР уве­ли­чи­ва­ет ин­тен­сив­ность ЯМР (эф­фект Овер­хау­зе­ра).

Кван­то­вый оп­тич. М. (М. с оп­тич. на­кач­кой) час­то на­зы­ва­ют про­сто кван­то­вым М. Дат­чи­ком при­бо­ра яв­ля­ет­ся стек­лян­ная кол­ба, на­пол­нен­ная парáми ще­лоч­но­го ме­тал­ла (напр., Rb, Cs, K), ато­мы ко­то­ро­го па­ра­маг­нит­ны. При про­пус­ка­нии че­рез кол­бу све­та с кру­го­вой по­ля­ри­за­ци­ей и дли­ной вол­ны, со­от­вет­ст­вую­щей пе­ре­хо­ду ато­мов ме­тал­ла на один из воз­бу­ж­дён­ных уров­ней, ато­мы за­пол­ня­ют один из маг­нит­ных по­ду­ров­ней это­го уров­ня, что при­во­дит к умень­ше­нию ре­зо­нанс­но­го по­гло­ще­ния и рас­сея­ния све­та. При по­ме­ще­нии кол­бы в пе­ре­мен­ное маг­нит­ное по­ле с час­то­той ω = γeНизмe – ги­ро­маг­нит­ное от­но­ше­ние для элек­тро­нов) на­се­лён­ность маг­нит­ных по­ду­ров­ней вы­рав­ни­ва­ет­ся, а по­гло­ще­ние и рас­сея­ние све­та рез­ко воз­рас­та­ют. Чув­ст­ви­тель­ность про­тон­но­го и оп­ти­че­ско­го М. со­став­ля­ет 10–4–10–5 А/м.

Все опи­сан­ные кван­то­вые М. при­ме­ня­ют­ся для из­ме­ре­ния на­пря­жён­но­сти сла­бых маг­нит­ных по­лей, в т. ч. гео­маг­нит­но­го по­ля в кос­мич. про­стран­ст­ве, а так­же в гео­ло­го­раз­вед­ке.

Прин­цип дей­ст­вия сверх­про­во­дя­щих кван­то­вых М. (СКВИД-маг­ни­то­мет­ров) ос­но­ван на кван­то­вых эф­фек­тах в сверх­про­вод­ни­ках: кван­то­ва­нии маг­нит­но­го по­то­ка в сверх­про­вод­ни­ке и за­ви­си­мо­сти кри­тич. то­ка кон­так­та двух сверх­про­вод­ни­ков от Низм (см. Джо­зеф­со­на эф­фект). Сверх­про­во­дя­щие М. из­ме­ря­ют сверх­сла­бые маг­нит­ные по­ля и при­ме­ня­ют­ся в био­фи­зи­ке, фи­зи­ке твёр­до­го те­ла, маг­не­то­хи­мии и др., а так­же для из­ме­ре­ний ком­по­нент гео­маг­нит­но­го по­ля. Чув­ст­ви­тель­ность СКВИД-маг­ни­то­мет­ров дос­ти­га­ет 10–10 A/м.

Другие типы магнитометров

 Прин­цип дей­ст­вия галь­ва­но­маг­нит­ных М. ос­но­ван на ис­крив­ле­нии тра­ек­то­рий за­ря­жен­ных час­тиц в маг­нит­ном по­ле. К этой груп­пе М. от­но­сят­ся М., ис­поль­зую­щие Хол­ла эф­фект и эф­фект Га­ус­са (из­ме­не­ние со­про­тив­ле­ния про­вод­ни­ка в по­пе­реч­ном маг­нит­ном по­ле). На эф­фек­те Хол­ла ос­но­ва­ны так­же: тес­ла­мет­ры, при­ме­няе­мые для из­ме­ре­ния по­сто­ян­ных, пе­ре­мен­ных и им­пульс­ных маг­нит­ных по­лей; флюкс­мет­ры, ис­поль­зуе­мые для от­бра­ков­ки по­сто­ян­ных маг­ни­тов; ко­эр­ци­ти­мет­ры, при­ме­няе­мые при не­раз­ру­шаю­щем кон­тро­ле ка­че­ст­ва. На ос­но­ве дат­чи­ков Хол­ла соз­да­ют­ся гра­ди­ен­то­мет­ры для ис­сле­до­ва­ния маг­нит­ных свойств ма­те­риа­лов. Чув­ст­ви­тель­ность М. на эф­фек­те Хол­ла обыч­но на­хо­дит­ся в диа­па­зо­не 10–100 А/м. Эф­фект Га­ус­са при­ме­ня­ет­ся в маг­ни­то­ре­зи­стив­ных дат­чи­ках, ис­поль­зуе­мых в элек­трон­ных ком­па­сах и др. Чув­ст­ви­тель­ность та­ких тес­ла­мет­ров со­став­ля­ет 0,5–10 А/м.

Су­ще­ст­ву­ют так­же М., прин­цип дей­ст­вия ко­то­рых ос­но­ван на вра­ще­нии плос­ко­сти по­ля­ри­за­ции све­та в маг­нит­ном по­ле или по­ле на­маг­ни­чен­но­го об­раз­ца, из­ме­не­нии дли­ны на­маг­ни­чен­но­го стерж­ня под дей­ст­ви­ем при­ло­жен­но­го по­ля (маг­ни­то­ст­рик­ции) и др. Та­кие М. при­ме­ня­ют­ся в разл. об­лас­тях тех­ни­ки.

Измерения магнитных величин. Основные методы и средства

Иногда в процессе работы, научного исследования или простого любопытства возникает необходимость в определении магнитных величин. Их можно либо рассчитать по формулам, имея необходимые данные, или же произвести замер магнитной величины. В данной статью мы будем рассматривать измерение магнитных величин.

К магнитным величинам, как правило, относят напряженность магнитного поля H, поток магнитный Ф, а также величину магнитной индукции В.

Методику измерения магнитных величин основывают на преобразовании этих величин в электрические, и с помощью электроизмерительного прибора приводят к доступному для человеческого восприятия виду.

Наиболее широкое распространение получили два метода измерения – индукционный и гальваномагнитных эффектов. Разберем каждый в отдельности.

Индукционный метод

Он основан на эффекте возникновения ЭДС в витках электромагнитной катушки при изменении магнитного потока Ф, который сцепляется с ним, как это показано ниже:

Индукционный метод измерения магнитных величин

Аналитическая зависимость будет иметь вид:

ЭДС наводимая в катушке при прохождении магнитного поля

Где: w – число витков в катушке, ψ – потокосцепление.

Если магнитный поле будет однородно, то поток магнитный Ф будет связан с магнитной индукцией В следующим выражением – Ф = Вs, где s – представляет собой площадь сечения катушки.

Если среда, в которой происходит такое явление воздушная, то индукция магнитная В будет связана с напряженностью магнитного поля H такой зависимостью: В = μ0Н, где μ0 – магнитная постоянная для воздушной среды.

Можно сделать вывод, что индукционный метод позволяет определить напряженность магнитного поля, магнитный поток и индукцию магнитную:

Магнитный поток, индукция, напряженность магнитного поля

Приборы, которые измеряют магнитный поток, называют веберметрами.

Простейшая схема такого устройства показана ниже:

Схема веберметра

Она состоит из индукционной катушки, обозначенной на схеме (Wк) и интегрирующего устройства ИУ. Магнитоэлектрические гальванометры, без устройств противодействующего момента, зачастую используют в качестве интегрирующих устройств ИУ. Если катушку измерительного устройства подносить или удалять от магнитного поля, то отклонения измерительного механизма будет пропорционально магнитному потоку и определятся зависимостью:

Магнитный поток измеряемый веберметром

Где: α – угол отклонения стрелки прибора, Wк – количество витков в катушке измерительной, Сф – цена деления веберметра.

Например, веберметры типа М199 и М1119 имеют цену деления 5*10-6 и 10-4 Вб/дел, а основная их погрешность лежит в пределах ±1,5%.

Метод гальваномагнитных эффектов

Очень широкое применение из этих гальваномагнитных эффектов получил так называемый метод Холла.

Суть его заключается в следующем – если через пластину, которая состоит из полупроводника и находится в магнитном поле с индукцией В, пропустить какой – то ток I, то между точками Х – Х возникнет разность потенциалов Ех, которая носит название ЭДС Холла. Схема приведена ниже:

Датчик Холла

ЭДС Холла будет равна:

ЭДС Холла формула

Где: Sп – чувствительность преобразователя при токе I.

Устройства, которые измеряют магнитную индукцию В называют тесламетрами.

Упрощенная схема такого прибора с преобразователем Холла (ПХ) показана ниже:

Схема тесламетра

Преобразователь Холла запитуют переменным током через трансформатор ТР от генератора Г. Измеряют ЭДС Холла компенсационным методом . Напряжение компенсирующее Uк, снимают с резистора R1 и подают в противофазе с ЭДС Холла на сравнивающее устройство СУ. С помощью переменного резистора R производят градуировку сравнивающего устройства. Также питание датчика Холла и компенсационной цепи от одного источника напряжения позволяет исключить погрешность от нестабильной частоты и напряжения генератора.

По такой схеме работает тесламетр типа Ш1-8, который может измерять индукцию в диапазоне от 0,01 – 1,6 Тл. Основная погрешность этого устройства не превышает ±2%.

Также датчики Холла очень активно применяют в современных асинхронных электродвигателях с векторным управлением по потокосцеплению электрической машины.

 

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *