принцип работы, принципиальная схема и проверка его работоспособности
Сегодня комплектующие для десктопного ПК устаревают очень быстро. Единственным исключением является блок питания (БП). Конструкция этого устройства не претерпела серьезных изменений за последние 15 лет, когда на рынке появились БП форм-фактора ATX. Принцип работы и принципиальная схема блока питания для компьютера мало чем отличаются у всех производителей.
Структура и принцип работы
Типовая схема компьютерного блока питания стандарта ATX показана ниже. По своей конструкции это классический БП импульсного типа, основанный на ШИМ-контроллере TL 494. Сигнал к началу работы этого элемента поступает с материнской платы. До формирования управляющего импульса активным остается лишь источник дежурного питания, выдающий напряжение в 5 В.
Выпрямитель и ШИМ-контроллер
Чтобы было проще разобраться с устройством блока питания компьютера и принципом его работы, нужно рассмотреть отдельные структурные элементы. Начать стоит с сетевого выпрямителя.
Основная задача этого блока заключается в преобразовании переменного сетевого электротока в постоянный, который необходим для функционирования ШИМ-контроллера, а также дежурного источника питания. В состав блока входит несколько основных деталей:
- Предохранитель F1 – необходим для защиты БП от перегрузки.
- Терморезистор – он расположен в магистрали «нейтраль» и призван снижать скачки электротока, возникающие в момент включения ПК.
- Фильтр помех – в его состав входят дроссели L1 и L2, конденсаторы C1- C4, а также Tr1, имеющие встречную обмотку. Этот фильтр позволяет подавлять помехи, неизбежно возникающие при работе импульсного БП, могут негативно воздействовать на работу теле- и радиоаппаратуры.
- Диодный мостик – находится сразу за фильтром помех и позволяет преобразовать переменный электроток в постоянный пульсирующий. Для сглаживания пульсаций предусмотрен емкостно-индукционный фильтр.
На выходе из сетевого выпрямителя напряжение присутствует до того момента, пока БП не будет отключен от розетки. При этом ток поступает на дежурный источник питания и ШИМ-контроллер. Именно первый структурный элемент схемы представлен на рисунке.
Он представляет собой преобразователь малой мощности импульсного типа. В его основе лежит транзистор Т11, задачей которого является генерация питающих импульсов для микросхемы 7805.
После транзистора ток сначала проходит через разделительный трансформатор и выпрямитель, основанный на диоде D 24. Используемая в этом БП микросхема обладает одним довольно серьезным недостатком – высоким падением напряжения, что при больших нагрузках может вызвать перегрев элемента.
Основой любого преобразователя импульсного типа является ШИМ-контроллер. В рассматриваемом примере он реализован с помощью микросхемы TL 494. Основная задача модуля ШИМ (широтно-импульсная модуляция) заключается в изменении длительности импульсов напряжении при сохранении их амплитуды и частоты. Полученное выходное напряжение на импульсном преобразователе стабилизируется с помощью настройки длительности импульсов, которые генерирует ШИМ-контроллер.
Выходные каскады преобразователя
Именно на этот элемент конструкции ложится основная нагрузка. Это приводит к серьезному нагреву коммутирующих транзисторов Т2 и Т4. По этой причине они установлены на массивные радиаторы. Однако пассивное охлаждение не всегда позволяет справляться с сильным тепловыделением, все БП оснащены кулером.
Перед выходным каскадом расположена цепь включения БП, основанная на транзисторе Т9. При пуске блока питания на этот элемент конструкции напряжение в 5 В подается через сопротивление R 8. Это происходит после формирования сигнала к пуску ПК на материнской плате. Если возникли проблемы с работой источника дежурного питания, то БП может после пуска сразу отключиться.
Сейчас все производители используют практически аналогичные схемы блоков питания компьютеров. Вносимые ими изменения не оказывают серьезного влияния на принцип работы устройства.
Распиновка главного коннектора
Сначала БП форм-фактора ATX для соединения с системной платой оснащались разъемом на 20 пин. Однако совершенствование вычислительной техники привело к необходимости использовать дополнительно еще 4 контакта. Современные блоки питания могут оснащаться 24-пиновым разъемом в одном корпусе или иметь 20+4 пин. Все контакты коннекторов стандартизованы и вот основные из них:
- +3,3 В – питание материнской платы и центрального процессора.
- +5 В – напряжение необходимо для работы некоторых узлов системной платы, винчестеров и внешних устройств, подключенных к портам USB.
- +12 В – управляемое напряжение, используемое HDD и кулерами.
- -5 В – начиная с версии ATX 1.3 не используется.
- -12 В – сегодня применяется крайне редко.
- Ground – масса.
Распределение нагрузки и возможные неисправности
Напряжение, выдаваемое источником питания, предназначено для различных нагрузок. Таким образом, в зависимости от конфигурации конкретного ПК,
При апгрейде «железа» ПК следует помнить об этом факте. Например, установка мощного современного видеоускорителя приводит к резкому повышению нагрузки в цепи 12 В. Чтобы ПК работал корректно, возможно потребуется и замена блока питания. Чаще всего неполадки с работой БП связаны со старением элементов его конструкции либо существенным недостатком мощности.
Не стоит забывать и о том, что перегрев выходного каскада может быть связан с накоплением большого количества пыли внутри блока питания. Электролитические конденсаторы, установленные в сетевом выпрямителе и выходных каскадах, больше других деталей склонны к старению.
В первую очередь это касается продукции малоизвестных брендов, использующих дешевые комплектующие. По сути, именно элементная база и качество деталей отличает хорошие устройства от дешевых. Провести ремонт БП самостоятельно может только человек, имеющий определенный набор знаний в области электроники. Однако современные устройства, изготовленные известными брендами, отличаются высокой надежностью. При соблюдении правил обслуживания ПК, проблемы с ними возникают очень редко.
Наименование | Формат | Размер, кБ |
Схема блока питания LC-250 ATX ch. 200-ATX ver. 2.02B фирмы JNC Computer Co. Основной источник: ШИМ DBL494, супервайзер LM339N, 3,3 В — A431 и магнитный стабилизатор Источник дежурного питания +5V SB (дежурка): |
GIF | 110 |
Схема блока питания LC-B250ATX ch. Y-B200-ATX ver. 2.9 фирмы JNC Computer Co. Основной: ШИМ и супервайзер 2003, 3,3 В — магнитный стабилизатор Дежурка: Высоковольтный ключ — SSS2N60A, оптрон 1010, стабилизатор AZ431 |
GIF | 103 |
Схема блоков питания 200XA1 и 250XA1 ch. CG-07A и CG-11 фирмы Codegen Основной: ШИМ KA7500B, супервайзер A6393D или KIA393P, 3,3 В — отдельный выпрямитель Дежурка: |
GIF | 103 |
Схема источника +5V SB блока питания SY-300ATX ch. Y-B2002 ATX ver 1,0 Основной: Дежурка: Высоковольтный ключ — BV-1 501, оптрон 817, стабилизатор 431 |
GIF | 30 |
Схема источника +5V SB блока питания KME PX-230W ATX ch. KME-08-3A1 Основной: Дежурка: Высоковольтный ключ — 2SC5353, стабилизатор 7805 |
GIF | 24 |
Схема платы RD-DW-P009B источника +5V SB блока питания EN-8156901 model SFX-2015 (150W) Дежурка: Высоковольтный ключ — TFK617 BUF640, оптрон PC817, стабилизатор 431P |
GIF | 21 |
Схема источника +5V SB блока питания 300X ch. CG-13c фирмы Codegen Основной: Дежурка: Высоковольтный ключ — SSS2N60B, оптрон PC817, стабилизатор TL431-A |
GIF | 72 |
Статья о ремонте компьютерных блоков питания ATX (Ver.1.0) | HTML | 18 |
Транзисторы, применяемые в компьютерных блоках питания | HTML | 28 |
Микросхемы, применяемые в компьютерных блоках питания | HTML | 23 |
Импульсные блоки питания для IBM PC В книге рассматриваются вопросы схемотехники, принципа работы, методика диагностики и ремонта компьютерных источников питания ATX |
DJVU | 2910 |
Блоки питания для системных модулей IBM PC XT AT В книге освещаются вопросы схемотехники, принципа работы компьютерных источников питания на микросхеме TL494. Особое внимание уделяется вопросам поиска неисправностей и регулировке компьютерных блоков питания. |
DJVU | 900 |
Источники питания ПК и периферии (часть 1) Подробно разобраны принципы работы отдельных узлов источников питания, алгоритмы и методики поиска неисправностей, типовые неисправности блоков питания компьютеров, мониторов и др. Рассматриваются вопросы построения качественных и энергоэффективных систем электропитания вычислительной техники. |
RAR+DJVU | 4000 |
Источники питания ПК и периферии (часть 2) | RAR+DJVU | 4000 |
Источники питания ПК и периферии (часть 3) | RAR+DJVU | 3627 |
Статья о методике доработки компьютерных блоков питания ATX, модернизация, повышение надежности, способы снижения помех и пульсаций | HTML | 25 |
Схемы блоков питания ATX | ||
Классическая схема блока питания ATX на TL494 и LM393, использованная фирмой Rolsen Основной: ШИМ TL494, супервайзер LM393, 3,3 В — TL431 и магнитный стабилизатор Дежурка: Высоковольтный ключ — 2SC3457, стабилизатор 7805 |
GIF | 57 |
Схема PowerMaster модель LP-8 v. 2.03 230W (AP-5-E v. 1.1), и FA-5-2 PCB FA_5-F v. 3.2 Основной: ШИМ TL494, супервайзер на дискретных транзисторах, 3,3 В — линейный регулятор на SPF36N03 или 45N03L и SP431 Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805 |
GIF | 159 |
Схема PowerMaster FA-5-2 v. 3.2 250W Основной: ШИМ TL494, супервайзер на дискретных транзисторах, 3,3 В — линейный регулятор на SPF36N03 или 45N03L и SP431 Дежурка: Высоковольтный ключ — KSC5027, оптрон PC817, стабилизатор TL431 |
GIF | 158 |
Схема блока питания ATX фирмы Microlab мощностью 350W Основной: ШИМ KA7500B, супервайзер LM339, 3,3 В — KA431 и магнитный стабилизатор Дежурка: Высоковольтный ключ — KSC5027, оптрон LTV817, стабилизатор KA431 |
44 | |
Схема БП Microlab ATX-5400X мощностью 400W Основной: ШИМ KA7500B, супервайзер LM339, 3,3 В — KA431 и магнитный стабилизатор Дежурка: Высоковольтный ключ — KSC5027, оптрон LTV817, стабилизатор KA431 |
43 | |
Схема SevenTeam ST-200HRK Основной: ШИМ UTC51494, супервайзер LM339, 3,3 V формируется на отдельной плате ST-DD33 A60320 из источника +12V: ШИМ UC3843AN, полевой ключ 2SK1388 Дежурка: Высоковольтный ключ — 2SC4020, стабилизатор MC78L05ACP |
GIF | 184 |
Схема DTK PTP-2038 мощностью 250 Вт Основной: ШИМ TL494, супервайзер LM393, 3,3 V — TL431C и магнитный стабилизатор Дежурка: Высоковольтный ключ — 2SC3457, стабилизатор 78L05 |
PNG | 25 |
Схема Codegen ATX300W мощностью 300 Вт Основной: ШИМ KA7500B, супервайзер на дискретных транзисторах, 3,3 V линейный параметрический стабилизатор на 40N03P и TL431 Дежурка: Высоковольтный ключ — полевой SSP2N60B, оптрон 817B, стабилизатор TL431 |
GIF | 229 |
Схема блока питания 330U фирмы Nuitek (COLORS iT) Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — стабилизатор линейный параметрический на полевике 7030 Дежурка: Высоковольтный ключ — полевой SSS2N60, ШИМ на TDA865, оптрон PC817B |
GIF | 319 |
Схема блока питания 350T Фирмы Nuitek (COLORS iT) Основной: ШИМ на IC3842, супервайзер на KA339, 2-х оптронах PC817, и IC431, однотактный инвертор на полевом ключе 2SK2648, 3,3 V на источнике опорного напряжения IC431, регуляторе на 2SA928 и магнитный стабилизатор на дросселе. Дежурка: ШИМ + высоковольтный полевой ключ — M605, оптрон KPC817, стабилизатор IC431 |
62 | |
Схема блока питания 350U фирмы Nuitek (COLORS iT) Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, силовые ключи MJE13009, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе. Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817 |
63 | |
Схема блока питания 400T Фирмы Nuitek (COLORS iT) Основной: ШИМ на IC3842, супервайзер на KA339, 2-х оптронах PC817, и IC431, однотактный инвертор на полевом ключе 2SK1940, 3,3 V на источнике опорного напряжения IC431, регуляторе на 2SA928 и магнитный стабилизатор на дросселе. Дежурка: ШИМ + высоковольтный полевой ключ — M605, оптрон KPC817, стабилизатор IC431 |
62 | |
Схема блока питания 400U фирмы Nuitek (COLORS iT) Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, силовые ключи 2SC2625, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе. Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817 |
63 | |
Схема блока питания 500T фирмы Nuitek (COLORS iT) Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе. Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817 |
64 | |
Схема блока питания 600T фирмы Nuitek (COLORS iT) Основной: ШИМ на UC3843, супервайзер — WT7525, силовые ключи 2SK2082, оптрон PC817, 3,3 V на источнике опорного напряжения TL431, регуляторе 2SB772, магнитный стабилизатор на дросселе Дежурка: ШИМ и высоковольтный ключ на ICE3B0365, оптрон KPC817, источник опорного напряжения TL431 |
49 | |
Схема FSP145-60SP от Fortron Source Основной: ШИМ и супервайзер на KA3511 на отдельной плате, 3,3 V — KA431 и магнитный стабилизатор Дежурка: ШИМ с высоковольтным ключом на KA1H0165R, оптрон 817, стабилизатор KA431 |
GIF | 48 |
Схема БП ATX-200W, ATX-250W, ATX-300W от Alim Основной: ШИМ на TL494C, супервайзер на дискретных элементах, 3,3 V — источник опорного напряжения на TL431, регулятор 2SA1015 и магнитный стабилизатор на дросселе Дежурка: Преобразователь на высоковольтном ключе на 2SC3150, стабилизатор 7805 |
395 | |
Схема InWin IW-ISP300A3-1 PowerMan с корректором фактора мощности Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105D, 3,3 V — магнитный стабилизатор, noise killer (регулятор скорости вращения вентилятора) на отдельной плате GDD-002 на LM358 Дежурка: Высоковольтный ключ — полевой 02N60P, оптрон PC817C |
GIF | 218 |
Схема InWin IW-P300A2-0 R1.2 Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105D, 3,3 V — магнитный стабилизатор Дежурка: Высоковольтный ключ — полевой SSS2N60B или SPU02N60P, оптрон CT324 или EL817 |
GIF | 51 |
Схема Sirtec HPC-360-302DF rev.C0 с активным корректором фактора мощности на отдельной плате Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — магнитный стабилизатор, noise killer (управление вентилятором) на отдельной плате N038052 на LM339 Дежурка: Высоковольтный ключ — полевой SSP2N60B, оптрон LIV817BY Активный корректор фактора мощности (АКФМ): Контроллер — UCC3818N, высоковольтный ключ — полевой 2 x FQP9N50 |
176 | |
Схема Sirtec HPC-420-302DF rev.C0 с активным корректором фактора мощности на отдельной плате Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — магнитный стабилизатор, noise killer (управление вентилятором) на отдельной плате N038052 на LM339 Дежурка: Высоковольтный ключ — полевой SSP2N60B, оптрон LIV817 Активный корректор фактора мощности (АКФМ): Контроллер — UCC3818N, высоковольтный ключ — полевой 2 x SPP11N60C3 |
182 | |
Схема БП Delta Electronics DPS-200PB-59 Основной: ШИМ TL494, супервайзер на отдельной платеLM339D, 3,3 V на отдельной плате A431 и магнитный стабилизатор Дежурка: Высоковольтный ключ — 2SC3457, стабилизатор 78L05 |
GIF | 236 |
Схема БП Delta Electronics DPS-260-2A c активным корректором фактора мощности, схемотехнически необычная, достаточно высокого уровня качества Основной: ШИМ и АКФМ на отдельной плате DC-988 2960095601 на NE556 и ML4824-1, супервайзер на отдельной плате DC-989 2960095700 на LM339D, 2-х LM358 и TL431, однотактный инвертор на полевом ключе 2SK2611, 3,3 V на отдельной плате DC-986 2960095401 TL431 и магнитный стабилизатор Дежурка: ШИМ + высоковольтный полевой ключ — TOP200, стабилизатор PQ05RF11 АКФМ: Высоковольтный ключ — полевой 2 x IRFP450 |
RAR+GIF | 454 |
Фирменная схема JNC SY-300ATX на микросхеме AT2005 Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме AT2005, 3,3 V — магнитный стабилизатор Дежурка: Высоковольтный ключ — полевой KSC5027, KSC5027-1, или BV-1 501 в корпусе TO-126, оптрон 817, стабилизатор 431 |
55 | |
Фирменная схема JNC LC-B250ATX на микросхеме 2003 Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме 2003, 3,3 V — магнитный стабилизатор Дежурка: Высоковольтный ключ — полевой SSS2N60B, оптрон 817, стабилизатор 431 |
GIF | 53 |
Схема БП фирмы JNC Основной: ШИМ TL494, супервайзер LM339, 3,3 V — TL431 и магнитный стабилизатор Дежурка: Высоковольтный ключ — KSC5027, стабилизатор MC7805 |
GIF | 123 |
Фирменная схема блока питания KME PM-230W Основной: ШИМ TL494, супервайзер LM393, 3,3 V линейный параметрический стабилизатор на STP40NE03L и SP431 Дежурка: Высоковольтный ключ — KSC5027, стабилизатор PJ7805 |
GIF | 63 |
Фирменная оригинальная схема Sunny ATX-230. Схема сильно отличается от других блоков питания! Основной: ШИМ однотактный на UC3843, высоковольтный ключ — 2SK2545, оптрон TCET1109, стабилизатор TL431, супервайзер TPS5510P, цепь стабилизации напряжения питания ШИМ включает оптрон 817C, управляет которым супервайзер, 3,3 V — линейный параметрический стабилизатор на полевом транзисторе P3020L и TL431 Дежурка: Высоковольтный ключ — полевой 2SK3067, оптрон 817C, стабилизатор TL431 |
GIF | 53 |
Фирменная схема Shido ATX-250W LP-6100 Основной: ШИМ TL494, супервайзер LM339, 3,3 V — отдельный выпрямитель Дежурка: Высоковольтный ключ — 2SC3150, оптрон 817, стабилизатор TL431 |
PNG | 37 |
Схема PowerLink LPJ2-18 мощностью 300W Основной: ШИМ и супервайзер на LPG-899, 3,3 V — TL431 и магнитный стабилизатор Дежурка: Высоковольтный ключ — KSC5027, оптрон 817, стабилизатор 431 |
GIF | 54 |
Схема Maxpower PX-300W Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — линейный параметрический стабилизатор на полевом транзисторе P40NF03 Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805 |
GIF | 51 |
Вариант схемы на SG6105 мощностью 250 Вт Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — линейный параметрический стабилизатор на полевом транзисторе P40NE0 Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805 |
GIF | 47 |
Схема блока питания AcBel API4PC01 мощностью 400W Основной: без номиналов Дежурка: без номиналов |
PNG | 96 |
Схема блока питания AcBel API3PCD2 ATX-450P-DNSS мощностью 450W Основной: без номиналов Дежурка: без номиналов |
PNG | 46 |
Схема БП Green Tech MAV-300W-P4 Основной: ШИМ TL494, супервайзер WT7510, 3,3 V линейный параметрический стабилизатор на полевом транзисторе P45N03L Дежурка: Высоковольтный полевой ключ — PFB2N60, оптрон COSMO1010, стабилизатор TL431 |
GIF | 203 |
Схема БП ATX-300P4 PFC ATX-310T v. 2.03. Корректор фактора питания пассивный Основной: ШИМ TL494, супервайзер LM339, 3,3 V — TL431 и магнитный стабилизатор Дежурка: Высоковольтный ключ — 2SC3866, оптрон ???, стабилизатор TL431 |
PNG | 37 |
Схема БП ShenZhon мощностью 350 Вт на микросхеме — супервайзере AT2005 Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме AT2005, 3,3 V — магнитный стабилизатор Дежурка: Высоковольтный ключ — полевой KSC5027, оптрон 817, стабилизатор 431 |
PNG | 332 |
Схема серии БП фирмы Linkworld мощностью 200W, 250W и 300W Основной: ШИМ TL494C, супервайзер ???, 3,3 V — TL431 и магнитный стабилизатор Дежурка: Высоковольтный ключ — 2SC3150, оптрон ???, стабилизатор 7805 |
395 | |
ШИМ и высоковольтные полевые ключи БП Hiper HPU-4K580 Основной: ШИМ TL3842P, однотактный инвертор на 2-х полевых ключах 2SK2607 Дежурка: |
PNG | 136 |
Часть схемы БП IP-P350AJ2-0 мощностью 350 Вт, включающая источник дежурного напряжения +5VSB Основной: ШИМ AIC3843, супервайзер WT751002, 2 оптрона 817, однотактный инвертор на полевом ключе W12NK90Z Дежурка: ШИМ и высоковольтный ключ — ICE2A0565Z, оптрон 817, стабилизатор TL431 |
PNG | 24 |
Фрагмент схемы блока питания ATX Enlight HPC-250 и HPC-350 Основной: ШИМ TL494C, супервайзер LM339, опорное — TL431 Дежурка: |
GIF | 266 |
Источник дежурного напряжения +5VSB Codegen-300W model 300X v2.03 Основной: Дежурка: ШИМ и высоковольтный ключ — 5H0165R, оптрон LF311 |
GIF | 40 |
Источник дежурного напряжения +5VSB Espada KPY-350ATX Основной: Дежурка: Высоковольтный полевой ключ — 02N60, оптрон |
GIF | 8 |
Источник дежурного напряжения +5VSB FSP ATX-300GTF Основной: Дежурка: Высоковольтный полевой ключ — 02N60, оптрон |
GIF | 8 |
Источник дежурного напряжения +5VSB FSP600 Epsilon FX600 GLN Основной: Дежурка: ШИМ и высоковольтный ключ — FSDM0265R, оптрон PC817, стабилизатор TL431 |
PNG | 66 |
Часть схемы БП LEC971 мощностью 250 Вт, включающая источник дежурного напряжения +5VSB Основной: Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805 |
GIF | 29 |
Еще одна схема БП ATX Основной: ШИМ TL494 Дежурка: |
BMP | 391 |
Схемы блоков питания AT | ||
Схема БП на TL494 и LM339 мощностью 200W | GIF | 44 |
Схема на TL494, KA34063F и LM393 | GIF | 369 |
Схема на mPC494C и HA17339 | GIF | 71 |
Схема на TL494C | PNG | 70 |
Схема на DBL494 | PNG | 177 |
Схема на TL494C и LM339 | PNG | 72 |
Схема Sunny CWT9200C-1 на KA7500(TL494) | PNG | 50 |
Схема Enermax мощностью 200W | GIF | 51 |
Схема AUVA VIP P200B мощностью 200W без номиналов | PNG | 45 |
Схема PE-050187 от Power Efficiency Electronic Co Ltd без номиналов | PNG | 51 |
Схема на mPC494C | GIF | 89 |
Еще одна схема БП AT | GIF | 65 |
Схема БП мощностью 200W | PNG | 36 |
Схема БП мощностью 200W без номиналов | GIF | 33 |
Схема БП без номиналов | GIF | 33 |
Схема БП без номиналов | GIF | 135 |
Еще одна схема БП без номиналов | GIF | 31 |
Схема блока питания компьютера — электрическая, структурная, подключение, импульсного
Работа любого компьютера невозможна без блока питания. Поэтому стоит отнестись серьезно к выбору. Ведь от стабильной и надежной работы БП будет зависеть работоспособность самого компьютера.
Что это такое
Главной задачей блока питания является преобразование переменного тока и дальнейшее формирование требуемого напряжения, для нормальной работы всех комплектующих ПК.
Напряжение, требуемое для работы комплектующих:
Кроме этих заявленных величин существует и дополнительное величины:
Фото: блок питания
БП выполняет роль гальванической развязки между электрическим током из розетки и комплектующими потребляющие ток. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Часто используются источники питания (ИП) формата ATX.
Обзор схем источников питания
Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь. Работа преобразователей этого типа заключается в использовании двухтактного режима.
Стабилизация выходных параметров ИП осуществляется применением широтно-импульсной модуляции (ШИМ-контроллер) управляющих сигналов.
В импульсных источниках питания часто используется микросхема ШИМ-контроллера TL494, которая обладает рядом положительных свойств:
- приемлемые рабочие характеристики микросхемы. Это – малый пусковой ток, быстродействие;
- наличие универсальных внутренних элементов защиты;
- удобство использования.
Простой импульсный БП
Принцип работы обычного импульсного БП можно увидеть на фото.
Фото: блок схема работы импульсного
Первый блок выполняет изменение переменного тока в постоянный. Преобразователь выполнен в виде диодного моста, который преобразовывает напряжение, и конденсатора, сглаживающего колебания.
Кроме этих элементов могут присутствовать еще дополнительные комплектующие: фильтр напряжения и термисторы. Но, из-за дороговизны, эти комплектующие могут отсутствовать.
Генератор создает импульсы с определенной частотой, которые питают обмотку трансформатора. Трансформатор выполняет главную работу в БП, это – гальваническая развязка и преобразование тока до требуемых величин.
Далее переменное напряжение, генерируемое трансформатором, идет на следующий блок. Этот блок из диодов, выравнивающих напряжение, и фильтра пульсаций. Фильтр состоит из группы конденсаторов и дросселя.
Видео: Принцип работы ШИМ контроллера БП
АТХ без коррекции коэффициента
Простой импульсный БП хоть и рабочее устройство, но на практике его использовать неудобно. Многие из его параметров на выходе «плавают», в том числе и напряжение. Все эти показатели изменяются из-за нестабильного напряжения, температуры и загруженности выхода преобразователя.
Но если осуществлять управление этими показателями с помощью контроллера, который будет выполнять роль стабилизатора и дополнительные функции, то схема будет вполне пригодной для применения.
Структурная схема БП с использованием контроллера широтно-импульсной модуляции проста и представляет генератор импульсов на ШИМ-контроллере.
Фото: ИП для компьютера с ШИМ-контроллером
ШИМ-контроллер регулирует амплитуду изменения сигналов проходящих через фильтр низких частот (ФНЧ). Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании.
АТХ с коррекцией коэффициента мощности
В новых источниках питания для ПК появляется дополнительный блок – корректор коэффициента мощности (ККМ). ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности (КМ).
Поэтому производителями активно изготавливаются БП с обязательной коррекцией КМ. Это означает, что ИП на компьютере будет работать в диапазоне от 300Вт и более.
Фото: схема блока питания компьютера 300w
В этих БП используют специальный дроссель с индуктивностью выше чем на входе. Такой ИП называют PFC или пассивным ККМ. Имеет внушительный вес из-за дополнительного использования конденсаторов на выходе выпрямителя.
Из недостатков можно выделить невысокую надежность ИП и некорректную работу с ИБП во время переключения режима работы «батарея/сеть».
Это связано с маленькой емкостью фильтра сетевого напряжения и в момент падения напряжения повышается ток ККМ, и в этот момент включается защита от короткого замыкания.
На двухканальном ШИМ-контролере
Часто используют в современных источниках питания для компьютера двухканальные ШИМ-контроллеры. Единственная микросхема способна выполнять роль преобразователя и корректора КМ, что сокращает общее количество элементов в схеме БП.
Фото: схема БП с использованием двухканального ШИМ-котроллера
В приведенной схеме первая часть выполняет формирование стабилизированного напряжение +38В, а вторая часть является преобразователем, который формирует стабилизированное напряжение +12В.
Схема подключения блока питания компьютера
Для подключения блока питания к компьютеру следует выполнить ряд последовательных действий:
- установить БП в системный блок. Все эти действия нужно выполнять аккуратно, чтобы не задеть остальные комплектующие;
- закрепить БП к задней панели системного блока специальными винтами;
- подсоединить кабели питания ко всем устройствам находящимся в системном блоке (материнская плата, дисковод, видеокарта, винчестер). Особых предпочтений в порядке подключения нет, главное все сделать аккуратно и правильно.
фото: схема подключения питания компьютера PcCar CarPc
Конструктивные особенности
Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. На задней его части расположен разъем под сетевой кабель и кнопка выключателя.
Кроме этого может находится еще на задней стенке БП и разъем для подключения монитора.
В различных моделях могут быть и другие разъемы:
- индикатор напряжения;
- кнопки изменения режима работы вентилятора;
- переключатель входящего напряжения;
- USB-порты, встроенные в БП.
Фото: внешний вид БП для ПК
В современных источниках питания для ПК реже устанавливают вентилятор на задней стенке, который вытягивал горячий воздух из БП. В замен этого решения начали использовать вентилятор на верхней стенке, который был больше и работал тише.
На некоторых моделях возможно встретить сразу два вентилятора. Из стенки, которая находится внутри системного блока, выходит провод со специальным разъемом для подачи тока на материнскую плату. На фото указаны возможные разъемы подключения и обозначение контактов.
Фото: обозначение контактов разъемов БП
Каждый цвет провода подает определенное напряжение:
- желтый — +12 В;
- красный — +5 В;
- оранжевый — +3,3 В;
- черный – заземление.
У различных производителей могут изменяться значения для этих цветов проводов.
Также есть разъемы для подачи тока комплектующим компьютера.
Фото: специальные разъемы для комплектующих
Параметры и характеристики
БП персонального компьютера имеет много параметров, которые могут не указываться в документации. На боковой этикетке указываются несколько параметров – это напряжение и мощность.
Мощность – основной показатель
Эта информация пишется на этикетке крупным шрифтом. Показатель мощности БП указывает на общее количество электроэнергии доступной для внутренних комплектующих.
Казалось бы, выбрать БП с требуемой мощностью будет достаточным просуммировать потребляемые показатели комплектующими и выбрать БП с небольшим запасом. Поэтому большой разницы между 200w и 250w не будет существенной.
Фото: Импульсный блок питания компьютера (ATX) на з00 Вт
Но на самом деле ситуация выглядит сложнее, потому что выдаваемое напряжение может быть разным — +12В, -12В и другим. Каждая линия напряжения потребляет определенную мощность. Но в БП расположен один трансформатор, который генерирует все напряжения, используемые ПК. В редких случаях может быть размещено два трансформатора. Это дорогой вариант и используется в качестве источника на серверах.
В простых же БП используется 1 трансформатор. Из-за этого мощность на линиях напряжений может меняться, увеличиваться при малой нагрузке на других линиях и наоборот уменьшаться.
Рабочие напряжение
При выборе БП следует обратить внимание на максимальные значения рабочих напряжений, а также диапазон входящих напряжений, он должен быть от 110В до 220В.
Правда большинство из пользователей на это не обращают своего внимания и выбирая БП с показателями от 220В до 240В рискуют к появлению частых отключений ПК.
Фото: параметры блока питания компьютера
Такой БП будет выключаться при падении напряжения, которые не редкость для наших электросетей.Превышение заявленных показателей приведет к выключению ПК, сработает защита. Чтобы включить обратно БП придется отключить его от сети и подождать минуту.
Следует помнить, что процессор и видеокарта потребляю самое большее рабочее напряжение в 12В. Поэтому следует обращать внимание на эти показатели.Для снижения нагрузки на разъемы, линию 12В разделяют на пару параллельных с обозначением +12V1 и +12V2. Эти показатели должны быть указаны на этикетке.
Советы по выбору источника
Перед тем как выбрать для покупки БП, следует обратить внимание на потребляемую мощность внутренними компонентами ПК.
Но некоторые видеокарты требуют особый потребляемый ток +12В и эти показатели следует учитывать при выборе БП. Обычно для ПК, в котором установлена одна видеокарта, достаточно источника с мощностью в 500вт или 600.
Фото: Super Power 300X
Также следует ознакомится с отзывами покупателей и обзорами специалистов о выбранной модели, и компании производителе. Лучшие параметры, на которые следует обратить внимание, это: мощность, тихая работа, качество и соответствие написанным характеристикам на этикетке.
Вам необходимо настроить модем в режиме роутера! Подробнее в настройке модема в роутер ByFly.Интересует настройка роутера ZYXEL KEENETIC LITE PPPoE? Читайте тут.
Настройка IPTV в роутере DIR 620 от Ростелеком? Читайте в статье.
Экономить при этом не следует, ведь от работы БП будет зависеть работа всего ПК. Поэтому чем качественнее и надежнее источник, тем дольше прослужит компьютер. Пользователь может быть уверен, что сделал правильный выбор и не беспокоится о внезапных выключениях своего ПК.
ATX БЛОК ПИТАНИЯ — СХЕМА
ATX БЛОК ПИТАНИЯ, СХЕМА
С каждым днём всё более популярны среди радиолюбителей компьютерные блоки питания ATX. При относительно небольшой цене, они представляют собой мощный, компактный источник напряжения 5 и 12 В 250 – 500 ватт. БП ATX можно использовать и в зарядных устройствах для автомобильных аккумуляторов, и в лабораторных блоках питания, и в сварочных инверторах, и ещё массу применений можно найти для них при определённой фантазии. Причём если схема БП ATX и подвергается переделке, то минимальной.
Схемотехника этих блоков питания примерно одинакова практически у всех производителей. Небольшое отличие касается лишь БП AT и ATX. Главное различие между ними заключается в том, что БП в AT не поддерживает программно стандарт расширенного управления питанием. Отключить данный БП можно, лишь прекратив подачу напряжение на его вход, а в блоках питания формата ATX есть возможность программного отключения сигналом управления с материнской платы. Как правило плата ATX имеет большие размеры чем AT и вытянута по вертикали.
В любом компьютерном БП, напряжение +12 В предназначено для питания двигателей дисковых накопителей. Источник питания по этой цепи должен обеспечивать большой выходной ток, особенно в компьютерах с множеством отсеков для дисководов. Это напряжение также подается на вентиляторы. Они потребляют ток до 0.3 А, но в новых компьютерах это значение ниже 0.1 А. Питание +5 вольт подаётся на все узлы компьютера, поэтому имеет очень большую мощность и ток, до 20 А, а напряжение +3.3 вольта предназначено исключительно для запитки процессора. Зная что современные многоядерные процессоры имеют мощность до 150 ватт, нетрудно подсчитать ток этой цепи: 100 ватт/3.3 вольт=30 А! Отрицательные напряжения -5 и -12 В раз в десять слабее основных плюсовых, поэтому там стоят простые 2-х амперные диоды без радиаторов.
В задачи БП входит и приостановка функционирования системы до тех пор, пока величина входного напряжения не достигнет значения, достаточного для нормальной работы. В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения. После этого на системную плату посылается специальный сигнал Power Good. Если этот сигнал не поступил, компьютер работать не будет.
Сигнал Power Good можно использовать для сброса вручную если подать его на микросхему тактового генератора. При заземлении сигнальной цепи Power Good, генерация тактовых сигналов прекращается и процессор останавливается. После размыкания переключателя вырабатывается кратковременный сигнал начальной установки процессора и разрешается нормальное прохождение сигнала — выполняется аппаратная перезагрузка компьютера. В компьютерных БП типа ATX, предусмотрен сигнал, называемый PS ON, он может использоваться программой для отключения источника питания.
Здесь можно скачать сборник схем компьютерных блоков питания, а тут очень полезная книга по описанию, видам и принципу действия БП AT и ATX. Для проверки работоспособности блока питания, следует нагрузить БП лампами для автомобильных фар и замерять все выходные напряжения тестером. Если напряжения в пределах нормы. Также стоит проверить изменение выдаваемое БП напряжение с изменением нагрузки.
Работа этих блоков питания очень стабильна и надёжна, но в случае сгорания, чаще всего выходят из строя мощные транзисторы, низкоомные резисторы, выпрямительные диоды на радиаторе, варисторы, трансформатор и предохранитель.
ФОРУМ по компьютерным БП Схемы блоков питания
Схемы блока питания компьютера
Схема БП — мне нужен был новый настольный источник питания, который был бы переменным и недорогим. Я решил повторно использовать старый адаптер питания ноутбука, который больше не использовался, и это дало мне хорошие фильтрованные 19 вольт постоянного тока. Затем я составил схему для регулятора переменного напряжения LM350 на макете, чтобы убедиться, что он работает.
Статья полностью: → Схема БП для ноутбука
Схемы блока питания компьютераБлок питания схема, которого представлена в этой статье подходит для использования с мощным усилителем низкой частоты. Первое, что нужно сделать, это выбрать подходящий трансформатор. Я предлагаю тороидальный трансформатор, а не традиционные Ш-образные, потому что они излучают меньше магнитного потока и более плоские.
Статья полностью: → Блок питания схема
Схемы блока питания компьютераБлок питания является неотъемлемой частью каждого компьютера. От его нормальной работы зависит функционирование всего персонального компьютера (PC). Но при этом блоки питания покупаются редко, поскольку однажды приобретенный хороший блок питания может обеспечить несколько поколений непрерывно развивающихся систем.
Схема блока питания ATX 200W →
Схемы блока питания компьютера
Настоящее руководство предназначено для ознакомления с основными техническими характеристиками, принципом и режимами работы и правилами эксплуатации источника бесперебойного питания NTT UPS-800. ИБП обеспечивает питание персональных компьютеров или другой нагрузки ПК с номинальным напряжением питания 220v.
Схема блока питания NTT UPS-800 →
Схемы блока питания компьютераКорпус блока питания Power Master 250W сделан из качественного листового металла. 120 мм вентилятор S1202512M (12 В, 0,3 А) размещен снизу устройства и прикрыт золотистой решеткой. На задней панели закреплен сетевой разъем, выключатель питания и переключатель напряжения сети. Применены провода AWG 18. Длина проводов до основного разъема составляет 400 мм.
Схема блока питания Power Master 250W →
Схемы блока питания компьютераКак известно, одним из самых важных компонентов компьютера считается блоки питания. При относительно небольшой цене, они представляют собой мощный, компактный источник напряжения 5 и 12 В 200 – 500 ватт. БП ATX можно использовать и в зарядных устройствах для автомобильных аккумуляторов, и в лабораторных блоках питания, и в сварочных инверторах.
Схема блока питания Power Master 230W →
Схемы блока питания компьютераПроизводя ремонт компьютеров очень часто приходится заглядывать под крышку БП: осматривать его узлы, замерять напряжения, иногда перепаивать компоненты. Блоки питания компьютеров, являясь высоковольтными силовыми устройствами, выходят из строя намного чаще других комплектующих компьютера.
Блок питания ATX-400W →
Схемы блока питания компьютераПод брендом KRAULER предлагается достаточно много электротехнических устройств бытовой и компьютерной направленности. Это и стабилизаторы напряжения, источники бесперебойного питания, блоки питания, сетевые фильтры и сетевые шкафы. Ассортимент устройств относительно обширный, хотя в первую очередь делается упор на источники бесперебойного питания
Схема блока питания компьютера →
Схемы блока питания компьютераРеволюция в схемах компьютерных блоков питания полувековой давности / Habr
Полвека назад улучшенные транзисторы и импульсные стабилизаторы напряжения произвели революцию в схемах компьютерных блоков питания. Получила преимущества, к примеру, компания Apple – хотя не она запустила эту революцию, несмотря на заявления Стива Джобса.
Без Intel внутри: на рентгене видны компоненты импульсного блока питания, использованного в оригинальном микрокомпьютере Apple II, вышедшем в 1977 году
Компьютерным блокам питания не уделяется должного внимания.
Как энтузиаст технологий, вы наверняка знаете, какой у вашего компьютера микропроцессор и сколько у него физической памяти, однако есть вероятность, что вам ничего не известно о его блоке питания. Не тушуйтесь – даже производители разрабатывают БП в последнюю очередь.
А жаль, поскольку на создание БП для персональных компьютеров ушло довольно много сил, и это было серьёзное улучшение по сравнению с теми схемами, что питали другую потребительскую электронику вплоть до конца 1970-х. Этот прорыв стал возможен благодаря огромным скачкам в полупроводниковой технологии, сделанным полвека назад, в частности, улучшениям в импульсных стабилизаторах напряжения и инновациям в интегральных схемах. Но при этом данная революция прошла мимо внимания общественности, и даже неизвестна многим людям, знакомым с историей микрокомпьютеров.
В мире БП не обошлось без выдающихся чемпионов, включая и личность, упоминание которой может вас удивить: Стива Джобса. Согласно его авторизованному биографу, Уолтеру Айзексону, Джобс очень серьёзно относился к БП передового персонального компьютера Apple II и его разработчику, Роду Холту. Джобс, как утверждает Айзексон, заявлял следующее:
Вместо обычного линейного БП, Холт создал такой, который использовался в осциллографах. Он включал и выключал энергию не 60 раз в секунду, а тысячи раз; это позволяло ему сохранять энергию на гораздо меньших промежутках времени, в результате чего он испускал гораздо меньше тепла. «Этот импульсный БП был таким же революционным, как логическая плата Apple II, — сказал позже Джобс. – Рода не часто хвалят за это в книжках по истории, а должны были бы. Сегодня все компьютеры используют ИБП, и все они скопированы со схемы Рода Холта».
Это серьёзное заявление показалось мне не слишком достоверным, и я провёл своё расследование. Я обнаружил, что, хотя ИБП и были революционными, эта революция произошла в конце 1960-х и середине 1970-х, когда ИБП приняли эстафету у простых, но неэффективных линейных БП. Apple II, появившийся в 1977, получил преимущества этой революции, но не вызывал её.
Исправление джобсовской версии событий – не какая-то мелочь из инженерной области. Сегодня ИБП представляют собой повсеместный оплот всего, мы используем их ежедневно для зарядка наших смартфонов, планшетов, ноутбуков, камер и даже некоторых автомобилей. Они питают часы, радио, домашние аудиоусилители, и другую мелкую бытовую технику. Спровоцировавшие эту революцию инженеры заслуживают признания своих заслуг. Да и вообще, это весьма интересная история.
БП в настольных компьютерах, таких, как Apple II, преобразует переменный линейный ток в постоянный ток, и выдаёт очень стабильное напряжение для питания системы. БП можно сконструировать множеством разных способов, но чаще всего встречаются линейные и импульсные схемы.
Со всеми бородавками
В прошлом небольшие электронные устройства обычно использовали громоздкие БП-трансформаторы, получившие уничижительное прозвище «стенные бородавки». В начале XXI века технологические улучшения позволили начать практическое применение компактных импульсных источников питания малой энергии для питания небольших устройств. С падением стоимости импульсных AC/DC адаптеров они быстро заменили собой громоздкие БП у большинства домашних устройств.
Apple превратила зарядник в хитроумное устройство, представила прилизанную зарядку для iPod в 2001 году, внутри которой был компактный обратноходовой преобразователь под управлением интегральных схем (слева на картинке). Вскоре получили широкое распространение USB-зарядки, а ультракомпактный зарядник в виде дюймового куба от Apple, появившись в 2008, стал культовым (справа).
Самые модные зарядники высокого уровня подобного типа сегодня используют полупроводники на основе нитрида галлия, способные переключаться быстрее кремниевых транзисторов, и потому более эффективные. Развивая технологии в другом направлении, сегодня производители предлагают USB-зарядки уже по цене меньше доллара, хотя и экономя при этом на качестве питания и системах безопасности.
* * *
Типичный линейный БП использует громоздкий трансформатор для преобразования высоковольтного AC в розетке в низковольтный AC, который затем превращается в низковольтный DC при помощи диодов, обычно четырёх штук, подключенных в классическую схему диодного моста. Для сглаживания выходного напряжения диодного моста применяются крупные электролитические конденсаторы. Компьютерные БП используют схему под названием линейный стабилизатор, уменьшающую напряжение DC до нужного уровня и удерживающую его на этом уровне даже при изменениях в нагрузке.
Линейные БП тривиальны в проектировании и создании. Они используют дешёвые низковольтные полупроводниковые компоненты. Однако у них есть два больших минуса. Один – необходимость в использовании крупных конденсаторов и громоздких трансформаторов, которые никак нельзя запихнуть в нечто столь маленькоё, лёгкое и удобное, как зарядники, которые мы все используем для наших смартфонов и планшетов. Другой – схема линейного стабилизатора, основанная на транзисторах, превращает излишнее напряжение DC – всё, что выше необходимого уровня – в паразитное тепло. Поэтому такие БП обычно теряют более половины потребляемой энергии. И им часто требуются крупные металлические радиаторы или вентиляторы, чтобы избавляться от этого тепла.
ИБП работает на другом принципе: линейный вход AV превращается в высоковольтный DC, который включается и выключается десятки тысяч раз в секунду. Высокие частоты позволяют использовать гораздо более мелкие и лёгкие трансформаторы и конденсаторы. Особая схема точно управляет переключениями для контроля выходного напряжения. Поскольку таким БП не нужны линейные стабилизаторы, они теряют очень мало энергии: обычно их эффективность достигает 80-90%, и в итоге они гораздо меньше греются.
Однако ИБП обычно гораздо более сложные, чем линейные, и их сложнее проектировать. Кроме того, они выдвигают больше требований к компонентам, и нуждаются в высоковольтных транзисторах, способных эффективно включаться и выключаться с высокой частотой.
Должен упомянуть, что некоторые компьютеры использовали БП, не являвшиеся ни линейными, ни импульсными. Одной грубой, но эффективной техникой было запитать мотор от розетки и использовать его для раскрутки генератора, выдававшего необходимое напряжение. Мотор-генераторы использовались несколько десятилетий, по меньшей мере, с момента появления машин от IBM с перфокартами в 1930-х и до 1970-х, питая, среди прочего, суперкомпьютеры Cray.
Ещё один вариант, популярный с 1950-х и вплоть до 1980-х, использовал феррорезонансные трансформаторы – особый тип трансформаторов, дающих на выходе постоянное напряжение. Также в 1950-х для регулирования напряжения ламповых компьютеров использовался дроссель насыщения, контролируемая катушка индуктивности. В некоторых современных БП для ПК он вновь появился под именем «магнитного усилителя», давая дополнительное регулирование. Но в итоге все эти старые подходы уступили место ИБП.
Принципы, лежащие в основе ИБП, известны инженерам-электрикам с 1930-х, однако эта технология редко использовалась в эру электронных ламп. В то время в некоторых БП использовались специальные ртутные лампы, тиратроны, и их можно считать примитивными, низкочастотными импульсными стабилизаторами. Среди них — REC-30, питавшая телетайп в 1940-х, а также блок питания компьютера IBM 704 от 1954 года. Но с появлением в 1950-х силовых транзисторов ИБП начали быстро улучшаться. Pioneer Magnetics начала производить ИБП в 1958. General Electric выпустила ранний проект транзисторного ИБП в 1959.
В 1960-е НАСА и аэрокосмическая индустрия стала основной движущей силой в развитии ИБП, поскольку для аэрокосмических нужд преимущества малого размера и высокой эффективности имели приоритет перед большой стоимостью. К примеру, в 1962-м спутник Telstar (первый спутник, начавший передачу телевидения) и ракета «Минитмен» использовали ИБП. Годы шли, цены пали, и ИБП начали встраивать в потребительскую технику. К примеру, в 1966 Tektronix использовала ИБП в портативном осциллографе, что позволяло ему работать как от розетки, так и от батареек.
Тенденция ускорялась по мере того, как производители начали продавать ИБП другим компаниям. В 1967 RO Associates представила первый ИБП на 20 КГц, который назвала первым коммерчески успешным примером ИБП. Nippon Electronic Memory Industry Co. начала разработку стандартизованных ИБП в Японии в 1970. К 1972 году большинство производителей БП продавали ИБП или готовились к их выпуску.
Примерно в это время индустрия компьютеров начала использовать ИБП. Среди ранних примеров – микрокомпьютер PDP-11/20 от Digital Equipment 1969 года, и микрокомпьютер 2100A от Hewlett-Packard 1971 года. В публикации 1971 года заявлялось, что среди компаний, использующих ИБП, отметились все главные игроки рынка: IBM, Honeywell, Univac, DEC, Burroughs и RCA. В 1974 в списке микрокомпьютеров, использующих ИБП, отметились Nova 2/4 от Data General, 960B от Texas Instruments и системы от Interdata. В 1975 ИБП использовались в терминале HP2640A, похожем на пишущую машинку Selectric Composer от IBM, и в портативном компьютере IBM 5100. К 1976 году Data General использовала ИБП в половине своих систем, а HP – в мелких системах типа 9825A Desktop Computer и 9815A Calculator. ИБП начали появляться и в домашних устройствах, например, в некоторых цветных телевизорах к 1973 году.
ИБП часто освещались в электронных журналах той эпохи, как в виде рекламы, так и в статьях. Ещё в 1964 году Electronic Design рекомендовал использовать ИБП из-за более высокой эффективности. На обложке от октября 1971 года журнала Electronics World красовался ИБП на 500 Вт, а название статьи гласило: «Блок питания с импульсным стабилизатором». Computer Design в 1972 детально описывал ИБП и постепенный захват ими компьютерного рынка, хотя упомянул и о скептицизме некоторых компаний. На обложке Electronic Design 1976 года было написано «Переключаться внезапно стало легче», и описывалась новая интегральная схема управления ИБП. В журнале Electronics была длинная статья на эту тему; в Powertec были двухстраничные рекламные материалы о преимуществах ИБП со слоганом «The big switch is to switchers» [большие изменения для переключателей]; Byte объявлял о выпуске ИБП для микрокомпьютеров компанией Boschert.
Роберт Бошерт, уволившийся с работы и начавший собирать БП у себя на кухне в 1970-м, был ключевым разработчиком этой технологии. Он концентрировался на упрощении схем, чтобы сделать импульсные БП конкурентными по цене с линейными, и к 1974 году уже выпускал недорогие БП для принтеров в промышленных количествах, а потом в 1976 выпустил и недорогие ИБП на 80 Вт. К 1977 Boschert Inc. выросла до компании из 650 человек. Она делала БП для спутников и истребителя Grumman F-14, а позже – компьютерные БП для HP и Sun.
Появление недорогих высоковольтных высокочастотных транзисторов в конце 1960-х и начале 1970-х, выпускаемых такими компаниями, как Solid State Products Inc. (SSPI), Siemens Edison Swan (SES) и Motorola, помогло вывести ИБП в мейнстрим. Более высокие частоты переключения повышали эффективность, поскольку тепло в таких транзисторах рассеивалось в основном в момент переключения между состояниями, и чем быстрее устройство могло совершать этот переход, тем меньше энергии оно тратило.
Частоты транзисторов в то время увеличивались скачкообразно. Транзисторная технология развивалась так быстро, что редакторы Electronics World в 1971 могли заявлять, что БП на 500 Вт, представленный на обложке журнала, невозможно было произвести всего на 18 месяцев ранее.
Ещё один заметный прорыв случился в 1976, когда Роберт Маммано, сооснователь Silicon General Semiconductors, представил первую интегральную схему для контроля ИБП, разработанную для электронного телетайпа. Его контроллер SG1524 кардинально упростил разработку БП и уменьшил их стоимость, что вызвало всплеск продаж.
К 1974 году, плюс-минус пару лет, каждому человеку, хотя бы примерно представлявшему себе состояние индустрии электроники, было ясно, что происходит реальная революция в конструкциях БП.
Лидеры и последователи: Стив Джобс демонстрирует персональный компьютер Apple II в 1981 году. Впервые представленный в 1977, Apple II выиграл от промышленного сдвига от громоздких линейных БП к небольшим и эффективным импульсным. Но Apple II не запустил этот переход, как позже утверждал Джобс.
Персональный компьютер Apple II представили в 1977. Одной из его особенностью был компактный ИБП без вентилятора, дававший 38 Вт мощности и напряжение в 5, 12, –5, и –12 В. Он использовал простую схему Холта, ИБП с топологией обратноходового офлайнового преобразователя. Джобс заявил, что сегодня каждый компьютер копирует революционную схему Холта. Но была ли эта схема революционной в 1977? И скопировал ли её каждый производитель компьютеров?
Нет и нет. Похожие обратноходовые преобразователи в то время уже продавали Boschert и другие компании. Холт получил патенты на парочку особенностей своего БП, но их так и не стали широко использовать. А создание управляющей схемы из дискретных компонентов, как сделали для Apple II, оказалось технологическим тупиком. Будущее ИБП принадлежало специализированным интегральным схемам.
Если и был микрокомпьютер, оказавший долгосрочное влияние на проектирование БП, это был IBM Personal Computer, запущенный в 1981. К тому времени, всего через четыре года после выхода Apple II, технология БП серьёзно изменилась. И хотя оба этих ПК использовали ИБП с топологией обратноходового офлайнового преобразователя и несколькими выходами, это и всё, что между ними было общего. Контуры питания, управления, обратной связи и стабилизации были разными. И хотя БП для IBM PC использовал контроллер на интегральной схеме, в нём было почти в два раза больше компонентов, чем в БП от Apple II. Дополнительные компоненты давали дополнительную стабилизацию выходного напряжения и сигнал «качественное питание», когда все четыре напряжения были верными.
В 1984 году IBM выпустила значительно обновлённую версию ПК, под названием IBM Personal Computer AT. Его БП использовал множество новых схем, полностью отказавшись от обратноходовой топологии. Он быстро стал стандартом де факто и оставался таковым до 1995 года, когда Intel представила форм-фактор ATX, который, как и другие вещи, определившие БП ATX, по сей день остаётся стандартом.
Но, несмотря на появление стандарта ATX, компьютерные системы питания стали сложнее в 1995 году, когда появился Pentium Pro – микропроцессор, требовавший меньшего напряжения и больших токов, чем БП ATX мог дать напрямую. Для такого питания Intel представил модуль регулирования напряжения (VRM) – импульсный преобразователь DC-DC, устанавливаемый рядом с процессором. Он уменьшал 5 В от БП до 3 В, используемых процессором. В графических картах многих компьютеров тоже есть VRM, питающий установленные в них высокоскоростные графические чипы.
Сегодня быстрому процессору от VRM может требоваться целых 130 Вт – что гораздо больше, чем полватта мощности, которые использовал процессор Apple II, 6502. Современный процессор в одиночку может использовать в три раза больше мощности, чем целый компьютер Apple II.
Растущее потребление энергии компьютерами стало причиной беспокойства, связанной с окружающей средой, в результате чего появились инициативы и законы, требующие более эффективных БП. В США правительственный сертификат Energy Star и промышленный 80 Plus требуют от производителей выдавать более «зелёные» БП. Им удаётся это сделать при помощи различных технологий: более эффективного энергопотребления в режиме ожидания, более эффективных стартовых схем, резонансных схем, уменьшающих потери питания в импульсных транзисторах, схемы типа active clamp, заменяющие импульсные диоды более эффективными транзисторами. Улучшения в технологиях силовых транзисторов MOSFET и высоковольтных кремниевых выпрямителей, произошедшие в последние десять лет, также послужили увеличению эффективности.
Технология ИБП продолжает развиваться и другими путями. Сегодня, вместо аналоговых схем, многие поставщики используют цифровые чипы и программные алгоритмы, контролирующие выход. Разработка контроллера БП стала как вопросом проектирования железа, так и вопросом программирования. Цифровое управление питанием позволяет поставщикам общаться с остальной системой с большей эффективностью и вести логи. И хотя эти цифровые технологии по большей части используются в серверах, они начинают влиять на разработку настольных ПК.
Сложно увязать всю эту историю с мнением Джобса о том, что Холт должен быть известен шире, или что «Рода не часто хвалят за это в книжках по истории, а должны были бы». Даже самые лучшие разработчики БП не становятся известными за пределами крохотного сообщества. В 2009 году редакторы Electronic Design пригласили Бошерта в свой «Инженерный зал славы». Роберт Маммано получил награду «достижения всей жизни» в 2005 году от редакторов Power Electronics Technology. Руди Севернс получил другую такую награду в 2008 году за инновации в ИБП. Но никто из этих светил в области проектирования БП даже не отмечен в Википедии.
Часто повторяемое мнение Джобса о том, что Холта незаслуженно не заметили, привело к тому, что работу Холта описывают в десятках популярных статей и книжек про Apple, от «Реванша нердов» Пола Киотти, появившейся в журнале California в 1982, до биографии Джобса, бестселлера за авторством Айзексона, вышедшего в 2011. Так что весьма иронично, что, хотя его работа над Apple II вовсе не была революционной, Род Холт, вероятно, стал самым известным разработчиком БП всех времён.
Cхемы компьютерных блоков питания ATX
Не редко при ремонте или переделке блока питания ATX в автомобильное зарядное устройство необходима схема этого блока. С учетом того, что на данный момент, моделей блоков огромное количество, мы решили собрать небольшую подборку из сети, где будут размещены типовые схемы компьютерных блоков питания ATX. На данном этапе подборка далеко не полная и будет постоянно пополняться. Если у Вас есть схемы компьютерных блоков питания ATX, которые не вошли в данную статью и желание поделиться, мы всегда будем рады добавить новые и интересные материалы.
Cхемы компьютерных блоков питания ATX
Схема JNC LC-250ATX
Схема JNC LC-B250ATX
Схема JNC SY-300ATX
Схема JNC LC-B250ATX
Схема FSP145-60SP
Схема Enlight HPC-250 и HPC-350
Схема Linkworld 200W, 250W и 300W
Схема Green Tech MAV-300W-P4
Схема AcBel API3PCD2 ATX-450P-DNSS 450W
Схема AcBel API4PC01 400W
Схема Maxpower PX-300W
Схема PowerLink LPJ2-18 300W
Схема Shido LP-6100 ATX-250W
Схема Sunny ATX-230
Схема KME PM-230W
Схема Delta Electronics DPS-260-2A
Схема Delta Electronics DPS-200PB-59
Схема InWin IW-P300A2-0
Схема SevenTeam ST-200HRK
Схема SevenTeam ST-230WHF
Схема DTK PTP-2038
Схема PowerMaster LP-8
Схема PowerMaster FA-5-2
Схема Codegen 200XA1 250XA1 CG-07A CG-11
Схема Codegen 300X 300W
Схема ISO-450PP
Схема PowerMan IP-P550DJ2-0
Схема LWT 2005
Схема Microlab 350w
Схема Sparkman SM-400W (STM-50CP)
Схема GEMBIRD 350W (ShenZhon 350W)
Схема блока питания FSP250-50PLA (FSP500PNR)
Схема блока ATX Colorsit 330U (Sven 330U-FNK) на SG6105
Схема блока NT-200ATX (KA3844B+LM339)
VK
Odnoklassniki
comments powered by HyperComments