Как проще всего прошить/перепрошить микросхему памяти. USB программатор Ch441A: инструкция для «чайников»
Вообще не знаете, как пользоваться программатором?
Эта подробная инструкция о том, как прошить микросхему памяти программатором для «чайников». Она поможет даже тем, кто абсолютно не разбирается в электронике и видел программатор только на картинках или фото.
Итак, для начала несколько распространенных заблуждений:
1. Перепрошивать микросхемы памяти умеют только профессионалы, потому что программатор — это сложное устройство.
Большинство современных программаторов действительно собраны из множества радиокомпонентов и/или построены на базе микроконтроллеров. Однако вовсе не обязательно собирать программатор самостоятельно — можно купить готовый.
2. Программатор — дорогостоящее устройство. Если вы решили купить профессиональный универсальный программатор, цена его может оказаться не оправданной даже при заказе напрямую из Китая. Хотя в большистве случаев продвинутый универсальный программатор вам не понадобится, достаточно купить простой и дешевый Ch441A
Обязательно ли выпаивать микросхему памяти, чтобы её «прошить»? Это зависит от устройства, в котором она расположена. Во многих случаях микросхема памяти не припаяна к плате напрямую, а находятся в специальной панельке.
Таким образом, чтобы запрограммировать микросхему памяти вам понадобиться всего лишь:
1. Посмотреть внимательно на то, где расположен ключ микросхемы памяти — это своего рода метка показывающая, как (какой стороной) установить чип.
Обычно ключ микросхемы памяти — это точка или выемка на её корпусе. По ней и определяется расположение первого вывода.
На печатной плате обычно также есть соответствующая метка — перед тем как доставать/выпаивать микросхему убедитесь, что ключи (метки) совпадают!
2. В большинстве программаторов также есть ключ-метка, показывающая, как правильно вставить микросхему в его панель! Причем для разных типов микросхем этот ключ может быть разным!
Например обратите внимание на ключи метки первого вывода микросхем программатора Ch441A.
Итак, если у вас возник вопрос, как правильно вставить микросхему в программатор Ch441A, посмотрите прежде всего на то, какой серии она соответствует — что написано на её корпусе!
Ключ метка микросхемы должна соответствовать ключу метки программатора (см. фото).
Обратите внимание, что в зависимости от версии/модификации программатора Ch441A расположение микросхемы в панели может отличаться и быть не таким как в софте (программе) для Ch441A.
3. Важно знать, что Ch441A может работать в двух режимах, поэтому обязательно убедитесь, что перемычка (джампер) программатора Ch441A стоит в положении (1-2) — режим программатора, а не (2-3)- режим USB-UART конвертера!
4. После фиксации микросхемы в панельке программатора вставить его в USB порт — напрямую или через USB удлинитель.
5. Запустить программу (софт) для Ch441A. Проверить правильно ли опознан программатор и «видит» ли его программа. Если да, то в строке вы можете увидеть надпись «Device state: connected», то есть «Состояние устройства: подключено»!
6. Если программа запущена не в режиме администратора, может появится сообщение, что драйвер не найден или установлен некорректно!
Хотя в большинстве случаев программатор работает нормально и так, то есть запускать его софт с правами администратора нет необходимости!
Внимание: файл запущенный от имени администратора может сделать с вашим компьютером всё, что угодно! Никогда не запускайте программы, которым не доверяете, от имени администратора!
7. Выбор микросхемы через интерфейс программатора. Удобнее и быстрее найти её через поиск, нажав на кнопку «Chip Search».
Микросхема найдена в списке(см. рис.).
Проверить, записаны ли в неё данные, или микросхема пустая можно через пункт меню: «Operate» -> «Blank Check».
Сообщение «Chip Main Memory are Blank» буквально «главная память чипа пустая», означает, что никаких полезных данных в микросхеме не содержится!
Работу с программатором микросхем памяти можно разделить на несколько видов:
— так называемый бекап (backup) — это создание и сохранение резервной копии данных. Считать и сохранить содержимое большинсва микросхем памяти программатором элементарно просто.
Для программатора Ch441A в меню его программы есть пункт «Read chip» — прочитать чип (микросхему).
После того, как содержимое микросхемы памяти считано, его легко сохранить в файл, выбрав пункт «File» -> «Save» или просто нажав одновременно две клавиши Ctrl+S.
При сохранении выбрать для файла любое осмысленное имя (лучше латиницей)! Расширение дописывать не нужно!
Программа для программатора Ch441A добавит его сама!
— очистка (стирание) памяти микросхемы. В меню программы Ch441A выбрать пункт «Erase Сhip» — стереть чип!
— запись файла «прошивки» в микросхему памяти состоит из нескольких действий:
1. Выбор файла с «прошивкой» через пункт меню «File» -> «Open» (открыть файл).
Выбрать файл с подходящим расширением, например сохраненный ранее backup файл «прошивки»
2. Запись данных кнопкой «Write Chip».
Проверка правильности записи файла «прошивки» выполняется нажатием кнопки «Verify Chip».
Если «прошивка» загружена правильно — содержимое данных из файла и микросхемы будут одинаковые! После успешной проверки появится сообщение «Chip Main Memory and buffer same», то есть в буквальном переводе «главная память чипа и буффера совпадают»!
Как видите, «прошить» микросхему памяти программатором совсем не сложно. Купить заказать программатор Ch441A можно здесь.
Programmer Ch441A — стоит ли покупать, как пользоваться программатором для прошивки своими руками микросхем, БИОС, SPI и EEPROM Flash, схема распиновки, datasheet
Здравствуйте, уважаемые читатели. В этом небольшом обзоре я расскажу о недорогом программаторе, и как с его помощью можно своими силами восстановить компьютерную материнскую плату.Предыстория
У товарища имелась полумёртвая материнская плата Gigabyte GA-MA78GM-S2H, при включении крутятся вентиляторы и всё, дальше не стартует.Замеры всех напряжений показали что всё в норме. Подозрения падали на BIOS, надо было удостоверится что в нём проблема. Микросхема BIOS на данной материнке SPI флеш MX25L8005. Есть простой метод проверки какой-либо активности BIOS, нужно ко второй (Serial Data Output) и к четвертой ноге (Ground) микросхемы припаять светодиод.
Если с прошивкой BIOS всё в порядке, то светодиод, в процессе старта материнской платы, должен мерцать. В данном случае светодиод тускло горел, было принято решение прошивать, вот тут нам и пригодится наш программатор.
Дополнительная информация
Внешний вид
В комплекте сам программатор и платка со штырьками (переходник для установки флеш разных типов).
Прошивка
Выпаиваем микросхему BIOS и устанавливаем на платку переходник, вставляем в программатор.Устанавливаем драйвера и программу для прошивки — ссылка
Интерфейс программы на русском, интуитивно понятный. Нажимаем кнопку «Детект» программа определяет наш тип флеш:
Стираем микросхему флеш памяти и проверяем на пустоту. Скачиваем с сайта Gigabyte прошивку на нашу материнку и открываем в программе:
Прошиваем:
Проверяем после прошивки как записалось — содержимое флеш совпадает с тем чем прошивали:
После установки на место микросхемы BIOS, материнская плата запустилась без проблем.
Вот такой получился «ремонт» материнки ценой в три доллара.
Всем спасибо за внимание!
Топ-10 лучших программаторов и дебаггеров с Алиэкспресс
В жизни любого радиолюбителя наступает момент, когда собранный своими руками программатор хочется заменить на что-то купленное и с бОльшими возможностями. Или расширить номенклатуру совместимых кристаллов. На Алиэкспресс можно найти огромный ассортимент универсальных программаторов и готовые адаптеры для установки микросхем памяти и контроллеров. В подборке будут интересные модели для AVR (ATMega/ATTiny), для PIC, STM8/STM32, для EEPROM, для Zigbee контроллеров и адаптеры.
С другими полезными обзорами и списками выгодных покупок вы можете ознакомиться по ссылке.
Внутрисхемный отладчик CC Debugger за $7.65
Все больше становится доступного программного обеспечения, с помощью которого можно настраивать по себя различные модули и устройства. А конкретно, CC-Debugger может использоваться для программирования и отладки систем на базе 8051, например, модулей CC2531, на базе которых производятся гаджеты для умного дома и «интернета вещей». Работает с программным обеспечением IAR и SmartRF Studio.
Недорогой USB Zigbee трансмитер-снифер СС2531
Хороший пример использования предыдущего отладчика CC-Debugger — это заливка адаптированной прошивки в компактный USB донгл для сети Zigbee. С помощью модифицированного Zigbee трансмиттера можно привязывать устройства в свою сеть, создавать собственные Zigbee-мосты, анализировать протоколы датчиков и так далее.
Универсальный программатор AVR USBASP
Один из лучших программаторов для AVR — это классический USBASP, компактный и универсальный программатор, для загрузки программного обеспечения через интерфейс ISP. В комплекте есть кабель для загрузки через ISP на 10 контактов. Подходит не только для семейства ATMEGA8, но и для новых ATMEGA128. Работает в Win7.
Дешевый ПРОГРАММАТОР AVR USBASP
А это еще один вариант USB ISP программатора для AVR (семейства ATMega и ATTiny). В отличие от предыдущего имеет выбор питания кристалла (5V или 3.3V джампером), а также в два раза меньшую стоимость. Интерфейс для программирования ISP, но есть смысл воспользоваться отдельным адаптером с ISP10 на ISP6 для удобства работы с компактными отладочными платами Arduino.
Универсальный программатор Ch441A
Устройство представляет собой полноценный uart-мост и эмулятор последовательного порта. Предназначен для прошивки микросхем памяти (24 EEPROM и 25 SPI flash 8pin/16pin) и микроконтроллеров по spi (AVR, PIC, Singlechip STC). Подходит для восстановления флэш-памяти BIOS USB. Для работы с контроллерами Атмел используется программное обеспечение AVR Ch441A или AVRDUDE
Программатор-отладчик ST-LINK
Для работы с устройствами от STMicroelectronics рекомендую использовать программатор ST LINK. По ссылке версия ST-Link V2, который подходит для чипов семейств STM8 и STM32. Удобен для загрузки встроенного программного обеспечения на контроллер прямо в составе схемы, а также для отладки работы и поиска ошибок. В комплекте есть 4-pin кабель. Цена смешная — полтора бакса.
Программатор и SWD адаптер J-Link
А вот если нужен адаптер посерьезнее, то есть смысл посмотреть недорогой программатор SWD, который совместим со всеми функциями J-Link. В данной модели интерфейс упрощен до четырех линий: VCC, SWDIO, SWCLK, GND. Но, по сравнению с обычными, этот вариант быстрый и эффективный. Подключается через MicroUSB, корпуса, увы, не предусмотрено. Цена всего 2 бакса.
Программаторы PICKIT версий 2/3/3.5
Один из лучших USB программаторов для PICmicro контроллеров и ключей KeeLOQ производства компании Microchip Technology. В лоте на выбор есть модели: PICKIT3, PICKIT2 или PICKIT 3,5. Лучше брать последние версии устройства. В комплекте идет плата расширения с ZIF-сокетом (PIC ICD2). Полный схемотехнический аналог фирменного программатора PICKIT 3 компании Microchip.
Универсальный USB SPI программатор EZP2019
Новейшая версия универсального USB программатора EZP2019 с высокоскоростным интерфейсом SPI с большим набором адаптеров для EEPROM, клипсами и диском с программным обеспечением. Этот вариант несколько лучше дешевого программатора Ch441A. Является усовершенствованной версией программаторов EZPO2010/EZP2013. В комплекте есть все необходимое для работы.
Есть еще один хороший вариант — универсальный программатор TL866II, но он не поместился в текст статьи, о нем будет позже.
Программатор SPI и I2C микросхем памяти Ch441A Mini Programmer
Микросхемы памяти серий 24хх (EEPROM), 25хх (В комплект поставки входят сам программатор и переходная плата с двумя посадочными местами под микросхемы памяти в SOIC корпусе.
Они дублируют имеющиеся на нижней стороне платы программатора, и если на плату программатора микросхемы памяти нужно обязательно припаивать, на переходнике можно попробовать прижать микросхему прищепкой или держателем для бумаг.
Так-же на переходнике есть посадочное место для разьема
Аппаратная часть (Hardware).
Программатор выполнен на базе микроконтроллера «USB Bus Convert Chip» серии Ch441A. Он рассчитан на физическое подключение к порту USB 2.0 компьютера, при подключении через хаб-удлиннитель программатор у меня работал с ошибками (может у меня хаб такой). Модуль программирования памяти собран на плате размерами 63х27мм (без учета USB разьема, с разьемом 84х27мм) из черного стеклотекстолита.
Схема программатора:
В распоряжении автора есть два экземпляра этого программатора, приобретенные в разное время, визуально их можно отличить по названию, один (более ранний) называется «Ch441A Mini Programmer«, второй «Ch441A MinProgramment«. Схемы одинаковые, различаются только цветом светодиода «RUN«. На первом зеленый, на втором желтый.
Некоторые схемные обозначения на конкретном программаторе могут немного отличаться, например самовосстанавливающийся предохранитель F1 (fuse) может обозначаться как R1. В инете встречались упоминания, что в эту позицию иногда ставят резистор нулевого сопротивления т.е. перемычку. У меня как и положено на обоих стоят предохранители ~400mA, сопротивление 0,92Ом, маркировка на корпусе «5». Также на плате часто отсутствует схемное обозначение резисторной сборки PR1. Более грамотное обозначение схемных элементов программатора можно посмотреть на изображении верхней стороны платы от магазина WAVGAT (на AliExpress):
Особых отличий от даташита схема не имеет, разве что на блокировочных конденсаторах по питанию сильно экономили. Питание 5V от USB подается на вывод 28, на выходе 9 внутреннего стабилизатора блокировочный конденсатор.
Т.к. на выводах ввода/вывода напряжение соответствует 5V уровням, в основном это устройство на 5V, правда в инете много упоминаний и о программировании им микросхем на 3.3V без каких либо ошибок и отрицательных последствий. Выход отдельного стабилизатора AMS1117-3.3 в схеме не задействован и просто выведен на выходной ZIF разьем и на контакт боковой гребенки SPI.
В даташите указан способ сделать уровни на выходах совместимыми с 3.3V. Для этого необходимо соединить выводы 28 и 9 и подать на них 3.3V, при этом внутренний стабилизатор просто не используется. Но при этом 3.3V уровни также будут на на переходнике USB <-> RS232, что иногда не приемлемо. Также на Ali сушествует другая версия этого программатора, скомпонованная немного по другому и выполненая на зеленом текстолите. Читал, что там на вывод 28 подается 3.3V от внешнего стабилизатора, но выводы 28 и 9 не соединены, и это нормально работает. В любом случае, уровни на переходнике USB <-> RS232 и здесь будут 3.3V.
Если планируется программирование флешек 1.8V через основной разьем необходимо дополнительно приобрести модуль 1.8V-adapter. Бонусом является то, что переделать его для поддержки и уровней 3.3V несложно, надо лишь закоротить вход/выход стабилизатора 1.8V дополнительным джампером.
Теперь при наличии джампера адаптер работает с логическими уровнями 3.3V, при отсутствии — 1.8V.
Минус тут в том, что стоимость адаптера не намного меньше, чем самого программатора. Но если он уже есть, почему бы его не использовать по полной?
Если для программирования будет использована боковая гребенка SPI, можно поступить проще. На Ali много предложений 4-канального двунаправленного преобразователя уровней на МОП транзисторах за очень небольшие деньги.
Работа этого преобразователя подробно описана в статье «Согласование логических уровней 5В и 3.3В устройств». Схема отличается от рассмотренной в статье только номиналами резисторов (сопротивление меньше — увеличено быстродействие и энергопотребление). За счет добавления дополнительных джампера J1 и двух кремниевых диодов, можно будет программировать как 3.3V, так и 1.8V флешки.
Резисторы 2,2 кОм отделяют выводы #WP и #HOLD флешки от шины питания. Светодиод — индикатор наличия напряжения.
Программная часть (Software), драйвер.
Перед применением программатора необходимо инсталировать в Windows его драйвер(а), легко находятся в инете, я брал из архива программы AsProgrammer. Программатор поддерживает два режима, они переключаются аппаратно джампером J1. Применен интересный прием, при переключении джампера у чипа меняется Device ID на шине USB. Это вынуждает Windows найти подходящий по VID/PID драйвер и подключить его.
При джампере в положении «1-2» по VID_1A86&PID_5512 подгружается драйвер «USB-EPP/I2C… Ch441A«. Он создает в диспетчере устройств раздел «Interface» в который и устанавливается.
В этом случае чтение, верификация, запись чипов памяти должны осуществляться непосредственно через ZIF-панель программатора Ch441A или через боковой разьем Р2 с интерфейсом SPI.
При джампере в положении «2-3» по VID_1A86&PID_5523 подгружается драйвер «USB-SERIAL Ch441A«. В диспетчере устройств найти его можно в разделе «Порты (COM и LPT)«. Там же можно посмотреть и номер присвоенного СОМ порта.
При этом программирование может производиться только через интерфейс RS232 TTL на разьеме Р1 (там же где и джампер), если целевое устройство поддерживает такой способ (встроенный загрузчик или монитор).
Программная часть (Software), программа прошивальщик.
С программатором Ch441A на программном уровне обычно рекомендуется китайский (есть русификация) родственный софт «Ch441A — USB Programmer». Но в то-же время в инете достаточно много жалоб на его глючность и нестабильность, особенно версий выше 1.18. Ch441A — USB Programmer версий 1.30, 1.29 не может нормально работать (читать и записывать) с чипами памяти объемом более 8MByte/64MBit. Примерно после адреса 0800000 начинают сыпаться хаотичные ошибки.
Поэтому я не стал наступать на эти грабли повторно, и с самого начала использовал программу «AsProgrammer» от участника сообщества Tifa, последняя версия 1.4.0. Скачать можно на форуме, топик форума показывается в лог-окне программы при запуске. Если кто-то захочет полазить в исходниках, проект есть на GitHub (если правильно понял, проект на Free Pascal, Lazarus).
Кроме поддержки 24 и 25 серий микросхем памяти, программа работает и c 45 серией, поддерживает серию ST M95 и память microwire (только для данного программатора). Все схемы подключения есть в архиве программы. Полный список поддерживаемых микросхем памяти можно посмотреть в каталоге программы в файле chiplist.xml.
Программа не требует установки, включает в архив драйверы для обоих режимов программирования СН341А.
Log-файл работы программы с флешкой W25Q128FW, 16Мб, 1.8V через «1.8V-adapter«:
За все время работы с данной программой (прошивал ~5 вариантов BIOS) ни одного сбоя или ошибки.
Используется программатор: Ch441
Sreg: 00000000(0x00), 00000010(0x02), 01100000(0x60)
Используется программатор: Ch441
Читаю флэшку…
Готово
Время выполнения: 0:02:49
Используется программатор: Ch441
Стираю флэшку…
Готово
Время выполнения: 0:01:03
Используется программатор: Ch441
Записываю флэшку с проверкой…
Готово
Время выполнения: 0:24:45
Линуксоидам использовать стороннюю программу нет необходимости, стандартный прошивальщик Flashrom полностью поддерживает данный программатор (должен быть собран с поддержкой ключа «-ch441a»).
Доработка 1. Подтяжка сигналов #WP и #HOLD.
В программаторе линии сигналов #WP и #HOLD посажены непосредственно на шину питания. Это мешает сбросить/установить бит QE во втором регистре статуса (25хх). В даташитах на микросхемы памяти есть предупреждения по этому поводу, вот из даташита на W25Q128FW:
WARNING: If the /WP or /HOLD pins are tied directly to the power supply or ground during standard SPI or Dual SPI operation, the QE bit should never be set to a 1.
Для исправления этого недостатка надо отсоединить ноги #WP (pin 3) и #HOLD (pin7) от VCC и подключить их к VCC через резисторы 2.2-4.7 кОм.
На «чёрном программаторе» советуют это делать так (привязка к схеме, нумерация контактов относительно ZIF разьема), дорожка между контактами 11-12 перерезается (#HOLD), между контактами впаивается резистор, дорожка от 11 контакта ведущая к 7 (#WP) перерезается у 11 контакта, проводок напаивается с 12 контакта к отрезанной дорожке, та же дорожка перерезается перед 7 контактом, поверх разреза напаивается резистор:
Как по мне, проще сделать это на переходнике 1.8V-adapter, если задействовать его вторую незанятую половину разьема. Тем более при применении адаптера переделка на плате программатора становится бесполезной, порты у трансмиттера используются как однонаправленные.
Доработка 2. Увеличение кол-ва блокировочных конденсаторов по питанию.
Участник сообщества «AlexX1810» предложил добавить на плату программатора три блокировочных конденсатора 0.1 мкФ. По его словам улучшается стабильность работы программатора.
Если ориентироваться по схеме, первый конденсатор между 6-7 контактами разьема Р1 (5V), второй между 5-6 контактами разьема Р2 (3.3V), третий между 15-16 контактами ZIF панельки (7-8 контакты разьема I2C, 3.3V). Все впаяны со стороны контактов.
У меня во время использования программатора сбоев не было, но хуже во всяком случае не будет.
Восстанавливаем BIOS на программаторе после неудачного обновления | Периферия | Блог
Написать данный разжеванный материал меня сподвиг собственный недавний опыт, а так же довольно скудная и размазанная по интернетам инфа по необходимому вопросу
Существует 3 основных способа восстановления запоротого BIOS
1. Восстановление программными средствами самой мат.платы.
Современные модели материнок (у Гигабайта последние 3 года на мейнстримовых и топовых точно) на плате распаяно сразу 2 микросхемы BIOS, в случае неудачного обновления BIOS загрузится с резервной микрухи, а позже зальет копию в поврежденный. У некоторых моделей нет возможность восстановления поврежденного BIOS и в случае смерти первого просто начинает работать второй за место него, соответственно после смерти второго мать уже не запустится
Еще есть возможность восстановления из bootblock‘а, но работает если BIOS умер не окончательно и бутблок все еще жив и попытке запустить систему он обнаруживает кривую сумму биоса. В таком случае он пытается считать BIOS с HDD, или флоппа. Некоторые платы (у Гигабатов такая фича встречается) пишут дубль BIOS на HDD, который к ним подключают самым первым, соответственно для восстановления этот диск можно подключить. Для восстановления с флоппа достаточно записать прошивку с правильным названием на дискету, она будет обнаружена и восстановлена. Жизнеспособность бутблока можно определить по сигналам (световым и звуковым) с подключенного флоповода, если флоп подает признаки жизни, значит мы легко отделались
2. Восстановление методом горячей замены иди hotswap. Работает только на мамках, где BIOS не впаян, а сидит в сокете и его можно подцепить. Т.е. надо найти другую рабочую плату с подобным BIOS, т.е. чтобы кровать была такая же и желательно чипы были общего или одного из аналогичных семейств, тогда процедура точно прокатит. На плате с живым BIOS заранее делаются удобства для вырывания чипа с кровати — нитки, изолированная проволока и т.п. если нет специальных щипцов, плата включается заходим в DOS (или фирмовую утилиту платы) для обновления BIOS, вырываем BIOS, вставляем мертвый и зашиваем BIOS, если появляются предупреждения о несовпадении контрольных сумм, то их игнорим, т.к. бояться нечего — родной BIOS лежит отдельно. Затем система отключается, в каждую плату возвращаем свою микросхему и проверяем работоспособность. Данный метод разве что не прокатит, если микросхемы впаяны в платы, горячая замена не получится, можно конечно рискнуть и отпаять BIOS на работающей плате — но это очень рискованно — можно остаться с 2мя уже окончательно мертвыми платами, причем дохлая уже будет электроника, а не программная часть
3. Восстановление на программаторе. Этот способ универсальный, т.е. прошить можно любую микросхему в любом типе корпуса. Если микруха припаяна к плате, то снимаем ее и напаиваем на плату программатора или используем специальные панельки. Безусловно на одном программаторе можно прошить ограниченное число микросхем, но это обычно касается простых программаторов, более «взрослые» являются действительно универсальными, но стоят они уже не 5 копеек и приобретаются в основном для потокового ремонта, а не домашнего использования с целью восстановления пары плат. Тем не менее данный способ универсальный, он полностью заменяет и расширяет первые 2 способа, а когда они не работают, то это единственный выход. Способ горячей замены это даже искусственный метод, который был обнаружен опытным путем благодаря унификации производителями элементов плат. Об одном из простых «домашних» программаторах я и хочу рассказать.
Суть процесса
Попалась мне на днях в руки плата AsRock N68-PV-GS, отдал мне ее предыдущий владелец просто так. Она давненько была неудачно прошита и была банально заменена другой. Но я не привык выкидывать аппаратуру, которую можно восстановить перешив одну микросхему и взялся оживить плату — лишней в хозяйстве она не будет, платформа все же не такая древняя, сокет АМ2
На мою удачу микросхемой BIOS была MX25L4005APC-12G — 4 мегабитная микруха в DIP корпусе. Т.е. ее даже отпаивать не пришлось. BIOS версии 1.0 лежал на сайте производителя отдельным файлом как раз на 512kb (4Mbit/8=512Kb), т.е. задача до банальности проста — сваять программатор, поставить на него микруху и зашить! К чему я и решил приступить
Схема программатора
Данная микросхема SPI типа, что позволяет прошить ее элементарным программатором через LPT порт. В нете был найден соответствующий программатор сразу с ПО для его использования, называется он SPIpgm, т.е. SPI Programmator, скачать можно здесь. Элементарнейшая схема из 4х резисторов, конденсатора и сокета на 8 пин по желанию. Ограничением его является собственно ограниченный список поддерживаемых микросхем — они должны быть 8pin и быть SPI типа
Программатор поддерживает очень много микрух, вот что заявлено для последней на момент написания материала версии 2.1:
AMIC
A25L05PU/PT (64kB), A25L10PU/PT (128kB), A25L20PU/PT (256kB), A25L40PU/PT (512kB), A25L80PU/PT (1MB), A25L16PU/PT (2MB), A25L32PU/PT (4MB), A25L64PU/PT (8MB), A25L512 (64kB), A25L010 (128kB), A25L020 (256kB), A25L040 (512kB), A25L080 (1MB)
Atmel
AT25F512B (64kB), AT25DF021 (256kB), AT26DF041 (512kB), AT25DF041A (512kB), AT26F004 (512kB), AT26DF081 (1MB), AT25/26DF081A (1MB), AT25DF081 (1MB), AT26DF161 (1MB), AT26DF161A (2MB), AT25DF161 (2MB), AT25DQ161 (2MB), AT25/26DF321 (4MB), AT25DF321A (4MB), AT25DQ321A (4MB), AT25DF641(A) (8MB)
EON
EN25B10 (128kB), EN25B20 (256kB), EN25B40(T) (512kB), EN25B80 (1MB), EN25B16 (2MB), EN25P32 (4MB), EN25P64 (8MB), EN25P128 (16MB), EN25F10 (128kB), EN25F20 (256kB), EN25F40 (512kB), EN25F80 (1MB), EN25F16 (2MB), EN25F32 (4MB), EN25F64 (8MB), EN25F128 (16MB)
ESMT
F25L004A (512kB), F25L008A/08PA (1MB), F25L016A/16PA (2MB), F25L32PA (4MB), F25L64PA (8MB), F25S04PA (512kB), F25L08PA (1MB), F25L016QA (2MB), F25L32QA (4MB), F25L64QA (8MB)
GigaDevice
GD25Q512 (64kB), GD25Q10 (128kB), GD25Q20 (256kB), GD25Q40 (512kB), GD25Q80 (1MB), GD25Q16 (2MB), GD25Q32 (4MB), GD25Q64 (8MB)
Intel
QB25F016S33B8 (2MB), QB25F032S33B8 (4MB), QB25F064S33B8 (8MB)
Macronix
MX25L512E (64kB), MX25L1005/1006E (128kB), MX25L2005/2006E (256kB), MX25L4005/4006E (512kB), MX25L8005/8006E (1MB), MX25L1605/1606E (2MB), MX25L3205/3206E (4MB), MX25L6405/6406E (8MB), MX25L12835E/12836E (16MB), MX25L25635E/25735E/25835E (32MB)
PMC
Pm25LV512(A) (64kB), Pm25LV010(AB) (128kB), Pm25LV020 (256kB), Pm25LV040 (512kB), Pm25LV080B (1MB), Pm25LV016B (2MB), Pm25LV032B (4MB), Pm25LV064B (8MB)
Spansion
S25FL004A (512kB), S25FL008A (1MB), S25FL016A (2MB), S25FL032A (4MB), S25FL064A (8MB), S25FL128P/129P (16MB), S25FL256S (32MB), S25FL512S (64MB), S25FL01GS (128MB)
ST Microelectronic/Numonyx
M25P05 (64kB), M25P10 (128kB), M25P10AV (128kB), M25P20 (256kB), M25P40 (512kB), M25P80 (1MB), M25P16 (2MB), M25P32 (4MB), M25P64 (8MB), M25P128 (16MB), M45PE10 (128kB), M45PE20 (256kB), M45PE40 (512kB), M45PE80 (1MB), M45PE16 (2MB), M25PX80 (1MB), M25PX16 (2MB), M25PX32 (4MB), M25PX64 (8MB), N25Q032A13E (4MB), N25Q032A11E (4MB), N25Q064A13E (8MB), N25Q064A11E (8MB), N25Q128A13E (16MB), N25Q128A11E (16MB), N25Q256A13E (32MB), N25Q256A11E (32MB), N25Q512A13G (64MB), N25Q512A11G (64MB), N25Q00AA13GB (128MB)
SST
SST25VF512(B) (64kB), SST25VF010(B) (128kB), SST25VF020(B) (256kB), SST25VF040(B) (512kB), SST25VF080(B) (1MB), SST25VF016(B) (2MB), SST25VF032(B) (4MB), SST25VF064C (8MB), SST25VF128(B) (16MB), SST26VF016 (2MB), SST26VF032 (4MB), SST26VF064 (8MB)
Winbond
W25Q10B (128kB), W25Q20BV (256kB), W25Q40BV (512kB), W25Q80BV (1MB), W25Q16BV (2MB), W25Q32BV (4MB), W25Q64BV (8MB), W25Q128BV (16MB), W25Q256FV (32MB), W25X10 (128kB), W25X20 (256kB), W25X40 (512kB), W25X80 (1MB), W25X16 (2MB), W25X32 (4MB), W25X64 (8MB)
Материнские платы, которые имеют на себе BIOS в виде вышеназванных микросхем я не буду указывать по ясным причинам. Намного проще глянуть модель микрухи и посмотреть в этот список
Аппаратная часть
В моем случае нужная мне память оказалась в этом списке и я приступил к изготовлению прогера. Устройство очень простое (по схеме видно) и многие не заморачиваются в таких случаях с травлением платы, а собирают навесным монтажом «на коленке», т.к. программатор понадобится от силы пару раз. Я тоже не стал заморачиваться и сделал навесным. В итоге у меня не заработало) Хотя вроде бы ни где не ошибся, возможно капризничало из-за длины проводов или их сечения
Во второй раз уже решил «чтобы наверняка» запилить себе нормально, т.е. развел плату в SprintLayot 5.1 и сделал по технологии ЛУТ. Лудил сплавом Розэ. Последнее время мне нравиться его использовать, т.к. получается довольно быстро, просто и лужение происходит равномерным тонким слоем — высверленные отверстия не закрываются. Еще давно в посудном магазине по уценке купил за 30р эмалированную миску — удачное приобретение для таких дел) Наливаю в нее на половину воды, довожу до кипения, добавляю 1-2 ложки лимонной кислоты (работает как флюс и повышает температуру кипения, затем опускаю плату и 1-2 кусочка сплава. «Управляю» процессом 2мя палочками от мороженного, обёрнутыми с одной из сторон в ткань для растирания сплава по плате и удержания платы. После окончания процесса остатки сплава можно вынуть для последующего использования. Стоит сплав копейки (около 150р вроде), а хватает его при подобных затратах на годы). В общем это было такое лирическое отступление, теперь непосредственно скрин разведенной платы. Саму разводку платы в формате *.lay можно скачать здесь
Плату зеркалить не нужно, она уже «правильно» нарисована. Я когда делаю разводку, то представлю текстолит как бы прозрачным — так намного проще, по крайней мере мне
Необходимые ингредиенты:
— Резисторы 150 ом 0,125Вт x 4шт
— Емкостный конденсатор 1mF 16-63v x 1шт
— Сокет 8pin 7,62мм x 1шт или специальные зажимные панели под SMD чипы, в общем в зависимости от пациента
— Немного проводов, я использовал провода примерно 24AWG длинной 12см
— Макетная плата или текстолит и все необходимые принадлежности для его вытравки и лужения
— Штырьковые разъемы x 5шт
На разводке (как и на схеме) выводы на разъем LPT (DB25) указаны цифрами, т.е. 7, 8, 9, 10 и 18. Первые 4 контакта нужны нам для передачи данных, 18ый — земля. Но можно использовать за место 18 любой в диапазоне 18-25. Я специально не стал размещать на плате сам разъем DB25, т.к. не каждый его будет делать. Причин тому 2:
1. Мало контактов, всего 5шт, для того, чтобы тратить 20р на этот разъем и ставить его на такую крохотную плату. Намного проще вывести эти 5 контактов и воткнуть их в сам разъем
2. На современных платах уже не ставят полноценный LPT разъем, производители выводят штырьки на плате, к которому можно подключить внешний/внутренний адаптер и получить тем самым DM25-F, т.е. LPT. Таким образом сделав полноценный программатор на борту с DB25-M нам придется делать соответствующий разъем для платы или покупать адаптер отдельно, как советуют производители плат. У меня конечно есть такой адаптер ↓↓↓ , я его не покупал, делал сам из шлейфа под флопп и разъема DB25-F снятого со старого кабеля от принтера. Но тем не менее я не стал городить на программатор данный разъем просто потому что у меня его не было под рукой и еще по причинам п.1
Самодельный адаптер LPT для современных плат. IDE разъем флоппа отлично подходит под пинауты плат, вставил кусок зубочистки как ограничитель, чтобы наверняка не промахнуться
Я сделал проще, вывел 5 контактов (у меня на фото 6 т.к. 2 земли) для штырьков платы соответствующими разъема, сверился с раписновкой платы (на деле у всех плат одинаково, может только «ключ» — пустой пин находится в другом месте, и в мануале маркировака идти в другом порядке) и установил их на правильные места, у программатора как раз удобно используется диапазон контактов разъема 7-10. Землю воткнул на 23 и 24 выводы, т.к. 18-25 земля
В итоге у нас должно получиться примерно следующее устройство:
Для питания программатора необходимо постоянное питание 3.3v, а так же внешняя масса. Я использую для этих целей внешний полноценный БП Gembird 400Вт. Он у меня вроде лабораторного БП, живую конфигурацию ему я бы не доверил в силу его качества) Достался он мне от одного хорошего человека — данный БП видимо не имеет достаточно реальной мощности и прежнему владельцу его не хватало, система работала очень не стабильно. Мне же этого бедняги для подобный вещей вполне достаточно)
У БП на разъеме 24пин замкнут зеленый провод на землю, что дает возможность его запускать в холостой ход, из этого же разъема я и беру 3.3v (оранжевый провод) и массу (черный) для программатора
Можно еще как вариант использовать батарейку BIOS она как раз на 3.3v, а землю (массу) взять с самого корпуса работающего БП
Еще один вариант — поставить какой-нибудь стабилизатор на 3.3v, например LM1117, на крайние контакты подаем 5v с USB и массу (точную распиновку не помню, данный стаб я использовал в другой своей статье про коннектор привода для X’360), из центрального у нас будет 3.3v. Nаким способом получаем питание с самого СБ, на котором прошиваем — можно подключить разъем USB или вывести 2 штырька для подключения опять же к контактам USB На самой плате предварительно посмотрев распиновку
Программная часть
После изготовления устройства можно приступить к тому, ради чего все это затевалось — к прошивке
Текущая версия SPIpgm 2.1 поддерживает все семейство настольных ОС Windows, Linux и еще DOS. Я очень сомневался, что на Win7/Vista все заработает, уж очень прихотливы LPT программаторы к этой ОСи. тем не менее все совпало с заявлением разработчика. не забываем, что UAC необходимо отключить (у меня отключен и так «по умолчанию»). Выключаем полностью ПК, подключаем программатор, включаем и используем командную строку. С помощью оператора cd переходим в нужную директорию, где находится программатор. Т.к. мы находимся в среде Windows, то использовать надо spipgmw, spipgm используется в DOS и Win9x, однако spipgmw можно тоже использовать в Win9x. По скрину ниже видно, что проблем нет, программатор и софт прекрасно работают в современной среде, что встречается крайне редко в подобных задачах
Однако отмечу, что я шил в DOS, мне так привычнее) Чем проще ОС, тем она надежнее. Но я не агитирую переходить на нее полностью) Просто для таких вот делишек использовать DOS мне как-то интеерснее. По опыту работы с другими самопальными программаторами могу сказать, что в WinXP этот программатор без сомнения будет работать
Если же программатор не сможет опознать микросхему (смотрим скрин ниже), то она либо мертва, либо программатор собран не верно или не поступает питание, нет массы. Более вероятен второй вариант
Вот что ответит командная строка, если программатор собран не верно. Чип не опознается, т.е. неудача
Мутим DOS или «я не ищу легких путей»
DOS запилить себе не так сложно. Можно банально сделать загрузочную дискету средствами самой ОС Windows через форматирование дискеты и положить туда папку с программатором и новой прошивкой, загрузившись после BIOS (на рабочем ПК) в консоль используем программатор
Второй вариант — сделать DOS на диске или воспользоваться уже готовым образом DOS 6.22. Вот только сам программатор надо будет записать на отдельную флешку, т.к. если мы будем снимать дамп, то на диск он записаться не сможет, хотя если чтение не требуется, можно закатать прямо на диск с образом DOS
Третий вариант — создать загрузочную флешку, это самый удобный и современный на сегодня вариант. Хороший способ описан, например, здесь
Я еще могу порекомендовать воспользоваться проектом MultiBoot — мультизагрузочная флешка. В конце мы получаем очень функциональный инструмент на все случаи жизни, мощный такой реаниматор. DOS там тоже есть с поддержкой NTFS, длинных имен и прочего. Инструкция по созданию там присутствует, все очень удобно и легально
Будем считать, что DOS мы запустили (владельцам Linux это не нужно, для них есть SPIPGM файл без разширения) Заходим в командную строку, переходим в папку программатора. Чтобы узнать основные команды выполняем просто spipgm
В DOS все опозналось тоже без проблем
Основные программы, которые нам понадобятся:
spipgm /i — идентификация микросхемы в программаторе. Если программатор сделан и подключен верно, то микросхема (если она в списке выше) опознается и соответственно с ней можно будет дальше работать
spipgm /d dump.rom — чтение содержимого микросхемы в файл dump.rom
spipgm /e — полное стирание содержимого микросхемы, рекомендуется сделать перед записью
spipgm /p new.rom — прошивка, запись в микросхему данных из файла new.rom — целого и правильного файла прошивки для конкретной материнский платы, можно взять с сайта производителя или снять с другой микросхемы аналогичной платы
spipgm /u — анлок, т.е. разблокировка микросхемы для записи, если такая защита имеется
Итого для совершения задуманного с целью восстановления BIOS нам необходимо выполнить последовательность команд:
1. spipgm /i — идентифицируемся
2. spipgm /u — разблокируемся
3. spipgm /e — стираем микросхему с кривым содержимым
4. spipgm /p new.rom — зашиваем правильную прошивку
! Обращаю внимание, что если мы все делаем в среде Windows, то вместо spipgm пользуемся командой spipgmw
После этого вырубаем ПК через кнопку выключения и отключаем программатор
Внимание! Все манипуляции с портом LPT необходимо производить только с отключенным питанием платы. Т.е. перед тем как подключить или отключить что-нибудь от LPT необходимо полностью выключить БП, поставить переключатель БП в положение Off (или вынуть кабель) подождать 10сек (разрядятся конденсаторы) и только потом что-то подключать или отключать. Если не следовать этому простому правилу, то велик шанс остаться без LPT, он очень капризен к подобным вещам в силу своей незащищенности
Послесловие
Итого плата теперь уже моя была восстановлена и получила вторую жизнь. Буду использовать ее в качестве тестового и сервисного полигона для проверки другой комплектухи. Мои читатели теперь тоже смогут что-нибудь оживить, что долгое время валялось и ждало своего часа
Так же обращаю внимание, что данный метод подходит и для восстановления BIOS не только на мат.платах, но и на видеокартах, как ATI/AMD так и nVidia. Многие микросхемы, что указаны выше в списке совместимости устанавливаются так же и на видеокарты, вот только они всегда припаяны к видеокарте, поэтому для восстановления видях понадобится навык пайки SMD. Здесь обычно 2 варианта — отпайка микрухи и установка ее на заранее вытравленную площадку программатора или подпайка проводами на саму плату видеоадаптера
Надеюсь мой опыт поможет кому-нибудь сэкономить деньги и железки, ведь обращаться за подобными услугами в СЦ будет не совсем разумно — подобная плата на вторичном рынке сопостовима как раз со стоимостью ремонта, и поэтому надо либо восстанавливать самому, либо идти в магазин за новой. Если у меня появится возможность поковырять программатор и BIOS’ы с чипами 20 пин( в квадратных кроватях находятся), то материал будет дополнен. Благодарю за внимание
Программатор для EPROM на Arduino / Habr
Понадобилось при изучении и ремонте компьютеров, которые старше меня, прошивать ПЗУшки. Тесты оперативной памяти и периферии проводить. Нормального программатора у меня на тот момент не было.
Собрать на логике для LPT порта, конечно, можно, но данный вариант был отброшен, так как для использования пришлось бы включать ещё какого-нибудь старичка. В современных компах все ещё встречается данный интерфейс (правда не полноценный разъем, а на гребенке) да и купить плату в PCI слот тоже не проблема, но возникают уже сложности с софтом. Он был написан очень давно, когда работа с портами ввода/вывода в операционных системах велась иначе. Соответственно, в современных версиях Windows ПО не будет работать.
Сразу стоит оговориться, что про существование TL866 знаю. И даже в процессе разработки все же его купил себе, но он не в состоянии прошить микросхемы, которые требуют высокое напряжение программирования. Максимум 18 вольт (TL866+ или 21 для предыдущей версии).
Беглое гугление привело меня к данному репозиторию. Собрав программатор, я смог сдампить пару интересующих чипов. А вот с прошивкой все оказалось куда сложнее… Софт этого просто не умеет… Его, конечно, можно обмануть, выставив неправильный чип, но работает это не во всех случаях и явно не наш метод
Очень сильно огорчил пользовательский интерфейс, который, вместо классического варианта с предоставлением права выбора порта пользователю, проходился по всем доступным последовательным интерфейсам. Соответственно, все устройства перезагружаются. Особенно обидно, наверное, когда у тебя 3D принтер уже часов 10 печатает детальку с флешки, а тут такая подстава…
Мир OpenSource прекрасен тем, что ты можешь взять проект и дописать его под свою задачу. В данном случае исходных кодов к графическому интерфейсу нет. По крайней мере я их не нашел, хотя можно было написать разработчику. Стало интересно и появился небольшой повод для изучения Qt. Так что софт будет кросплатформенный.
Берем за основу схему из предыдущего проекта и дорабатываем устройство до требуемого функционала. Решил пожертвовать поддержкой EEPROM в софте. Возможно, это не совсем удачное решение, но для электрически стираемых чипов уже не нужно такое высокое напряжение. При доработке опирался на самую объемную микросхему (27C512 для DIP28) и убрал всю путаницу относительно адресных ножек. Весь адрес будет задаваться исключительно при помощи сдвиговых регистров (74HC595). Это освободит дополнительные ноги самого микроконтроллера, которые понадобятся для управления подачей напряжения программирования. А все необходимые сигналы (PRG) можно получить модификацией адреса перед загрузкой в регистры.
Принцип подачи напряжения программирования остался прежним. Изменения только в области защиты выводов микроконтроллера и сдвиговых регистров. Заменил резисторы (1 КОм) на диоды с подтяжкой к лог. 0. Это менее агрессивный вариант. Хотя, справедливости ради, и резисторы работают.
Изучив документацию на все интересующие чипы, определил, что требуется три точки подачи Vpp:
- 27C16 на 21 ногу микросхемы (23 ногу DIP28 сокета)
- 27C32 и 27C512 на сигнал #OE (Output Enable)
- 27C64, 27C128, 27C256 на 1 ногу микросхем
Микросхемы 27C16 и 27C32 от остальных отличаются корпусом, так что им требуется подавать напряжение питания на 26 ножку сокета. Это адресная нога A13 для более емких собратьев. Тока с выхода сдвигового регистра должно хватить для работы, но на время загрузки данных его выходы переходят в Z состояние. Подобный режим допустим, но включение на чтение или запись одной ячейки вряд ли является нормой. Поэтому под управление питания установлен дополнительный транзистор. И ещё один потребовался для 27C16, которому на время чтения необходимо подать на вход Vpp 5 вольт. Можно, конечно, на время чтения выставить напряжение программирования на значения 5 вольт, но переключаться между 25 и 5 вольтами неудобно.
Если есть свободные ноги АЦП, то почему бы не измерять напряжение программирования? Плата разведена под Arduino Nano. На нем имеются два дополнительных входа, которые кроме как для АЦП использовать нельзя. На самом деле это особенность многих микроконтроллеров AVR в корпусе для поверхностного монтажа. На китайских Arduino UNO частенько есть входы A6 и A7. С учетом того, что напряжение может быть до 30 вольт (вроде больше всего хотят отечественные РФ5, 25 вольт), рассчитываем делитель из того, что есть в наличии. Точность в 0.5 вольта для данной задачи вполне достаточна. Эта функция — защита от дурака, а не вольтметр.
Можно, конечно, было заморочиться и выступать в качестве ШИР (широтно импульсное регулирование) контроллера, но ножек свободных не осталось. Поэтому на печатной плате есть посадочное место для преобразователя DC-DC Step Up на чипе MT3608, которые за копейки доступны на али.
По схеме на этом все.
Алгоритм работы с данными микросхемами очень прост. С ним можно ознакомится в небольшом видео.
Схемы и софт доступны в репозитории на GitHub: https://github.com/walhi/arduino_eprom27_programmer. При сборке можно спокойно менять номиналы резисторов. Правда с делителем потребуется немножко исправить код скетча.
Ch441A Pro как пользоваться и поддерживаемые микросхемы
Программатор микросхем BIOS 24 и 25 серии Ch441A Pro
Программатор Ch441A Pro используется для программирования микросхем BIOS компьютеров, ноутбуков, видеокарт, мультимедийных плееров, памяти телевизоров, ЖК-дисплеев, маршрутизаторов, игровых приставок, спутниковых ресиверов и др.
Как пользоваться программатором Ch441A Pro:
Для начала использования программатора необходимо установить драйвер и программное обеспечение:
Скачайте ПО (Ch441A Programmer версии 1.3) и драйвер по ссылке
Системные требования ПО:
OC: Win98, WinME, WIN2K, WinXP, Vista, Win7, Win8, Win10 (32-64 bit)
Распакуйте скачанный архив и запустите программу Ch441A_130.exe
Подключите программатор к компьютеру (должен загореться светодиод POWER).
Драйвер к программатору может установится автоматически. Если Windows не удалось установить драйвер, найдите в скаченном архиве папку Ch441Parallel_driver_support WIN7 и установите драйвер из нее.
После того как программа и драйвер будут установлены можно приступить к программированию.
Чтобы запрограммировать необходимую микросхему на ZIF панели устройства, нужно открыть пазы для её установки, подняв фиксаторную ручку. Установить микросхему согласно ключу нарисованному на программаторе. Зажать фиксаторной ручкой микросхему в пазах. Cм. рисунок 1.1 (правильная установка микросхемы BIOS 25 серии)
Рис. 1.1 (правильная установка микросхемы BIOS 25 серии)
Если нужно прошить микросхемы 25-й серии, в корпусе SOP8 или SOP16, на плате программатора предусмотрены контактные площадки для микросхем в таких корпусах. Можно припаять микросхему к контактной площадке (см рисунок 1.2.) или просто прижать прищепкой к контактам. Так же можно воспользоваться дополнительной платой (идет в комплекте с программатором) и устанавливать/припаять микросхему на нее (см. рисунок. 1.3.)
Рис. 1.2. |
Рис. 1.3 |
Запрограммировать микросхему 25-й серии, в корпусе SOP8 можно прямо на материнской плате без выпаивания. Для этого можно воспользоваться прищепкой-переходником (в комплекте не идет. приобретается отдельно) (см. рисунок 1.4.) Красный провод на шлейфе прищепки — контакт который должен соответствовать первой ножке микросхемы (на самой микросхеме обычно обозначена точкой). При таком способе прошивки, плату нужно обязательно обесточить и вынуть батарейку BIOS.
Рис. 1.4
В программаторе есть возможность внутрисхемного программирования с помощью ISP интерфейса (этот метод программирования описываться здесь не будет, информацию можно найти на форумах в интернете)
Перемычку для переключения режимов программирования не трогаем! Даже когда программируем без выпаивания через прищепку. Она должна соединять 1 и 2 контакты. Убираем перемычку только в случае если используем ISP интерфейс.
Итак приступаем непосредственно к программированию:
ПОСЛЕ!!! установки/подключения микросхемы — подключите программатор к USB порту (возможно при подключении потребуется подождать пока Windows установит драйвер на устройство) и запустите программу Ch441A Programmer. Интерфейс программы можно переключить на русский язык.
Если микросхема подключена правильно — все кнопки в программе будут активны.
Далее нужно будет выбрать название микросхемы, для чего можно нажать кнопку «ДЕТЕКТ» (программа сама предложит наиболее подходящие микросхемы) или выполнить поиск вручную через кнопку «ПОИСК».
Когда название микросхемы будет выбрано в программе, можно производить все необходимые действия с вашей микросхемой — считать, сохранить дамп, очистить, записать и т. д.
Интерфейс программы интуитивно понятен и прост:
Поддерживаемые программатором Ch441A Pro микросхемы 25 серии
AMIC
A25L512 A25L05P A25L10P A25L010 A25L020 A25L20P A25L40P A25L040 A25L080 A25L80P A25L016 A25L16P A25L032
ATMEL
AT25F512 AT25F512B AT25F512A AT25FS010 AT25F1024 AT25F1024A AT25F2048 AT25DF021 AT25F4096 AT25FS040 AT25DF041A AT25DF321A AT26DF321 AT25DF321 AT25DF641
COMMON
25X005 25X05 25X10 25X20 25X40 25X80 25X16 25X32 25X64 25X128 25X256 25X512 25X1024 25X2048
EON
EN25F05 EN25P05 EN25LF05 EN25F10 EN25LF10 EN25D10 EN25P10 EN25F20 EN25D20 EN25LF20 EN25F40 EN25D40 EN25LF40 EN25Q80 EN25D80 EN25F80 EN25P80 EN25T80 EN25B16T EN25T16 EN25B16 EN25D16 EN25F16 EN25Q16 EN25P32 EN25Q32 EN25F32 EN25B32 EN25B32T EN25Q64 EN25B64 EN25F64 EN25B64T EN25F128 EN25Q128
ES
ES25P10 ES25P20 ES25M40A ES25M40 ES25P40 ES25M80 ES25P16 ES25M80A ES25P32 ES25P80 ES25M16 ES25M16A
ESMT (только чтение)
F25L04UA F25L16PA F25L004A F25L32QA F25L08PA F25L32PA F25L008A F25L016A
GIGADEVICE
GD25Q512 GD25Q10 GD25Q20 GD25F40 GD25D40 GD25Q80 GD25D80 GD25T80 GD25F80 GD25Q16 GD25Q32 GD25Q64 GD25Q128
KH
25L8036D
MXIC
MX25V512 MX25L4005A MX25L1635D MX25L3237D MX25L6455E MX25L12845E MX25L512 MX25V4035 MX25L1605D MX25L3225D MX25L6408D MX25L1005 MX25V4005 MX25L1608D MX25L3205D MX25L6406E MX25L2005 MX25V8005 MX25L3235D MX25L3206E MX25L6445E MX25L8035 MX25L8005 MX25L3208D MX25L6405D MX25L12805D
NEXFLASH
NX25P10 NX25P20 NX25P40 NX25P80 NX25P16 NX25P32
NSHINE
MS25X05 MS25X16 MS25X10 MS25X32 NS25X20 MS25X64 NS25X40 MS25X128 MS25X80
PMC
PM25LV512A PM25LV016B PM25LV010A PM25LV020 PM25LV040 PM25LV080B
SAIFUN
SA25F005 SA25F160 SA25F010 SA25F320 SA25F020 SA25F040 SA25F080
SPANSION
S25FL004A S25FL032A S25FL040A S25FL064A S25FL008A S25FL128P S25FL160 S25FL129P S25FL016A S25FL128A
SST (только чтение)
SST25VF512A SST25VF512 SST25VF010 SST25VF010A SST25 SST25VF020 SST25VF040B SST25VF040A SST25VF040 SST25′ SST25VF016B SST25VF032B SST25VF064C
ST
M25P05A M25PE10 M25P10A M25P20 M25PE20 M25PE40 M25P40 M25PE80 M25P80 M25PX80 M25PX16 M25P16 M25PE16 M25P32 M25PE32 M25PX32 M25PX64 M25P64 M25PE64 M25P128
WINBOND
W25X10 W25X10L W25P10 W25X10AL W25X10A W25P20 W25X20AL W25X20A W25X20 W25X20L W25X40A W25P40 W25Q40BV W25X40L W25X40 W25X40AL W25Q80BV W25Q80V W25X80 W25P80 W25X80A W25X80L W25X80AL W25P16 W25Q16BV W25Q16V W25X16 W25Q32BV W25Q32V W25X32 W25P32 W25Q64BV W25X64 W25Q128BV
Поддерживаемые программатором Ch441A Pro микросхемы 24 серии
ATMEL
AT24C01B AT24C01 AT24C01A AT24C02 AT24C02A AT24C02B AT24C04B AT24C04 AT24C04A AT24C08A AT24C08B AT24C08 AT24C16 AT24C16A AT24C16B AT24C32B AT24C32A AT24C32 AT24C64 AT24C64A AT24C64B AT24C128 AT24C128A AT24C128B AT24C256B AT24C256 AT24C256A AT24C512B AT24C512A AT24C512 AT24C1024 AT24C1024A AT24C1024B
CATALYST
CAT24C01 CAT24WC01 CAT24WC02 CAT24C02 CAT24C04 CAT24WC04 CAT24WC08 CAT24C08 CAT24WC16 CAT24C16 CAT24WC32 CAT24C32 CAT24WC64 CAT24C64 CAT24WC128 CAT24C128 CAT24WC256 CAT24C256 CAT24C512 CAT24WC512 CAT24C1024 CAT24WC1024
COMMON
24C01 3V 24C01 5V 24C02 3V 24C02 5V 24C04 5V 24C04 3V 24C08 3V 24C08 5V 24C16 5V 2406 3V 24C32 5V 24C32 3V 24C64 5V 24C64 3V 24028 5V 24C128 3V 24C256 5V 24C256 3V 24C512 5V 24C512 3V 240024 3V 24C1024 5V 24C2048 5V 24C2048 3V 24C4096 5V 24C4096 3V
FAIRCHILD
FM24C01L FM24C02L FM24C03L FM24C04L FM24C05L FM24C08L FM24C09L FM24C17L FM24C16L FM24C32L FM24C64L FM24C128L FM24C256L FM24C512L FM
HOLTEK
HT24C01 HT24LC01 HT24CD2 HT24LC02 HT24C04 HT24LC04 HT24C08 HT24LC08 HT24C16 HT24LC16 HT24LC32 HT24C32 HT24LC64 HT24C64 HT24C128 HT24LC128 HT24C256 HT24LC256 HT24LC512 HT24C512 HT24C1024 HT24LC1024
ISSI
IS24O01 IS24C02 IS24C04 IS24C08 IS24C16 IS24C32 IS24C64 IS24C128 IS24C256 IS24C512 IS24C1024
MICROCHIP
MIC24LC014 MIC24AA01 MIC24AA014 MIC24LC01B MIC24LC02B MIC24AA02 MIC24C02C MIC24AA025 MIC24AA04 MIC24LC04B MIC24LC024 MIC24AA024 MIC24LC025 MIC24LC08B MIC24AA08 MIC24LC16B MIC24AA16 MIC24LC32 MIC24AA32 MIC24LC64 MIC24FC64 MIC24AA64 MIC24FC128 MIC24AA128 MIC24LC128 MIC24AA256 MIC24LC256 MIC24FC256 MIC24AA512 MIC24LC512 MIC24FC512 MIC24AA1024
NSC
NSC24C02L NSC24C02 N5C24C64
RAMTRON
FM24CL04 FM24C04A FM24CL16 FM24C16A FM24CL64 FM24C64 FM24C256 FM24CL256 FM24C512
ROHM
BR24L01 BR24C01 BR24L02 BR24C02 BR24L04 BR24C04 BR24L08 BR24C08 BR24L16 BR24C16 BR24L32 BR24C32 BR24C64 BR24L64
ST
ST24C01 ST24C32 ST24C02 ST24C64 ST24C04 ST24C08 ST24C16
XICOR
X24O01 X24C02 X24C04 X24C08 X24C16
Подключение Ch441A Pro к микросхеме в корпусе SOP8 без выпаивания через прищепку — переходник.
Прищепка — переходник для программатора Ch441A Pro позволяет программировать микросхемы в корпусе SOP8 8pin без выпаивания.
1. Подсоедините переходник к программатору, согласно ключу нарисованному на программаторе. Первая ножка микросхемы обозначена на рисунке (на программаторе) точкой. На переходнике от прищепки к программатору ножки пронумерованы. См. рисунок 2.1 (правильное подключение переходника прищепки для программирования микросхемы 25 серии)
Рис. 2.1. Правильное подключение переходника прищепки для программирования микросхемы 25 серии
2. Подключите шлейф прищепки к переходнику. Красный провод должен соответствовать 1 ножке переходника.
Перед подключением прищепки к микросхеме на плате, ножки микросхемы желательно почистить, например ножом, скальпелем или чем захотите. Плату нужно обязательно обесточить и вынуть батарейку BIOS.
3. Подсоедините прищепку к микросхеме так, чтобы красный провод был на первой ножке микросхемы. см рисунок 2.2. На самой микросхеме первая ножка обычно обозначена точкой.
ТОЛЬКО ПОСЛЕ!!! подсоединения к микросхеме и убедившись, что все соединено правильно, подключите программатор к USB порту компьютера.
Если все контакты между прищепкой и микросхемой имеются и все подключено правильно — при запуске программы все кнопки интерфейса будут активными и можно приступать к выбору названия микросхемы и программированию.
P.S. Из за особенностей некоторых материнских плат, не все микросхемы удается программировать не выпаивая из материнской платы. В некоторых случаях без выпаивания не обойтись.
Если вы уверены, что все подключили правильно и все контакты имеются, а микросхема не поддается программированию, попробуйте выпаять микросхему, возможно ее программированию мешают другие элементы материнской платы.