ПРОСТАЯ СХЕМА ИНФРАКРАСНОГО УПРАВЛЕНИЯ
Всем привет! Здесь мы поговорим о том, как сделать самое простое ИК управление (инфракрасное управление). Управлять этой схемой можно даже обычным пультом от телевизора. Предупреждаю сразу, дистанция не велика — примерно 15 сантиметров, но даже такой результат обрадует новичка в работе. При самодельном передатчике дальность величивается в два раза, то есть примерно возрастает еще на 15 сантиметров. Делается блок ДУ просто. К 9-ти вольтовой «кроне» подключаем ИК светодиод через резистор в 100-150 ом, при этом ставим обычную кнопку без фиксации, приклеиваем это к батарейке изолентой, при этом изолента не должна препятствовать инфракрасному излучению ИК светодиода. На фото показаны все те элементы, что нам понадобятся для сборки схемы
2. Резистор на 1 ком, и на 300-500 ом (Для наглядности на фото выставил резисторы на 300 и 500 ом)
4. Транзистор КТ972А или аналогичный по току и структуре.
5. Светодиод использовать можно любой низковольтный.
Принципиальная схема приёмника ИК управления на одном транзисторе:
Ну теперь, естественно, приступаем к пайке элементов. Паяем транзистор:
И наконец паяем последний элемент — это резистор на 300 — 500 Ом, я поставил 300 Ом. Разместил его с обратной стороны печатной платы, т.к он мне не позволил припять его с лицевой стороны, из-за своих мутационных лап =)
На видеоролике дистанция маленькая, так как надо было смотреть одновремено и в камеру, и на пульт. Поэтому не смог сфокусировать направления пульта. Если вместо фотодиода поставить фоторезистор, то будет реагировать на свет, проверенно лично, чувствительность даже лучше, чем в оригинальных схемах фоторезистора. На схему подавал 12в, работает нормально — светодиод горит ярко, регулируется яркость и чувствительность фоторезистора. В настоящее время по этой схеме подбираю элементы, чтобы можно было питать ИК приёмник от 220 вольт, и выход на лампочку тоже был 220В. За предоставленную схему отдельное спасибо:
Форум по радиолюбительским самоделкам
Обсудить статью ПРОСТАЯ СХЕМА ИНФРАКРАСНОГО УПРАВЛЕНИЯ
Простое самодельное ИК-управление переключением ТВ-каналов (555, К561ИЕ9)
На закате СССР появились и были очень популярны отечественныеполупроводниковые телевизоры серии УСЦТ, некоторые из них и сейчас в строю. Особенно долговечными были телевизоры с размером экрана 51 см по диагонали (кинескоп был весьма надежным). Конечно, они уже совсем не отвечают современным требованиям, но как «дачный вариант» еще вполне пригодны.
Как-то, от нечего делать, появилось желание усовершенствовать старенькую, уже давно «дачную» «Радугу-51ТЦ315», дополнив её системой дистанционного управления. Сейчас уже приобрести «родной» модуль невозможно, поэтому было решено сделать упрощенную однокомандную систему, позволяющую хотя бы переключать программы «по кольцу». Микроконроллеры и спец, микросхемы сразу были отвергнуты по причине нерентабельности, и система была сделана из того, что имелось в наличии.
А именно, интегральный таймер 555, ИК светодиод LD271, интегральный фотоприемник TSOP4838, счетчик К561ИЕ9 и плюс еще по-мелочи.
Схема пульта управления
Пульт представляет собой генератор импульсов частотой 38 кГц, на выходе которого включен через ключ инфракрасный светодиод. Генератор построен на основе микросхемы «555», так называемого «интегрального таймера». Частота генерации зависит от цепи C1-R1, при налаживании подбором резистора R1 нужно установить на выходе микросхемы (вывод 3) частоту 38 кГц.
Рис.1. Принципиальная схема ИК-передатчика для дистанционного управления телевизором.
Прямоугольные импульсы частотой 38 кГц поступают на базу транзистора VT1 через резистор R2. Диоды VD1 и VD2 вместе с резистором R3 образуют схему контроля тока через ИК-светодиод HL1.
При повышенном токе напряжение на R3 увеличивается, соответственно увеличивается и напряжение на эмиттере VT1. И когда напряжение на эмиттере приближается по величине к напряжению падения на диодах VD1 и VD2 происходит снижение напряжения на базе VT1 относительно эмиттера, и прикрывание транзистора.
Импульсы ИК-света, следующие с частотой 38 кГц излучаются инфракрасным светодиодом HL1.
Управление — одной кнопкой S1, которая подает на схему пульта питание. Пока кнопка нажата пультом излучаются инфракрасные импульсы.
Схема приемного блока
Приемник устанавливается внутрь телевизора, на него подается питание + 12V от источника питания телевизора, а катоды диодов VD2-VD9 соединяются с контактами кнопок модуля выбора программ УСУ-1-10.
Рис.2. Принципиальная схема ИК-приемника для дистанционного управления телевизором.
ИК-импульсы, излучаемые пультом, принимаются интегральным фотоприемником HF1 типа TSOP4838. Данный фотоприемник широко применяется в системах дистанционного управления различной бытовой электронной аппаратурой. При приеме сигнала на его выводе 1 присутствует логический ноль, а при отсутствии принимаемого сигнала единица.
Таким образом, когда кнопка пульта нажата на его выходе ноль, а когда не нажата — единица.
TSOP4838 должен питаться напряжением 4,5-5,5V, и не более. Но, для управления модулем выбора программ телевизора нужно на кнопки транзисторного 8-фазного триггера подавать напряжение 12V. Поэтому, на микросхему D1 подается напряжение 12V, а на фотоприемник HF1 напряжение 4,7-5V через параметрический стабилизатор на стабилитроне VD10 и резисторе R4.
Согласующим уровни логических единиц каскадом служит транзистор VТ1. При этом он инвертирует логические уровни. Напряжение с коллектора VТ1 через цепь R3-C2 поступает на счетный вход счетчика D1, рассчитанный на прием положительных импульсов. Цепь R3-C2 служит для подавления ошибок от дребезга контактов кнопки S1 пульта управления.
Счетчик D1 К561ИЕ9 представляет собой трехразрядный двоичный счетчик, со схемой десятичного дешифратора на выходе. Он может находиться в одном из восьми состояний от 0 до 7, при этом логическая единица имеется только на одном, соответствующем его состоянию, выходе. На остальных выходах — нули.
При каждом нажатии — отпускании кнопки пульта счетчик переходит на одно состояние вверх, при этом переключается логическая единица по его выходам. Если отсчет начался с нуля, то через восемь нажатий кнопки, на девятое, счетчик вернется в нулевое положение. И далее, процесс переключения логической единицы по его выходам повторится.
ИК-светодиод LD271 можно заменить любым ИК-светодиодом, применимым для пультов дистанционного управления бытовой аппаратурой. Фотоприемник TSOP4838 можно заменить любым полным или функциональным аналогом.
Детали и монтаж
Микросхему К561ИЕ9 можно заменить на К176ИЕ9 или зарубежным аналогом. Можно использовать микросхему К561ИЕ8 (К176ИЕ8), при этом будет 10 выходов управления. Чтобы ограничить их до 8-и нужно выход за номером «8» соединить со входом «R» (при этом вход «R» не соединять с общим минусом, как это на схеме).
Диоды 1N4148 можно заменить любыми аналогами, например, КД521, КД522. Пульт питается от «Кроны». Помещен в футляр от зубной щетки. Монтаж -объемный на выводах микросхемы А1.
Схема приемника тоже собрана объемным монтажом и приклеена клеем «БФ-4» к деревянному корпусу телевизора изнутри. Для глазка фотоприемника я использовал отверстие для разъема для подключения головных телефонов (отверстие в телевизоре было пустое, закрытое заглушкой, самого разъема не было).
Если схема заинтересовала, но старой «Радуги» нет, её можно использовать и для переключения чего-либо более современного. К выходам микросхемы D1 можно через резисторы подключить транзисторные ключи, с электромагнитными реле на коллекторах или светодиодами мощных оптопар.
Котов В.Н. РК-2016-04.
Своими Руками: ИК управление любым пультом
Схема ИК управления нагрузкой с помощью любого пульта ПДУ.Данным устройством можно управлять различными нагрузками ( свет в комнате,ночник и так далее)
Управление ведется с практически с любого ПДУ домашней техники. Я испытания проводил на ПДУ от телевизора LG.
Принцип работы происходит с фиксацией команды: нажали кнопку ПДУ,реле включилось, нажали еще раз-выключилось.
Схема довольно проста
ИК-приемник подойдет любой( главное знать его цоколевку для подключения) свой ИК-приемник я вытянул из старой автомагнитолы.
Головой устройства является микроконтроллер PIC12F675,прошивка для него выложена внизу.
Реле подбираете под тип нагрузки.
Програмирование готового устройства очень простое:
Нажимаем на кнопку ( 1 на схеме) и нажимаем выбранную кнопку на ПДУ,микроконтроллер запомнит код кнопки ПДУ и будет реагировать только на нее. Если захотите перепрограмировать на другую кнопку ПДУ или другой ПДУ, просто повторите все заново.
Как видите, само устройство вполне миниатюрное, но при желании можно сделать еще меньше.
Питается схема от 4 до 5.5вольт.
Если ставить этот ИК-выключатель например в лампу или светильник, то можно для питания использовать вот такой Блок питания от зарядки, в параметрах он выдает нужное нам напряжение
Видео работы
Как и чем прошить PIC Смотрите тут
А так же ПРОШИВКА
ИК дистанционное управление | Электроника для всех
Завязка или «Как начинался девайс»
…Когда я пришёл, Виктория сидела на диване, уставившись в телевизор. День выдался тяжёлый, поэтому ей не хотелось ничего делать. Несколько минут мы смотрели какой-то попсовый сериал, потом он закончился, и Вика выключила телевизор. В комнате стало темно. На улице шумел дождь, и от этого казалось, что дома тоже холодно.
Вика поднялась с дивана и принялась, на ощупь, искать выключатель от светильника. Настенный светильник висел, почему-то, не у дивана, а на другой стене и приходилось топать через всю комнату, чтобы зажечь свет. Когда она, наконец, включила его, комната наполнилась тёплым светом лампочки накаливания.
Около меня, на помятой простыне, лежал пульт от телевизора. Нижние кнопки без опознавательных знаков и, скорее всего, не использовались. И тут у меня возникла интересная мысль…
— Вик, а хочешь, я сделаю так, что твой светильник можно будет пультом от ящика включить? Там даже кнопки лишние есть…
Концепция
Наше устройство должно уметь принимать сигнал с ИК-пульта, отличать «свою» кнопку от других, и управлять нагрузкой. Первый и последний пункты простые, как топор. А вот со вторым немного интереснее. Я решил не ограничиваться каким-то конкретным пультом (Почему? – «Не интересно так!»), а сделать систему, которая может работать с разными моделями пультов от разной техники. Лишь бы ИК-приёмник не спасовал, и уверенно ловил сигнал.
Ловить сигнал будем с помощью фотоприёмника TSOP. Причем не каждый приёмник подойдёт – несущая частота должна совпадать с частотой пульта. Несущая частота приёмника указана в его маркировке: TSOP17xx – 17 это модель приёмника, а хх – частота в килогерцах. А несущую частоту пульта можно найти в документации или в инете. В принципе, сигнал будет приниматься, даже если частоты не совпадают, но чувствительность будет фиговой – придётся тыкать пультом прямо в приёмник.
Каждая компания, выпускающая бытовую технику, вынуждена соблюдать стандарты при изготовлении «железа». И частоты модуляции у пультов, тоже стандартные. Зато разработчики отрываются на программной части – разнообразие протоколов обмена между пультом и устройством просто поражает. Поэтому, пришлось придумать универсальный алгоритм, которому плевать на протокол обмена. Работает он так:
В памяти устройства хранятся контрольные точки. Для каждой такой точки нужно записать время и состояние выхода с ИК-приёмника – 0 или 1.
При получении сигнала с пульта, МК будет последовательно проверять каждую точку. Если все точки совпали – то это была та самая кнопка, на которую устройство запрограммировали. А если выход с приёмника хотя-бы в одной точке не совпал с шаблоном, то устройство никак не отреагирует.
Впрочем, баги никто не отменял! Возможно, что, сигнал будет отличаться от шаблона, но
в контрольных точках значения будут одинаковые. Получится ложное срабатывание. Казалось-бы – редкостное западло, и бороться с ним пипец сложно! Но на самом деле не всё так плохо (а местами даже хорошо).
Во-первых, у нас ведь цифровой сигнал, а значит, импульсы идут с постоянными задержками (таймингами) и просто-так не возникают. Поэтому, если точки стоят достаточно плотно, то можно не бояться, что какой-нибудь импульс будет пропущен.
Во-вторых мелкий шум (обычно выглядит, как редкие короткие импульсы) в большинстве случаев идёт лесом – ибо если он не попадёт прямо на контрольную точку, то нифига не повлияет на систему. Значит у нас есть естественная защита от шума.
Второй тип ошибок (aka «Пропуск команды») бывает из-за того, что точка расположена слишком близко к фронту импульса (к тому месту, где сигнал на выходе приёмника меняет свой уровень).
Представь себе, что через несколько микросекунд после контрольной точки сигнал должен меняться с HIGH на LOW. А теперь представь, что пульт выдал команду чуть быстрее, чем обычно (довольно часто случается). Фронт импульса сдвинулся во времени, и теперь он происходит ДО контрольной точки! Выход с приёмника не совпадёт с шаблоном и система сбросится.
Чтобы этого не происходило, нужно размещать контрольные точки подальше от фронтов.
«Всё круто» — скажешь ты – «Но откуда мне взять контрольные точки?». Вот и я над этим долго тупил. В результате решил доверить расстановку точек тебе.
На устройстве есть джампер J1. Если при включении он замкнут – устройство будет тупо передавать через UART всё, что выдаёт ИК-приёмник. На другой стороне провода эти данные принимает моя программа, которая выдаёт на экран компа импульсы с TSOP’а. Тебе остаётся только мышкой раскидать по этому графику контрольные точки, и прошить их в EEPROM. Если возможности использовать UART нету, то на помощь приходит джампер J2. Когда он замкнут – устройство не выдаёт данные по UART, а складывает их в EEPROM.
Схема
Простая до безобразия. В качестве контроллера я взял ATTiny2313. Частота 4 мегагерца, от кварца, или внутренней RC цепочки.
На отдельный разъём выведены линии RX и TX для связи, и питание. Туда – же выведен RESET для того чтобы можно было перепрошивать МК, не вынимая из устройства.
Выход фотоприёмника подключается к INT0, он подтянут к питанию через резистор в 33к. Если будут сильные помехи, то можно поставить туда резистор поменьше, например, 10к.
На пинах D4 и D5 висят джамперы. Jumper1 на D5 и Jumper2 на D4.
К пину D6 подцеплен силовой модуль. Причём симистор я взял самый мелкий из тех, что у меня были – BT131. Ток у него 1А – не круто, но зато корпус не слишком большой — ТО92. Для мелкой нагрузки самое то. Опторазвязку я сделал на MOC3023 – у неё нет датчика пересечения нуля, а значит она подходит для плавного управления нагрузкой (здесь я это так и не реализовал).
Порт B почти полностью выведен на разъём – туда можно прицепить индикатор или ещё что-нибудь. Этим-же разъёмом я пользуюсь при прошивке девайса. Пин B0 занят светодиодом.
Питается всё это дело через LM70L05 и диодный мост. То есть на вход можно подавать переменное напряжение, например, с трансформатора. Главное, чтобы оно не превышало 25 Вольт, а то умрёт либо стабилизатор, либо кондер.
Плата получилась вот такая:
Да, она немного отличается от той платы, которая лежит в архиве. Но это не значит, что я сделал себе убер-продвинутую плату, а вам подсунул демо версию :). Напротив, моя плата имеет пару недостатков, которых нет в конечной версии: у меня не выведена на штырёк ножка RESET, и светодиод висит на PB7. А это не очень способствует внутрисхемному программированию.
Прошивка
Устройство может работать в двух режимах. В первом – когда J2 замкнут – оно просто передаёт импульсы с фотоприёмника в UART. С него и начнём:
UART работает на скорости 9600, т.е, при частоте 4МГц в регистр UBRR записываем 25.
…ждём, пока не дёрнется ножка фотоприёмника. Как только она опустилась (изначально-то она болтается на pull-up резисторе) мы запускаем таймер (TIMER/COUNTER1, тот, что на 16 бит) и врубаем прерывание INT0 на любое изменение входа – any logical change (ICS00 = 1). Таймер тикает… ждём.
Импульс с пульта кончился – выход с фотоприёмника взметнулся вверх, прерывание сработало. Теперь записываем в память значение таймера и сбрасываем таймер. Ещё нужно инкрементировать указатель записи, чтобы в следующем прерывании записать в другую ячейку памяти.
Ещё импульс… выход дёргается… прерывание… запись значения таймера в память… сброс таймера… указатель + 2 (мы пишем два байта за раз)…
И так будет продолжаться до тех пор, пока не станет ясно, что конец (оперативки) близок. Или, пока сигнал не кончится. В любом случае, мы стопорим таймер и отключаем прерывания. Потом, не спеша выкидываем всё, что насобирали, в UART. Или, если J2 замкнут – в EEPROM.
В конце можно затупить в бесконечный цикл и ждать ресета – миссия выполнена.
А на выходе получится последовательность чисел. Каждое из них – время между изменениями состояния выхода TSOP’a. Зная, с чего началась эта последовательность (А мы знаем! Это перепад с HIGH на LOW), мы можем восстановить всю картину:
Второй режим. Тут мы ловим команды с пульта и управляем нагрузкой.
Прерывания не используются совсем, всё крутится в главном цикле программы. В EEPROM лежат контрольные точки. Каждая из них занимает 1 байт: 7 бит на время от последней точки и 1 бит на состояние выход TSOP’a в этой точке.
После инициализации сидим и ждём, пока TSOP дёрнется. Как только это случилось – читаем из EEPROM первую точку, и в простом цикле тупим столько, сколько там написано. При этом время считаем пачками по 32us. Выйдя из ступора, проверяем – что-там на выходе приёмника.
Если выход не совпал с тем, что мы ожидали – это не наша команда. Можно спокойно дожидаться конца сигнала и начинать всё сначала.
Если выход соответствует нашим ожиданиям – загружаем следующюю точку и проверяем её. Так до тех пор, пока не наткнёмся на точку, время которой = 0. Это значит, что точек больше нет. Значит вся команда совпала, и можно дёргать нагрузку.
Вот так, получается, простенький алгоритм. Но ведь чем проще, тем надёжнее!
Софтина
Сначала я думал сделать автоматическое запоминание шаблона. То есть ты замыкаешь джампер, тыкаешь пультом в TSOP, а МК сам расставляет контрольные точки и складывает их в EEPROM. Потом стало ясно, что идея бредовая: более-менее адекватный алгоритм получится чересчур сложным. Или не будет универсальным.
Второй идеей была программка для компа, в которой можно самому расставить контрольные точки. Не слишком технологично, но всяко лучше, чем доверять это дело МК.
Приучаем девайс отзываться на нужную кнопку пульта:
1) Замыкаем перемычку J1.
2) Подключаем UART. Если возможности его подключить нету, то замыкаем джампер J2. Тогда устройство будет скидывать данные в EEPROM.
3) Врубаем питание.
4) Если мы решили юзать UART, то запускаем софт и смотрим на строку состояния (внизу окошка). Там должно быть написано “COM порт открыт”. Если не написано, то ищем косяк в подключении и тыкаем кнопу «Подключить».
5) Берём пульт и тыкаем нужной кнопкой в TSOP. Как только девайс почует, что сигнал пошёл – загорится светодиод. Сразу после этого устройство начнёт передавать по UART (или писать в EEPROM) данные. Когда передача закончилась, светодиод гаснет.
6.1) Если работаем по UART, то жмём кнопу «Загрузить по UART». И радуемся надписи «Загрузил график…» в строке состояния.
6.2) Если работаем через EEPROM, то читаем программатором EEPROM память и сохраняем в *.bin файл. (Именно bin!). Потом нажимаем в программе кнопку «Загрузить .bin» и выбираем файл с EEPROM.
7) Смотрим на загрузившийся график – это сигнал с TSOP’a. На боковой панели есть ползунок – им можно менять масштаб. Теперь тыкаем мышкой по графику – ставим контрольные точки. Правой кнопкой точки удаляются. Только не нужно их ставить слишком близко к фронтам. Получается примерно так:
8) Нажимаем «Сохранить .bin» и сохраняем точки. Потом прошиваем этот файл в EEPROM. Так-как мы запихиваем время между двумя точками в 7 бит, то оно ограничено 4мс. Если время между двумя точками превысит это значение – программа откажется запихивать точки в файл.
9) Снимаем джамперы. Перезагружаем устройство. Готово!
Архив с прошивкой, платой, софтом
Видео с испытаний
Три схемы дистанционных выключателей | KAVMASTER
В этой статье будут рассмотрены три схемы дистанционных выключателей, применить их можно для управления практически любых электроприборов, так как в качестве выключателя используется реле. Схемы выключателей достаточно просты и повторимы.
Дистанционный выключатель с управлением от ПДУ
Это простая схема для дистанционного включения и выключения любого электрического устройства при помощи обычного пульта дистанционного управления (ПДУ).
Дальность действия дистанционного выключателя составляет около 10 метров. В качестве датчика используется 3-контактный ИК- приемник (TSOP 1738 или его аналог), работающий на частоте 38 кГц. При обнаружении ИК-излучения, на выходе датчика появляется сигнал лог.0, который в свою очередь усиливается транзистором VT1.
С выхода транзистора VT1 усиленный сигнал запускает ждущий мультивибратор на таймере NE555 . Импульс с выход (3) таймера, имеющий длительность в 1 секунду, переключает JK-триггер, чей выход (1) через транзистор (VT2) управляет электромагнитным реле. С каждым новым сигналом от NE555, выход JK-триггера будет изменяться на противоположное состояние.
Светодиод HL1 используются для отображения состояния выходного каскада во время работы устройства. Схема питается от стабилизатора напряжения 7805. Конденсатор С2 и резистор R4 предназначены для предотвращения ложного срабатывания таймера NE555.
Дистанционный выключатель по хлопку
Вариант 1
Эта схема дистанционного акустического выключателя предназначена для дистанционного включения / выключения света либо изменения скорости вращения напольного вентилятора. Особенность данного дистанционного выключателя в том, что управление нагрузкой происходит по звуковому сигналу (хлопку). Так же данная схема может быть востребована, в целях безопасности, для бесконтактного включения и выключения электроприборов в помещениях с повышенной влажностью.
Устройство имеет три канала управления, каждый из которых оснащен индикатором на светодиоде. Основу схемы акустического выключателя составляют две микросхемы: таймер NE555 и десятичный счетчик-делитель К561ИЕ8 (аналог CD4017)
Микросхема NE555 в данном случае подключена в режиме ждущего мультивибратора. При изменении сигнала на входе 2 таймера NE555, на его выходе 3 появляется одиночный импульс, после чего ждущий мультивибратор переходит в исходное состояние. С помощью формулы, приведенной ниже, можно длительность выходного импульса:
T = 1,1 * R5 * C4
В то время, когда кто-то хлопает в ладоши, звуковой сигнал при помощи конденсаторного микрофона преобразуется в электрический. Затем этот сигнал поступает на базу транзистора VT1, который в свою очередь запускает ждущий мультивибратор на NE555.
Сигнал с выхода 3 таймера NE555 поступает на счетный вход (вывод 14) микросхемы К561ИЕ8. После получения сигнала тактовой частоты, счет начинается с нуля. С каждым новым входным сигналом (хлопком) происходит последовательное появление сигнала высокого уровня на выходах К561ИЕ8. (Подробное описание К561ИЕ8.)
Поскольку схема имеет три канала для управления, то следующий выход (вывод 10) подключены к выводу обнуления счетчика (вывод 15), и при появлении на выводе 10 лог.1 происходит сброс счетчика, в результате чего все три канала обнуляются и счет начинается снова.
При первом хлопке на вывод 2 будет лог.1 — загорится светодиод HL1 и включится реле К1, при следующем хлопке лог.1 появится уже на выводе 4 — загорится светодиод HL2 и включится реле К2, при этом на выводе 2 будет лог.0 и светодиод HL1 погаснет (реле К1 отключится) и так далее.
Вариант 2
Звуковой сигнал, принятый микрофоном, усиливается микрофонным усилителем на ОУ 741. С выхода ОУ сигнал поступает на вход десятичного счетчика К561ИЕ8, работа которого была описана в предыдущей схеме.
C помощью резистора R3 регулируют чувствительность ОУ 741. Резистор R1 устанавливает чувствительность микрофона. Резистор R4 предназначен для исключения ложных срабатываний счетчика К561ИЕ8. Свечение светодиода HL1 указывает на выключенное состояние нагрузки.
Дистанционный выключатель на основе лазера
Эта простая схема дистанционного выключателя построена на таймере NE555. В качестве управляющего элемента использована лазерная указка. Эта схема была опробована в работе с расстояния 50 метров и показала хорошие результаты. По большому счету дальность действия зависит от мощности и качества самого лазера. Электрическая схема дистанционного выключателя:
При наведении лазерного луча на фоторезистор U1 происходит включение нагрузки через электромагнитное реле, а при фокусировке лазерного луча на фоторезистор U2 — выключение.
На этом всё! Делитесь статьёй в соц сетях!
Схема простого инфракрасного приемника и передатчика для компьютера
В настоящее время большинство сотовых телефонов имеют инфракрасный порт IrDA, посредством которого несложно наладить связь с любым компьютером имеющим внешний разъем.
Несмотря на то, что основное количество материнских плат ПК снабжены внутренним контроллером IrDA, проблема заключается в том что адаптер порта (именно ИК приемо-передатчик) в набор, обычно не входит, а купить его довольно трудно.
Данную задачу поможет решить приведенный в данной статье самодельный инфракрасный приемник для компьютера. Собрать его не так уж и сложно поскольку не имеет в своем составе дефицитных и дорогостоящих радиодеталей. Работа его проверена с всевозможными материнскими платами с процессорами Pentium — Pentium 4 под управлением ОС Windows 98/2000/XP.
Описание конструкции инфракрасного приемника
Основа ИК передающего блока — усилитель сигналов на транзисторе VT3, в коллекторную электроцепь которого введен инфракрасный диод VD2 и светодиод HL2 – индикатор процесса отправки данных.
Приемный узел состоит из ИК фотодиода VD1 и усилителя на транзисторе VT2. Транзистор VT1, открываясь в момент передачи данных, закорачивает эмиттерный переход транзистора VT2, препятствуя приему собственных данных.
Светодиод HL1 предназначен для визуального контроля обмена данными. Электроцепи +5 В, ТX (передаваемый сигнал), RX (принятый сигнал), и Общ. соединяют четырех-проводным шнуром (например, телефонным) с соответствующими выводами клеммы порта IrDA на материнской плате компьютера. Обозначение выводов возможно установить по маркировке на плате или в datasheet.
Инфракрасный приемник-передтчик построен на односторонней печатной плате из стеклотекстолита 16 мм x 25 мм. Она приведена в масштабе 2:1 и спроектирована под резисторы поверхностного монтажа. Эти резисторы и емкость С2 монтируют со стороны печатных проводников. Чтобы использовать стандартные сопротивления и конденсатор, габариты печатной платы необходимо увеличить.
Взамен транзисторов КТ3107К подойдут другие такого же типа КТ502,КТ361. Замена транзистору КТ3102А могут составить транзисторы КТ315, КТ3102, КТ503. Светодиоды типа АЛ307 можно заменить любыми диаметром 3 или 5 мм, причем светодиод HL2 (передача) – красного цвета, а HL1 (прием) – зеленого.
Инфракрасный диод АЛ156А возможно поменять другим ИК диапазона, можно использовать и ИК-диод от неисправного пульта дистанционного управления телевизора. Смена фотодиода ФД-263-01 на менее быстродействующий нежелательна, это сделает обмен данными очень медленным.
Инфракрасный барьер своими руками
Как известно, помимо видимого светового спектра существует также инфракрасное излучение, которое не воспринимается глазом человека. Его часто используют в пультах дистанционного управления для передачи различных команд. Интересный факт – чтобы «увидеть» инфракрасный свет, достаточно направить объектив цифрового фотоаппарата на ИК-излучатель пульта и нажимать на нём клавиши. На экране фотоаппарата при этом будет видна светящаяся точка – это работает инфракрасный светодиод.
ИК-лучи в радиоэлектронике позволяют создать такое интересное устройство, которое называется инфракрасным барьер. Оно состоит из двух частей – передатчика и приёмника. Передатчик представляет собой обычный ИК-светодиод, на который поступают пачки импульсов. Приёмник эти пачки импульсов непрерывно улавливает и детектирует. Когда между приёмником и передатчиком имеется свободная видимая связь, т.е. свет свободно «долетает» до приёмника, на выходе устанавливается логический ноль. Но как только в зоне действия появляется посторонний предмет, связь моментально нарушается и приёмник об этом сигнализирует. Использовать такой барьер можно, прежде всего, в охранных сигнализациях, ведь ИК излучение не увидеть невооружённым глазом.
Преимуществом именно этой схемы является то, что инфракрасный светодиод в ней светится не непрерывно, а импульсно. Во-первых, это продлевает жизнь самому светодиоду и уменьшает потребление тока, а во-вторых, это является хорошим средством защиты от ложных срабатываний, поэтому схему спокойно можно использовать даже на улице, когда на приёмник попадают прямые солнечные лучи.
Схема передатчика
Схема передатчика основана на сдвоенном интегральном таймере NE556, который генерирует импульсы для излучающего светодиода LED1, резистор R2 при этом задаёт мощность излучения. Все остальные элементы схемы должны строго соответствовать заданному номиналу для соблюдения нужной частоты работы генератора. D1 – любой маломощный диод, например, 1N4148, 1N4007, КД521.
Схема приёмника
Ключевым звеном схемы является специальный приёмник ИК сигнала, обозначаемый как TSOP (Temic Semiconductors Opto Electronics Photo Modules). Найти его можно в любом телевизоре, имеющем пульт управления. Сюда подойдёт любой приёмник, рассчитанный на частоту 36 кГц, например, TSOP1736. Этот приёмник управляет затвором полевого транзистора VT1. Т.к. сигнал с выхода приёмника составляет около 5 вольт, то транзистор нужно применить с логическим управлением, например, IRL520 или любые другие из серии IRL. В крайнем случае, можно поставить и обычный полевой, например, IRF540, IRF740, IRF630, но он не будет открываться полностью. Светодиод LED1 индицирует состояние выхода схемы. Когда видимая связь между приёмником и передатчиком не нарушена, напряжение на выходе равно нулю, LED1 не горит. Как только в зоне действия появляется посторонний предмет, LED1 загорается, а напряжение на выходе OUT становится равным напряжению питания. D1 на схеме – стабилитрон на 5 вольт, можно применить, например, 1N4733.
Сборка ИК-барьера
Каждая схема собирается на своей печатной плате, TSOP-приёмник и ИК-светодиод выводятся на проводках. Платы выполняются методом ЛУТ, ниже представлена пара фотографий процесса:
Как и при создании любого электронного устройства, сначала на плату запаиваются мелкие детали – резисторы, диоды. Затем конденсаторы, а после них всё остальное. Микросхему желательно установить в панельку, а провода питания для удобства подключить через клеммники. После пайки смыть остатки флюса с платы, прозвонить дорожки на замыкание.
Настройка и испытания
После сборки можно подавать на платы питание. Напряжение питания обеих схем составляет 9-12 вольт. После включения необходимо убедиться, что напряжение на катоде стабилитрона в схеме приёмника составляет примерно 5 вольт. Если оно выше, нужно проверить работоспособность стабилитрона и резистора R2, иначе TSOP-приёмник может сгореть. Запустив передатчик, можно посмотреть на светодиод через объектив фотоаппарата, он должен слегка светиться. Желательно поместить светодиод в трубочку длиной 3-4 сантиметра для того, чтобы свет не рассеивался по сторонам, а был направлен строго в одном направлении.
Теперь можно направить трубку светодиодом на приёмник и посмотреть, что произойдёт. Когда между ними существует видимая связь, синий светодиод погашен, это можно видеть по фото.
Теперь поместим кусок фанерки на пути потока ИК-излучения, связь между приёмником и передатчиком потеряется и синий светодиод сразу же загорится.
Можно поэкспериментировать с различными материалами. Бумага и прозрачный пластик пропускают инфракрасное излучение, поэтому ИК-барьер на них не реагирует. Зато металл, дерево, рука человека или другие плотные материалы являют препятствием для лучей, как видно по видео.