Site Loader

Содержание

Простая сенсорная кнопка


Простейшее сенсорное устройство можно собрать на нескольких доступных деталях. Всего три транзистора, три резистора и один светодиод, вот и всё. Собирать схему можно даже навесным монтажом, всё работать будет.

Транзисторы любые NPN структуры: КТ315, КТ3102 или BC547 или любой другой. Резисторы 0,125-0,25 Ватт. Светодиод любого цвета, но лучше красный, так как падение напряжение падение у него минимальное. Питание 5 вольт, больше меньше можно и меньше тоже.

Все компоненты были компактно соединены между собой на миниатюрной печатной плате, которую можно сделать просто вырезав лишнюю медь резаком оставив таким способом остроугольные многоугольники. Детали, использованные для поверхностного монтажа, транзисторы в sot-26 npn, резисторы 0805, перемычки – кусочки провода, вместо них, если есть берите крупный 2512 резисторы с нулевым (условно) сопротивлением. Сенсорное устройство работает сразу, без настройки.

Объяснение работы схемы

Дотрагиваясь до базы транзистора Q3 вы наводками открываете его, вследствие чего через его КЭ и резистор 1 Мом течет ток, который открывает следующий полупроводник Q2, тот открываясь открывает Q3, который уже управляет светодиодом, открываясь через его КЭ течет ток, от минуса идет к катоду светодиода, а к аноду он уже подключен. Резистор 220 Ом здесь “токоограничительный”, на нём падает лишнее напряжение, что защищает диод от деградирования кристалла и полного выхода из строя LED1

Применение

Ну вот горит светодиод по касанию пальца – и что? А вот то, что вместо этого светодиода ставим реле и теперь мы можем управлять почти любой нагрузкой, в зависимости от характеристик применяемого реле. Ставим мощную лампу накаливания, подключенную к сети, а в разрыв этой цепи контакты реле. Теперь при нажатии, а точнее касании сенсора лампа светит.

Также организовать включение/отключение нагрузки можно с помощью оптопары, если отсутствует реле, тогда также будет гальваническая развязка. Эта прекрасная вещь состоит из светодиода и фототранзистора, когда первый светит, то это открывает транзистор и через его КЭ может течь ток. Включаем нужные выводы оптрона в схему сенсора вместо светодиода LED1, а остальные два в разрыв источника питания и любой нагрузки. Эту деталь можно изъять из зарядок от телефона. Возьмите, к примеру, PC-17L1.

Чуть ниже вы видите дополнение к основной схеме, где показано как нужно подключать оптопару к схеме сенсора, также добавлен один транзистор, это нужно для того чтобы вы могли подключать весомую нагрузку, а не просто светодиоды на 20 mA.

Еще вместо реле и оптопары возможно применение двух npn транзисторов. Я так и сделал, схему вы видите. Работает это так: Q5 всегда должен быть открыт, через резистор 10 кОм, но через КЭ открытого Q4 на базу Q5 поступает “минус” и из-за этого он закрыт. Когда же вы касаетесь сенсора – то минус поступает через открытый Q1 на базу Q4 и закрывает его, теперь уж ничто не мешает Q5 оставаться открытым – нагрузка работает, а в моем случае мощный 1 Ватт светодиод ярко светит.

Так это выглядит в собранном состоянии.

Сенсор не имеет фиксации, дотронулись – светит, отпустили – не светит. Коль желаете сделать фиксацию – просто добавьте в схему триггер, например, на микросхеме КМ555ТМ2 или любой другой (можно даже на таймере 555 реализовать это). С добавление триггерной системы при касании к сенсору нагрузка будет включена до тех пор, пока не произойдет следующее касание или исчезнет питание схемы.

На практике это можно применить для быстрого включения и отключения освещения в комнате. Очень удобно, коснулся небольшого чувствительного участка, и комната освещена, второе касание отключит свет. Небольшое количество энергии будет теряться, но этим можно пренебречь.


Коментарии

Схема работает, но из-за своей простоты далеко не идеально. Если сенсор большой, то схема может срабатывать даже тогда, когда вы еще не дотронулись до него, также если вы рукой расчешете волосы возле датчика светодиод также может загореться. Выход из этой ситуации простой – миниатюрный сенсорный датчик.

Как уже говорилось – открытие Q3 происходит за счет наводок, видеть это можно на видео, светодиод светит не постоянно, а подмигивает с большой частотой, но это хорошо заметно при съёмки.

Яркость работающего диода не велика, если вы дотрагиваетесь только до базы третьего транзистора, но стоит вам коснуться еще и плюса питания, то ваше тело выступит в роле резистора и транзистор Q3 перейдет в насыщение. Но при таком раскладе для некоторых потеряется смысл сенсора.

Эта схема очень проста и предназначена лишь для понимания принципа работы электронных компонентов, применять в серьезных конструкциях не рекомендуется.

Видео

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Разработка сенсорного Z-Wave выключателя на аккумуляторе со светящимися кнопками

Второй год я разрабатываю свой уникальный Z-Wave выключатель с сенсорными кнопками, который удовлетворит меня по функционалу, дизайну и стоимости изготовления.

С самого начала была цель сделать 4-х кнопочный выключатель на аккумуляторе размера 80х80 мм максимально тонким, сенсорные кнопки должны быть большие и при касании светиться целиком, а не только небольшой кружочек, как у всех. В итоге получился стильный тонкий выключатель, способный управлять любыми устройствами умного дома.

Во время разработки я решал множество задач по схемотехнике, дизайну корпуса и выбору материалов. Особенно интересным является создание самой сенсорной кнопки, которая светится целиком, но обо всем по порядку.

  • Функционал
  • Дизайн корпуса
  • Разработка печатной платы
  • Изучение рассеивателей света
  • Подбор материалов рассеивателя
  • Использование

Видео работы сенсорного выключателя в конце.

Функционал


Требовались следующие возможности выключателя:
  • Включать/выключать свет
  • Регулировать яркость освещения

4 кнопки управляют 2-мя группами освещения. Верхние кнопки при удержании плавно увеличивают яркость, при коротком нажатии включают свет. Нижние кнопки при удержании плавно уменьшают яркость, при коротком нажатии выключают свет.

TODO

Сделать, чтобы каждая кнопка работала в режиме переключения, нажал — вкл, нажал — выкл. Это позволит управлять 4-мя группами освещения.

Дизайн корпуса


Мне понравилась идея с 4-мя большими сенсорными кнопками компании Basalte, и я решил развить её в своем направлении.


Рис. 1 — KNX выключатель Basalte

Я хотел, чтобы при касании кнопка светилась сама целиком, а не отдельный светодиод. Поэтому корпус представляет из себя узкую рамку с вырезами для 4-х сенсорных кнопок. Продуманы замочки для крепления задней крышки и углубления для установки магнитов. Крепежная пластинка приклеивается к стене на двухстороннюю клейкую ленту и к ней уже крепится сам выключатель с помощью магнитов. Удобно использовать выключатель как переносной пульт и удобно заряжать аккумулятор.


Рис. 2 — Корпус сенсорного выключателя

Все детали корпуса разработаны в Blender и распечатаны на 3D принтере белым ABS пластиком.


Рис. 3 — Разработка корпуса сенсорного выключателя в Blender

Разработка печатной платы


Печатная плата разработана в Proteus. Это вторая версия, в ней используется одна сенсорная микросхема TTP224 на 4 канала. В первой версии использовалось 4 шт. одноканальных TTP223, разницы в работе никакой, но при использовании TTP224 меньше компонентов паять.


Рис. 4 — Разработка печатной платы сенсорного выключателя в Proteus

Главными компонентами на плате являются:

  1. Z-Wave радио чип
  2. Аккумулятор Robiton 800мАч
  3. 3.3V Step-Up/Step-Down Voltage Regulator S7V8F3
  4. Микросхема заряда аккумулятора TP4056
  5. Схема переключения питания с аккумулятора на USB
  6. Кнопка калибровки
  7. Микросхема сенсорных кнопок TTP224

Z-Wave чип работает в диапазоне 2.7В — 3.6В, аккумулятор выдает до 4.7В, поэтому я использовал повышающе-понижающий преобразователь 3.3В Pololu S7V8F3. Для заряда аккумулятора использовал дешевую и многим известную микросхему TP4056, ток заряда настроил на половину емкости аккумулятора 400мА. При подключении зарядки, питание устройства переключается на USB и аккумулятор спокойно заряжается, схема переключения питания реализована на одном транзисторе и диоде. Кнопка при нажатии сбрасывает питание регулятора и вся схема перезагружается, это нужно для калибровки TTP224. На лицевой части платы находятся 4 площадки сенсорных кнопок размером 40х40 мм и 4 светодиода. Производство заказано в Seeedstudio, качеством и ценой очень доволен.


Рис. 5 — Плата сенсорного выключателя

Самым главным компонентом в сенсорном выключателе является контроллер сенсорной кнопки. Я провел тестирование 3-х контроллеров и у каждого оказались, как плюсы, так и минусы. Результаты тестирования 3-х контроллеров сенсорных кнопок:

TTP224

Плюсы: Дешевый, на текстолите с одной стороны могут быть площадки сенсоров, на обратной стороне другие компоненты, но при этом сильно снижается чувствительность. Настройка выходного сигнала: высокий/низкий уровень, настройка режима кнопки: переключение/включение. 4 канала.

Минусы: Если с обратной стороны сенсорной площадки находятся дорожки, то плохо работает сквозь оргстекло более 3 мм и еще хуже если на стекло наклеена пленка, не реагирует на небольшое касание, только нажатие всей подушечкой пальца, даже с настроенной максимальной чувствительностью (Cs = 1pF, диапазон 0-50pF, чем меньше, тем чувствительнее).


Рис. 6 — TTP224 на готовой плате

AT42QT1011

Плюсы: Реагирует на небольшое касания сквозь 3 мм (и больше) оргстекло, если настроить чувствительность на среднем уровне (Cs = 22nF, диапазон 2-50nF, чем больше, тем чувствительнее). Автоматически подстраивается под толщину стекла.

Минусы: Под сенсорной площадкой не должно быть никаких дорожек, ни питания, ни земли, иначе снижается чувствительность. Выход только высокий уровень. 1 канал только.


Рис. 7 — Тестовая плата AT42QT1011

MTCh205

Плюсы: Реагирует на небольшое касания сквозь 3 мм (и больше) оргстекло. Защита от помех с помощью земли вокруг и под площадкой сенсоров, автоматически подстраивается под толщину стекла. 5 каналов.

Минусы: Долго реагирует на нажатие и долго понимает, что палец отпустили, порядка 0.5 секунд. Если удерживать палец на площадке сенсора, то через 9 секунд выключается светодиод, происходит калибровка. Сенсорную площадку требуется закрывать землей со всех сторон, в том числе и под площадкой, иначе срабатывает в любой точке касания текстолита.


Рис. 8 — MTCh205 на макетной плате

Выбрал TTP224 (4 канала), потому что на одном текстолите с одной стороны можно разместить все компоненты, а на другой стороне — площадки сенсоров. Пожертвовал чувствительностью, через 3 мм оргстекло срабатывает если коснуться целиком подушечкой пальца, хотя это можно трактовать, как защита от случайного касания :). Если под площадкой сенсора нет дорожек, то реагирует сквозь 4 мм оргстекло при малейшем касании.

TODO

Изготовить сенсорный выключатель с двумя текстолитами, первый — для сенсорных площадок, второй — для всех компонентов. Добавить вибромотор и бузер. Реализовать функцию слабой подсветки при срабатывании встроенного датчика движения.

Изучение рассеивателей света


Стояла задача — равномерно засветить площадку размером 40х40мм, которой касается палец. Из-за ограничений размера корпуса, получилось впихнуть только по одному светодиоду для каждой площадки.

Я изучил устройство нескольких сенсорных выключателей: Livolo, Vitrum, HTTM touch button. В каждом использовался свой подход к равномерному рассеиванию света.

Vitrum

Итальянский Z-Wave выключатель с дорогим декоративным стеклом. Отражатель-рассеиватель реализован следующим образом: на прозрачном оргстекле нарисован обод светоотражающей краской, сбоку подсвеченный одним светодиодом. Со стороны светодиода краски меньше нанесено, тем самым достигается равномерное свечение по всему ободу. Сверху устанавливается декоративное стекло.


Рис. 9 — Рисунок светоотражающего обода на оргстекле

Livolo

Бюджетный китайский сенсорный выключатель. На плате располагается 2 светодиода: красный и синий, светодиоды светят внутрь замутненного полупрозрачного пластика, из-за частых преломлений света внутри получается равномерное свечение всей поверхности, на текстолит нанесена светоотражающая краска.


Рис. 10 — Сенсорная часть выключателя Livolo

HTTM — HelTec Touch Model

Готовый сенсорный модуль с Noname микросхемой. Отражатель-рассеиватель состоит из 3-х частей: текстолит с луженой площадкой, оргстекло для торцевой подсветки с множеством микроямок, белая мутная пленка.


Рис. 10 — Разобранный сенсорный модуль HTTM

Подбор материалов рассеивателя


Рассеиватель из матового оргстекла

Обычное прозрачное 3 мм оргстекло обработал мелкой шкуркой с двух сторон для придания матовости. Такое оргстекло равномерно рассеивает свет по всей поверхности. Толщина материала позволяет комфортно работать с любой сенсорной микросхемой. Но на поверхности видны мелкие царапины, что влияет на эстетический вид.


Рис. 11 — Матированное оргстекло

Рассеиватель из оргстекла для торцевой подсветки (LGP) и молочного оргстекла
Использовал 2 разных оргстекла толщиной по 2 мм, бутерброд из двух элементов получился 4 мм. Нижнее оргстекло для торцевой подсветки, благодаря нанесенным белым точкам, равномерно рассеивает свет по всей поверхности. Верхнее молочное оргстекло дает мягкое свечение и красивый вид, при этом яркость заметно ниже и увеличивается вес выключателя.


Рис. 12 — Оргстекло для торцевой подсветки и опаловое оргстекло

Панель лайтбокса от компании Ledison
Российская компания Ledison предоставила на тест панель от лайтбокса состоящую из 3-х компонентов: светоотражающая подложка, специальное светорассеивающее 3 мм оргстекло (на вид прозрачное, но внутри видна зернистая структура), прозрачная защитная пленка. Верхнюю пленку я заменил на матовую Oracal 8500 и получилось хорошее рассеивание. Но при работе с выключателем пленка выглядит не солидно, может поцарапаться и её трудно приклеить без пузырьков.


Рис. 13 — Бутерброд для лайтбокса от Ledison

После всех тестов в выключателе применил светоотражающую подложку от Ledison, а их оргстекло сделал матовым. На данный момент это лучший вариант для меня, и равномерно рассеивает, и яркость не снижена, и толщина подходящая.


Рис. 14 — Корпус, плата и рассеиватель

Использование


Первые тестовые версии выключателей я изготовил 2 года назад и имею уже опыт их использования, один установлен около санузла на высоте 120 см и удобен для детей, второй располагается около кровати и управляет ночником, люстрой и LED подсветкой. Т.к. все кнопки разделены перекрестием их легко нащупать в темноте и нажать нужную. Световой фидбэк точно говорит какая кнопка нажата. По сравнению с кнопочными выключателями минусов не обнаружил.


Рис. 15 — Сенсорный выключатель на аккумуляторе в деле

Заметил приятный побочный эффект, выключатель около кровати можно использовать для подсветки тумбы, если нажать на нижние кнопки.


P.S.


На данный момент в Z-Wave чипе используется прошивка от 4-x кнопочного брелока Z-Wave.Me Key Fob, удобно, что она уже есть готовая и хорошо работающая, неудобно, что не все функции есть, которые хочется. Единственным нерешенным вопросом осталась засветка уголков в центре, нужно закрывать фольгированной пленкой, но пока думаю куда лучше лепить фольгу, на корпус внутри или на оргстекло.

Далее в планах перейти на свободно программируемый Z-Uno Module для реализации всех программных хотелок.

Принцип работы тачскринов — Мастерок.жж.рф — LiveJournal

Сначала сенсорные экраны (тачскрины) встречались крайне редко. Их можно было найти, в основном, лишь в некоторых карманных компьютерах (КПК, PDA). Как известно, эти устройства так и не получили широкого распространения, поскольку им не хватало самого важного: функциональности телефона. История смартфонов тесно связана с тачскринами. А поэтому современного человека с «умным телефоном» в кармане сенсорным экраном уже не удивишь. Тачскрин нашел широкое применение и в модных дорогих девайсах и даже в сравнительно дешевых телефонах. Но не будем в очередной раз обсуждать достоинства и недостатки тех или иных моделей телефонов. В этом вопросе каждый пользователь способен определиться сам.

Поговорим о принципах работы трех типов сенсорных экранов, которые вы можете встретить в современном устройстве.

Итак, сенсорные экраны перестали быть слишком дорогими. Кроме того, тачскрины стали намного «отзывчивее» и касания пользователя теперь распознают превосходно. Это проложило им широкую дорогу к широким массам пользователей. В настоящее время известны три основных конструкции тачскринов:

1.Резистивные или попросту «упругие» (Resistive)

2.Емкостные (Capacitive)

3.Волновые (Surface acoustic wave)

О резистивном тачскрине. Недавнее прошлое



Резистивная система представляет собою обычное стекло, покрытое слоем проводника электричества и упругой металлической «пленкой», тоже обладающей токопроводящими свойствами. Между этими двумя слоями при помощи специальных распорок оставляют пустое пространство. А поверхность экрана покрыта материалом, защищающим его от царапин.

Во время работы пользователя с тачскрином, электрический заряд проходит через оба слоя. Каким образом все происходит? Пользователь касается экрана в определенной точке и упругий верхний слой приходит в соприкосновение с проводниковым слоем. Причем именно в этой точке. Затем компьютер определяет координаты точки, которой коснулся пользователь.

Когда координаты уже известны устройству, специальный драйвер переводит прикосновение в известные операционной системе команды. Здесь уместна аналогия с драйвером обычной компьютерной мышки. Он занимается тем же самым: объясняет операционной системе, что именно хотел ей сказать пользователь нажатием кнопки или перемещением манипулятора. С экранами этого типа чаще всего используют специальные стилусы.

Резистивные экраны можно обнаружить в сравнительно немолодых устройствах. Именно таким сенсорным дисплеем был оборудован IBM Simon, древнейший из сознанных нашей цивилизацией смартфонов.

Устройство емкостного экрана. Цифровое настоящее



В тачскринах этой конструкции стеклянная основа покрыта слоем, играющим роль вместилища-накопителя электрического заряда. Своим касанием пользователь высвобождает часть электрического заряда в определенной точке. Это уменьшение определяется микросхемами, расположенными в каждом из углов экрана. Компьютер вычисляет разницу электрических потенциалов между различными частями экрана, и информация о касании во всех подробностях немедленно передается в программу-драйвер тачскрина.

Важным преимуществом емкостных тачскринов является способность этого типа экранов сохранять почти 90 % изначальной яркости дисплея. В экранах резистивного типа сохраняется лишь порядка 75 % изначального света. По этой причине изображения на емкостном экране выглядят значительно более четким, чем на тачскринах резистивной конструкции.

Волновые сенсорные дисплеи. Яркое будущее

На концах осей X и Y координатной сетки стеклянного экрана располагается по преобразователю. Один из них передающий, а второй принимающий. На стеклянной основе располагаются и рефлекторы, «отражающие» электрический сигнал, передаваемый от одного преобразователя к другому.

Преобразователь-приемник точно «знает» состоялось ли нажатие и в какой именно точке оно произошло, поскольку своим касанием пользователь вносит прерывание в акустическую волну. Стекло волнового дисплея лишено металлического покрытия, что позволяет сохранить все 100 % изначального света. Благодаря своей столь приятной особенности, волновой экран является наилучшим выбором для пользователей, работающих в мелкими деталями графики. Ведь и резистивные и емкостные тачскрины не идеальны в плане четкости изображения. Покрытие задерживает свет и искажает картинку.

Некоторые особенности различных тачскринов

Самыми дешевыми и наименее четко передающими картинку сенсорными экранами являются резистивные. Кроме того, они же самые уязвимые. Любой острый предмет может повредить нежную резистивную «пленочку». Волновые тачскрины являются самыми дорогими среди себе подобных. Резистивная конструкция скорее относится к прошлому, волновая — к будущему, а емкостная — к настоящему. Хотя грядущее никому не известно и можно лишь предполагать, что та или иная технология имеет некоторые перспективы.

Для резистивной системы не имеет особого значения, коснулся пользователь экрана резиновым наконечником стилуса или пальцем. Достаточно и того, что два слоя пришли в соприкосновение. Емкостной экран распознает лишь касания токопроводящими предметами. Чаще всего пользователи работают с ними при помощи своих пальцев. В этом отношении экраны волновой конструкции ближе к резистивным. Отдать ей команду можно практически любым предметом, избегая при этом тяжелых и слишком маленьких объектов. То есть стержень шариковой ручки не подойдет.

А теперь, если читателям еще не наскучили технические подробности и инженерные тонкости, при наличии желания и свободного времени, они могут отправиться в гости к создателям Xbox One — игровой приставки, которой создатели Windows сумели удивить мир.

По материалам computer.howstuffworks.com


А я вам напомню про такую, пока «фантастическую» вещь, как Аксессуар для бесконтактного управления гаджетами и «Исчезающая» клавиатура для тачскринов. И еще подробности Как работает беспроводная зарядка смартфона? и наверняка Всё это время вы заряжали свой смартфон неправильно

Все о микросхеме сенсора на iPhone, почему ломается и как сделать ремонт своими руками на Айфонах, GsmMoscow

Toggle navigation

+7(495)927-00-15