Site Loader

Содержание

Схема диодного моста выпрямителя

Диодный мост – простейшая схема, которая преобразует переменный ток в постоянный. Она используется практически во всей современной электронике, поэтому грамотный мастер должен понимать принцип работы диодного моста и уметь его ремонтировать. В российских розетках частота тока 50 Герц, и чтобы выровнять его для работы оборудования и применяют это нехитрое устройство.

Принцип работы

Давайте разберем, как работает данное устройство. Оно собирается из диодов – элементов, пропускающих ток в одну сторону. Современные диоды являются полупроводниковыми устройствами небольшого размера – в этой статье мы не будем разбирать их особенности и маркировку, а поговорим только о том, как работает диодный мост.

схема диодного моста выпрямителяСостав и принцип работы диода

У диода имеется два контакта – анод и катод. Ток течет от анода к катоду практически с нулевым сопротивлением. Но если ситуация меняется и ток подается на катод, то противоположное сопротивление не дает ему пробиться через элемент (ток практически равен нулю и в большинстве случаев им можно пренебречь). Схему работы вы можете увидеть на приведенном выше рисунке.

Упрощенная схема

Вы уже знаете, что такое диодный мост, поэтому рассмотрим простейший принцип его работы. Когда переменный ток попадает на анод Uвх, оно проходит через положительные полупериоды, тогда как отрицательные полностью удаляются. При этом выходное напряжение, обозначенное с правой стороны под аббревиатурой Uвых, не является выпрямленным, хоть и проходит в одном направлении. Его частота равна тем же 50 Герц, или 50 пикам в секунду.

Чтобы сгладить эти пики к схеме подключается конденсатор высокой емкости. Получается выпрямительный диодный мост – на пике конденсатор заряжается, а на падении отдает заряд в сеть. Это позволяет частично сгладить график частоты и выровнять его, выведя на постоянное значение.

Подобная схема соединения диода и конденсатора носит название однополупериодной и не является достаточной для выравнивания тока в современных устройствах. У нее есть серьезные недостатки:

  1. Нормально выровнять пульсации до настоящей прямой невозможно.
  2. У схемы довольно малый коэффициент полезного действия.
  3. Нерациональное использование трансформатора, чересчур большой вес устройства.

Эти системы сегодня практически не используют или применяют их для маломощных устройств. Более логичные и надежные схемы называются двухполупериодными. Их основное достоинство – возможность инвертировать нижние волны в верхние. Именно подобные системы и называют диодным мостом.

Классический диодный мост

Стандартная схема диодного моста выпрямителя содержит в себе вместо одного диода и конденсатора четыре диода, объединенных изображенным на рисунке способом. Его можно условно разбить на два полупериода. В каждом полупериоде находится два диода, работающих в одном направлении, и два – запрещающих проход тока. Положительное напряжение приходит на анод VD1, отрицательное на катод VD3. Данные диоды открываются, а VD2 и VD4 — закрываются.

Когда положительный полупериод заменяется на отрицательный, происходит смена работоспособности. Положительное напряжение приходит на анод VD2, отрицательное — на катодный выход VD4. Происходит смена направлений, но ток идет в нужном направлении. Получается, что в подобной схеме частота возрастает в два раза, за счет чего удается добиться лучшего сглаживания, используя идентичный с первой схемой конденсатор. Благодаря этому возрастает коэффициент полезного действия устройства и падают возможные потери.

принцип работы диодного моста
Принцип работы классического моста

Изучая, как собрать диодный мост, не забывайте о том, что не обязательно спаивать его из четырех микроэлементов и подбирать соответствующий конденсатор. В большинстве случаев можно приобрести готовое решение в магазине, с подобранными параметрами и известными характеристиками. Достоинства подобной сборки в маленьких размерах, единых тепловых режимах и небольшом весе. Основной недостаток в том, что если выходит из строя один элемент, то приходится менять весь узел.

Трехфазный мост

Теперь, когда вы знаете, для чего нужен диодный мост и что он собой представляет, рассмотрим более сложную трехфазную схему, выдающую пульсирующий ток. Он максимально близок к постоянному и подходит для использования в приборах, требующих стабильную подачу. Вход этой системы присоединяется к источнику, подающему трехфазное питание (разумеется речь идет о переменном токе). Это может быть трансформатор или генератор. На выходе системы оказывается практически идеальный постоянный ток, который можно легко сгладить.

 как собрать диодный мостСхема выпрямителя

Чтобы сделать качественный двухполупериодный выпрямитель из схемы подключения диодного моста с конденсатором, изучите наш рисунок. В данном случае выпрямляется ток, который снимается с понижающей трансформаторной обмотки. Выравнивание происходит за счет электролитического конденсатора на 5-10 тысяч микрофарад, заряжающегося и отдающего заряд в сеть. В схему также введен дополнительный резистор, который выпрямляет ток при холостой работе. Чем выше нагрузка, тем меньше напряжение на выходе, поэтому к нему подсоединяют стабилизатор на классических транзисторах.

Используя наши схемы, вы легко разберетесь, как сделать диодный мост и как им пользоваться. Мы рекомендуем приобретать уже готовые устройства, чтобы сэкономить место и не заниматься подбором значений.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Как подсоединить диодный мост — Moy-Instrument.Ru

Что такое диодный мост схема устройства

В данной статье мы постараемся дать ответ, что же это, диодный мост схема его и каково предназначение. Как сразу слышно, в данном термине присутствует слово «диод». И действительно, главный компонент диодного моста это диоды, для которых основное свойство пропускать напряжение только в одном направлении. Именно по этой характеристике определяют работоспособность диодов.

Предназначение диодного моста — преобразовывать напряжение переменное в напряжение постоянное.

Схема диодного моста

Схема диодного моста состоит из правильно соединенных четырех диодов, а чтобы эта схема была работоспособной, к ней нужно правильно подключить переменное напряжение.

На схеме, как и на корпусе моста две точки для подачи переменного напряжения обозначены значком «

». А с двух других проводов или выходов, плюса и минуса, снимается постоянное напряжение.

Теоретически, сделать из переменного напряжения постоянное можно и одним диодом, но для практики такое выпрямление не желательно. Как известно диод пропускает напряжение, только превышающее ноль, в противоположном случае диод заперт, а переменное напряжение изменяет свою величину в течение времени. Вроде бы все понятно.

Но получается, что при таком методе получения из переменного напряжения постоянный ток, по этой «замечательной» схеме, диод оставляет только положительную полуволну, а отрицательную срезает. Вместе с ней он просто срезает половину мощности тока переменного напряжения. Такая потеря мощности — главный недостаток выпрямления тока одним диодом.

Вышеописанную ситуацию исправляет диодный мост схема которого разрабатывалась специально для того, чтобы отрицательную полуволну перевернуть. Получиться вторая положительная полуволна и вся мощность электрического тока будет сохранена. В результате диодный мост подает постоянный ток, с напряжением, пульсирующем в два раза большей частотой, чем частота сети переменного тока.

Уверен, схема в особом описании не нуждается, главное помнить, куда подключать переменное напряжение, а откуда получают постоянный ток. Теперь давайте посмотрим на работу диода и диодного моста на практике. На корпусе диода, практически любого производителя, катод помечен точкой или полоской. Для безопасности экспериментов используем трансформатор, выдающий двенадцать вольт.

На осциллографе видно, что максимальная амплитуда 16 с половиной вольт, следовательно, простые расчеты (делим на корень из двух максимальное амплитудное значение) говорят, что действующее напряжение имеет значение 11.8 В.

Теперь припаяем к проводу обмотки (вторичной, естественно) трансформатора диод и измеряем осциллографом. Видно, как диод срезал нижнюю, отрицательную часть графика напряжения. Соответственно, потерялась и половина мощности.

Теперь возьмем еще три таких же диода и собираем диодный мост. Подключаем к обмотке трансформатора диодный мост, там, где вход для переменного тока, а с двух оставшихся точек снимаем щупами прибора постоянное напряжение. Смотрим на осциллограф и видим на экране пульсирующее напряжение, но без потери мощности.

Как сделать диодный мост видео

Для того чтобы не возиться с диодами и пайкой, промышленность выпускает готовые диодные мосты в одном корпусе с четырьмя контактами, отечественные — побольше, а импортные покомпактнее. На диодных мостах советского производства промаркированы и контакты постоянного тока, и контакты для переменного напряжения.

Если подключить импортный диодный мост к переменному напряжению и осциллографу, вы увидите, что эта радиодеталь отлично работает, выдавая пульсирующий постоянный ток. Сам диодный мост если проверять, то только прозвонив каждый из четырех диодов.

Итак, теперь вы знаете для чего нужен в радиоэлектронике диодный мост схема и принцип действия которого описаны в данной статье. Следует отметить, что это весьма популярная деталь, широко применяемая в самой разнообразной радиоаппаратуре, подключаемой к электрической сети. Магнитофон, телевизор, зарядное устройство для мобилки — везде используется диодный мост.

Схема и принцип действия диодного моста

Преобразовать переменный ток в постоянный поможет диодный мост – схема и принцип действия этого устройства приводятся ниже. В обычной осветительной цепи течет переменный ток, который 50 раз в течение одной секунды меняет свою величину и направление. Его превращение в постоянный – достаточно часто встречающаяся необходимость.

Принцип действия полупроводникового диода

Название описываемого устройства ясно указывает, что эта конструкция состоит из диодов – полупроводниковых приборов, хорошо проводящих электричество в одном направлении и практически не проводящих его в противоположную сторону. Изображение этого прибора (VD1) на принципиальных схемах приведено на рис. 2в. Когда ток по нему течет в прямом направлении – от анода (слева) к катоду (справа), сопротивление его мало. При изменении направления тока на противоположное сопротивление диода многократно возрастает. В этом случае через него течет мало отличающийся от нуля обратный ток.

Поэтому при подаче на цепочку, содержащую диод, переменного напряжения Uвх (левый график), электричество через нагрузку течет только в течение положительных полупериодов, когда к аноду приложено положительное напряжение. Отрицательные полупериоды «срезаются», и ток в сопротивлении нагрузки в это время практически отсутствует.

Строго говоря, выходное напряжение Uвых (правый график) является не постоянным, хотя и течет в одном направлении, а пульсирующим. Нетрудно понять, что количество его импульсов (пульсаций) за одну секунду равно 50. Это не всегда допустимо, но пульсации можно сгладить, если подсоединить параллельно нагрузке конденсатор, имеющий достаточно большую емкость. Заряжаясь во время импульсов напряжения, в промежутках между ними конденсатор разряжается на сопротивление нагрузки. Пульсации сглаживаются, а напряжение становится близким к постоянному.

Изготовленный в соответствии в этой схемой выпрямитель называется однополупериодным, поскольку в нем используется лишь один полупериод выпрямленного напряжения. Наиболее существенные недостатки такого выпрямителя следующие:

  • повышенная степень пульсаций выпрямленного напряжения;
  • низкий КПД;
  • большой вес трансформатора и его нерациональное использование.

Поэтому применяются такие схемы только для питания устройств малой мощности. Для исправления этой нежелательной ситуации разработаны двухполупериодные выпрямители, которые превращают отрицательные полуволны в положительные. Сделать это можно по-разному, но самый простой способ – использование диодного моста.

Схема диодного моста

Диодный мост – схема двухполупериодного выпрямления, содержащая 4 диода вместо одного (рис. 2в). В каждом полупериоде два из них открыты и пропускают электричество в прямом направлении, а два других закрыты, и ток через них не течет. Во время положительного полупериода положительное напряжение приложено к аноду VD1, а отрицательное – к катоду VD3. В результате оба этих диода открыты, а VD2 и VD4 – закрыты.

Во время отрицательного полупериода положительное напряжение приложено к аноду VD2, а отрицательное – к катоду VD4. Эти два диода открываются, а открытые во время предыдущего полупериода закрываются. Ток через сопротивление нагрузки течет в том же направлении. В сравнении с однополупериодным выпрямителем количество пульсаций возрастает вдвое. Результат – более высокая степень сглаживания при той же емкости конденсатора фильтра, увеличение КПД используемого в выпрямителе трансформатора.

Диодный мост может быть не только собран из отдельных элементов, но и изготовлен как монолитная конструкция (диодная сборка). Ее легче монтировать, а диоды обычно подобраны по параметрам. Немаловажно и то, что они работают в одинаковых тепловых режимах. Недостаток диодного моста – необходимость замены всей сборки при выходе из строя даже одного диода.

Еще ближе к постоянному будет пульсирующий выпрямленный ток, который позволяет получить трехфазный диодный мост. Его вход подключается к источнику трехфазного переменного тока (генератору или трансформатору), а напряжение на выходе почти не отличается от постоянного, и сгладить его еще проще, чем после двухполупериодного выпрямления.

Выпрямитель на основе диодного моста

Схема двухполупериодного выпрямителя на основе диодного моста, пригодная для сборки своими руками, изображена на рис. 3а. Выпрямлению подвергается напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т. Для этого нужно подключить диодный мост к трансформатору.

Пульсирующее выпрямленное напряжение сглаживается электролитическим конденсатором С, имеющим достаточно большую емкость – обычно порядка нескольких тысяч мкФ. Резистор R играет роль нагрузки выпрямителя на холостом ходу. В таком режиме конденсатор С заряжается до амплитудного значения, которое в 1,4 (корень из двух) раза выше действующего значения напряжения, снимаемого со вторичной обмотки трансформатора.

С ростом нагрузки выходное напряжение уменьшается. Избавиться от этого недостатка можно, подключив к выходу выпрямителя простейший транзисторный стабилизатор. На принципиальных схемах изображение диодного моста часто упрощают. На рис. 3б показано, как еще может быть изображен соответствующий фрагмент на рис. 3а.

Следует заметить, что, хотя прямое сопротивление диодов невелико, тем не менее, оно отлично от нуля. По этой причине они нагреваются в соответствии с законом Джоуля-Ленца тем сильнее, чем больше величина тока, протекающего по цепи. Для предотвращения перегрева мощные диоды часто устанавливаются на теплоотводах (радиаторах).

Диодный мост – это практически обязательный элемент любого электронного устройства, питающегося от сети, будь то компьютер или выпрямитель для зарядки мобильного телефона.

Подключение и принцип работы диодного моста в схеме стабилизатора

Основой бытовой питающей сети является переменное напряжение 220В. Оно преобразуется в разнообразные пониженные уровни. Однако для питания многих приборов и устройств необходимо постоянное и стабильное напряжение. Основой преобразования служит диодный мост, установленный в схему стабилизатора после понижающего трансформатора.

Принцип работы диодного моста

Природа переменного напряжения такова, что оно по принципу волны меняет плюсовой всплеск на минусовой. Но для работы приборов с постоянным источником питания такой переворот недопустим. Требуется выпрямитель, а, возможно, и стабилизатор. Мост, как заправский регулировщик направляет положительную полуволну в одну сторону, а отрицательную — в другую. Создавая, таким образом, сортирующий фильтр на пути прохождения переменного тока. На выходе диодного моста получаются периодические пульсации соответствующей полярности, а для их первичного сглаживания применяют электролитический конденсатор большой ёмкости.

Устройство выпрямителя и схема подключения

На сегодняшний день не придумано ничего лучшего для полноценного выпрямления напряжения, чем обычный диодный мост. Он максимально передаёт габаритную мощность трансформатора. Работая с обеими полуволнами переменного напряжения, диодный мост выгодно отличается от однополупериодных выпрямителей.

Следуя из названия, собран мост из 4 или 6 диодов. Это зависит от подключения к однофазной или трёхфазной сети. Они имеют одинаковые электрические характеристики и соединены особым образом. Полупроводники, чем собственно и являются диоды, перенаправляют разноимённые полупериоды переменного напряжения на «плюсовой» или «минусовой» выводы. Создавая, таким образом, разность потенциалов на одноимённых выводах. Диоды, соответственно, и преобразовывают напряжение с выводов подключённого трансформатора.

Выпускаемый в форме одной детали, мост имеет 4 вывода:

» — вход переменного напряжения;
«

» — вход переменного напряжения;

  • «+» — положительный выход потенциала;
  • «–» — отрицательный выход потенциала.
  • Моноблок обладает значительными положительными достоинствами. Собранный в едином корпусе, он обеспечивает одинаковый тепловой режим работы всех его компонентов. Это стабилизирует характеристики диодов, включённых в его состав. Облегчается монтаж на печатную плату, и, соответственно, удешевляется весь процесс сборки.

    Однако надо отметить и недостаток, вытекающий из применения единого корпуса. При выходе из строя одного диода требуется замена всей детали, исключая возможность удаления одного элемента.

    Область применения

    Электронные схемы питаются в основном постоянным напряжением. Компьютеры, например, используют потенциал в 5 вольт, а для ремонта электронных устройств применяются блоки питания на 12 и 24 вольта. Даже заряжая, уже привычный, смартфон для выпрямления напряжения используется всё те же 4 полупроводника. В автомобиле генератор вырабатывает трёхфазное переменное напряжение, и для дальнейшего применения его необходимо выпрямить и стабилизировать. Любое преобразование напряжения требует применения диодных мостов.

    Самостоятельное изготовление

    Начинающие радиолюбители часто сталкиваются с вопросом электропитания своих поделок. Часто приходится изготавливать блок питания своими руками. Однако не все знают как сделать диодный мост и при этом правильно подключить его к схеме стабилизатора. Следует подробно остановиться на этой задаче и способе её решения.

    Диод — это полупроводник с двумя электродами. Они называются анод и катод. Преследуя цель сделать мост и правильно собрать его схему, необходимо взять 4 одинаковых выпрямительных диода. Проверить, по справочнику, соответствие проходящего тока и параметры расчётной мощности. Правильный подбор послужит основой надёжной работы выпрямителя.

    Следующим шагом будет сборка отдельных элементов в диодный мост. Необходимо взять 2 диода и соединить анод одного с катодом другого. Сделать то же самое с оставшимися полупроводниками. Образовались две одинаковые пары со свободными электродами. Далее, соединяем катод одной сборки с соответствующим выводом второй. Повторим эту процедуру с оставшимися анодами. В итоге получится квадрат, в углах которого образовались следующие соединения:

    • анод, катод — вход одного провода переменного напряжения;
    • анод, анод — выход отрицательного потенциала;
    • катод, анод — вход второго провода переменного напряжения;
    • катод, катод — выход положительного потенциала.

    Таким образом, получилась классическая схема диодного моста. Осталось подать переменное напряжение с трансформатора и снимать практически постоянное. Однако пульсации на выходе диодного моста могут повлиять на работу подключённого устройства. Для сглаживания подобных всплесков применяются фильтры и электролитические конденсаторы большой ёмкости. Создавая более стабильное питание, необходимо использовать схемы стабилизаторов, подключаемых к выходу диодного моста.

    Диодный мост

    Словосочетание “диодный мост” образуется от слова “диод”. Следовательно, диодный мост должен состоять из диодов, но они должны соединятся с друг другом в определенной последовательности. Почему это имеет важное значение мы как раз и поговорим в этой статье.

    Обозначение на схеме

    Диодный мост на схемах выглядит подобным образом:

    Иногда в схемах его обозначают еще так:

    Как мы с вами видим, схема состоит из четырех диодов. Для того, чтобы она работала корректно, мы должны правильно соединить диоды и правильно подать на них переменное напряжение. Слева мы видим два значка “

    ”. На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов обозначенных значками “+” и “-“. Диодный мост также называют диодным выпрямителем.

    Принцип работы

    Для выпрямления переменного напряжения в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок, как все это будет выглядеть:

    Диод срезает отрицательную полуволну переменного напряжения, оставляя только положительную, что мы и видим на рисунке выше. Вся прелесть этой немудреной схемы состоит в том, что мы получаем постоянное напряжение из переменного. Проблема кроется в том, что мы теряем половину мощности переменного напряжения. Ее срезает диод.

    Чтобы исправить эту ситуацию, была придумана великими умами схема диодного моста. Диодный мост “переворачивает” отрицательную полуволну, превращая ее в положительную полуволну, тем самым у нас сохраняется мощность.

    На выходе диодного моста появляется постоянное пульсирующее напряжение с частой в 100 Герц. Это в два раза больше, чем частота сети.

    Практические опыты

    Для начала возьмем простой диод.

    Катод можно легко узнать по серебристой полоске. Почти все производители показывают катод полоской или точкой.

    Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220В делает 12В.

    На первичную обмотку цепляем 220 Вольт, со вторичной обмотки снимаем 12 Вольт. Мультиметр показал чуть больше, так как на вторичной обмотке нет никакой нагрузки. Трансформатор работает на так называемом “холостом ходу”.

    Давайте же рассмотрим осциллограмму, которая идет со вторичной обмотки трансформатора. Максимальную амплитуду напряжения нетрудно посчитать. Если не помните как это делать, можно прочитать статью Осциллограф. Основы эксплуатации.

    3,3х5=16.5В – это максимальное значение напряжения. А если разделить максимальное амплитудное значение на корень из двух, то получим где то 11,8 Вольт. Это и есть действующее значение напряжения. Осциллограф не врет, все ОК.

    Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт – это не шутки, поэтому я и понизил переменное напряжение.

    Припаяем к одному концу вторичной обмотки трансформатора наш диод.

    Цепляемся снова щупами осциллографа

    Смотрим на осциллограмму

    А где же нижняя часть изображения? Ее срезал диод. Он оставил только верхнюю часть, то есть ту, которая положительная.

    Находим еще три таких диода и спаиваем диодный мост.

    Цепляемся ко вторичной обмотке трансформатора по схеме диодного моста.

    С двух других концов снимаем постоянное пульсирующее напряжение щупом осциллографа и смотрим на осциллограмму

    Вот, теперь порядок.

    Виды диодных мостов

    Чтобы не заморачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате, получился очень компактный и удобный радиоэлемент – диодный мост. Думаю, вы догадаетесь, где импортный, а где советский ))).

    Например, на советском диодном мосте показаны контакты, на которые нужно подавать переменное напряжение значком ”

    “, а контакты, с которых надо снимать постоянное пульсирующее напряжение значком “+” и “-“.

    Существует множество видов диодных мостов в разных корпусах

    Есть даже автомобильный диодный мост

    Существует также диодный мост для трехфазного напряжения. Он собирается по так называемой схеме Ларионова и состоит из 6 диодов:

    В основном трехфазные диодные мосты используются в силовой электронике.

    Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы и с двух других выводов мы будем снимать постоянное пульсирующее напряжение.

    Как проверить диодный мост

    1) Первый способ самый простой. Диодный мост проверяется целостностью всех его диодов. Для этого прозваниваем каждый диод мультиметром и смотрим целостность каждого диода. Как это сделать, читаем эту статью.

    2) Второй способ 100%-ый. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор. Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменному напряжению со значками “

    ”, а с двух других контактов, с “+” и “-” снимаем показания с помощью осциллографа.

    Значит, импортный диодный мост исправен.

    Резюме

    Диодный мост (выпрямитель) используется для преобразования переменного тока в постоянный.

    Диодный мост используется почти во всей радиоаппаратуре, которая “кушает” напряжение из переменной сети, будь то простой телевизор или даже зарядка от сотового телефона.

    Диодный мост схема, принцип работы

    В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.

    Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.

    Принцип работы диодного моста

    Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.

    Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.

    Трехфазный диодный мост схема

    Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.

    Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.

    Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.

    Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.

    Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.

    Навигация по записям

    8 thoughts on “ Диодный мост схема, принцип работы ”

    Как будет выглядеть синусоида, при полключении двух фаз?

    Вопрос на засыпку.
    Подключение 3-х диодных мостов к трем фазам с общей нейтралью. То есть на каждом диодном мосту есть N и L1, N и L2, N и L3 по 220 вольт. На выходе с мостов делитель на 100 и конденсатор на общей минусовой земле.
    Я считал что нет фазы и нет выходного напряжения с диодного моста, но это не так.
    Так как работает однофазный мост установленный 3 раза на каждую фазу и объединенный общим минусом?

    Надеюсь правильно представил себе эту схему… Если объединить минусы хотя бы 2-х диодных мостов, то получим межфазное короткое замыкание через диоды.

    Если было там КЗ меж фаз, то диоды 1n4007 (1А, 1000 В) испарились бы в пыль. Значит КЗ там скорее всего нет.

    Если бы было замыкание был бы бабах, а его не и все работает только криво.

    сколько постоянки будет на выходе с моста при условии ровнячка 220 в на фазе?

    Если не применять фильтры то после однофазного диодного моста не будет постоянного напряжения, будет однополярное. Если поставить конденсатор сглаживающий пульсации, то можно добиться напряжения : входное напряжение умножить на корень из 2, минус двойное падение на диодах (это около 2 В).
    Если смотреть трехфазные схемы, то там и без фильтров пульсации меньше. Среднее выходное напряжение будет сильно зависеть от схемы включения.
    Например для схемы треугольник-Ларионова среднее выходное составить 1,35 от действующего входного. А для звезды-Ларионова коэффициент равен 2,34.

    Давайте немного уточним терминологию — тогда после реального конденсатора тоже не будет постоянного напряжения. Во всех случаях (даже после однофазного диодного моста) будет постоянная составляющая и переменная. При этом постоянная составляющая будет в первом случае, вроде, равна половине действующего напряжения минус падение на диоде (в количественной оценке могу ошибаться, лень считать)». А переменная во втором случае будет значительно меньше: тем меньше, чем больше приближение реального конденсатора к идеальному бесконечной емкости (при реальном источнике напряжения).

    Диодный мост

    Схема диодного моста

    Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

    Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

    Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.


    Схема диодного моста

    Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.

    В железе это выглядит следующим образом.


    Диодный мост из отдельных диодов S1J37

    Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.

    Как работает диодный мост?

    Пару слов о том, как работает диодный мост. Если на его вход (обозначен значком «

    ») подать переменный ток, полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-») мы получим ток строго одной полярности. Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.

    Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.

    Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.

    Обозначение диодного моста на схеме.

    На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.

    Диодная сборка.

    Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.

    Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.

    Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком «

    ». Иногда могут иметь обозначение AC (Alternating Current — переменный ток).

    Оставшиеся два вывода имеют обозначения « + » и « — ». Это выход выпрямленного, пульсирующего напряжения (тока).

    Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.

    Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром.

    Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.

    В реальности сборка диодного моста может выглядеть вот так.


    Диодная сборка KBL02 на печатной плате


    Диодная сборка RS607 на плате компьютерного блока питания

    А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.

    Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504, рассчитанный на прямой ток 25 ампер.

    Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.

    Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.


    Условное изображение диодного моста и диодной сборки

    Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.

    На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD, а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD.

    Где применяется схема диодного моста?

    Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах. . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания, но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.

    Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ).

    В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.

    Как сделать самому диодный мост

    В блоках питания радио- и электроаппаратуры почти всегда используются выпрямители, предназначенные для преобразования переменного тока в постоянный. Связано это с тем, что практически все электронные схемы и многие другие устройства должны питаться от источников постоянного тока. Выпрямителем может служить любой элемент с нелинейной вольт-амперной характеристикой, другими словами, по-разному пропускающий ток в противоположных направлениях. В современных устройствах в качестве таких элементов, как правило, используются плоскостные полупроводниковые диоды.

    Как сделать самому диодный мост

    Схема полупроводникового диода.

    Плоскостные полупроводниковые диоды

    Наряду с хорошими проводниками и изоляторами существует очень много веществ, занимающих по проводимости промежуточное положение между двумя этими классами. Называют такие вещества полупроводниками. Сопротивление чистого полупроводника с ростом температуры уменьшается в отличие от металлов, сопротивление которых в этих условиях возрастает.

    Добавляя к чистому полупроводнику небольшое количество примеси, можно в значительной степени изменить его проводимость. Существует два класса таких примесей:

    Как сделать самому диодный мост

    Рисунок 1. Плоскостной диод: а. устройство диода; б. обозначение диода в электротехнических схемах; в. внешний вид плоскостных диодов различной мощности.

    1. Донорные — превращающие чистый материал в полупроводник n-типа, содержащий избыток свободных электронов. Проводимость такого типа называют электронной.
    2. Акцепторные — превращающие такой же материал в полупроводник p-типа, обладающий искусственно созданным недостатком свободных электронов. Проводимость такого полупроводника называют дырочной. «Дырка» — место, которое покинул электрон, ведет себя аналогично положительному заряду.

    Слой на границе полупроводников p- и n-типа (p-n переход) обладает односторонней проводимостью — хорошо проводит ток в одном (прямом) направлении и очень плохо в противоположном (обратном). Устройство плоскостного диода показано на рисунке 1а. Основа — пластинка из полупроводника (германий) с небольшим количеством донорной примеси (n-типа), на которую помещается кусочек индия, являющегося акцепторной примесью.

    После нагрева индий диффундирует в прилегающие области полупроводника, превращая их в полупроводник p-типа. На границе областей с двумя типами проводимости и возникает p-n переход. Вывод, соединенный с полупроводником p-типа, называют анодом получившегося диода, противоположный — его катодом. Изображение полупроводникового диода на принципиальных схемах приведено на рис. 1б, внешний вид плоскостных диодов различной мощности — на рис. 1в.

    Простейший выпрямитель

    Рисунок 2. Характеристики тока в различных схемах.

    Ток, протекающий в обычной осветительной сети, является переменным. Его величина и направление меняются 50 раз в течение одной секунды. График зависимости его напряжения от времени показан на рис. 2а. Красным цветом показаны положительные полупериоды, синим — отрицательные.

    Поскольку величина тока изменяется от нуля до максимального (амплитудного) значения, вводится понятие действующего значения тока и напряжения. Например, в осветительной сети действующее значение напряжения 220 В — во включенном в эту сеть нагревательном приборе за одинаковые промежутки времени выделяется столько же тепла, сколько в том же устройстве, в цепи постоянного тока напряжением 220 В.

    Но на самом деле напряжение в сети меняется за 0,02 с следующим образом:

    • первую четверть этого времени (периода) — увеличивается от 0 до 311 В;
    • вторую четверть периода — уменьшается от 311 В до 0;
    • третью четверть периода — уменьшается от 0 до 311 В;
    • последнюю четверть периода — возрастает от 311 В до 0.

    В этом случае 311 В — амплитуда напряжения Uо. Амплитудное и действующее (U) напряжения связаны между собой формулой:

    Как сделать самому диодный мост

    Рисунок 3. Диодный мост.

    При включении в цепь переменного тока последовательно соединенных диода (VD) и нагрузки (рис. 2б), ток через нее протекает только во время положительных полупериодов (рис. 2в). Происходит это благодаря односторонней проводимости диода. Называется такой выпрямитель однополупериодным — одну половину периода ток в цепи есть, во время второй — отсутствует.

    Ток, протекающий через нагрузку в таком выпрямителе, не постоянный, а пульсирующий. Превратить его практически в постоянный можно, включив параллельно нагрузке конденсатор фильтра Cф достаточно большой емкости. В течение первой четверти периода конденсатор заряжается до амплитудного значения, а в промежутках между пульсациями разряжается на нагрузку. Напряжение становится почти постоянным. Эффект сглаживания тем сильнее, чем больше емкость конденсатора.

    Схема диодного моста

    Более совершенной является двухполупериодная схема выпрямления, когда используются и положительный, и отрицательный полупериод. Существует несколько разновидностей таких схем, но чаще всего используется мостовая. Схема диодного моста приведена на рис. 3в. На ней красная линия показывает, как протекает ток через нагрузку во время положительных, а синяя — отрицательных полупериодов.

    Как сделать самому диодный мост

    Рисунок 4. Схема выпрямителя на 12 вольт с использованием диодного моста.

    И первую, и вторую половину периода ток через нагрузку протекает в одном и том же направлении (рис. 3б). Количество пульсации в течение одной секунды не 50, как при однополупериодном выпрямлении, а 100. Соответственно, при той же емкости конденсатора фильтра эффект сглаживания будет более ярко выражен.

    Как видно, для построения диодного моста необходимо 4 диода — VD1-VD4. Раньше диодные мосты на принципиальных схемах изображали именно так, как на рис. 3в. Ныне общепринятым считается изображение, показанное на рис. 3г. Хотя на ней только одно изображение диода, не следует забывать, что мост состоит из четырех диодов.

    Мостовая схема чаще всего собирается из отдельных диодов, но иногда применяются и монолитные диодные сборки. Их проще монтировать на плате, но зато при выходе из строя одного плеча моста, заменяется вся сборка. Выбирают диоды, из которых монтируется мост, исходя из величины протекающего через них тока и величины допустимого обратного напряжения. Эти данные позволяет получить инструкция к диодам или справочники.

    Полная схема выпрямителя на 12 вольт с использованием диодного моста приведена на рис. 4. Т1 — понижающий трансформатор, вторичная обмотка которого обеспечивает напряжение 10-12 В. Предохранитель FU1 — нелишняя деталь с точки зрения техники безопасности и пренебрегать им не стоит. Марка диодов VD1-VD4, как уже говорилось, определяется величиной тока, который будет потребляться от выпрямителя. Конденсатор С1 — электролитический, емкостью 1000,0 мкФ или выше на напряжение не ниже 16 В.

    Напряжение на выходе — фиксированное, величина его зависит от нагрузки. Чем больше ток, тем меньше величина этого напряжения. Для получения регулируемого и стабильного выходного напряжения требуется более сложная схема. Получить регулируемое напряжение от схемы, приведенной на рис. 4 можно двумя способами:

    1. Подавая на первичную обмотку трансформатора Т1 регулируемое напряжение, например, от ЛАТРа.
    2. Сделав от вторичной обмотки трансформатора несколько отводов и поставив, соответственно, переключатель.

    Остается надеяться, что описания и схемы, приведенные выше, окажут практическую помощь в сборке простого выпрямителя для практических нужд.

    Как сделать самому диодный мост

    Диодный мост? Это совсем не то, что Крымский. Это такой маленький диодный мостик, схема которого строится из небольших совсем электронных устройств — диодов. Их мы собираем даже своими руками. Да, соберите своими руками и увидите, что это легко и быстро, надо только знать, из чего и для чего. Он состоит из диодов.

    Что такое диоды

    Диоды — это электронные устройства с двумя электродами («ди» — два). Анод и катод.

    Как сделать самому диодный мост

    Раньше, в эпоху стеклянных электронных вакуумных ламп, это была самая простая из ламп. В ней непосредственно около катода располагалась нить накаливания, как в лампочке. Катод от этого разогревался, и из него начинали выпрыгивать электроны все быстрее и быстрее. А кроме напряжения накала к электродам было приложено рабочее напряжение. И если на катод подать минус, а на анод плюс, то электроны от катода начинают отталкиваться, а к аноду притягиваться. Так как этому процессу в вакууме ничто не мешает, через вакуум и побежит ток, пропорциональный приложенному напряжению. А если поменять полюса — подать на анод минус, а на катод плюс, ток остановится. Потому что анод холодный, а к катоду теперь приложен положительный потенциал, который возвращает выброшенные накалом катода электроны обратно. Вот так и получился самый первый и самый простой нелинейный электрический элемент. В одну сторону ток он пропускает, а в другую — нет.

    Почти такая же картина и в полупроводниковых диодах. Только там нет вакуума, а твердая пластинка полупроводника имеет свойство не препятствовать движению электронов в одну сторону и запрещать их движение в противоположную.

    Весь секрет в N-P-переходе полупроводника.

    Полупроводниковый диод представляет собой пластинку, похожую на плоский кружочек (или квадратик) металла. Но это не металл, а две его стороны имеют чуть разные свойства. Металлы характеризуется тем, что электроны в их кристаллической решетке почти не держатся, вылетают и болтаются между атомами кристалла по любому поводу, самая небольшая температура, заставляющая ядра атомов на своих местах слегка вибрировать, вышибает электроны напрочь и массово. А на этом месте что образуется? Знамо дело, дырка. Так называется атом, потерявший электрон. И получается, что электроны хаотично мечутся по межатомному пространству металла, а дырки тоже мечутся — только уже по самой кристаллической решетке. Потому что если соседний атом «заметит» дырку, он очень просто легким толчком закинет в нее свой электрон. И это можно понять в обратном смысле: получилось, это дырка перескочила из того атома в этот. И так дырки начинают жить тоже своей самостоятельной жизнью и блуждать как им взбредется. А встретится им электрон — может произойти рекомбинация, когда электрон запрыгнет в эту самую дырку. Ну и все, нашел свою судьбу. Только свободных электронов в металле видимо-невидимо, и поэтому стоит приложить к проводнику напряжение — как тут же начнется уже более-менее упорядоченное движение электронов от минуса к плюсу, то есть электрический ток. Соответственно, и дырки побегут, наоборот, от плюса к минусу, то есть как раз так, как люди определили когда-то НАСТОЯЩИМ направлением тока. Определили, еще ничего не зная ни о свободных электронах, ни о дырках.

    В полупроводниках картина очень тонкая. Он сам плохой проводник и никудышный изолятор. Потому они так и названы — полупроводники. В них тоже есть свободные электроны и дырки. Только их не так много, как в металлах, а равновесие электронов и дырок нарушают примеси в полупроводнике. Атомы примесей становятся дополнительными источниками в одних случаях свободных электронов, в других — «свободных» дырок. Есть такие атомы, которые в одном случае прихватывают себе лишний электрон и не отпускают его (акцепторная примесь). А на его месте в атоме полупроводника получается дырка и начинает бродить неприкаянно по кристаллической решетке.

    А в другом случае атом примеси имеет свойство отдавать свой электрон (донорная примесь), ничего не прося взамен. И пойдет электрон лишний куда глаза глядят.

    Первая проводимость названа дырочной — P (positive, положительная), вторая электронной — N (negative, отрицательная).

    Но самое интересное, что два типа проводимости могут существовать в одном куске полупроводника. Вот той самой тонкой пластинки, похожей на металл. С одной стороны в нее внедряют донорную примесь, а с другой — акцепторную.

    Очень просто: можно на основу из полупроводника — германия или кремния — с одной стороны нанести материал-акцептор, фосфор, мышьяк или сурьму. Температура плавления сурьмы чуть выше 980 ⁰С, а у полупроводников еще выше, около 1200–1400 ⁰С. Атомы акцептора (чаще всего сурьмы, более остальных практичной в обращении) внедряются в кристаллическую решетку полупроводника, делая его полупроводником типа P. Другую сторону обрабатывают алюминием или индием — легкими и плавкими металлами. Достаточно поместить капельку индия, просто капнуть с одной стороны при температуре плавления 430 ⁰С.

    Вот и получился у нас знаменитый N-P переход, который ток пропускает в одну и другую стороны по-разному.

    И правда, если представить ток как движение заряженных частиц, то в полупроводнике N-типа движутся электроны (их подавляюще больше). А в P-типа — дырки. Причем направление их движений противоположное. Только если в металле они движутся одновременно и независимо — одни туда, другие сюда, то в полупроводнике все не так. В полупроводнике N-типа движутся, в основном, электроны, по полупроводнику P-типа ток создает движение дырок. А вот в N-P переходе эти два вида токов встречаются.

    На границе этих двух типов (границе между полупроводником с примесями одного типа и проводником с примесями другого) электроны вместо дальнейшего движения будут «находить свою судьбу», то есть встречаться с дырками и с ними производить рекомбинацию. Такую зону счастливых электронных пар мы называем «зоной запрета», потому что при рекомбинации атомы примесей становятся ионами (в N-зоне положительные, а в P-зоне отрицательные), и они создают электрическую разность потенциалов, всегда направленную от N проводимости к P проводимости. И вот теперь, если прикладывать напряжение к внешним контактам диода, и если полярность его совпадает с направлением этой разности потенциалов, то ток потечет через диод, а если противоположно ей, то нет. Первое направление (когда к P приложен плюс, а к N минус) называется прямым, второе (когда на P подан минус, а на N плюс) — обратным.

    Как сделать самому диодный мост

    Прямое направление диода делает его по работе похожим на обычное сопротивление, работающим по закону Ома.

    А обратное дает нечто вроде разрыва в цепи, хотя при этом всегда сохраняется некоторый обратный ток, зависящий от других вещей — температуры, радиации.

    Вот на таких приборах и строятся выпрямительные мосты.

    Выпрямительные мосты

    Если подавать на диод переменное электрическое напряжение, которое непрерывно изменяется от некоторого напряжения U+ > 0 до напряжения U

    Как сделать самому диодный мост

    В случае обычного для наших сетей синусоидального сигнала в результате работы диода получается «полусинусоида» тока (или напряжения в нагрузке).

    Как сделать самому диодный мост

    Весь ток и напряжение в сети нагрузки будет иметь положительное направление, но половина электроэнергии не будет «доходить» до адресата.

    Чтобы использовать и вторую половину синусоиды, нужно, чтобы она не срезалась, а меняла знак на противоположный. Вот и получилась схема диодного моста.

    Как сделать самому диодный мост

    Уже лучше, но мост не является выпрямителем в полном смысле. Напряжение в нагрузку он дает не постоянное, а пульсирующее с двойной частотой.

    Если нагрузкой сделаем лампу накаливания, то никаких пульсаций света можем и не заметить.

    Лампа накаливания является прибором инерционным, в плане преобразования электричества в тепло и свет. То есть за 1/50 (при переменном напряжении) или за 1/100 (при пульсирующим напряжении от диодного моста) доли секунды ее нить накала не успевает остыть, как уже приходит очередной импульс. В этом случае диодный мостик такой схемы вполне подойдет.

    Как сделать самому диодный мост

    В результате этого температура спирали во времени представляет собой кривую, сглаживающую кривую напряжения, выходящего из диодного моста. И чем спираль массивнее, тем более сглажена кривая ее температуры. В выпрямительных мостах сглаживание делается конденсатором, которые способны, подобно спирали лампы, накапливать энергию, а потом медленно ее отдавать.

    Как сделать самому диодный мост

    Выпрямительный мост — это настолько отработанная, привычная и полезная схема, что для нее имеется общепринятое сокращенное графическое обозначение. А как сделать диодный мост — тут вообще все просто. Следует только разобраться с концами диодов — какие плюс и какие минус. На входные два узелка подается переменное напряжение, поэтому к ним подходят как плюс диодов, так и минус: VD1 плюс, VD2 минус —на верхний, VD3 + и VD4 — на нижний. А выходные клеммы от моста получают уже знакопостоянное напряжение, поэтому их плюсы и минусы совпадают с +/- диодов. VD2, VD4 припаяем плюсами на плюсовой выход, VD1, VD3 — минусами на минусовой. Вот и получился выпрямительный диодный мост.

    Как сделать самому диодный мост

    Такие диодные мосты присоединяют часто к обычному трансформатору от блоков питания, понижающему к 12 вольтам. Диоды в этом случае подойдут любые, лишь бы рабочий диапазон напряжений был немного больше, чем на 12 вольт. Скажем, вольт на 20–35. Особых требований нет, соединения низковольтные, для подключения достаточно обычной спайки.

    Как сделать самому диодный мост

    Трехфазный диодный мост

    Однако делают диодные мосты и высоковольтные. Там все то же самое, только все элементы схемы рассчитываются на те номиналы напряжений, с которыми будет иметь дело диодный мост — с запасом, разумеется. Кроме того, можно сделать его и для трехфазного напряжения. И он оказывается сложнее однофазного не в три раза, а только в полтора.

    Подключить диодный мост к трансформатору здесь нужно в трех точках, по одной на каждую фазу. Принципиальной разницы между спайкой диодного моста на три фазы и собранного под одну фазу нет. Разобраться с концами здесь почти так же просто. Здесь плюсы одних трех диодов и минусы других подключаются к выходам, после этого попарно спаиваются плюсы с минусами верхней и нижней тройки диодов, и в эти же три точки подаются фазы. Все, вы его собрали.

    Как сделать самому диодный мостНесмотря на то что в бытовых розетках, как известно, присутствует переменное напряжение величиной 220 В, подавляющее большинство электронных приборов требует намного меньших значений. Более того, это питание должно осуществляться не переменным, а постоянным током. Именно поэтому практически каждый бытовой прибор имеет в составе своей схемы выпрямитель — диодный мост.

    Постоянный и переменный ток

    Из учебного курса физики все знают, что электрический ток подразумевает протекание электрического заряда из одного проводника в другой. В отличие от постоянного тока, который действительно идет в одном направлении (от минуса к плюсу), переменный течет сначала в одну сторону, а затем — в другую. Если подключить к розетке осциллограф, можно получить схематическое изображение такого движения тока.

    Как сделать самому диодный мост

    На рисунке представлена осциллограмма переменного тока, где по оси абсцисс показано время, а по оси ординат — напряжение. Из графика хорошо видно, что напряжение плавно нарастает до величины 220 В, потом уменьшается до нуля и нарастает до той же величины, но с противоположным знаком. Иными словами, напряжение в розетке постоянно меняет знак со скоростью 50 раз в секунду.

    Для сравнения можно подключить щупы осциллографа к источнику постоянного тока. В качестве него могут использоваться клеммы батарейки. В этом случае картина будет несколько иная.

    Как сделать самому диодный мост

    Осциллограмма постоянного тока, показанная на изображении, наглядно демонстрирует, как на протяжении всего времени напряжение на клеммах имеет постоянную величину. При замыкании цепи ток будет течь в одну сторону.

    Особенности видов напряжения

    Возникает закономерный вопрос о том, зачем в розетках используется переменный ток, если подавляющее большинство электронной аппаратуры питается постоянным током. Дело в том, что для питания узлов той или иной аппаратуры требуются напряжения разной величины. Процессор компьютера, например, питается 3 В, а мобильный телефон требует для своей зарядки целых 5 В. Усилителю музыкального центра нужно уже около 25 В.

    Постоянное напряжение достаточно сложно трансформировать из одной величины в другую, а вот переменное — запросто. Для этого служат, к примеру, трансформаторы. Некоторые важные силовые узлы, такие как двигатели, все же нуждаются в переменном напряжении. Поэтому промышленные генераторы, питающие бытовые розетки, вырабатывают его до общепринятой величины (например, 220 В), а каждый прибор уже на месте получает из него то, что ему требуется.

    Выпрямление электроэнергии

    До конца XIX века преобразование переменного напряжения в постоянное было проблемой. С изобретением диода — сначала вакуумного, а позже и полупроводникового — ситуация в корне изменилась. Благодаря своим уникальным свойствам, диод отлично различает полярность и позволяет легко сортировать токи с нужным направлением. Сначала для этих целей использовались отдельные диоды, позже появились диодные мосты, обеспечивающие высокое качество выпрямления.

    Выпрямитель на одном диоде

    Диод проводит ток только в одном направлении, именно поэтому его и называют полупроводниковым прибором. Если к катоду устройства подключить плюс источника напряжения, а к аноду — минус, диод будет вести себя как обычный проводник. Если полярность изменить, то прибор закроется и превратится в диэлектрик. Для ответа на вопрос о том, что это даёт, придется собрать простейшую схему и снова вооружиться осциллографом.

    Как сделать самому диодный мост

    На схеме изображена работа полупроводникового диода в цепи переменного тока. Осциллограмма слева показывает картину на выходе трансформатора — обычный переменный ток. После диода всё существенно меняется — на графике исчезает отрицательная полуволна переменного напряжения. Ток еще не стал постоянным, но он уже не переменный — движения электрического заряда в обратном направлении нет. Такой род тока принято называть пульсирующим. Им еще нельзя питать электронику, но изменения налицо. Остаётся сгладить пики импульсов. Это делают с помощью конденсаторов.

    Как сделать самому диодный мост

    На схеме представлен однополупериодный выпрямитель со сглаживающим конденсатором. Во время положительного импульса напряжение не только питает нагрузку, но и одновременно заряжает конденсатор. Когда импульс заканчивается, конденсатор отдает накопленную энергию, сглаживая скачки напряжения.

    Чем выше емкость конденсатора, тем больше энергии он сможет запасти, и тем больше напряжение будет походить на постоянное.

    Двухполупериодный прибор

    Несмотря на значительные успехи, достигнутые в преобразовании переменного тока в постоянный предыдущим экспериментом, результат ещё далек от идеала. Дело в том, что частота переменного тока довольно низкая (50 Гц), а навешивание сглаживающих конденсаторов имеет свои ограничения. Для того чтобы существенно улучшить форму выходного сигнала, нужно увеличить частоту.

    Однако в розетках она строго фиксирована и не зависит от внешних факторов. Отрицательная полуволна напряжения срезается диодом. Поменять её полярность совсем несложно — достаточно лишь добавить несколько диодов, собрав мостовую схему. На рисунке представлен двухполупериодный выпрямитель на четырёх диодах, объясняющий то, как работает диодный мост:

    Как сделать самому диодный мост

    При появлении положительной полуволны диоды VD2, VD3 окажутся включенными в прямом направлении и будут открыты. VD1, VD2 — закрыты. Полуволна свободно проходит к выходу выпрямителя. Когда напряжение сменит полярность, пары диодов поменяются местами — VD1 и VD4 откроются, VD2 и VD3 закроются. Отрицательная полуволна тоже пройдет к выходу, но поменяет полярность. В результате получится все то же импульсное однополярное напряжение, но частота его увеличится вдвое. Останется добавить сглаживающий конденсатор и посмотреть, что получится.

    Как сделать самому диодный мост

    Двухполупериодный выпрямитель со сглаживающим конденсатором на изображении показывает, что поставленная задача решена: переменное напряжение преобразовано в постоянное. Конечно, постоянство неидеально — имеются пульсации, однако с ними можно бороться с помощью фильтров. К тому же любая электроника допускает ту или иную величину пульсаций.

    Такая схема, состоящая из четырех диодов, стала классической и получила название диодного или выпрямительного моста. Существует отдельная категория электронных приборов — выпрямительные мосты. Они состоят из четырех диодов, соединенных между собой соответствующим образом. В качестве примера можно посмотреть на выпрямительный мост КЦ402Г и его электрическую схему.

    Как сделать самому диодный мост

    Выпрямительный мост своими руками

    Каждый, кто занимается конструированием электронных устройств, не обходится без выпрямителя. Он присутствует практически в каждом самодельном приборе, питаемом от сети. Для того чтобы собрать выпрямитель, недостаточно взять четыре диода и скрутить им ножки согласно приведенной схеме. Для того чтобы мост работал, придется ближе познакомиться с диодами и их характеристиками перед тем, как браться за паяльник. Основные характеристики, которые понадобятся при построении выпрямителя у полупроводников, следующие:

    1. Максимально допустимое обратное напряжение. Напряжение, которое способен выдерживать диод в закрытом состоянии.
    2. Максимально допустимый прямой ток. Ток, который может долговременно выдерживать диод без повреждения.
    3. Прямое напряжение. Величина падения напряжения на открытом диоде.
    4. Граничная частота. Частота переменного тока, на которой прибор еще может работать.

    При сборке сетевого выпрямителя, способного отдавать в нагрузку ток в 1 А, необходимо сделать диодный мост на 12 вольт. Так выглядит практическая схема мостового выпрямителя.

    Как сделать самому диодный мост

    Прежде всего, необходимо правильно всё рассчитать и подобрать нужный тип полупроводников, исходя из имеющихся диодов. Если в распоряжении есть диоды Д226, КД204А, КД201А и Д247, нужно открыть справочник и ознакомиться с их основными характеристиками (напряжением, током и граничной частотой):

    • Д226 — 400 В, 0,3 А, 1 кГц;
    • КД204А — 400 В, 0,4 А, 50 кГц;
    • КД201А — 100 В, 5 А, 1,1 кГц;
    • Д247 — 500 В, 10 А, 1 кГц.

    Все четыре типа диодов подходят по напряжению и частоте, но первые два не выдержат ток в 1 А. Остаются КД201А и Д247. Решение взять те или другие зависит от конструкции блока питания. Первые диоды компактнее, вторые имеют хороший запас по току.

    Сглаживающий конденсатор С1 нужно выбирать по типу, электрической емкости и напряжению. Понадобится электролитический конденсатор емкостью от 1 000 до 20 000 мкФ с рабочим напряжением не ниже 25 В. Чем выше емкость сглаживающего конденсатора, тем качественнее будет выпрямленное напряжение, но тем больше по габаритам окажется сама конструкция. Всю необходимую информацию, включая емкость, полярность и рабочее напряжение можно увидеть прямо на конденсаторе.

    Осталось включить паяльник и спаять схему, не забывая при этом, что электролитические конденсаторы — полярные приборы. Они имеют плюс и минус, путать которые нельзя.

    Выбор типа сборки

    Использование выпрямительного моста вместо четырех диодов не только существенно упрощает сборку, но и делает конструкцию более компактной. Принцип выбора типа сборки тот же — по напряжению, току и частоте. Чтобы определить, подойдет ли, к примеру, сборка КЦ402Г, фото и схема которого приведены выше, нужно обратиться к справочнику. В нём указаны следующие характеристики моста:

    • максимальное обратное напряжение диодов — 300 В;
    • прямой ток всей сборки — 1 А;
    • граничная частота — 5 кГц.

    Мостик подходит, но микросборка будет работать на пределе своих возможностей по току. Для обеспечения надежности схемы лучше использовать более мощный прибор. Например, мост КЦ409А на ток 3 А или КЦ409И на 6 А.

    Проверка элементов

    Нередко в самодельных устройствах приходится использовать детали, уже бывшие в употреблении. Перед установкой все такие комплектующие должны быть проверены. Поскольку выпрямительная сборка представляет собой четыре диода, подключенных встречно-последовательно, а до выводов всех диодов можно добраться щупом, вопрос от том, как прозвонить диодный мост, решается элементарно.

    Для этого достаточно измерить обычным омметром сопротивление каждого диода, ориентируясь на схему выпрямителя и цоколевку моста. В одной полярности щупов прибор должен показывать высокое сопротивление, в другой — низкое. Когда соответствующий диод пробит, в обоих положениях щупов сопротивление будет низким, если сгорел — высоким.

    Использование барьера Шоттки

    Еще одна основная характеристика, которая не использовалась в предыдущих расчетах, — прямое падение напряжения на открытом диоде. Диод только теоретически проводит ток в одну сторону, а диэлектрик — в другую. На практике в прямом подключении на приборе падает напряжение, которое может достигать 1,5 В и более.

    Это значит, что напряжение на выходе однополупериодного выпрямителя будет ниже входного на 1,5 В, а если использовать мостовую схему, то на все 3 В. Кроме того, вольты, помноженные на протекающий через выпрямитель ток, будут бесполезно рассеиваться на диодах в виде тепла, уменьшая КПД схемы.

    Избежать подобной неприятности позволяют диоды с барьером Шоттки. Они отличаются низким (десятые вольта) прямым падением напряжения, а значит, собранная на них схема будет обладать более высоким КПД и работать в облегченном режиме. Вид и схема мощной диодной сборки Шоттки представлены на изображении.

    Как сделать самому диодный мост

    Сегодня и отдельные диоды, и диодные мосты Шоттки используются в качестве выпрямительных очень широко и выпускаются как отдельными приборами, так и сборками. Монтаж выпрямителя на диодах Шоттки ничем не отличается от сборки на обычных диодах.

    Отзывы и комментарии

    Как электроны и позитроны превращаются друг в друга

    GIF анимации: http://tverd4.narod.ru/mosty.gif http://tverd4.narod.ru/Animation-1-.gif

    Теория этого явления должна начинаться с осознания того, что не существует в металлических проводниках электрического тока, который распространяется от плюса к минусу.
    Разность потенциалов, рождающая силу движения зарядов, формируется не между плюсом и минусом, а между плюсом и нулевым потенциалом (позитронный ток) и между минусом и нулевым потенциалом (электронный ток).
    То есть электронный ток имеет разность потенциалов – / 0.
    Позитронный ток имеет разность потенциалов + / 0.
    По нашей гипотезе превращение электронов и позитронов друг в друга происходит посредством замены вектора движения зарядов на противоположный вектор.
    Объясняется это тем, что все элементы магнитоэлектрической системы электрона противоположны всем элементам магнитоэлектрической системы позитрона. И эта противоположность определяется вектором их движения в пространстве.
    Поэтому, стоит только поменять вектор движения одного из зарядов на противоположный вектор, так сразу же этот заряд превращается в своего антипода.
    Анимация показывает, как полупроводниковый мост пропускает позитронный ток, движимый разностью потенциалов + / 0. Но, когда электронная полуволна на мост подаёт разность потенциала – / 0, здесь-то и происходит замена вектора движения электронов на вектор движения позитронов, с превращением электронов в позитроны.
    Аналогичным образом происходит превращение позитронов в электроны в мосте, собранным на вакуумных диодах.
    Разница лишь в том, что превращение позитронов в электроны, происходит, когда на мост подаётся разность потенциала + / 0.
    Диоды работают парами. Пара диодов всегда открыта, другая – всегда закрыта.
    Кроме того, генераторы постоянного тока генерируют позитронный ток при правом вращение, и генерируют электронный ток при левом вращении.
    Объясняется это явление тем, что заряд, формирующийся первым, задаёт вектор движения, а антипод вынужден следовать принятому вектору движения.
    Вектор движения электрона противоположен вектору движения позитрона, как в проводниках, так и в электромагнитных волнах.
    Заключение:
    1. Любой любознательный восьмиклассник способен осуществить описанные опыты.
    2. Комичность ситуации заключается в том, что с широким распространением осциллографов любой любознательный восьмиклассник на экране видит, что ток есть движение, как отрицательных, так и положительных зарядов.
    3. Фарадей двести лет назад получил ток с отрицательными и положительными зарядами, который распространяется в прилегающем к проводнику слое эфира.
    4. Все современные тепловые, гидравлические и атомные электростанции получают ток Фарадея.

    Диодный мост на 6 диодов и диодный мост на 8 диодов — Генераторы — — Каталог статей

    На автомобилях применяется трехфазный синхронный генератор переменного тока.

    Для работы электрооборудования нужен постоянный ток, поэтому выпрямитель -обязательный элемент генератора.

    Трехфазный выпрямитель – это диодный мост по схеме Ларионова. Три плеча по два диода

    Диодный мост на шесть диодов и диодный мост на 8 диодов.

    Трехфазный диодный мост по схеме Ларионова, имеет 6 диодов, три плеча по два диода.

    В диодном мосте может быть 8 диодов. Это в том случае, когда используется принцип повышения мощности генератора за счет использования тока третьей гармоники, который можно отбирать от средней точки трехфазной звезды.

    Генератор переменного тока в идеале должен выдавать синусоидальное переменное напряжение, но этого не получается, выходное напряжение по конструктивным причинам получается искаженным. То есть, сильно несинусоидальным – это недостаток генератора переменного тока, но его можно частично скомпенсировать тем, что третью гармонику несинусоидального переменного напряжения можно выделить и ее энергию использовать.

                        

     

    Обмотка статора соединяется звездой и от средней точки звезды делается вывод, напряжение которое действует в средней точке, выпрямляется дополнительным плечом диодного моста, поэтому получается мост на 8 диодов.

                  

    Многие конструкции диодных мостов делаются универсальными, для использования как шести диодов, так и 8 диодов. В этом случае у шести диодного моста позиции под 7 и 8 диоды просто остаются пустыми.

    Примеры конструкций диодных мостов.

    БПВО 76-105/15       8 диодов

    БПВО 76-105/21       6 диодов 

    БВО    76.2-105/02    6 диодов без доп. диодов

    БВО      3-105-02       8 диодов генераторов 3282.3771 и  7702.3701 

    На ВАЗ 2110, 12, 13, 14 штатно ставится генератор 9402.3701 или 5102.3771 на 80 Ампер. с диодными мостами 6 диодов

    Или генераторы увеличенной мощности 3202.3771 на 90 Ампер,  или 5102.3771 на 100 Ампер, с диодными мостами 8 диодов.

           

     

                                    

     

                

     

    Конструкция генератора позволяет установить и шести диодный и восьми диодный мост. Если генератор рассчитан на применение шести диодного моста, то при установке восьми диодного моста просто ничего не изменится, можно ставить. Если генератор рассчитан на установку восьми диодного моста, то использование шести диодного моста, приведет к небольшому снижению максимального тока генератора, что в обычной эксплуатации со штатным электрооборудованием будет допустимо.

    Примеры схем генератора для ВАЗ 2110

     

     На многих современных генераторах применяются диодные мосты 8 диодов, но уже без дополнительных диодов. DENSO, BOSCH, MITSUBISHI

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *