принцип работы устройства, характеристики, назначение и виды
Одним из наиболее распространённых элементов, использующихся в радиоэлектронной аппаратуре, является дроссель. Эта пассивная радиодеталь имеет большое значение в обеспечении стабильности работы электрических схем. Главной ее характеристикой считается индуктивность — очень важная физическая величина. Конструкция элемента проста, но при этом он может использоваться как в цепях переменного, так и постоянного тока.
Основные понятия в электронике
Родоначальником открытия электричества считается английский физик Уильям Гилберт. В 1600 году он ввёл понятие «янтарность», что в переводе обозначает электричество. Ученым было обнаружено на опытах с янтарем, что если его потереть о шёлк, он приобретает свойства притягивать к себе другие физические тела. Так было открыто статическое электричество. Первая электрическая машина была создана немецким инженером Отто фон Герике. Агрегат выглядел в виде металлического шеста с надетым на его верхушку серным шаром.
Последующие годы ряд физиков и инженеров из различных стран исследовали свойства электричества, открывая новые явления и изобретая приборы. Наиболее выдающимися учёными, которые внесли весомый вклад в науку, считаются Гальвани, Вольт, Эстред, Ом, Фарадей, Герц, Ампер. Признавая важность их открытий, фундаментальные величины, характеризующие различные электрические явления, назывались их именами.
Так было обнаружено, что электрический заряд — это способность физических тел создавать вокруг себя особое поле, оказывающее воздействие на другие вещества. Электричество связано с магнетизмом, который влияет на положение электронов, являющихся элементарными частицами тела. Каждая такая частица обладает определённой энергией (потенциалом) и может перемещаться по телу в хаотично.
Придание же электронам направленного движения приводит к возникновению тока. Работа, затраченная на перемещение элементарной частички, называется напряжением. Если ток течёт в замкнутой цепи, то он создаёт магнитное поле, то есть силу, действующую на электроны.
Все вещества разделяются на три типа:
- проводники — это тела, свободно пропускающие через себя ток;
- диэлектрики — в этих телах невозможно появление свободных электронов, а значит, ток через них протекать не может;
- полупроводники — материалы, свойство которых пропускать ток зависит от внешних факторов, например, температуры.
Характеристикой, обозначающей способность тела проводить ток, называется проводимость, а величина обратная ей — сопротивлением.
Активное сопротивление
На прохождение электрического тока в итоге оказывают влияние три физические величины: сопротивление, индуктивность и ёмкость. Каждый радиоэлемент (не исключение и дроссель) обладает ими в какой-то мере.
Активное сопротивление представляет собой величину, препятствующую прохождению тока и равную отношению разности потенциалов к силе тока (закон Ома). Его сущность объясняется тем, что в кристаллической решётке различных физических тел содержится разное число свободных носителей зарядов. Кроме этого, сама структура может быть неоднородной, то есть содержать примеси или дефекты. Электроны, перемещаясь под действием поля, сталкиваются с ними и отдают часть своей энергии кристаллам тела.
В результате таких столкновений частички теряют импульс, а сила тока уменьшается. Рассеиваемая электрическая энергия превращается в тепло. Элементом, использующим естественные свойства физического тела, является резистор.
Что же касается дросселя, то его активное сопротивление считается паразитным, вызывающим нагревание и ухудшение параметров. Зависит оно от типа материала и его физических размеров.
Определяется по формуле R = p * L / S, Ом, где:
- p — удельное сопротивление (справочная величина), Ом*см;
- L — длина проводника, см;
- S — площадь поперечного сечения, см2.
Ёмкостная составляющая
Любой проводник тока в разной мере имеет свойство накапливать электрический заряд. Эта способность называется ёмкостью элемента. Для одних радиодеталей она считается вредной составляющей (в частности, для дросселя), а для других — полезной (конденсатор). Относят это понятие к реактивному сопротивлению. Его величина зависит от вида подаваемого сигнала на элемент и ёмкости материала, из которой он сделан.
Математически реактивное сопротивление описывается выражением Xc = 1/w*C, где:
- w — циклическая частота, скалярная угловая величина, определяющаяся числом колебаний сигнала за единицу времени (2*p*f), Гц;
- C — ёмкость элемента, Ф.
Из формулы видно, что чем больше будет ёмкость и частота тока, тем выше сопротивление элемента, а значит, имеющий большое ёмкостное сопротивление дроссель будет нагреваться. Значение ёмкости в дросселе зависит от размеров проводника и способа его укладки. При спиралевидной намотке между рядом лежащими кольцами возникает ёмкость, также влияющая на протекающий ток.
Паразитная составляющая ёмкости проявляется и в образовании собственного резонанса изделия, так как дроссель на эквивалентной схеме можно представить в виде последовательной цепочки индуктивности и конденсатора. Такое включение создаёт колебательный контур, работающий на определённой частоте. Если частота сигнала будет ниже резонансного значения, то преобладать будет индуктивная составляющая, а если выше — ёмкостная.
Поэтому существенной задачей изготовления дросселя в электронике считается увеличение собственного резонанса конструкции.
Индуктивность и самоиндукция
Электрическое поле неразрывно связано с магнитным. Там, где существует одно, неизменно появляется и второе. Индуктивность — это физическая величина, характеризующаяся накоплением энергии, но в отличие от ёмкости эта энергия является магнитной. Её величина зависит от магнитного потока, образованного силой тока, протекающего через радиоэлемент. Чем больше ток, тем сильнее магнитный поток пронизывает изделие. Интенсивность накопления элементом энергии зависит от этого потока.
Математическая формула нахождения индуктивности — L = Ф/ I, где:
- Ф — магнитный поток, Вб;
- I — сила тока, текущая через элемент, А.
Индуктивность измеряется в генри (Гн). Таким образом, катушка индуктивности в момент протекания через неё тока создаёт магнитный поток равный одному веберу (Вб).
Сопротивление, оказываемое индуктивностью, во многом зависит от частоты приложенного сигнала. Для его расчёта используется выражение XL = w*L. То есть для постоянного тока она равна нулю, а для переменного — зависит от его частоты. Иными словами, для высокочастотного сигнала элемент будет обладать большим сопротивлением.
Физический процесс, наблюдаемый при прохождении переменного тока через индуктивность, можно описать следующим образом: в течение первой декады сигнала (ток возрастает) магнитное поле усиленно потребляет энергию из электрической цепи, а в последней декаде (ток убывает) отдаёт её обратно, поэтому за период прохождения тока мощность не потребляется.
Но эта модель подходит к идеальному элементу, на самом же деле некоторая часть энергии превращается в тепло. То есть происходят потери, характеризующиеся добротностью Q, определяемую отношением получаемой энергии к отдаваемой.
При изменении тока, текущего через проводник в контуре, возникает электродвижущая сила индукции (ЭДСИ) — самоиндукция. Другими словами, переменный ток изменяет величину магнитного потока, который приводит в итоге к появлению ЭДСИ. Проявляется этот эффект в замедлении процессов появления и спадания тока. Амплитуда самоиндукции пропорциональна величине тока, частоте сигнала и индуктивности. Её отставание по фазе от сигнала составляет 90 градусов.
Принцип работы
Термин «дроссель» происходит от немецкого слова drossel, что в переводе на русский язык означает «ограничитель». В электротехнике под ним понимается катушка индуктивности, обладающая большим сопротивлением току переменной частоты и практически не влияющая на постоянный ток.
По своей сути электрический дроссель — это индуктивность. Он способен накапливать энергию, получая её из магнитного поля. При воздействии на элемент напряжения в нём постепенно происходит увеличение тока, при этом если сменить полярность — ток начнёт убывать, т. е. резко изменить значение тока в дросселе невозможно.
Постепенное нарастание величины тока и его спад происходит из-за магнитного поля, которое не может мгновенно изменить своё направление. Другими словами, ток блока питания противодействует наведённому току в сердечнике изделия, поэтому в цепях с током переменой частоты он является своего рода ограничителем из-за индуктивного сопротивления.
По своей конструкции дроссель чем-то похож на трансформатор, но при этом чаще всего у него одна обмотка. А вот их принципы действия полностью отличаются. Если для трансформатора важно передавать всю энергию и гальванически развязывать цепь, то главной задачей стоящей перед дросселем является накапливание энергии в индуктивности. В то же время для трансформатора такое накопление считается паразитным процессом.
Устройство прибора
Выполняется этот элемент из проволочного вида проводника, наматываемого в виде спирали. Этот проводник может быть как многожильным, так и одножильным. Проволока может наматываться на диэлектрический каркас или использоваться без него. Если применяется основание, то оно может быть выполнено круглым, прямоугольным или квадратным сечением. Физически же дроссель состоит из одного или множества витков проводника.
При изготовлении дросселя используются следующие разновидности намотки:
- прогрессивная — шаг витков плавно изменяется по всей длине конструкции;
- универсальная — расстояние между витками одинаковое.
Первый тип используется при создании изделий, предназначенных для работы на высоких частотах, при этом уменьшается значение паразитной ёмкости. Такая намотка может быть однослойной или многослойной, причем даже разного диаметра. В качестве материала для изготовления проводника используется медь.
Увеличение индуктивности достигается путём добавления ферромагнитного сердечника. В зависимости от назначения устройства используют разные его виды, например, для подавления высокочастотных помех — феррит, флюкстрол или карбонил, для фильтрации звуковой частоты — пермаллой. В то же время для дросселя, работающего со сверхвысокими частотами, применяют латунь. Магнитопровод рассчитывается так, чтобы избежать режима насыщения (падения индуктивного сопротивления).
Чтобы избежать насыщения в дросселях, магнитопровод изготавливается с зазором. При изготовлении дросселя стараются обеспечить:
- необходимую индуктивность;
- величину магнитной индукции, исключающую насыщение;
- способность выдерживать необходимый ток.
Для этого обычно сначала рассчитывается зазор и число витков исходя из силы тока и индуктивности, а после определяется максимально возможный диаметр проволоки. В цифровых малогабаритных устройствах дроссель изготавливается в плоском виде. Достигается это путём печатания проводниковой дорожки в виде круговой или зигзагообразной линии.
Виды и характеристики
Главной характеристикой дросселя, безусловно, является индуктивность. Но, кроме неё, существует ряд номинальных параметров, характеризующих элемент как изделие. Именно они определяют возможности использования устройства и его срок службы. Основными из них являются:
- Мощность — определяется типом сердечника и поперечным сечением провода. Обозначает величину сигнала, которую может выдержать дроссель. Единицей измерения служит ватт.
- Добротность и угол потерь — характеризуют качество устройства. Чем больше добротность и меньше угол, тем выше качество.
- Частота тока — f, Гц. В зависимости от неё дроссели разделяют на низкочастотные, имеющие границы колебаний 20−20 000 Гц, ультразвуковые — от 20 до 100 кГц и сверхвысокие — больше 100 кГц.
- Наибольшее допустимое значение тока — I, А.
- Сопротивление элемента в неподключенном состоянии — R, Ом.
- Потери в магнитопроводе — P, Вт.
- Вес — G, кг.
Современная промышленность изготавливает электромагнитные дроссели, отличающиеся не только по характеристикам, но и по видам. Они выпускаются цилиндрической, квадратной, прямоугольной и круглой формы. А также они различаются по типу цепи, для которой предназначены, и могут быть однофазными или трёхфазными.
Условно дроссели можно разделить на три типа:
- Сглаживающие. Используются для фильтрации переменной составляющей сигнала, уменьшая её значение. Такие элементы ставятся на входе или выходе выпрямительных или преобразующих части схем.
- Переменного тока. Ограничивают его величину при резком скачке.
- Насыщения. Управляют индуктивным сопротивлением за счёт периодического подмагничивания.
Маркировка и обозначения
В принципиальных схемах и технической документации дроссели обозначаются латинской буквой L, условное графическое обозначение — в виде полуокружностей. Их количество нигде не указывается, но обычно не превышает трёх штук. Жирная точка, ставящаяся в начале полуокружностей, обозначает начало витков. Если индуктивность выполняется на каркасе, сверку изображения чертится прямая линия. Для обозначения номиналов элемента используется код из букв и цифр или цветовая маркировка.
Цифры указывают на значение индуктивности, а буква — на допуск. Например, код 250 J обозначает индуктивность, равную 25 мкГн с погрешностью в пять процентов. Когда на маркировке стоит только число, то это значит, что допуск составляет 20%. Таким образом, первые две цифры обозначают числовое значение в микрогенри, а третья — множитель. Буква D ставится на высокоточных изделиях, их погрешность не превышает 0,3%.
Цветовая маркировка, в принципе, соответствует буквенно-цифровой, но только наносится в виде цветных полос. Первые две указывают на значения в микрогенри, третья — коэффициент для умножения, а четвёртая — допуск. Индуктивность дросселя, на котором изображены две оранжевые полосы, коричневая и белая, равна 33 мкГ с разрешённым отклонением в 10%.
Область применения
Отвечая на вопрос, зачем нужен дроссель, можно с уверенностью сказать, что основное его применение — это фильтры. Ни один качественный источник питания не обходится без этого простого элемента. Его применение позволяет избавиться от пульсаций напряжения, которые вызывают нестабильность в работе многих устройств — материнской платы, видео- и звуковых карт и т. п.
Сглаживание формы сигнала путём устранения его паразитной составляющей обеспечивает стабильную работу микропроцессорных блоков, особо зависящих от качества питающего их напряжения.
Кроме того, используя свойство элемента накапливать энергию, а потом её отдавать в цепь, дроссель нашёл своё применение в люминесцентных лампах. Такие осветители работают на принципе возникновения дугового разряда, поддерживающегося в парах инертного газа. Для того чтобы он возник, между электродами необходимо появление высокого пускового напряжения, способного пробить газовый диэлектрик. Благодаря дросселю такой разряд и создаётся.
Их также используют и в усовершенствованных осветительных приборах — индукционных лампах. Отличие таких светильников от люминесцентных заключается в отсутствии электродов, необходимых для зажигания. Для получения света используются три составляющие — электромагнитная индукция, разряд в газе, свечение люминофора.
Стоит отметить и ещё одно из применений дросселя — сварочный трансформатор. Здесь основное назначение радиоэлемента заключается в стабилизации тока. Сварочный дроссель, установленный в инверторе, смещает фазу между током и напряжением. Такое его использование упрощает розжиг электрода и поддерживает стабильное горение дуги.
Способность элемента создавать магнитное поле зачастую применяется в электромагнитах, отличающихся большой мощностью, а также в различных электромеханических реле, электродвигателях и даже генераторах.
Самостоятельное изготовление
Для самостоятельного изготовления дросселя необходимо правильно рассчитать его конструкцию. Для этого используется простая формула расчёта индуктивности: L=0,01*d*w 2 /(L/d+0,44), где d — диаметр основания (см), L — длина проволоки (см), w — количество витков. При этом если имеется мультиметр с возможностью изменения индуктивности, то точное количество витков можно подобрать, используя его.
Метод намотки при использовании этой формулы предполагает укладку виток к витку. Например, необходимо подобрать магнитопровод для дросселя с индуктивностью один мкГн, рассчитанный на ток I = 4A. Берется сердечник 2000 НМ типоразмера К 16 х 8 х 6. Согласно справочнику коэффициент начальной индуктивности — ALH = 1,36 мкГн, а длина магнитного пути — le= 34,84 мм. Соответственно, число витков будет N= (L/ALH)0,5= (1/1,36)0,5 = 0,86. Если принять N=1, то при заданном токе напряжённость магнитного поля в сердечнике будет равна Н= 4*1/(34,84*10−3)= 114 А/м.
Таким образом, дроссель представляет собой катушку, которая характеризуется индуктивностью. Благодаря своим свойствам он может накапливать магнитную мощность, после отдавая её в цепь в виде электрической энергии. При этом использование элемента позволяет также подавлять переменную составляющую тока в цепи.
что такое, для чего нужен и как работает
Что такое дроссель? Как отличить от резистора или трансформатора? Как правильно подключить и зачем вообще это делать? Всё самое интересное далее в статье!
Дроссель в электрике
Дроссель в электрикеЭто особый вид катушек индуктивности. Его особенность заключается в том, что он может удерживать в течение некоторого времени токи из определённого диапазона частот. Механизм срабатывания действует быстро, что позволяет пропускать только нужный сигнал.
Это предотвращает ситуацию, при которой напряжении в сети резко меняется. Чтобы повысить уровень безопасности и стабильность работы, дроссель ставят в цепь обязательно. Разберем пропускной диапазон, виды, принцип работы более подробно.
Для чего нужен дроссель
Виды дросселейДроссель используется вместо последовательного резистора, потому что обеспечивает лучшую фильтрацию (меньше остаточной пульсации переменного тока на источнике питания, что означает меньшее гудение на выходе усилителя) и меньшее падение напряжения. «Идеальный» индуктор будет иметь нулевое сопротивление постоянному току. При использовании резистора большего размера, вы быстро достигаете точки, где падение напряжения возрастает до пиковых величин, и, кроме того, «провал» питания становится значительным, потому что разность токов между полной выходной мощностью и холостым ходом может быть немалой, особенно в усилителе класса AB.
Существует две распространенные конфигурации источника питания: конденсаторный вход и дроссельный вход. Входной фильтр конденсатора не обязательно должен иметь дроссель, но для дополнительной фильтрации тот необходим. Источник питания дросселя по определению обязан оснащаться дросселем.
Источник питания с дросселемНа входе конденсатора будет конденсатор фильтра, следующий непосредственно за выпрямителем. Тогда он может иметь или не иметь второго фильтра, состоящего из последовательного резистора или дросселя, за которым следует другой конденсатор. Сеть «колпачок – индуктор – колпачок» обычно называется сетью «пи-фильтр». Преимущество входного фильтра конденсатора заключается в более высоком выходном напряжении, но он имеет более низкое регулирование напряжения, чем входной фильтр дросселя.
Источник питания дросселя будет иметь дроссель, следующий сразу за выпрямителем. Основное преимущество входного питания дросселя – лучшее регулирование напряжения, но за счет гораздо более низкого выходного напряжения. Входной фильтр дросселя должен иметь определенный минимальный ток, протекающий через него для поддержания регулирования.
Дроссель в собранном прибореПример:
Разница напряжений между двумя типами фильтров может быть довольно большой. Например, предположим, что у вас есть трансформатор 300-0-300 и двухполупериодный выпрямитель.
Если вы используете конденсаторный входной фильтр, вы получите максимальное напряжение постоянного тока без нагрузки в 424 вольт, которое снизится до напряжения, зависящего от тока нагрузки и сопротивления вторичных обмоток.
Если вы используете тот же трансформатор с входным фильтром дросселя, пиковое выходное напряжение постоянного тока будет составлять 270 В и будет гораздо более строго регулироваться, чем входной фильтр конденсатора (меньше перемен напряжения питания с изменениями тока нагрузки).
Как работает дроссель
ДроссельВо всех переключающих регуляторах индуктор используется в качестве устройства накопления энергии. Когда полупроводниковый переключатель включен, ток в индукторе увеличивается и энергия накапливается. Когда выключатель выключается, эта энергия высвобождается в нагрузку. Количество накопленной энергии определяется как Энергия = ½L·I 2 (Дж)
Где L – индуктивность в Генри, а I – пиковое значение тока индуктора.
Величина, на которую ток в катушке индуктивности изменяется во время цикла переключения, называется пульсирующим током и определяется следующим уравнением:
V l = L·di / DT
Где V l – напряжение на катушке индуктивности, di – ток пульсации, а DT – длительность, в течение которой подается напряжение. Отсюда видно, что значение пульсационного тока зависит от значения индуктивности.
Для понижающего преобразователя выбор правильного значения индуктивности важен для получения приемлемых размеров индуктивности выходного конденсатора и достаточно низкой пульсации выходного напряжения.
Ток индуктора состоит из компонентов переменного и постоянного тока. Поскольку компонент переменного тока является высокочастотным, он будет проходить через выходной конденсатор, который обеспечивает низкий ВЧ-импеданс. Это создаст пульсации напряжения из-за эквивалентного последовательного сопротивления конденсатора (ESR), которое появляется на выходе понижающего преобразователя. Это пульсирующее напряжение должно быть достаточно низким, чтобы не влиять на работу цепи, которую поставляет регулятор.
Дроссель в собранной схемеВыбор правильного пульсирующего тока также оказывает влияние на размер индуктора и выходного конденсатора. Этот конденсатор должен иметь достаточно высокий номинальный ток пульсации, иначе он перегреется и высохнет. Чтобы получить хороший компромисс между размерами индуктора и конденсатора, вы должны выбрать значение пульсационного тока от 10 % до 30 % от максимального тока нагрузки. Это также подразумевает, что ток в катушке индуктивности будет непрерывным для выходных токов, превышающих 5–15 % от полной нагрузки.
Вы можете использовать индукторы понижающего преобразователя в непрерывном или прерывистом режиме. Это означает, что ток индуктора может течь непрерывно или падать до нуля во время цикла переключения (прерывистый). Однако работа в прерывистом режиме не рекомендуется, так как это делает конструкцию преобразователя более сложной. Выбор пульсирующего тока индуктивности менее чем в два раза ниже минимальной нагрузки обеспечивает работу в непрерывном режиме.
При подборе индуктора для понижающего преобразователя, как и для всех переключающих регуляторов, вам необходимо определить или рассчитать следующие параметры:
- максимальное входное напряжение;
- выходное напряжение;
- частоту переключения;
- максимальный ток пульсации;
- рабочий цикл.
Например, для понижающего преобразователя выберем частоту переключения 200 кГц, диапазон входного напряжения 3,3 В ± 0,3 В и выход 1,8 В при 1,5 А с минимальной нагрузкой 300 мА.
Дроссель в блоке питанияДля входного напряжения 3,6 В рабочий цикл будет:
D = V o / V i = 3,6 / 1,8 = 0,5
Где V o – выходное напряжение, а V i – входное напряжение.
Напряжение на индуктивности:
V l = V i – V o = 1,8 В, когда переключатель включен;
V l = – V o = –1,8 В, когда переключатель выключен.
При выборе пульсирующего тока 600 мА необходимая индуктивность: L = V l. Dt / di = (1,8 × 0,5 / 200 × 103 ) / 0,6
L = 7,5 мкГн
Чтобы разрешить некоторый запас, вы должны выбрать значение 10 мкГн. Это дает номинальный пиковый ток пульсации 450 мА. В готовом проекте это можно рассматривать как выходное пульсирующее напряжение 0,45 × ESR выходного конденсатора.
Как измерить индуктивность дросселя мультиметром
Ламповый усилитель с дросселемЛюбое проводящее тело обладает определенной конечной индуктивностью. Эта индуктивность является внутренним свойством проводящего тела, и она всегда одинакова независимо от того, находится ли этот проводник или устройство под напряжением в электрической цепи или хранится на полке склада.
Индуктивность прямолинейного сегмента может быть значительно увеличена путем намотки его в виде спиральной катушки, после чего магнитные поля, установленные вокруг соседних витков, объединяются, создавая одно более сильное магнитное поле. Индуктивность катушки зависит от квадрата суммы числа витков.
Индуктивность катушки также значительно увеличивается, если та построена вокруг сердечника, который состоит из материала, имеющего высокую проницаемость для магнитного потока. (Поток – это произведение среднего магнитного поля на величину перпендикулярной области, которую он пересекает. Поток в магнитной цепи аналогичен току в электрической цепи.) Это ситуация в силовых трансформаторах, принадлежащих коммунальным предприятиям, и других катушках, предназначенных для работы на 50 или 60 Гц. Индуктивные эффекты более выражены на более высоких частотах, поэтому для ВЧ-индуктора обычно достаточно воздушного сердечника.
Воздушный сердечникОдно из определяющих качеств катушки состоит в том, что при снятии приложенного напряжения, прерывая ток, магнитное поле разрушается, и электрическая энергия, ранее использованная для создания магнитного поля, внезапно возвращается в цепь. Это просто проявление того факта, что магнитное поле и проводник, движущиеся относительно друг друга, вызывают поток тока в проводнике.
Скорость изменения тока в катушке индуктивности пропорциональна приложенному к ней напряжению, определяемому известным уравнением:
V = L dI / dt
Где:
- L – индуктивность в Генри;
- V – напряжение, I – ток;
- t – время.
Подобно конденсатору и в отличие от резистора полное сопротивление индуктора зависит от частоты. Импеданс – это векторная сумма сопротивления (когда и если в цепи есть резистор или эквивалент) и индуктивного или емкостного сопротивления.
В конденсаторе более высокая частота соответствует более низкому емкостному сопротивлению. В индукторе более высокая частота соответствует более высокому индуктивному сопротивлению.
Катушка не оказывает противодействия потоку постоянного тока, за исключением:
- небольшого сопротивления из-за большой емкости провода;
- мгновенного индуктивного сопротивления при первом включении катушки из-за работы, необходимой для установления магнитного поля. (В течение времени нарастания постоянный ток по существу переменный.)
Уравнение для емкостного сопротивления:
X C = 1 / 2πfC
Где X C = емкостное сопротивление в омах; f = частота в герцах; C = емкость.
Уравнение для индуктивного сопротивления:
X L = 2πfL
Где X L = индуктивное сопротивление в омах; f = частота в герцах; L = индуктивность.
Эти уравнения «симметричны». Один является зеркальным отражением другого, различие заключается в роли, которую играет частота. В емкостном сопротивлении f находится в знаменателе, а в индуктивном сопротивлении – в числителе. Емкостное и индуктивное реактивное сопротивление, а также общий импеданс выражены в омах как сопротивление постоянному току, и они полностью соответствуют закону Ома при том понимании, что эти свойства меняются с частотой.
Как обозначается дроссель на схеме
Условные обозначения:
Условное графическое обозначение дросселейИз чего состоит дроссель
Элементы:
- катушка;
- провод, намотанный на сердечник;
- магнитопровод.
Есть схожесть с трансформатором, но слой обмотки всего один. Такая конструкция помогает стабилизировать сеть, а также исключить шанс резкого скачка напряжения.
Как подключить дроссель
Схема подключения очень простая и представляет собой цепь последовательно соединённого дросселя и самого устройства ДРЛ 250. Подключение идёт через сеть 220 вольт и работает при обычной частоте. Поэтому их без труда можно поставить в домашнюю сеть. Дроссель работает как стабилизатор и корректировщик напряжения.
Схема подключения дросселяКак отличить резистор от дросселя
По внешнему виду: от резисторов отличаются обычно толщиной (дроссели толще), от конденсаторов – неправильной формой «капельки».
Более точный способ – сопротивление. У дросселя оно почти нулевое.
Таблица с маркировкой:
Серебряный | 0,01 | 10 | ||
Золотой | 0,1 | 5 % | ||
Черный | 0 | 1 | 20 % | |
Коричневый | 1 | 1 | 10 | |
Красный | 2 | 2 | 100 | |
Оранжевый | 3 | 3 | 1000 | |
Желтый | 4 | 4 | ||
Зеленый | 5 | 5 | ||
Голубой | 6 | 6 | ||
Фиолетовый | 7 | 7 | ||
Серый | 8 | 8 | ||
Белый | 9 | 9 | ||
1-я цифра | 2-я цифра | Множитель | Допуск |
Чем отличается дроссель от трансформатора
Наглядная схема трансформатораТрансформатор оснащён несколькими мотками и меняет величину напряжения. Дроссель имеет одну обмотку и уравнивает пульсации постоянного тока (не пропускает переменную часть дальше в сеть).
Как рассчитать дроссель на ферритовом кольце
Дроссель на ферритовом кольцеИндукторы обычно указываются с двумя номиналами тока: непрерывный (Irms) и пиковый (Isat). Irms обычно указывается как постоянный ток, вызывающий повышение температуры индуктора на 40 °C. Isat – это пиковый ток, который вызывает определенный спад индуктивности – определяется как процентное уменьшение от значения разомкнутой цепи и может варьироваться от 5 % до 50 %. Эти номиналы тока являются руководством к характеристикам индуктора. Фактический максимальный рабочий ток будет зависеть от применения. Учитывая это, необходимо проверить ряд факторов, чтобы обеспечить правильный выбор индуктора.
Во-первых, важно посмотреть, как индуктивность «падает» с увеличением тока. Для таких материалов, как железный порошок, порошок пермаллоя молибдена (MPP), сендуст и аморфный порошок, которые используют распределенный воздушный зазор, спад индуктивности начинается при очень низких уровнях тока и продолжается почти линейным образом при увеличении тока. Если используется ферритовый материал, любое постепенное изменение индуктивности затопляется большим зазором, который необходимо ввести для накопления энергии. В результате индуктивность резко падает в точке насыщения всего ядра. До достижения этой точки индуктивность остается практически постоянной.
Пускорегулируещие устройство для лампДля материалов с ферритовым сердечником пиковый ток обычно указывается для снижения индуктивности от 10 % до 30 % от значения разомкнутой цепи. Работа при более высоких уровнях тока не рекомендуется, так как индуктивность быстро упадет до низкого уровня. Однако для порошкообразных материалов максимальный ток может быть задан при любом спаде до 50 % при работе за пределами возможной, если индуктор не перегрелся.
Как рассчитать дроссель для импульсного блока питания
Регуляторы напряжения на материнской платеВысококачественные мультиметры часто включают емкостный режим. Чтобы сделать это измерение, просто исследуйте выводы тестируемого устройства. В целях безопасности и точности может потребоваться разрядка устройства с высокой емкостью, такого как электролитический конденсатор, с использованием разумного сопротивления в течение соответствующего промежутка времени. Шунтирование с помощью отвертки не является хорошей практикой, потому что электролит может быть пробит из-за сильного тока, не говоря уже о вспышке дуги в больших единицах. После разряда проверьте, измерив напряжение.
Можно ожидать, что конденсаторы, протестированные с помощью мультиметра в емкостном режиме, будут показывать значения ниже на целых 10 %. Эта точность достаточна для многих применений, таких как цепь запуска для электродвигателя или для фильтрации источника питания. Большая точность достигается путем проведения динамического теста. Одной из стратегий точного измерения является создание схемы, преобразующей емкость в частоту, которую затем можно определить с помощью счетчика.
Схема с дросселемДля измерения индуктивности устройства, собственной индуктивности цепи или более распространенной распределенной индуктивности прибор LCR является предпочтительным инструментом. Он подвергает тестируемое устройство (надлежащим образом разряжается и изолируется от любых окружающих цепей, которые могут запитать его или создать нерелевантный параллельный импеданс) переменному напряжению известной частоты, обычно одно среднеквадратичное значение на один килогерц. Измеритель одновременно измеряет напряжение и ток через устройство. Из соотношения этих величин он алгебраически рассчитывает импеданс.
Впоследствии усовершенствованные измерители фиксируют фазовый угол между приложенным напряжением и результирующим током. Они используют эту информацию для отображения эквивалентной емкости, индуктивности и сопротивления рассматриваемого устройства. Счетчик работает в предположении, что емкость и индуктивность, которые он обнаруживает, существуют в параллельной или последовательной конфигурации.
Фильтр питанияКонденсаторы имеют определенное количество непреднамеренной индуктивности и сопротивления в результате их выводов и пластин. Точно так же индукторы имеют некоторое сопротивление из-за своих выводов, и они обладают определенной емкостью, потому что их клеммы приравниваются к пластинам. Аналогично резисторы, а также полупроводники на высоких частотах приобретают емкостные и индуктивные качества.
Как правило, счетчик предполагает, что подразумеваемые устройства включены последовательно, когда он выполняет измерения LR. Аналогично предполагается, что они параллельны, когда проводятся измерения CR, из-за последовательной геометрии катушки и параллельной геометрии конденсатора.
Гидродроссель:назначение,типы,схема.Ремонт дросселя
Общие сведенья
Гидродросселем называется аппарат, представляющий собой регулируемое гидравлическое сопротивление.
Назначение дросселя заключается в регулировании расхода жидкости в гидросистеме, а так же служат для регулирования скорости движения гидродвигателя и для регулирования времени опорожнения и заполнения гидравлических емкостей.
Принцип работы дросселя основан на том, что для протекания жидкости через какую-либо щель или отверстие, представляющее собой существенное сопротивление потоку, необходим некоторый перепад давлений, зависящий от площади проходного сечения этого сопротивления и величины расхода жидкости. Эта зависимость выражается следующим соотношением:
Q=µ·fad· (2·Pad /ρ)
Здесь Q –расход жидкости [см3/с];µ- коэффициент расхода, который можно считать величиной постоянной в пределах значений 0,68-072; fad — площадь проходного сечения сопротивления [см2];ρ- плотность жидкости [кгс·c2/см3]; Pad— перепад давления на этом сопротивлении [кгс/см2]Протекание жидкости через такое существенное сопротивление принято называть дросселированием потока.
Типы дросселей
На рис.1 показана схема дросселей, отличающаяся формой проходного сечения сопротивления. Отверстие в корпусе 1 диаметром “d” и затвором конической формы 2, положение которого относительно этого отверстия регулируется винтом, образуют кольцевую дроссирующую щель с площадью проходного сечения fad=п·d·h (рис.1а). Изменение площади проходного сечения щели происходит за счет изменения величины “h”, при неизменной ширине щели – п·d, что является недостатком такой схемы из-за трудности поддержания стабильных малых расходов при большом периметре щели.
На рис.1 б показана схема дросселя, у которого проходное сечение сопротивления образуется затвором 2, перекрывающим окна, выполнены во втулке 3, установленной в корпусе 1, причем одно из окон выполнено каплеобразной формы, благодаря чему для регулирования малых расходов используется щель с малым периметром. Такая схема регулирования потока позволяет обеспечить достаточно глубокий диапазон изменения потока с сохранением его стабильных значений.
На рис. 1 в показана схема дросселя, представляющего собой комбинацию двух вариантов — вначале изменяется величина сечения кольцевой щели, а затем — только величина сечения продольных пазов треугольной формы, выполненных на поверхности затвора, так что при регулировании больших потоков изменяются кольцевая щель, а при регулировании потоков – площадь поперечного сечения пазов с малым периметром щели.
Благодаря быстрому формированию цветной металлургии, компания «САММЕТ» продолжает сотрудничать с крупными российскими заводами, предоставляя клиентам очень качественный товар на очень хороших условиях. Цветмет производится в значительных объемах, что вызвано его хорошими качествами и рядом позитивных параметров.
Изделия их цветмета владеют длительным служебным сроком. Алюминиевые элементы, по типу профилей и рифленых листов, имеют очень высокую прочность и маленький вес, и еще очень пластичны. Более того, достойной заменой труб из пластика станут подобного типа продукты из меди, которая выделяется стойкостью к ударам царапинам и так далее.
Цветовая и кодовая маркировка индуктивностей
Цветовая и кодовая маркировка индуктивностей
В соответствии с Публикацией IEC 62 для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Наиболее часто применяется кодировка 4 или 3 цветными кольцами или точками. Первые две метки указывают на значение номинальной индуктивности в микрогенри (мкГн), третья метка — множитель, четвертая — допуск. В случае кодирования 3 метками подразумевается допуск 20%. Цветное кольцо, обозначающее первую цифру номинала, может быть шире, чем все остальные.
Рис. 2
Таблица 1
Серебряный | 0,01 | 10% | ||
Золотой | 0,1 | 5% | ||
Черный | 0 | 1 | 20% | |
Коричневый | 1 | 1 | 10 | Допуск |
Красный | 2 | 2 | 100 | |
Оранжевый | 3 | 1000 | ||
Желтый | 4 | 4 | Множитель | |
Зеленый | 5 | 5 | ||
Голубой | ||||
Фиолетовый | 7 | 7 | ||
Серый | 8 | 8 | ||
Белый | 9 | 9 |
Рис. 2
Кодовая маркировка
Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Применяется два вида кодирования.
А. Кодированная маркировка
Первые две цифры указывают значение в микрогенри (мкГн), последняя — количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает 100 мкГн ±5%. Если последняя буква не указывается —допуск 20%. Исключения: для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N.
Допуск:D=±0,3 нГн; J=±5%; К=±10%; M=±20%
Примеры обозначений:Таблица 2
Код | Обозначение |
22N | 22 нГн ±20% |
R10M | 0,10 мкГн±20% |
R15M | 0,15 мкГн±20% |
R22M | 0,22 мкГн ±20% |
R33M | 0,33мкГн+20% |
R47M | 0,47мкГн±20% |
R68M | 0,68 мкГн +20% |
1R0M | 1,2мкГн ±20% |
Таблица 3
Код | Обозначение |
2R2K | 2,2 мкГн±10% |
3R3K | 3,3 мкГн ±10% |
4R7K | 4,7 мкГн±10% |
6R8K | 6,8 мкГн±10% |
100К | 10 мкГн±10% |
150К | 15 мкГн±10% |
220К | 22 мкГн±10% |
33ОК | 33 мкГн±10% |
Таблица 4
Код | Обозначение |
680К | 68 мкГн ± 10% |
101К | 100мкГн±10% |
151К | 150 мкГн ± 10% |
221K | 220 мкГн ±10% |
331К | 33ОмкГн ±10% |
471J | 470 мкГн ±5% |
681J | 680 мкГн ±5% |
102 | 1000 мкГн±20% |
Рис. 3
В. Непосредственная маркировка
Индуктивности маркируются непосредственно в микрогенри (мкГн). В таких случаях маркировка 680К будет означать не 68 мкГн ±10%, как в случае А, а 680 мкГн ±10%.
Описание |
Обозначение на схеме |
Основные линии (Basic lines) |
|
Линии управления(Pilot lines) |
|
Дренажные линии(Drain lines) |
|
Линии границы (Boundary lines) |
|
Электрические линии(Electric lines) |
|
Направление движения жидкости (гидравлика) |
|
Направление движения газа (пневматика) |
|
Направление вращения (Direction of rotation) |
|
Пересечение линий |
|
Соединение линий |
|
Быстроразъемное соединение (БРС)(Quick Coupling) |
|
Гибкая линия |
|
Заглушка |
|
Регулируемый компонент(Variable Component) |
|
Компоненты с компенсатором давления |
|
Бак открытого типа (атмосферное давление в баке) (Reservoir Vented) |
|
Бак с избыточным давлением (закрытого типа)(Reservoir Pressurized) |
|
Линия слива в бак (выше уровня жидкости) |
|
Линия слива в бак (ниже уровня жидкости) |
|
Электрический мотор (Electric Motor) |
|
Гидроаккумулятор пружинный(Spring Loaded accumulator) |
|
Гидроаккумулятор газовый(Gas Charged accumulator) |
|
Нагреватель(Heater) |
|
Теплообменник (охладитель)(Cooler) |
|
Фильтр(Filter) |
|
Манометр |
|
Термометр |
|
Расходомер (Flow meter) |
|
Клапан сброса давления («сапун»)(Vented Manifold) |
|
Насосы и моторы (Pumps & motors) |
|
Насос постоянного объема (нерегулируемый) (Fixed Displacement) |
|
Насос постоянного объема (нерегулируемый) реверсивный |
|
Насос переменного объема (регулируемый) (Variable Displacement) |
|
Насос переменного объема (регулируемый) реверсивный |
|
Гидравлический мотор постоянного объема (нерегулируемый) |
|
Гидравлический мотор постоянного объема (нерегулируемый) реверсивный |
|
Гидравлический мотор переменного объема (регулируемый) |
|
Гидравлический мотор переменного объема (регулируемый) реверсивный |
|
Насос-мотор (нерегулируемый) (Combined pump and motor) |
|
Насос-мотор (регулируемый) (Combined pump and motor) |
|
Гидростатическая трансмиссия(Hydrostatic transmission) |
|
Гидроцилиндры |
|
Цилиндр одностороннего действия(Single acting) |
|
Цилиндр двустороннего действия (Double Acting) |
|
Цилиндр двустороннего действия с двусторонним штоком(Синхронный) |
|
Плунжерный гидроцилиндр |
|
Телескопический гидроцилиндр |
|
Гидроцилиндр с демпфером(Cushion) |
|
Гидроцилиндр с регулируемым демпфером(Adjustable Cushion) |
|
Гидроцилиндр двустороннего действия дифференциальный (differential pistion) |
|
Клапаны (Valves) |
|
Обратный клапан (Check valve) |
|
Обратный клапан управляемый (Check valve) |
|
Клапан «или» (Shuttle valve) |
|
Дроссель нерегулируемый (Throttle valve-fixed output) |
|
Дроссель регулируемый(Throttle valve-adjustable output) |
|
Дроссель регулируемый с обратным клапаном |
|
Делитель потока (Flow dividing valve) |
|
Нормально закрытый клапан(Normally closed valve)) |
|
Нормально открытый клапан(Normally open valve)) |
|
Регулирующий давление клапан — нерегулируемый (Pressure limiting valve, Fixed)) |
|
Регулирующий давление клапан — регулируемый (Pressure limiting valve, Variable)) |
|
Клапан с пилотным управлением и внешней дренажной линией(Pilot operated, External drain line)) |
|
Клапан с пилотным управлением и внутренней дренажной линией(Pilot operated, internal drain line)) |
|
Предохранительный клапан(Pressure Relief Valve(safety valve)) |
|
Реле давления (Pressure Switch) |
|
Кран (Manual Shut-Off valve) |
|
Тип управления |
|
Пружина(Spring) |
|
Возврат пружиной (Spring return) |
|
Ручное управление(Manual) |
|
Кнопка(Push Button) |
|
Рычаг (Push-Pull Lever) |
|
Педаль (Pedal or Treadle) |
|
Механическое управление (Mechanical) |
|
С фиксацией (Detent) |
|
Пилотное управление внешним давлением (Pilot Pressure) |
|
Пилотное управление внутренним давлением |
|
Гидравлическое управление (Hydraulic operated) |
|
Пневматическое управление (Pneumatic operated) |
|
Пневмо-гидравлическое управление (Pneumatic-hydraulic operated) |
|
PVEO |
|
PVEM |
|
PVeH |
|
Соленоид(Solenoid) |
|
Управлением мотором (Motor operated) |
|
Сервопривод(Servo Motor) |
|
Компенсация давления (Pressure Compensated) |
|
Распределители |
|
2-х позиционный распределитель |
|
3-х позиционный распределитель |
|
2-х позиционный распределитель без фиксации |
|
2-х позиционный, с двумя крайними позициями и нейтралью |
|
2-х позиционный, 2-х линейный |
|
2-х позиционный, 3-х линейный |
|
3-х позиционный, 4-х линейный |
|
Распределитель с механической обратной связью (Mechanical feed back) |