Site Loader

Еще один блок питания, 12 Вольт 30 Ампер и 360 Ватт

В продолжение темы блоков питания я заказал еще один БП, но в этот раз мощнее предыдущего.

Обзор будет не очень длинным, но как всегда, осмотрю, разберу, протестирую.

На самом деле данный обзор является лишь промежуточным шагом к тестам более мощных блоков питания, которые уже в пути ко мне. Но я подумал, что данный вариант также нельзя оставлять без внимания, потому и заказал его для обзора.

Буквально несколько слов об упаковке.

Обычная белая коробка, из опознавательных знаков только номер артикула, все.

При сравнении с блоком питания из предыдущего обзора выяснилось, что обозреваемый просто немного длиннее. Обусловлено это тем, что обозреваемый БП имеет активное охлаждение, потому при практически том же объеме корпуса мы имеем мощность в полтора раза больше.

Размеры корпуса составляют — 214х112х50мм.

Все контакты выведены на один клеммник. Назначение контактов выбито штамповкой на корпусе блока питания, такой вариант немного надежнее чем наклейка, но хуже заметен.

Крышка закрывается с заметным усилием и прочно фиксируется в закрытом состоянии. При открывании обеспечивается полный доступ к контактам. Иногда у БП встречается ситуация, когда крышка не открывается полностью, потому теперь я этот момент проверяю обязательно.

1. На корпусе блока питания присутствует наклейка с указанием базовых параметров, мощности, напряжения и тока.

2. Также присутствует переключатель входного напряжения 115/230 Вольт, который в наших сетях является лишним и не всегда безопасным.

3. Блок питания выпущен почти год назад.

4. Около клеммника присутствует светодиод индикации работы и подстроечный резистор для изменения выходного напряжения.

Сверху располагается вентилятор. Как я писал в предыдущем обзоре, мощность 240-300 Ватт является максимальной для блоков питания с пассивным охлаждением. Конечно есть безвентиляторные БП и на большую мощность, но встречаются они гораздо реже и стоят весьма дорого, потому введение активного охлаждения преследует цель сэкономить и сделать блок питания дешевле.
Крышка фиксируется шестью небольшими винтами, но при этом и сама по себе сидит плотно, корпус алюминиевый и также как у других БП выполняет роль радиатора. В качестве сравнения приведу фото рядом с БП мощностью 240 Ватт. Видно что в основном они одинаковы, и по сути 360 Ватт Бп отличается от своего младшего собрата только наличием вентилятора и некоторыми небольшими коррективами связанными с большей выходной мощностью.
Например силовой трансформатор у них имеет одинаковый размер, а вот выходной дроссель у обозреваемого заметно больше.

Общая черта обоих БП — весьма свободный монтаж и если у БП с пассивным охлаждением это оправданно, то при наличии активного охлаждения размер корпуса можно было смело уменьшить.

Перед дальнейшей разборкой проверка работоспособности.

Исходно на выходе напряжение немного завышено относительно заявленных 12 Вольт, хотя по большому счету это не имеет никакого значения, меня больше интересует диапазон перестройки и он составляет 10-14.6 Вольта.

В конце выставляю 12 Вольт и перехожу к дальнейшему осмотру.

Как ни странно, но емкость входных конденсаторов совпадает с указанной на их корпусе 🙂

Емкость каждого из конденсаторов 470мкФ, суммарная около 230-235мкФ, что заметно меньше рекомендуемых 350-400 которые необходимы блоку питания мощностью 360 Ватт. По хорошему должны быть конденсаторы с емкостью хотя бы 680мкФ каждый.

Выходные конденсаторы имеют суммарную емкость в 10140мкФ, что также не очень много для заявленных 30 Ампер, но часто такую емкость имеют конденсаторы и у фирменных БП.

Транзисторы и выходные диоды прижаты к корпусу через теплораспределительную пластину, в качестве изоляции выступает только теплопроводящая резина.

Обычно в более дорогих БП применяется колпачок из более толстой резины, который полностью закрывает компонент и если для выходных диодов он особо не нужен, то вот для высоковольтных транзисторов явно не помешал бы. Собственно по этому я советую в целях безопасности заземлять корпус БП.

Теплораспределительные пластины прижаты к алюминиевому корпусу, но термопаста между ними и корпусом отсутствует.

После случая с одним из блоков питания я теперь всегда проверяю качество прижима силовых элементов. Здесь с этим проблем нет, впрочем обычно проблем со сдвоенными элементами и не бывает, чаще сложности когда мощный элемент один и прижат Г-образной скобой.

Вентилятор самый обычный, с подшипниками скольжения, но почему-то на напряжение 14 Вольт.

Размер 60мм.

Разбираем дальше.

Плата держится на трех винтах и элементах крепления силовых компонентов. Снизу корпуса присутствует защитная изолирующая пленка.

Фильтр довольно стандартен для подобных БП. Входной диодный мост имеет маркировку KBU808 и рассчитан на ток до 8 Ампер и напряжение до 800 Вольт.

Радиатор отсутствует, хотя при такой мощности уже желателен.

1. На входе установлен термистор диаметром 15мм и сопротивлением 5 Ом.

2. Параллельно сети присутствует помехоподавляющий конденсатор класса Х2.

3. Помехоподавляющие конденсаторы имеющие непосредственную связь с сетью установлены класса Y2

4. Между общим проводом выхода и корпусом БП установлен обычный высоковольтный конденсатор, но в этом месте его достаточно так как при отсутствии заземления он подключен последовательно с конденсаторами класса Y2, показанными выше.

ШИМ контроллер KA7500, аналог классической TL494. Схема более чем стандартна, производители просто штампуют одинаковые БП, которые отличаются только номиналами некоторых компонентов и характеристиками трансформатора и выходного дросселя.

Выходные транзисторы инвертора также классика недорогих БП — MJE13009.

1. Как я писал выше, входные конденсаторы имеют емкость 470мкФ и что интересно, если конденсаторы имеют изначально непонятное название, то чаще емкость указана реальная, а если подделка, например Rubicong, то чаще занижена. Вот такое вот наблюдение. 🙂

2. Магнитопровод выходного трансформатора имеет размеры 40х45х13мм, обмотка пропитана лаком, правда весьма поверхностно.

3. Рядом с трансформатором присутствует разъем для подключения вентилятора. Обычно в описании подобных БП указывают автоматическую регулировку оборотов, на самом деле ее здесь нет. Хотя вентилятор меняет обороты в небольших пределах в зависимости от выходной мощности, просто это скорее побочный эффект. При включении вентилятор работает очень тихо, а на полную мощность выходит при токе около 2.5 Ампера что составляет меньше 10% от максимальной.

4. На выходе пара диодных сборок MBR30100 по 30 Ампер 100 Вольт каждая.

1. Размеры выходного дросселя заметно больше чем у 240 Ватт версии, намотан в три провода на двух кольцах 35/20/11.

2. Как и ожидалось после предварительной проверки, выходные конденсаторы имеют емкость 3300мкФ, так как они новые, то в сумме показали не 9900, а 10140мкФ, напряжение 25 Вольт. Производитель, известный всем noname.

3. Токовые шунты для схемы защиты от КЗ и перегрузки. Обычно ставят одну такую ‘проволочку’ на 10 Ампер тока, соответственно здесь БП 30 Ампер и три такие проволочки, но мест 7, потому предположу что есть похожий вариант но с током в 60 Ампер и меньшим напряжением.

4. А вот и небольшое отличие, компоненты отвечающие за блокировку при пониженном выходном напряжении перенесли ближе к выходу, хотя при этом сохранили даже позиционные месте согласно схеме. Т.е. R31 в схеме БП 36 Вольт соответствует R31 в схеме БП 12 Вольт, хотя находятся в разных местах на плате.

При беглом взгляде я бы оценил качество пайки на твердую четверку, все чисто, аккуратно.
Пайка довольно качественная, на плате в узких местах сделаны защитные прорезы. Но ‘ложка дегтя’ все таки нашлась. Некоторые элементы имеют непропай. Место особенно несущественно, важен сам факт.

В данном случае плохая пайка была обнаружена на одном из выводов предохранителя и конденсатора цепи защиты от снижения напряжения на выходе.

Исправить дело нескольких минут, но как говорится — ‘ложки нашлись, а осадочек остался’.

Так как схему подобного БП я уже чертил, то в данном случае просто внес коррективы в уже существующую схему.

Кроме того я выделил цветом элементы, которые изменены.

1. Красным — элементы которые меняются в зависимости от изменения выходного напряжения и тока

2. Синим — изменение номиналов этих элементов при неизменной выходной мощности мне непонятно. И если с входными конденсаторами отчасти понятно, они были указаны как 680мкФ, но реально показывали 470, то зачем увеличили в полтора раза емкость С10?

В схеме ошибка, С10 имеет емкость 3.3мкФ, а не 330нФ.

С осмотром закончили, переходим к тестам, для этого я использовал привычный ‘тестовый стенд’, правда дополненный Ваттметром.

1. Электронная нагрузка 2. Мультиметр 3. Осциллограф 4. Тепловизор 5. Термометр 6. Ваттметр, обзора нет.

7. Ручка и бумажка.

На холостом ходу пульсации практически отсутствуют. Небольшое уточнение к тесту. На дисплее электронной нагрузки вы увидите значения токов заметно ниже чем я буду писать. Дело в том, что нагрузка аппаратно умеет нагружать большими токами, но программно ограничена на уровне в 16 Ампер. В связи с этим пришлось сделать ‘финт ушами’, т.е. откалибровать нагрузку на двукратный ток, в итоге 5 Ампер на дисплее равны 10 Ампер в реальности.

При токе нагрузки 7.5 и 15 Ампер блок питания вел себя одинаково, полный размах пульсаций в обоих случаях составил около 50мВ.

При токах нагрузки 22.5 и 30 Ампер пульсации заметно выросли, но при этом были на одном уровне. Рост уровня пульсаций был при токе около 20 Ампер.

В итоге полный размах составил 80мВ.

Отмечу очень хорошую стабилизацию выходного напряжения, при изменении тока нагрузки от нуля до 100% напряжение изменилось всего на 50мВ. Причем с ростом нагрузки напряжение растет, а не падает, что может быть полезным. В процессе прогрева напряжение не изменялось, что также является плюсом.

Результаты теста я свел в одну табличку, где показана температура отдельных компонентов.

Каждый этап теста длился 20 минут, тест с полной нагрузкой проводился два раза для термопрогрева.

Крышка с вентилятором вставлялась на место, но не привинчивалась, для измерения температуры я ее снимал не отключая БП и нагрузку.

В качестве дополнения я сделал несколько термограмм.

1. Нагрев проводов к электронной нагрузке при максимальном токе, также через щели в корпусе видно тепловое излучение от внутренних компонентов.

2. Самый большой нагрев имеют диодные сборки, думаю если бы производитель добавил радиатор как это сделано в 240 Ватт версии, то нагрев существенно снизился.

3. Кроме того большой проблемой был отвод тепла от всей этой конструкции, так как суммарная рассеиваемая мощность всей конструкции составила более 400 Ватт.

Кстати насчет отвода тепла. Когда я готовил тест, то больше боялся что нагрузке тяжело будет работать при такой мощности. Вообще я проводил уже тесты на такой мощности, но 360-400 Ватт это предельная мощность которую моя электронная нагрузка может рассеивать длительно. Кратковременно же она без проблем ‘тянет’ и 500 Ватт.

Но проблема вылезла в другом месте. На радиаторах силовых элементов у меня установлены термовыключатели рассчитанные на 90 градусов. Один контакт у них припаян, а второй припаять не получилось и я применил клеммники.

При токе 15 Ампер через каждый выключатель эти контакты начинали довольно сильно нагреваться и срабатывание происходило раньше, пришлось принудительно охлаждать еще и эту конструкцию. А кроме того пришлось частично ‘разгрузить’ нагрузку подключением к БП нескольких мощных резисторов.

Но вообще выключатели рассчитаны максимум на 10 Ампер, потому я и не ожидал от них нормальной работоспособности при токе в 1.5 раза больше их максимума. Теперь думаю как их переделать, видимо придется делать электронную защиту с управлением от этих термовыключателей.

А кроме того теперь у меня появилась еще одна задача. По просьбе некоторых читателей я заказал для обзора блоки питания мощностью 480 и 600 Ватт. Теперь думаю чем их лучше нагружать, так как такую мощность (не говоря о токах до 60 Ампер), моя нагрузка точно не выдержит.

Как и в прошлый раз я измерил КПД блока питания, этот тест я планирую проводить и в дальнейших обзорах. Проверка проходила при мощности 0/33/66 и 100%

Вход — Выход — КПД.

5.2 — 0 — 0

147,1 — 120,3 — 81,7%

289 — 241 — 83,4%

437,1 — 362 — 82,8%

Что можно сказать в итоге.

Блок питания прошел все тесты и показал довольно неплохие результаты. В плане нагрева есть даже заметный запас, но выше 100% я бы не советовал его нагружать. Порадовала весьма высокая стабильность выходного напряжения и отсутствие зависимости от температуры.

К тому что не очень понравилось я отнесу безымянные входные и выходные конденсаторы, огрехи пайки некоторых компонентов и посредственную изоляцию между высоковольтными транзисторами и радиатором.

В остальном блок питания самый обычный, работает, напряжение держит, сильно не греется.

На этом все, как обычно жду вопросов.

Ссылка на блок питания, цена $22.87

Схема блока питания, расчитанного на 12 Вольт и 360 Ватт с диодным мостом на 30 Ампер

В продолжение темы блоков питания я заказал еще один БП, но в этот раз мощнее предыдущего.
Обзор будет не очень длинным, но как всегда, осмотрю, разберу, протестирую.

На самом деле данный обзор является лишь промежуточным шагом к тестам более мощных блоков питания, которые уже в пути ко мне. Но я подумал, что данный вариант также нельзя оставлять без внимания, потому и заказал его для обзора.

Буквально несколько слов об упаковке.
Обычная белая коробка, из опознавательных знаков только номер артикула, все.

При сравнении с блоком питания из предыдущего обзора выяснилось, что обозреваемый просто немного длиннее. Обусловлено это тем, что обозреваемый БП имеет активное охлаждение, потому при практически том же объеме корпуса мы имеем мощность в полтора раза больше.
Размеры корпуса составляют — 214х112х50мм.

Все контакты выведены на один клеммник. Назначение контактов выбито штамповкой на корпусе блока питания, такой вариант немного надежнее чем наклейка, но хуже заметен.
Крышка закрывается с заметным усилием и прочно фиксируется в закрытом состоянии. При открывании обеспечивается полный доступ к контактам. Иногда у БП встречается ситуация, когда крышка не открывается полностью, потому теперь я этот момент проверяю обязательно.

1. На корпусе блока питания присутствует наклейка с указанием базовых параметров, мощности, напряжения и тока.
2. Также присутствует переключатель входного напряжения 115/230 Вольт, который в наших сетях является лишним и не всегда безопасным.
3. Блок питания выпущен почти год назад.
4. Около клеммника присутствует светодиод индикации работы и подстроечный резистор для изменения выходного напряжения.

Сверху располагается вентилятор. Как я писал в предыдущем обзоре, мощность 240-300 Ватт является максимальной для блоков питания с пассивным охлаждением. Конечно есть безвентиляторные БП и на большую мощность, но встречаются они гораздо реже и стоят весьма дорого, потому введение активного охлаждения преследует цель сэкономить и сделать блок питания дешевле.

Крышка фиксируется шестью небольшими винтами, но при этом и сама по себе сидит плотно, корпус алюминиевый и также как у других БП выполняет роль радиатора.

В качестве сравнения приведу фото рядом с БП мощностью 240 Ватт. Видно что в основном они одинаковы, и по сути 360 Ватт Бп отличается от своего младшего собрата только наличием вентилятора и некоторыми небольшими коррективами связанными с большей выходной мощностью.

Например силовой трансформатор у них имеет одинаковый размер, а вот выходной дроссель у обозреваемого заметно больше.
Общая черта обоих БП — весьма свободный монтаж и если у БП с пассивным охлаждением это оправданно, то при наличии активного охлаждения размер корпуса можно было смело уменьшить.

Перед дальнейшей разборкой проверка работоспособности.
Исходно на выходе напряжение немного завышено относительно заявленных 12 Вольт, хотя по большому счету это не имеет никакого значения, меня больше интересует диапазон перестройки и он составляет 10-14.6 Вольта.
В конце выставляю 12 Вольт и перехожу к дальнейшему осмотру.

Как ни странно, но емкость входных конденсаторов совпадает с указанной на их корпусе 🙂
Емкость каждого из конденсаторов 470мкФ, суммарная около 230-235мкФ, что заметно меньше рекомендуемых 350-400 которые необходимы блоку питания мощностью 360 Ватт. По хорошему должны быть конденсаторы с емкостью хотя бы 680мкФ каждый.

Выходные конденсаторы имеют суммарную емкость в 10140мкФ, что также не очень много для заявленных 30 Ампер, но часто такую емкость имеют конденсаторы и у фирменных БП.

Транзисторы и выходные диоды прижаты к корпусу через теплораспределительную пластину, в качестве изоляции выступает только теплопроводящая резина.
Обычно в более дорогих БП применяется колпачок из более толстой резины, который полностью закрывает компонент и если для выходных диодов он особо не нужен, то вот для высоковольтных транзисторов явно не помешал бы. Собственно по этому я советую в целях безопасности заземлять корпус БП.
Теплораспределительные пластины прижаты к алюминиевому корпусу, но термопаста между ними и корпусом отсутствует.

После случая с одним из блоков питания я теперь всегда проверяю качество прижима силовых элементов. Здесь с этим проблем нет, впрочем обычно проблем со сдвоенными элементами и не бывает, чаще сложности когда мощный элемент один и прижат Г-образной скобой.

Вентилятор самый обычный, с подшипниками скольжения, но почему-то на напряжение 14 Вольт.
Размер 60мм.

Разбираем дальше.
Плата держится на трех винтах и элементах крепления силовых компонентов. Снизу корпуса присутствует защитная изолирующая пленка.

Фильтр довольно стандартен для подобных БП. Входной диодный мост имеет маркировку KBU808 и рассчитан на ток до 8 Ампер и напряжение до 800 Вольт.
Радиатор отсутствует, хотя при такой мощности уже желателен.

1. На входе установлен термистор диаметром 15мм и сопротивлением 5 Ом.
2. Параллельно сети присутствует помехоподавляющий конденсатор класса Х2.
3. Помехоподавляющие конденсаторы имеющие непосредственную связь с сетью установлены класса Y2
4. Между общим проводом выхода и корпусом БП установлен обычный высоковольтный конденсатор, но в этом месте его достаточно так как при отсутствии заземления он подключен последовательно с конденсаторами класса Y2, показанными выше.

ШИМ контроллер KA7500, аналог классической TL494. Схема более чем стандартна, производители просто штампуют одинаковые БП, которые отличаются только номиналами некоторых компонентов и характеристиками трансформатора и выходного дросселя.
Выходные транзисторы инвертора также классика недорогих БП — MJE13009.

1. Как я писал выше, входные конденсаторы имеют емкость 470мкФ и что интересно, если конденсаторы имеют изначально непонятное название, то чаще емкость указана реальная, а если подделка, например Rubicong, то чаще занижена. Вот такое вот наблюдение. 🙂
2. Магнитопровод выходного трансформатора имеет размеры 40х45х13мм, обмотка пропитана лаком, правда весьма поверхностно.
3. Рядом с трансформатором присутствует разъем для подключения вентилятора. Обычно в описании подобных БП указывают автоматическую регулировку оборотов, на самом деле ее здесь нет. Хотя вентилятор меняет обороты в небольших пределах в зависимости от выходной мощности, просто это скорее побочный эффект. При включении вентилятор работает очень тихо, а на полную мощность выходит при токе около 2.5 Ампера что составляет меньше 10% от максимальной.
4. На выходе пара диодных сборок MBR30100 по 30 Ампер 100 Вольт каждая.

1. Размеры выходного дросселя заметно больше чем у 240 Ватт версии, намотан в три провода на двух кольцах 35/20/11.
2. Как и ожидалось после предварительной проверки, выходные конденсаторы имеют емкость 3300мкФ, так как они новые, то в сумме показали не 9900, а 10140мкФ, напряжение 25 Вольт. Производитель, известный всем noname.
3. Токовые шунты для схемы защиты от КЗ и перегрузки. Обычно ставят одну такую «проволочку» на 10 Ампер тока, соответственно здесь БП 30 Ампер и три такие проволочки, но мест 7, потому предположу что есть похожий вариант но с током в 60 Ампер и меньшим напряжением.
4. А вот и небольшое отличие, компоненты отвечающие за блокировку при пониженном выходном напряжении перенесли ближе к выходу, хотя при этом сохранили даже позиционные месте согласно схеме. Т.е. R31 в схеме БП 36 Вольт соответствует R31 в схеме БП 12 Вольт, хотя находятся в разных местах на плате.

При беглом взгляде я бы оценил качество пайки на твердую четверку, все чисто, аккуратно.

Пайка довольно качественная, на плате в узких местах сделаны защитные прорезы.

Но «ложка дегтя» все таки нашлась. Некоторые элементы имеют непропай. Место особенно несущественно, важен сам факт.
В данном случае плохая пайка была обнаружена на одном из выводов предохранителя и конденсатора цепи защиты от снижения напряжения на выходе.
Исправить дело нескольких минут, но как говорится — «ложки нашлись, а осадочек остался».

Так как схему подобного БП я уже чертил, то в данном случае просто внес коррективы в уже существующую схему.
Кроме того я выделил цветом элементы, которые изменены.
1. Красным — элементы которые меняются в зависимости от изменения выходного напряжения и тока
2. Синим — изменение номиналов этих элементов при неизменной выходной мощности мне непонятно. И если с входными конденсаторами отчасти понятно, они были указаны как 680мкФ, но реально показывали 470, то зачем увеличили в полтора раза емкость С10?

С осмотром закончили, переходим к тестам, для этого я использовал привычный «тестовый стенд», правда дополненный Ваттметром.
1. Электронная нагрузка
2. Мультиметр
3. Осциллограф
4. Тепловизор
5. Термометр
6. Ваттметр
7. Ручка и бумажка.

На холостом ходу пульсации практически отсутствуют.

Небольшое уточнение к тесту. На дисплее электронной нагрузки вы увидите значения токов заметно ниже чем я буду писать. Дело в том, что нагрузка аппаратно умеет нагружать большими токами, но программно ограничена на уровне в 16 Ампер. В связи с этим пришлось сделать «финт ушами», т.е. откалибровать нагрузку на двукратный ток, в итоге 5 Ампер на дисплее равны 10 Ампер в реальности.

При токе нагрузки 7.5 и 15 Ампер блок питания вел себя одинаково, полный размах пульсаций в обоих случаях составил около 50мВ.

При токах нагрузки 22.5 и 30 Ампер пульсации заметно выросли, но при этом были на одном уровне. Рост уровня пульсаций был при токе около 20 Ампер.
В итоге полный размах составил 80мВ.
Отмечу очень хорошую стабилизацию выходного напряжения, при изменении тока нагрузки от нуля до 100% напряжение изменилось всего на 50мВ. Причем с ростом нагрузки напряжение растет, а не падает, что может быть полезным. В процессе прогрева напряжение не изменялось, что также является плюсом.

Результаты теста я свел в одну табличку, где показана температура отдельных компонентов.
Каждый этап теста длился 20 минут, тест с полной нагрузкой проводился два раза для термопрогрева.
Крышка с вентилятором вставлялась на место, но не привинчивалась, для измерения температуры я ее снимал не отключая БП и нагрузку.

В качестве дополнения я сделал несколько термограмм.
1. Нагрев проводов к электронной нагрузке при максимальном токе, также через щели в корпусе видно тепловое излучение от внутренних компонентов.
2. Самый большой нагрев имеют диодные сборки, думаю если бы производитель добавил радиатор как это сделано в 240 Ватт версии, то нагрев существенно снизился.
3. Кроме того большой проблемой был отвод тепла от всей этой конструкции, так как суммарная рассеиваемая мощность всей конструкции составила более 400 Ватт.

Кстати насчет отвода тепла. Когда я готовил тест, то больше боялся что нагрузке тяжело будет работать при такой мощности. Вообще я проводил уже тесты на такой мощности, но 360-400 Ватт это предельная мощность которую моя электронная нагрузка может рассеивать длительно. Кратковременно же она без проблем «тянет» и 500 Ватт.
Но проблема вылезла в другом месте. На радиаторах силовых элементов у меня установлены термовыключатели рассчитанные на 90 градусов. Один контакт у них припаян, а второй припаять не получилось и я применил клеммники.
При токе 15 Ампер через каждый выключатель эти контакты начинали довольно сильно нагреваться и срабатывание происходило раньше, пришлось принудительно охлаждать еще и эту конструкцию. А кроме того пришлось частично «разгрузить» нагрузку подключением к БП нескольких мощных резисторов.

Но вообще выключатели рассчитаны максимум на 10 Ампер, потому я и не ожидал от них нормальной работоспособности при токе в 1.5 раза больше их максимума. Теперь думаю как их переделать, видимо придется делать электронную защиту с управлением от этих термовыключателей.

А кроме того теперь у меня появилась еще одна задача. По просьбе некоторых читателей я заказал для обзора блоки питания мощностью 480 и 600 Ватт. Теперь думаю чем их лучше нагружать, так как такую мощность (не говоря о токах до 60 Ампер), моя нагрузка точно не выдержит.

Как и в прошлый раз я измерил КПД блока питания, этот тест я планирую проводить и в дальнейших обзорах. Проверка проходила при мощности 0/33/66 и 100%

Вход — Выход — КПД.
5.2 — 0 — 0
147,1 — 120,3 — 81,7%
289 — 241 — 83,4%
437,1 — 362 — 82,8%

Что можно сказать в итоге.
Блок питания прошел все тесты и показал довольно неплохие результаты. В плане нагрева есть даже заметный запас, но выше 100% я бы не советовал его нагружать. Порадовала весьма высокая стабильность выходного напряжения и отсутствие зависимости от температуры.
К тому что не очень понравилось я отнесу безымянные входные и выходные конденсаторы, огрехи пайки некоторых компонентов и посредственную изоляцию между высоковольтными транзисторами и радиатором.

В остальном блок питания самый обычный, работает, напряжение держит, сильно не греется.

На этом все, как обычно жду вопросов.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

750 ваттный, каскадный регулируемый импульсный источник питания из трёх АТХ/АТ блоков питания по 300W

750 ваттный, каскадный регулируемый импульсный источник питания из трёх АТХ/АТ блоков питания по 300W

 «Один импульсный блок питания хорошо, а три — трижды хорошо!

 

Уважаемый РадиоКот! От всей души поздравляю Тебя с Днем Рождения, ведь ШЕСТЬ лет, это уже очень серьезный и умный Кот! Всего Тебе самого лучшего, много, удачи и активного развития! Так же огромное СПАСИБО за Ваш сайт, за Ваш труд, благодаря которому мы все набираемся знаний и опыта! А в подарок небольшое, красочное  повествование.

 

    Здравствуйте уважаемые читатели! Сегодня наше путешествие в мир электроники пройдет под знаменем русской поговорки «ВМЕСТЕ МЫ СИЛА!», где под «МЫ», имеются в виду блоки АТАТХ. Очень часто владельцы источников питания АТХ/АТ задают вопрос о возможности параллельного или последовательного включения блоков. Такая возможность присутствует во всех АТХ/АТ блоков питания после небольшой и полностью беззатратной переделки. Но, конечно, необходимо соблюдать некоторые правила соединения двух и более источников питания. При параллельном подключении источников необходимо, чтобы все источники были с одинаковым номиналом выходного напряжения (например, 10В/50А и 10В/50А, на выходе будет 10В/100А). При последовательном подключении источников, необходимо, чтобы все источники были с одинаковым номиналом выходного тока (например, 10В/50А и 15В/50А, на выходе будет 25В/50А). Подключение источников с разными номиналами может привести к перекосу распределения мощности между блоками и, как следствие, возможной перегрузке какого либо из блоков.

    Я поведаю Вам о том, как же преодолеть барьер высоких мощностей (достаточных для радиоКота), совершенно простыми и подручными средствами. Каждый наверняка сталкивался с необходимостью в мощном регулируемом источнике питания. Кому то приносили мощные автомобильные усилители с током потребления в 50 ампер по питанию 12в, разные UPSы, да и прочую технику. Ну, а может кто-то из Вас хотел заняться гальваникой? А может Вы просто хотели зимой завести авто от розетки? Во всех этих случаях Вам, конечно же не хватало мощного источника питания. А ведь такой мощный блок просто так на коленке быстро не собрать, и на это нужно много времени и сил. Так давайте же вместе развеем этот миф, и соберем такой мощный блок, на все случаи жизни, всего за…… два вечера, придя после работы домой!  «Не может быть!» невольно возразите Вы, а как же необходимые детали, трансформаторы, ферриты, мосты, и прочее, прочее…..  А зачем нам это все?  Нам достаточно заглянуть каждому в свою кладовку (или под рабочий стол) и там все необходимое у каждого радиоКота уже есть и, так сказать, давно там пылится!!! Заглянули?  И что мы там видим? Ха! Совершенно верно – компьютерный блок питания! Да и не один! Ну и на кой они Вам? Так и будут дальше валяться? Конечно нет! Мы с вами соорудим мощный блок питания для всех случаев жизни радиоКота. Это и зарядка, и пусковое, и  лабораторный блок питания, и источник для гальваники и т.д. и т.п. Каскадное соединение источников питания — просто необходимость. Давно уже просматривается тенденция в получении больших мощностей с помощью большого числа блоков, меньшей мощности и работающих совместно на одну нагрузку.

   Все необходимые детали у нас для этого уже есть. Нам надо всего 3 одинаковых АТ или АТХ блока питания. Помянем добрым словом жителей Китая, за то, что они большую часть работы уже сделали за нас. Будем собирать блок питания с такими параметрами:

Напряжение входное…………………………………………………….~170в – 240в

Напряжение выходное регулируемое………………………… от 6в до 18в

Мощность максимальная……………………………………………….750W

Ток выходной регулируемый…………………………………………от 6 ампер  до 50 ампер

Вес ……………………………………………………………………………………3 кг.

Возможность наращивания мощности……………………………ЕСТЬ.

   Я, надеюсь, Вам понравились показатели Вашего будущего блока питания?  Ну а если мало этого, то я в конце путешествия расскажу Вам как их еще поднять до 1500W, или до 3000W, ведь вы поговорку еще не забыли? Выглядит «трио-блок» примерно так:

Рис1.

Рис1а.

Рис2.

    Тогда начнем! Особо в схемотехнику АТ, АТХ блоков питания вдаваться не будем, так как её знает любой радиоКот уже на столько, что разбуди его ночью и спроси «Как?», все расскажет как,  куда и зачем. Все еще помнят, чему нас учили в школе, на уроках физики? Там были уроки про элементы питания, которые можно собирать в батареи как угодно, хочешь последовательно, хочешь параллельно, хочешь параллельно – последовательно. Ну так вот, мы и продолжим наш урок, только вместо элементов у нас будут — компьютерные источники питания. Это наши такие своеобразные «кирпичики» для построения каскадного мощного блока питания. Ведь все же знают, что если Вы соедините последовательно например, три блока или аккумулятора по 5В и каждый из которых может отдать ток 50А (например), то ток 50А от получившихся 15В мы получим, но ни как не 150А, как ни старайтесь (полный закон Ома). Примерно так же и в нашем случае. Б_о_льший ток мы получим при параллельном соединении БП (при том же напряжении 5В в примере с аккумуляторами). При последовательном соединении аккумуляторов, главное требование — одинаковость их характеристик. Компьютерный блок тоже самое. Но собираемые в каскады блоки питания должны быть одинаковыми. Ведь в разных блоках могут стоять разные диодные сборки, разные дросселя групповой стабилизации и конденсаторы. Может, даже, в одном блоке стоят дополнительные дроссели по питанию, а в другом — нет. Частоты блоков и текущие длительности импульсов ШИМ, так же, могут отличаться. Всё это определяет выходное сопротивление каждого блока. Если эти сопротивления окажутся сильно разными, то на предельных токах нельзя будет получить равного распределения выходной мощности между блоками. Значит, один блок будет выдавать большее напряжение, чем другой. Перекос мощности, конечно же, скажется на надёжности работы. Но насколько опасен, такой перекос, сказать трудно, так как слишком от многих факторов он зависит. Поэтому все же приведем наши блоки к одному общему знаменателю (лучше сразу взять три одинаковых).

   Мы будем соединять блоки питания последовательно, а не параллельно, исходя из экономических соображений и простоты реализации. Диоды шоттки низковольтные на 40 вольт и на 30 ампер легче найти (их с блоков можно набрать целую ладонь) и их можно соединить параллельно, тем самым  получить диод 40 вольт 60 ампер. Это означает, теоретически, такое соединение диодов в двухтактном режиме может обеспечить протекание тока в 60 ампер. Падение на 6 диодах шоттки меньше при последовательном соединении блоков, чем на 6 диодах ультрафаст при параллельном соединении блоков питания (а они тогда нужны уже не менее 200 вольт, плюс желателен подбор по одинаковым параметрам).

Давайте рассмотрим структурную схему из которой нам всё сразу станет ясно:

Рис3.

    Все линии одной расцветки имеют одноименное назначение. Например, линия красно-синяя с дежурного блока питания 20-25в — означает, что это питание заводится во все функциональные блоки от данного блока питания. Три кирпичика А, В, С каждый дают напряжение от 2 до 6 вольт и ток от 6 до 50 ампер. Но, надо учитывать максимально допустимую мощность, если выставили 18 вольт, то даем максимальный ток только 40А, ну а если 12 вольт, то можно брать ток в нагрузку и все 50А.

 План действий по разбору схемы будет таким:  Сначала читаете, вникаете. Разбираем каждый функциональный блок отдельно. Осциллограммы, наладка, проверка каждого блока. Потом я приведу полную принципиальную схему, в которой нам станет все понятно. И, только потом начнем по пунктам собирать  и отлаживать «трио-блок». Поехали!

   Схема контроля тока и напряжения может быть совершенно любой, главное, что бы хорошо работала, а «нагуглить» в интернете можно много самых разных вариаций. Данная схема взята из форума радиокота, из-за того, что имеет самую простую реализацию, очень удобную настройку и хорошо себя зарекомендовала в работе. В данной схеме «токовый» усилитель включен в диагональ измерительного моста образованного резисторами R11,R12 и R1,R2,R3,R4,R5,шунт. Шунт является источником напряжения, вызывающего разбаланс измерительного моста. На первом этапе построения блока нам надо получить соответствие напряжения и осциллограмм на выводах микросхемы.

Рис4. Схема.

Начальная наладка данного узла сводится к следующим шагам:

  1. установке на выводе 2, 15 половины опорного напряжения = 2,5 вольт с помощью R11, R12.
  2. установке на выводе 16 половины опорного напряжения = 2,49 вольт. Резисторы R1,R2 установить в положение максимального сопротивления. Резистором R4 выставить такое положение, когда TL494 только начинает давать коротенькие импульсы, и так пока оставить.
  3. Подогнать с помощью R7, R9 и R10 диапазон регулировки напряжения от 6 до 18 вольт. Для этого подключим временно сопротивление R18 1к и будем подавать напряжение от 6 в до 18 вгоняя в заданный диапазон. Ориентиром будет появление или пропадание импульсов с выхода 494  с выводов 8 или 11. После примерной калибровки так пока оставить.
  4. Установка дополнительного мертвого времени. Данный пункт необходим для дополнительного повышения надёжности блока, полностью исключая возможные пробои силовых ключей из-за сквозного тока. Для лучшей наглядности нужно установить временное соединение выводов 8 и 11 перемычкой. Далее настроим минимально допустимую ширину импульсов (дед-тайм) с помощью R14. Выставляем  около 2 -4 мкс (см. рисунок 6).

      Когда подключим силовой каскад блока питания С, то все настройки продолжим и отполируем.

      Теперь подключив только 20 вольт, и не подключая силу и распределитель, посмотрим осциллограммы. Осциллограммы с выходом ни куда не нагруженным (в воздухе), поэтому напряжение импульса будет в размахе 20 вольт. Здесь показано какую ширину смотреть, для отсчета 2 — 4 мкс. Можно было оставить как и было — 2 мкс, но для подстраховки лучше увеличить мертвое времени до 4 мкс, хуже от этого точно не будет.  Это лишний раз убережет выходные транзисторы от сквозного тока, если они вдруг окажутся ну слишком медленными.

Все резисторы которые нужно настраивать обведены в пунктирный красный кружок.

Рис6.

Теперь снимаем временную перемычку, чтобы не забыть.

        Схема распределителя импульсов представляет собой несколько изменённый простейший двухтактный эмиттерный повторитель. В каждый добавлена форсирующая цепь и ограничительный резистор в цепи коллектора обратного транзистора.  Таких повторителей всего шесть, по два на каждый блок питания.

    Рис7.

    Плата в стадии сборки:

    Рис8.

    Рис9.

     

    Рис10.

     

    Настройка распределителя не требуется, и если всё собрано из исправных деталей, то начинает работать сразу.  Формы сигналов приведены ниже.

    Рис11.

     

         Для лучшей наглядности и понимания что же происходит на выходе и как управляется силовой выходной каскад, лучше проводить наблюдения двух лучевым осциллографом. Но можно и с одним лучом. Для наблюдения можно временно добавить резистор на 470 ом между 8 и 11 выводом 494. Тогда мы увидим такую картину (смотрим рисунок, там пояснения), за одно можно еще раз проверить мертвое время.

    Рис12

        Теперь проверим работу форсирующей цепи, которая ускоряет переключение транзисторов. Для этого станем осциллографом в точку соединения двух баз КТ315 и КТ361, и наблюдаем на спаде импульса не большое отрицательное напряжение. Если оно есть, то цепь исправна.

    Рис13. проверка работы форсирующей RC цепи:

      Рис14.

           Схема стандартна, и её каждый знает, поэтому описывать нет смысла. Сразу переходим к безопасным  испытаниям силовой части блока, так мы можем смело все облазить и обмерять. Для этого понадобится соединить сетевой вход блока с 20В, которые мы используем для питания ШИМ 494 и распределителя. Полярность не важна, т.к. там на входе есть мост. Подключаем 20 вольт.  На выходе диодного моста должно быть напряжение 18-19В.  Соответственно на каждом электролите высокого напряжения будет примерно по 9В.  Между эмиттером и коллектором каждого силового транзистора также должно быть 9В.    Теперь перемычкой замыкаем (припаиваем) выход 2-6в накоротко. Делаем это для того, что бы в полной мере заработал согласующий трансформатор. Осциллограммы на коллекторе, или базе силового транзистора измерять относительно его эмиттера. Напряжение будет меняться от 0 до 19В если на коллекторе, и в пределах 4 вольт если на базе).  При этом процесс перехода напряжения на коллекторе от низкого уровня к высокому должен быть как можно круче, почти мгновенным.   Если переходной процесс происходит плавно (присутствует небольшой наклон),  то скорее всего уже через несколько минут радиатор силовых транзисторов очень сильно нагреется. (при нормальной работе — радиатор должен быть холодный)

      Рис15.

          Для лучшего закрывания и надежного удержания одного силового транзистора в закрытом состоянии, на время коммутации второго силового транзистора напряжение на базе должно быть отрицательным, если транзистор закрыт, и положительным, если открыт (см. рис15). Желательно маленькие электролиты в базовых цепях заменить на новые или на неэлектролитические (пленочные например). На этом предварительную проверку силового блока можно завершить.

        Рис16.

            Блок шим и распределитель импульсов питается от двухполупериодного выпрямителя, а вентиляторы от однополупериодного, для снижения на них напряжения. Стрелкой показано течение тока для питания вентиляторов.

            Вот и всё, все блоки по отдельности рассмотрели. Далее привожу всю   схему   целиком  и начнем сборку и наладку. Схема довольно большая, формат А0, поэтому её лучше скачать отдельно и посмотреть в любой программе просмотра изображений, а не в браузере:

        Рис 17.

           Общая подготовка к запуску старых АТ и АТХ  БП о которых не известно — сколько они проработали и как долго и в каких условиях после этого хранились. После внешнего осмотра и разборки промывем и сушим плату. Затем выпаиваем все электролиты: по питанию TL494, в цепи плавного пуска меняем на новые. В базовых цепях ключей – меняем на новые обязательно или лучше на керамику того же номинала. Затем  формуем фильтрующие электролиты — 220-680 мкф на 200-250в. Для этого соединяем параллельно и через диодный мост и лампочку 220в 15 — 25 Вт подключаем к латру. Напряжение повышаем постепенно по 20 — 30 в каждые полчаса, контролируя при этом ток утечки по падению напряжения на лампе. Весь процесс довольно длительный и занимает 3-5 часов. Этот процесс необходим высоковольтным электролитам после долгого хранения. Если утечек нет — измеряем ёмкость, и если нормально впаиваем в плату, если нет то меняем на новые. Если возиться не хочется, то просто сразу меняем на новые, только проверить на емкость.

           Для переделки брались три блока фирмы CODEGEN 300, как самые распространенные. Из трех одинаковых берем два блока. Эти два блока приводим в соответствие со схемой функционального блока силовой части. Выпаиваем 494, и все транзисторы мелкие, кроме предвыходных…. Вообще идем по схеме. Для дросселя используем обмотки канала 5 вольт, (они там в два провода намотаны). Диоды SBL3040 ставим два в параллель. Тот, который там стоял, так и оставляем, и ставим туда еще один. Желательно диоды брать одной фирмы. В блоках CODEGEN 300 они уже стояли в канале 3,3 вольта, и я их просто перекинул перемычками на 5 вольтовую обмотку силового трансформатора. Обмотка с канала 12 вольт силового трансформатора не используется.

        Должно получиться примерно как на фото. Это блоки А и В.

        Рис18.

           В третьем блоке силу делаем одинаково, как и все предыдущие, но не выпаиваем 494 с обвязкой, а также если исправна дежурка, то можно использовать родную (я использовал родную), а так все согласно схеме. Допаиваем нужные резисторы, переменные резисторы, шунт.  Шунт берем три толстых кусочка манганина длинной 3 см диаметром 1 -3 мм. Удельное сопротивление 0.548 ом на метр длины.  Сопротивление не важно, там будет около 0,006-0,01ома. Впаиваем их паралелльно торчком в плату, где выходили черные провода минуса, а ко второму концу припаиваем переменный резистор одним крайним выводом и бегунком. Этот же конец шунта в воздухе и будет минусовым выходом. По порядку все делаем  по схеме, кроме одного: пока не перерезайте дорожки идущие от 8 и 11 вывода к 945 транзисторам. (это потом сделаем, когда все настроим и будем добавлять распределитель и драйверы).

        Фото третьего блока С:

        Рис19.

            Когда все сделали, включаем в сеть через одну лампочку 100W и продолжаем настройку. Убеждаемся что на 2 выводе 2,5 вольт. Проверяем напряжение на выходе, и настраиваем с помощью R8 и R10 (все позиционные обозначения смотрим по полной схеме) диапазон регулировки напряжения от 6 до 18 вольт. Когда это сделали, включаем в сеть через три — четыре лампочки 100W параллельно (на всякий случай) и продолжаем настройку.  Резисторы R1, R3 установить в положение максимального сопротивления. R7- в среднее положение. Подключить амперметр на выход напрямую. Резистором R1 выставить минимальный ток 6А. Переведя R2 в положение минимального сопротивления — подстройкой R7 выставить максимальный ток равный 50 ампер (для этого нужно заблаговременно сделать такой амперметр). Переведя R2 в положение макс. сопротивления проверить мин. ток (6А). После настройки подстроечные сопротивления R7, R1 лучше заменить на постоянные. Далее  подключить через амперметр нагрузку 0,1 – 0,3 ома, и по сети убрать лампы, и повторить проверку диапазонов регулирования тока.

            В итоге получится один ведущий блок на напряжение от 3 до 6 вольт и ток от 6 до 50 ампер, который будет управлять оставшимися двумя ведомыми. Теперь разрезаем дорожки идущие от 8 и 11 вывода к 945 транзисторам, при этом резисторы которые идут на +20в с этих выводов должны остаться с микросхемой, для подтяжки коллекторов в микросхеме к плюсу. Теперь подключаем распределитель импульсов согласно схеме. Он будет находиться в третьем блоке, над основной платой дорожками вверх для удобства пайки проводов. Входы верхний ключ и нижний подключаем к 494, а выхода распределяем по блокам каждому по паре — верхний ключ и нижний. Для этого берем обычный двойной провод с сечением 0,2 мм^2. Далее на каждый блок заводим питание 20 вольт (на третьем оно уже заведено с дежурки), тоже используем обычный двойной провод с сечением 0,2 мм^2. Далее заводим каждому блоку корпус. У каждой платы блока разрезаем дорожки, идущие на сам металлический корпус под болты. Отключать минус выходных напряжений от металлического корпуса блока необходимо и это обязательно. Это для того, что бы не было связи мимо шунта, при случайном коротыше на металлический корпус. Все Y конденсаторы со всех блоков питания соединяем с общим корпусом. Подаем от третьего блока каждому следующему 220 вольт внешней гибкой перемычкой в двойной изоляции (например, проводом ПВС).

            Теперь включаем «трио – блок» в сеть 220в через лампу 100W. Проверяем напряжение на выходе каждого блока, что бы оно было примерно одинаковым. Например, выставили 6 вольт, то и на каждом должно быть примерно по 6 вольт. Выключаем. Теперь соединяем выхода каждого блока согласно схеме – последовательно.  Для соединения берем выходные провода, которые отпаяли от блоков перед переделкой. Для этого надо скрутить по 10 — 15 проводов вместе на один провод. Я скручивал только по семь в один и они ощутимо греются, поэтому лучше брать больше. Включаем. Меряем напряжение на выходе трех последовательно соединенных блоках питания. Оно должно быть в три раза больше чем на одном. Выключаем. Резистором R2 выставить минимальный ток, переведя его в положение макс. сопротивления. Подключить амперметр на выход напрямую. Включаем. Ток должен быть 6А. Далее увеличиваем ток до 12А, медленно вращая переменный резистор. Выключаем. Проверяем радиаторы на предмет перегрева, и если все нормально, то продолжаем дальше. Подключаем вентиляторы, для обдува каждого блока питания. Включаем в сеть через три – четыре лампочки 100W параллельно (ну на всякий случай) и продолжаем проверку. Далее увеличиваем ток до 30А, медленно вращая переменный резистор. Выключаем. Проверяем радиаторы на предмет перегрева, и если все нормально, то продолжаем дальше. Включаем в сеть напрямую и продолжаем проверку. Далее очень – очень плавно увеличиваем ток до 50А, медленно вращая переменный резистор. Выключаем. Проверяем радиаторы на предмет перегрева, и если все нормально, то продолжаем дальше. Подключаем нагрузку 0,2 ома. (много нихромовых коротких проволок параллельно с обдувом вентиляторами). Включаем в сеть напрямую и продолжаем проверку. Плавно увеличиваем ток с 6А до 30А, медленно вращая переменный резистор (вентиляторы при этом обдувают блоки). Держим 1 минуту. Выключаем. Проверяем радиаторы на предмет перегрева, и если все нормально, то продолжаем дальше. Плавно увеличиваем ток с 30А до 50А, медленно вращая переменный резистор (вентиляторы при этом обдувают блоки – это обязательно!). Держим 1 минуту. Выключаем. Проверяем радиаторы на предмет перегрева, и если все нормально (примерно градусов 40 – 50), то настройка завершена.

            По корпусу: нужно повернуть перегородки спереди и сзади поперек корпуса, для лучшего движения потока воздуха. Далее собираем всё в корпус, и проверяем температурный режим в корпусе (температура будет выше примерно градусов 10-20, чем в разобранном виде на столе), включив сначала на 1 минуту, потом на 10, потом на час.

            Контролировать напряжение (заводить ОС по напряжению) надёжней на третьем блоке (блок С). Тогда в случае выхода из строя одного блока, ширина управляющих импульсов не изменится, и не будет стремиться к максимуму для компенсации провала напряжения на треть. Но тогда стабилизация напряжения немного хуже чем, если контролировать выходное напряжения со всех блоков питания сразу (на схеме показано пунктирной линией).

        Общий вид блока со снятой крышкой с блока В и С:

        Рис20.

        На фото видно как разогнуть щели продувки для лучшего охлаждения.

        Рис21.

        Компоновка платы распределителя в блоке С. Видны на фото также диоды SBL3040 в паре, а также родная рабочая дежурка, которая использовалась для питания +20в и для вентиляторов +12в.

        Рис22.

        Фото блока в работе на нагрузку, как видно в запасе еще около 20 ампер.

        Рис23.

        Ампервольметр использовался со статьи «моддинг блока питания», только переделан на измерение до 99,9 А и 99,9 В.

        А это домашняя нагрузка:

        Рис24.

          Теперь, как и обещал, расскажу как можно увеличить мощность, ток, напряжение простыми средствами. Наши «кирпичики» (блоки питания) можно наращивать в столбик, для повышения напряжения до безграничного количества (теоретически, но в принципе можно соединить 20 штук). Если нужен больший ток, тогда соединяем параллельно. Можно и параллельно – последовательно.

        Вот пример построения мощного блока от 12 до 36 вольт:

        Рис25.

        Просто добавили еще шесть повторителей в распределитель, и добавили еще блоков типа А и В три штуки.

        Можно соединять параллельно:

        Рис26.

        Можно нарастить мощности:

        Рис27.

        Можно применить и смешанное соединение:

        Рис28.

          Скажу, что по данной методике можно переделать БП АТ/АТХ и на другие заданные параметры, этот я делал для использования в качестве лабораторного мощного источника питания и для гальваники. Сейчас думаю поставить такой двойной трио блок для запуска зимой автомобиля, а то ведь и зима может неожиданно нагрянуть…..

          Вот и подошло к концу наше интересное путешествие, и у Вас на столе надеюсь, появился уже мощный каскадный блок из АТ/АТХ, который монотонно жужжит своими тремя черными вентиляторами, питая Ваш мощный автоусилитель с сабвуферами.

        До встречи на форуме.

        За сим я откланяюсь, и пойду паяльник греть, для следующего путешествия в увлекательнейший  безграничный мир электроники.

         

        В приложенных файлах — печатные платы в Sprint-Layout 5.0, картинки, схемы в Splan7.0, даташиты на 494.

        Файлы:
        Даташиты
        плата
        архив картинок
        схемы спл

        Все вопросы в Форум.

        Стабилизированный источник питания 12В / 30А – Поделки для авто

        Представляем мощный стабилизированный блок питания на 12 В. Он построен на микросхеме стабилизатора LM7812 и транзисторах TIP2955, что обеспечивает ток до 30 А. Каждый транзистор может давать ток до 5 А, соответственно 6 транзисторов обеспечат ток до 30 А. Можно изменением количества транзисторов и получить желаемое значение тока. Микросхема выдает ток около 800 мА.

        На его выходе установлен предохранитель в 1 А для защиты от больших переходных токов. Нужно обеспечить хороший теплоотвод от транзисторов и микросхемы. Когда ток через нагрузку большой, мощность рассеиваемая каждым транзистором также увеличивается, так что избыточное тепло может привести к пробою транзистора.

        В этом случае для охлаждения потребуется очень большой радиатор или вентилятор. Резисторы 100 Ом используются для стабильности и предотвращения насыщения, т.к. коэффициенты усиления имеют некоторый разброс у одного и того же типа транзисторов. Диоды моста рассчитаны не менее, чем на 100 А.

        Примечания

        Наиболее затратным элементом всей конструкции, пожалуй, является входной трансформатор, Вместо него возможно использование двух последовательно соединенных батарей автомобиля. Напряжение на входе стабилизатора должно быть на несколько вольт выше требуемого на выходе (12В), чтобы он мог поддерживать стабильный выход. Если используется трансформатор, то диоды должны выдерживать достаточно большой пиковый прямой ток, обычно, 100А или более.

        Через LM 7812 будет проходить не более 1 А, остальная часть обеспечивается транзисторами.Так как схема рассчитана на нагрузку до 30А, то шесть транзисторов соединены параллельно. Рассеиваемая каждым из них мощность – это 1/6 часть общей нагрузки, но все же необходимо обеспечить достаточный теплоотвод. Максимальный ток нагрузки приведет к максимальному рассеиванию, при этом потребуется крупногабаритный радиатор.

        Для эффективного отвода тепла от радиатора, может быть хорошей идеей применение вентилятора или радиатора с водяным охлаждением. Если блок питания нагружен на максимальную нагрузку, а силовые транзисторы вышли из строя, то весь ток пройдет через микросхему, что приведет к катастрофическому результату. Для предотвращения пробоя микросхемы на ее выходе стоит предохранитель в 1 А. Нагрузка 400 МОм только для тестирования и не входит в окончательную схему.

        Стабилизированный источник питания 12В / 30А

        Вычисления

        Данная схема отличная демонстрация законов Кирхгофа. Входящая в узел сумма токов, должна быть равна сумме токов выходящих из этого узла, а сумма падений напряжений на всех ветвях, любого замкнутого контура цепи должна быть равна нулю. В нашей схеме, входное напряжение 24 вольт, из них 4В падения на R7 и 20 В на входе LM 7812, т.е 24 -4 -20 = 0. На выходе суммарный ток нагрузки 30А, регулятор поставляет 0.866А и 4.855А каждый из 6 транзисторов: 30 = 6 * 4.855 + 0.866.

        Ток базы составляет около 138 мА на транзистор, чтобы получить ток коллектора около 4.86А коэффициент усиления по постоянному току для каждого транзистора должен быть не менее 35.

        TIP2955 удовлетворяет этим требованиям. Падение напряжения на R7 = 100 Ом при максимальной нагрузке будет 4В. Рассеиваемая на нем мощность, вычисляется по формуле P= (4 * 4) / 100, т.е 0.16 Вт. Желательно, чтобы этот резистор был мощностью 0.5 Вт.

        Входной ток микросхемы поступает через резистор в цепи эмиттера и переход Б-Э транзисторов. Еще раз применим законы Кирхгофа. Входной ток регулятора состоит из тока 871 мА, протекающего по цепи базы, и 40.3мА через R = 100 Ом.
        871,18 = 40,3 + 830. 88. Входной ток стабилизатора всегда должен быть больше выходного. Мы видим, что он потребляет только около 5 мА и практически не должен греться.

        Стабилизированный источник питания 12В / 30А

        Тестирование и ошибки

        Во время первого испытании, не надо подключать нагрузку. Вначале измеряем вольтметром напряжение на выходе, оно должно быть 12 вольт, или не сильно отличающаяся величина. Затем подключаем сопротивление около100 Ом, 3 Вт в качестве нагрузки.Показания вольтметра не должны измениться. Если вы не видите 12 В, то, предварительно выключив питание, следует проверить корректность монтажа и качество пайки.

        Один из читателей, получил на выходе 35 В, вместо стабилизированных 12 В. Это было вызвано коротким замыканием силового транзистора. Если есть КЗ любого из транзисторов, придется отпаять все 6 для проверки мультиметром переходов коллектор-эмиттер.

        Похожие статьи:

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *