это что такое? Микросхема и принцип работы
Компаратор – это устройство, предназначенное для сравнения каких-либо величин (от лат. comparare – «сравнивать»). Является операционным усилителем с большим коэффициентом умножения. Имеет входы: прямой и инверсный. При необходимости опорный сигнал может быть подключен к любому из них.
Как работает компаратор?
На один из входов подается постоянный сигнал, который называется опорным. Он используется как образец для сравнения. Ко второму поступает испытуемый сигнал. На выходе стоит транзистор, меняющий свое состояние в зависимости от условий:
- Напряжение прямого входа выше инверсного – транзистор открыт.
- Напряжение инверсного входа выше прямого – закрыт.
Соответственно, выходное напряжение меняется скачком от минимума до максимума, или наоборот.
Напряжение выходных каскадов соответствует входным уровням большинства цифровых микросхем. Это необходимо для случаев, когда компаратор – это формирователь импульса, управляющего работой логических элементов.
Применение компаратора
Используются в схемах измерения электрических сигналов и в аналогово-цифровых преобразователях. В логических цепях работают элементы «или» и «не», также являющиеся компараторами. Соответственно, использование этого компонента не ограничивается конкретными примерами, поскольку он применяется повсеместно.
Стоит отметить, что устройство сравнения можно сделать из любого операционного усилителя, но не наоборот. Коэффициент усиления компаратора достаточно высок. Соответственно, его входы очень чувствительны к разнице напряжений между ними. Расхождение в несколько милливольт значительно изменяет напряжение выхода.
Таким образом, компаратор позволяет наблюдать минимальные колебания уровней входных напряжений. Это делает его незаменимым элементом схем сравнения и измерительных приборов высокой точности:
- индикаторы уровня входящего сигнала;
- металлоискатели;
- микро- и милливольтметры;
- детекторы электромагнитных излучений;
- лабораторные датчики;
- компараторы массы;
- газоанализаторы.
Принцип действия аналогового компаратора
Аналоговый компаратор сравнивает непрерывные сигналы – входной измеряемый и входной опорный. Как работает устройство, показано на графике ниже.
При медленном изменении входного сигнала, происходит многократное переключение компаратора за малый отрезок времени. Такое явление называют «электронным дребезгом». Его наличие значительно снижает эффективность сравнения. Поскольку часто повторяющиеся смены состояния выхода, вводят оконечный транзистор в состояние насыщения.
Для уменьшения эффекта «электронного дребезга», в схему вводят ПОС – положительную обратную связь. Она обеспечивает гистерезис – небольшую разницу между уровнем напряжения включения и отключения. Некоторые компараторы имеют встроенную ПОС, что уменьшает количество дополнительных элементов построения конструкции. Например, при незначительной потери чувствительности, добиваются стабильной работы компаратора.
Особенности цифрового компаратора
Цифровой компаратор – это однобитный аналогово-цифровой преобразователь. Напряжение выхода представляет либо логический «0», либо «1». На вход может быть подан как аналоговый, так и цифровой сигнал. Устройство используется в качестве формирователя импульсов для сопряжения схем датчиков и устройств отображения. Может применяться для анализа спектра звукового или светового сигнала. Компаратор – это также логические элементы «или» и «не», используемые в вычислительной технике.
Теоретически при незначительно малых колебаниях уровня входного сигнала, может возникать состояние неопределенности выхода. На практике равенство измеряемого и опорного напряжений не наступает. Поскольку компаратор имеет ограниченный коэффициент усиления или положительную обратную связь.
Характерным примером является триггер Шмитта (ТШ). У него не совпадают уровни включения и выключения, что определяется ПОС. Это позволяет пренебречь дискретной помехой при работе компаратора.
Компаратор-микросхема
Промышленность выпускает компараторы в виде интегральных схем. Их использование позволяет создавать компактные приборы, с минимумом навесных элементов. Также преимущество малогабаритных деталей в незначительной длине соединительных проводников. В условиях повышенного электромагнитного излучения они являются приемными антеннами для всевозможных электрических помех.
Компаратор на операционном усилителе
У компараторов есть немалое сходство с операционными усилителями:
- коэффициент усиления;
- входное сопротивление;
- значение входных токов;
- состояние насыщения.
Чувствительность, по-другому разрешающая способность, – это специфический параметр. Она определяет точность сравнения. Характеризуется минимальной разностью сигналов, при которой происходит срабатывание компаратора. Ее значение у интегральных микросхем имеет сотен микровольт. Это несколько хуже, чем у компараторов на операционных усилителях.
Время переключения характеризует быстродействие компараторов. Определяется минимальным временем изменения выходного сигнала: от момента сравнения до момента срабатывания. Зависит от разности сигналов на входах. Значения времени переключения составляют десятки и сотни наносекунд.
Как сделать компаратор своими руками?
Кто умеет читать принципиальные схемы и паять, без труда соберет простейшие компараторы для использования в быту. Область применения весьма обширна. На них можно построить массу конструкций с минимальными затратами. Простейший компаратор – это операционный усилитель без положительной обратной связи.
В качестве основы для компаратора используется ОУ серии LM339. Для контроля и наглядности работы схемы введены красный и зеленый индикаторы. При подключении питания на ОУ должен засветиться один из светодиодов, причем какой из них — неважно. Это определяется множеством факторов: сетевые наводки на схему, особенности партии и параметров ОУ. Даже если взять несколько одинаковых микросхем, получатся различные результаты.
Если входной сигнал близок к «0» – будет светиться зеленый, а если близкое к напряжению питания, то красный светодиод. Затем можно попробовать сменить логическое состояние компаратора, подав на один из входов напряжение равное, например, половине напряжения питания ОУ. Сигнал на выходе не зависит от абсолютного значения напряжений на прямом и инверсном входе. А только от разницы напряжений.
Данные опыты демонстрируют работу компаратора без ПОС. Такой компаратор может быть использован там, где не требуется особой точности измерений. Такими приборами являются бытовые термостаты, зарядные устройства для автомобильных аккумуляторов, устройства десульфатации (восстановления) автоаккумуляторов, фотореле.
Пример практического применения компаратора
На принципиальной схеме представлен датчик освещенности.
Опорное напряжение задается резисторами RV1 и R2. При этом, RV1 служит регулятором чувствительности конструкции. Индикация реализована на светодиоде D1. Датчиком является элемент LDR1, который меняет омическое сопротивление в зависимости от освещенности. Собственно компаратор представлен операционным усилителем LM324. Это простое устройство демонстрирует то, как работает компаратор на практике.
Компараторы массы: понятие
Компаратор массы это устройство, предназначенное для уточнения разности значений массы гирь при контроле стандартов массы и веса, а также, для прецизионного взвешивания. Наиболее точные компараторы массы способны взвесить любой образец и сравнить его с иным, подобным ему. Происходит это на уровне атомов. Необходимость в таких устройствах возникает по причине несовершенства эталонных образцов мер веса и объема жидкости.
Примеры и использование устройств уточнения веса
Российским стандартом массы является платиновый цилиндр. Он был скопирован с французского образца 125 лет назад. За прошедшие годы, эталон потерял в виде окислов около 40 мкг от первоначального веса. Соответственно, его использование для нужд производств, с высокой точностью измерения массы сейчас затруднительно.
Был разработан новый стандарт массы. Ученые назначили таковым кремниевый шар с четным количеством атомов. Сейчас это наиболее точный вариант эталона килограмма. Его характеристики приняты международным сообществом для использования.
Созданный образец нуждается в многократном копировании. Так как современные направления в науке, особенно фармакология, биоинженерия, компьютерная электроника, нанотехнологические разработки требуют прецизионной точности измерений. Для таких областей науки и техники критичны сотые доли микрограмма. Эту задачу должен решить атомный компаратор массы – устройство способное определить разницу в несколько частиц.
Атомный компаратор использует для измерений опорный сигнал, полученный от высокоточного кварцевого генератора. Измеряемое напряжение берется с квантового дискриминатора, определяющего стабильность линии мельчайших частиц. Ее изменения вызываются расхождением в количестве атомов образца. Поэтому сейчас – это самый точный прибор измерения.
Существуют и менее точные компараторы массы. Их стоимость гораздо ниже атомных, но для них всех находится работа в промышленности, торговле, стандартизации.
как работает, на операционном усилителе, микросхема
Слово «компаратор» произошло от латинского «comparare» и в буквальном русском переводе означает «сравнивать». Он производится в разнообразных модификациях, которые востребованы современной электронной промышленностью. Самые простые конструкции для сравнения контролируемых данных обладают 2-мя входами аналогового типа и одним цифровым. Базу его функционирования обеспечивает дифференциальный каскад, имеющий мощные усилительные характеристики. Компаратор напряжения довольно востребованное устройство и используется в областях, связанных с измерениями либо которые используют превращение сигнала из аналогового в цифровой.
Что такое компаратор напряжения
Принцип функционирования компаратора напряжения (КН) можно сравнить с весами рычажного типа. Когда на одну чашу весов укладывается эталонная гиря, а на другую — измеряемый продукт. В то время, когда вес продукта будет одинаковым с массой контрольного веса, чаша с эталонным весом поднимается выше, после чего процесс взвешивания заканчивается.
Применение компараторов
В КН вместо гирь функционирует основное напряжение, а продукт заменяет входящий сигнал. Когда образуется логическая «1» на выходе компаратора, начинается процесс сопоставления значений напряжения. Для проверки такого прибора не потребуется выполнения трудозатратной схемы. Достаточно подключить выходной вольтметр, а на вводы — регулируемое напряжение. При смене входных параметров на вольтметре будет видима функциональность КН, параметры настройки задаются схемой.
Принцип работы компаратора
Самым простым прибором считается компаратор, который сопоставляет напряжение, поступающее на один из входов, с базовым показателем, присутствующим на ином входе. Примитивный компаратор напряжения на операционном усилителе (ОУ) — без обратной связи.
Принцип работы
КН выполнен в виде электронной схемы с 2-мя входящими напряжениями и может устанавливать большее значение. Просто выполнить модели КН из ОУ, так как полярность выходящей электроцепи операционного усилителя исходит от полярности разности показателей напряжения на 2-х входах.
Представим, что существует фотоэлемент, который производит 0.5 В под воздействием солнечного света, и необходимо применять данный фотоэлемент в роли измерителя для установления периода дневного освещения. В таких случаях лучший вариант — применять КН, чтобы сопоставить напряжение от фотоэлемента с контролируемым показателем 0.5 В.
В цепи КН, первоначальное опорное напряжение поступает на инвертирующем вводе (U -), после напряжение, которое будут сравнивать с опорным, поступает на неинвертирующий ввод. Выходное значение исключительно зависит от входного размера по отношению к опорному напряжению.
Схема компаратора
Схема компаратора:
- Менее эталонного — отрицательный;
- равноправный опорному — «0»;
- более эталонного значения — положительный.
ОУ компаратора сравнивает один уровень аналогового напряжения с другим уровнем аналогового напряжения или каким-либо опорным напряжением, и выдает выходной сигнал на основе этого сравнения напряжения. Другими словами, компаратор напряжения ОУ сопоставляет данные 2-х входов и определяет наибольший, простота и эффективность этой схемы проверена на практике и реализована в многих бытовых приборах.
Положительная обратная связь
Компараторы напряжения либо используют положительную обратную связь, либо вообще не используют ее в режиме разомкнутого контура. Затем выходной сигнал КН подается полностью на его положительную шину питания + Ucc или на отрицательную шину питания —Ucc, при приложении переменного входного сигнала, который проходит некоторое предварительно установленное пороговое значение.
КН (-) обратной связью
Параметры прибора
На самом деле, прибор можно расценивать как простейший вольтметр. КН, подобно цифровому прибору, обладает рядом эксплуатационных качеств, подразделяемые на 2 разновидности: статические и динамические.
Параметры прибора
Первые обладают следующими характеристиками:
- Максимальная чувствительность по отношению к пороговым размерам сигнала, которые КН устанавливает на входе и заменяет потенциал выхода устройства на логический «0» либо «1».
- Размер смещения устанавливается передаточным фактором прибора в отношении установленного образцового положения.
- Входной ток — предельное значение, способное протекать с использованием любого вывода, при этом, не нанеся повреждение прибору.
- Выходной ток — размер тока, во время перехода измерителя в положение «1».
- Разность токов — результат, определяемый при вычитании токовых данных.
- Гистерезис — разница в уровнях входящего сигнала, которая приводит к изменению стабильного выходного состояния.
- Коэффициент понижения сигнала рассчитывается по отношению к дифференциальному сигналу, которые приводят к смене варианта функционирования измерителя.
- Наименьшая и наибольшая номинальная температура — интервал, в котором технологические характеристики прибора не будут изменяться.
Гистерезис компаратора
Обратите внимание! Все основные параметры КН изображаются в форме параметров переходного типа. Это диаграмма, где по оси Х обозначается время, а Y — напряжение в вольтах.
Как обозначается компаратор на схемах
Обозначение на схемах
Когда (+) на входе микрочипа, степень сигнала станет больше, чем конкретно на инверсном ( — ), то на выводе будет образовываться устойчивое значение. Исходя из схемотехнической базы компаратора, это число имеет возможность принимать вариант логического «0» либо «1». В цифровых электронных устройствах за «12» принимается сигнал, степень напряжения которого имеет 5В, а за «0» установлено его отсутствие. Другими словами, положение выхода измерителя устанавливается как высокое либо низкое. Хотя обычно на практике за логический «0» принимают разность потенциалов до 2.7 В.
Где применяется компаратор напряжения
Часто КН применяют в градиентном реле — схема, которая реагирует на скорость изменения сигнала, например, фотореле. Такое устройство может использоваться в тех ситуациях, когда освещение меняется довольно стремительно. Например, в охранных установках либо датчиках контроля выпущенных изделий на конвейерах, где прибор станет реагировать на прерывание светового потока.
Еще одна часто используемая схема — датчик измерения температуры и изменения «аналогового» сигнала в «электронный». Оба измерителя преобразовывают амплитуду входящего сигнала в ширину выходящего импульса. Такое превращение довольно часто применяется в разнообразных цифровых схемах. Преимущественно, в измерительных устройствах, блоках питания импульсного типа, электронных усилителях.
Конструкция компаратора
КН нашли обширную область применения в радиоэлектронике разнообразной направленности. В магазинах радиотоваров можно увидеть огромное количество разнообразных микросхем. Но особенно часто применяемыми микросхемами у пользователей считаются:
- LM No 339;
- LM No 311;
- MAX No 934;
- К554СА3.
Они легкодоступны в торговой сети и имеют довольно бюджетную цену. Такие КН выделяются обширным спектром входных параметров. К выходу КН способна присоединяться разнообразная токовая нагрузка, как правило, не превосходящая 50.0 мА. Это могут быть микрореле, варистор, световой диод, оптрон либо абсолютно разные исполнительные модули, однако с предельными по току компонентами.
Фотореле контроля
Подобное реле выпускается методом навесного монтажа. Его применяют в охранных контролирующих системах либо для контролирования степени света. Входящее напряжение попадает на делитель R1 и фотодиод VD3. Их объединенная точка сочетания использует ограничивающие диоды VD1/ VD2, подключенные к входам DA1. В итоге входящая разность потенциалов КН будет отсутствовать, а следовательно, и восприимчивость измерителя станет максимальной.
Фотореле
Чтобы выходящий сигнал смог инвертироваться, потребуется обеспечить входную разницу в 1 мВ. По той причине, что к входу подсоединены С1 и сопротивление R1, размер U на нем станет увеличиваться с незначительной задержкой, равноправной периоду заряда С1.
Зарядный блок
Такой блок питания принимается функционировать непосредственно после сборки. Его базовые опции сводятся к установлению рабочего зарядного тока и порогов, по которым срабатывает КН. При подключении прибора зажигается световой диод, позиционирующий подачу напряжения. На протяжении процесса зарядки обязан непрерывно гореть алый световой диод, который погаснет после того, как аккумуляторная батарея будет полностью заряжена
Зарядный блок
Подводимое напряжение от питающего блока настраивается R2, а зарядный ток устанавливается с применением R4. Наладка выполняется с применением сопротивления на 160 Ом, подключающегося в параллель к контактам, которые держат батарейку. Транзистор VT1 размещается на радиаторе, взамен его можно применять КТ814Б. Подобную схему надо будет комплектовать на плате с размером не более 50×50 мм.
Кварцевый генератор
Этот генератор ортогональных импульсов выполняется с использованием российского компаратора K544C3, функционирующего на тактовой гармонике 32.768 Гц. Схема станет рабочей в спектре входящего напряжения 7-11В с частотой установленной кварцем ZQ1. Тем не менее, для эксплуатации такого девайса сверх 50.0 кГц потребуется понизить значение R5-R6.
Генератор
При замыкании другого вывода с 0-проводом КН становится подсоединённым по варианту с незакрытым коллектором, а R7 становится нагрузкой. Подстраивание частотности производится совместно, с применением C1. С применением R4 выполняется автозапуск генератора. Меняя значение R2, изменяется импульсная характеристика.
Дополнительная информация! Выбирая конденсаторы С1 или С2, генератор сможет применяться в виде бесконтактного жидкостного датчика. В роли детектора для этой цели потребуется применять микроконтроллер с ПО. Однако возможно использовать и ещё дополнительно компаратор, который станет фиксировать деформации напряжения.
Отсюда следует, что компаратор способен предназначать действия по уровням значений на собственных вводах. Когда они отличаются, то, исходя от дельты U, выход прибора меняет качественное положение. Именно такие их качества используют создатели, разрабатывая самые разные электроприборы с операционным усилителем.
КОМПАРАТОРЫ И ПОЛИКОМПАРАТОРНЫЕ МИКРОСХЕМЫ в устройствах на микросхемах
Компараторами называют электронные устройства, предназначенные для сравнения двух или более электрических величин. Компараторы часто используют для преобразования аналогового сигнала в цифровой, а также для восстановления формы искаженных цифровых сигналов. Компаратор может использоваться в качестве порогового устройства, срабатывающего в случае, если входной контролируемый сигнал превысит по величине сигнал заданный, опорный.
По виду сравниваемых входных сигналов компараторы подразделяют на две группы: аналоговые; цифровые.
Учитывая специфику данной монографии, ограничимся описанием аналоговых компараторов.
Аналоговый компаратор можно представить как простейший однобитный аналого-цифровой преобразователь. Выходной сигнал такого компаратора представлен, как правило, двумя возможными значениями, соответствующими уровням входного сигнала больше или меньше некоторой заданной пользователем величины:
♦ уровнем логической единицы;
♦ уровнем логического нуля.
В связи с этим важнейшими характеристиками компаратора являются величина и стабильность уровня (порога) перехода устройства из одного стабильного состояния в другое.
Зависимость выходного напряжения компаратора UBbIX от уровня входного UBX можно представить как
где Uon — опорное напряжение (напряжение сравнения).
Или, иными словами,
Компараторы чаще всего используют в пороговых, релейных схемах, устройствах контроля критически значимых величин.
Помимо основного назначения компараторы способны работать в качестве генераторов импульсов, аналого-цифровых преобразователях, схемах согласования логических уровней, схемах очистки зашумленных цифровых сигналов и т. д. Менее распространены двух- или более пороговые компараторы, которые наиболее часто применяют в простых индикаторах уровня входного сигнала, например, в светодиодных шкалах.
Компараторы по своему назначению или особенностям строения можно подразделить на такие группы:
♦ высоковольтные;
♦ низковольтные;
♦ маломощные компараторы, в том числе с источником опорного напряжения, в качестве которого может быть использован ОУ;
♦ повышенной выходной мощности, в том числе с защитой от перегрузки;
♦ высокоскоростные или повышенного быстродействия;
♦ с открытом выходом, выходом на КМОП, транзисторнотранзисторной или эмиттерно-связанной логике;
♦ с выходом «rail to rail»;
♦ двух- и более скоростные с автоматическим переходом на экономичный режим работы;
♦ прецизионные;
♦ многопороговые;
♦ многоканальные;
♦ с гистерезисом;
♦ стробируемые;
♦ с цифро-аналоговым преобразователем;
♦ программируемые;
♦ прочие.
Примечание.
Как правило, заметный выигрыш по одному из параметров обуславливает не менее значимый проигрыш по другому параметру. Так; например, пониженное энергопотребление компаратора достигается за счет снижения его быстродействия.
Компараторы обычно не содержат элементов частотной коррекции, имеют передаточную характеристику релейного типа и поэтому не могут использоваться в качестве линейных усилителей аналоговых сигналов, например, в качестве ОУ В то же время компараторы широко применяют для сопряжения аналоговых и цифровых устройств, на их основе могут быть созданы эффективные усилители D-класса.
Как было показано ранее, в качестве компараторов могут быть использованы обычные операционные усилители, охваченные петлей положительной обратной связи. Порок такого решения — низкая нагрузочная способность подобных устройств, поскольку для управления энергоемкой нагрузкой требуется применение усилителей мощности.
Специализированные компараторы, ориентированные, в отличие от операционных усилителей, на решение узкого круга задач, отличаются:
♦ повышенной нагрузочной способностью;
♦ быстродействием;
♦ невозможностью работы в линейном режиме.
Схемы компараторов — детекторов нуля, работающих на положительных или отрицательных перепадах входного напряжения, показаны на рис. 18.1 и 18.2. Переходная характеристика UBblx = UBbDC (UBX ) идеального компаратора имеет строго прямоугольную форму. Реальная форма этой характеристики (рис. 18.1 и рис. 18.2), определяется конечной скоростью переходных процессов, неидеальностью работы компаратора и его элементов.
Примечание.
Отмечу, что в крайне узком диапазоне входных напряжений компаратор способен работать как усилитель с крайне высоким коэффициентом усиления (порядка 105—106 и более). Очевидно, что стабильность работы такого усилителя невелика, т. к. положение его рабочей точки в существенной мере зависит от температуры окружающей среды, стабильности источников питающих напряжений и других факторов.
При желании точку переключения состояния компаратора (порог срабатывания) можно сместить в любую сторону относительно нуля.
Пример компаратора со ступенчато переключаемым — плавно регулируемым порогом срабатывания приведен на рис. 18.3.
Порог переключения компараторов не является строго фиксированной величиной. Обычно напряжение переключения компаратора нестабильно и в процессе работы хаотически смещается в ту или иную сторону от заданного уровня. Амплитуда таких флуктуаций определяется: свойствами конкретного типа компаратора; его разновидности; качеством изготовления; температурой окружающей среды; внешними воздействиями.
Примечание.
В этой связи при построении прецизионных схем сравнения напряжений необходимо предусматривать минимизацию или нейтрализацию собственных шумов компаратора.
Неприятной особенностью работы компараторов является их работа при уровнях входных сигналов вблизи порога разрешения переключения. В этом случае, если входной сигнал сильно зашумлен, на выходе компаратора появляется последовательность дельтавидных или иглоподобных апериодических импульсов, вносящих обычно сбои в работу радиоэлектронной аппаратуры.
Для минимизации паразитного переключения компаратора в условиях его работы с зашумленными сигналами иногда применяют схемотехнический прием, заключающийся в преднамеренном искажении формы переходной характеристики. На переходной характеристике такого компаратора наблюдается отчетливо выраженный гистерезис.
Рис. 18.4. Схема компаратора с гистерезисом (триггера Шмитта)
На рис. 18.4 и 18.5 показаны схемы компараторов с искусственно организованными петлями гистерезиса. Ширину петли гистерезиса AUraCT можно определить из выраже-
Рис. 18.5. Схема компаратора с регулируемой шириной петли гистерезиса
напряжение ограничения компаратора. Напряжения переключения компаратора +U и -U относительно заданного (нулевого, рис. 18.4 и 18.5, уровня) можно определить по
формуле
Компаратор уровней сигнала по амплитуде позволяет сопоставить величину (уровень) двух сигналов и переключить свой выходной уровень с логической единицы на нуль (или наоборот) в случае, если входной сигнал превысит заданный порог срабатывания компаратора.
Рис. 78.7. Схема нерегулируемого двухпорогового компаратора напряжения
Рис. 78.6. Схема двухпорогового компаратора на операционном усилителе
Отдельной проблемой сопоставления уровней сигналов является задача двух- или многопорогового разделения сигналов. Варианты решения такой задачи показаны на рис. 18.6, 18.7 [18.1]. Зависимость выхо дного сигнала от уровня входного показана на рис. 18.7.
Порог переключения компаратора Όι (рис. 18.7) устанавливают подачей напряжения Uynp. В случае, если на вход компаратора подается высокое отрицательное напряжение, то оно действует только на инвертирующий вход микросхемы DA1.
При снижении уровня входного напряжения до значения
где UVD1=0,6—0,7 В (падение напряжения на кремниевом диоде VD1), на выходе ОУ установится положительное напряжение, рис. 18.7.
При дальнейшем возрастании уровня входного напряжения вплоть до значения U2 выходное напряжение компаратора имеет уровень логической единицы. Однако, при UBx >U2 диод VD1 более не шунтирует вход ОУ, компаратор вновь переключается, на его выходе устанавливается уровень логического нуля.
Для того, чтобы плавно управлять порогом переключения компаратора, может быть использована схема, рис. 18.8 [18.1]. Потенциометром R3 устанавливают порог переключения компаратора. Ширину зоны чувствительности компаратора регулируют потенциометром R2:
Сдвоенный компаратор К1464СА1
Рис. 78.8. Схема регулируемого компаратора напряжения
[18.2] (аналог LM193, LM293, LM393, LM2903 фирмы Philips, SGS-Thomson Microelectronics и NS [18.3]) отличается от иных:
♦ малой потребляемой мощностью;
♦ возможностью сравнивать сигналы, близкие к нулевому уровню.
Рис. 78.9. Состав и цоколевка микросхемы сдвоенного компаратора К1464СА1
Компаратор (рис. 18.9) работает при напряжении питания 2—36 В (однополярное) и 2±(1 —18) В (двуполярное питание) [18.2, 18.3]. Потребляемый ток менее 1 мА при напряжении питания 5 В и 2,5 мА при 36 В. Выходной ток — свыше 6 мА. Входное напряжение смещения не свыше 7 мВ при токе до 0,25 мкА. Выходные сигналы компаратора совместимы при работе с ТТЛ, ЭС77, КМОП- логическими элементами.
Примечание.
Отмечу, что перечисленные микросхемы отличаются лишь температурной областью устойчивой работы (температурный диапазон сужается от LM193K LM393).
На следующих рисунках показаны примеры практического использования микросхемы К1464СА1 (использован лишь один из двух компараторов) [18.2].
пор.н. ^ ^пор.в.’
Типовые схемы инвертирующего и неинвертирующего компараторов на микросхеме К1464СА1 приведены на рис. 18.10 и рис. 18.11. Значения нижнего и верхнего входного порогового напряжения U, рис. 18.10, определяется как [18.2]:
Рис. 18.14. Схема совместного использования компараторов LM 193, LM293, LM393, К1464СА1 сТТЛ и КМОП- логическими элементами
Рис. 18.10. Схема инвертирующего компаратора на микросхеме К1464СА1
Рис. 18.11. Схема неинвертирующего компаратора на микросхеме К1464СА1
Unop.H Unop в Unop.H Unop.в
Рис. 18.12. Передаточные характеристики компараторов
Рис. 18.13. Компаратор на микросхеме LM193, LM293, LM393, К1464СА1
При R1=R2=R3 UnopH * UniiT /3, UnopB * 2Unm /3, что примерно совпадает с соответствующими уровнями переключения из одного устойчивого состояния в другое для КМОП-микросхем. Передаточные характеристики инвертирующего и неинвертирующего компараторов показаны на рис. 18.12.
Типовая схема использования микросхем LM193, LM293, LM393, К1464СА1 в качестве компаратора показана на рис. 18.13 [18.3].
На рис. 18.14 показаны типовые схемы использования компараторов с микросхемами ТТЛ и КМОП-серий.
На рис. 18.15 показана схема выделения прохождения сигнала через ноль: при каждом прохождении входного напряжения через ноль детектор вырабатывает короткий импульс
[18.2]. В устройстве также использован инвертирующий компаратор напряжения с гистерезисом. Диод VD1 защищает входные цепи компаратора при появлении на входе минусовых полупериодов сигнала. Напряжение питания устройства 5 В.
На рис. 18.16 и рис. 18.17 показаны примеры использования компараторов в качестве НЧ усилителей с малой (рис. 18.16) и повышенной (рис. 18.17) нагрузочной способностью [18.3]. Коэффициент передачи усилителей определяется соотношением резистивных элементов R3/R2 и равен 100.
Рис. 18.18. Схема преобразователя- индикатора магнитного поля на компараторе LM393
Рис. 18.17. Схема НЧ усилителя на компараторе LM393 с повышенной нагрузочной способностью
Рис. 18.16. Схема НЧ усилителя на компараторе LM393
Рис. 78.75. Схема детектора «нуля».
На основе компараторов серии LM193, LM293, LM393, К1464СА1 может быть изготовлен преобразователь– индикатор магнитного поля, использующий в качестве датчика катушку индуктивности L1, рис. 18.18 [18.3].
Преобразователи амплитуды входного сигнала в ширину выходного используют в измерительной технике, импульсных блоках питания, цифровых усилителях.
На рис. 18.19,18.20 приведены схемы преобразователей амплитуды в ширину импульса [18.4]. Преобразователи выполнены на основе компараторов DA1 — К554САЗ. Напряжение на входах компаратора примерно равно половине напряжения питания (задается резистивным делителем R1/R2) и различается на величину напряжения, падающего на открытом переходе диода VD1. Входное сопротивление преобразователя равно Rl(R2)/2 или 25 кОм.
При подаче на вход синусоидального сигнала или сигнала пилообразной, треугольной формы и увеличении амплитуды, начиная с некоторого порогового значения, на выходе устройства формируются прямоугольные импульсы, ширина которых зависит от амплитуды входного сигнала. Схемы не требуют настройки. Полоса рабочих частот (область низких частот) определяется емкостью конденсаторов С1 и С2.
Устройства (рис. 18.19,
Рис. 18.79. Схема преобразователя амплитуды входного сигнала в ширину выходного на компараторе К554САЗ
18.20) отличаются способом подключения входов компаратора и, соответственно,
«полярностью» выходных сигналов. Частотная зависимость порогового напряжения начала работы преобразователей при использовании Si и Ge-диодов VD1 показана на рис. 18.21.
Для Ge-диодов (Д9Г) пороговое напряжение в полосе частот 5—200 кГц составляет 80—90 мВ, для Si (КД503А) — 250—270 мВ. Максимальная амплитуда входного сигнала — 2—2,5 В. При уменьшении номиналов резисторов R1 и R2 чувствительность устройства возрастает за счет снижения прямого напряжения на диоде VD1, одновременно снижается и входное сопротивление.
Преобразователь напряжения в частоту, схема которого представлена на рис. 18.22, позволяет при изменении входного напряжения от 0 до 5 В получить на выходе линейное увеличение частоты от О до 21 кГц (коэффициент преобразования 4,2 кГц/В с нелинейностью не свыше 3%) [18.5].
Таймер на микросхеме DA1 КР1006ВИ1 включен по схеме мультивибратора, времязадающий резистор которого заменен генератором тока на операционном усилителе DA1 741 (К140УД7).
Рис. 18.23. Схема прецизионного преобразователя напряжение-частота
Для получения высокой линейности преобразования отклонение сопротивление резисторов от номинала не должно превышать 0,5 %.
Помимо основного назначения — усиления сигналов, микросхема К1464УД1 может быть использована и в устройствах иного назначения, например, для преобразования напряжения входного сигнала в частоту выходного.
Преобразователь напряжение-частота (рис. 18.23) содержит управляемый генератор из интегратора на ОУ DA1.1 и компаратора с гистерезисом на ОУ DA1.2 [18.6]. На выходе интегратора формируется линейно изменяющееся во времени напряжение, скорость нарастания которого зависит от уровня входного напряжения UBX, а направление изменения — от состояния выхода компаратора DA1.2.
На выходе преобразователя формируется последовательность импульсов прямоугольной формы, частота которых прямо пропорционально зависит от уровня входного напряжения (0—3,5 В).
На основе ОУ КР140УД1208, который работает в диапазоне питающих напряжений ±1,5…±18 В при коэффициенте усиления до 200000, может быть собрано множество конструкций, в том числе устройств сравнения, часть из которых представлена на рис. 18.24—18.26 [18.7].
Примечание.
Микросхема выгодно отличается тем, что имеет защиту от короткого замыкания в цепи нагрузки.
Рис. 18.24. Схема индикатора разрядки батареи на микросхеме КР140УД1208
Индикатор разрядки батареи, рис. 18.24, содержит узел сравнения текущего значения контролируемого напряжения с некоторым образцовым значением. Для формирования образцового
напряжения использован узел, выполненный на транзисторе VT1. При достижении критического уровня напряжения, устанавливаемого при помощи потенциометра R9, включается генератор звуковых сигналов, выполненный на микросхеме DA1. В качестве излучателя звука использован пьезокерамический излучатель BF1 (ЗП-З).
Рис. 18.25. Упрощенный вариант индикатора разрядки батарей с визуальной индикацией
Емкость конденсатора С1 подбирают по максимальной громкости звучания пьезокерамического излучателя (настройка на его резонансную частоту).
Упрощенный вариант индикатора со светодиодной индикацией показан на рис. 18.25. Порог срабатывания (6,5 В) подбирают регулировкой потенциометра R2. Ток «молчания» индикаторов — 0,1 мА, индикации — 1 мА.
Индикатор электрического поля, схема которого представлена на рис. 18.26, предназначен для дистанционного бесконтактного контроля уровня электрического поля при приближении обслуживающего персонала к токонесущим конструкциям высокого напряжения.
В качестве антенны, определяющей чувствительность устройства, использована пластинка из фольгированного стеклотекстолита 55×33 мм, спрятанная в корпусе. Прибор срабатывает при приближении антенны к проводке под напряжением 220 В на расстояние не менее 50 см.
Совет.
Последовательно со светодиодом HL1 и капсюлем BF1 полезно включить токоограничивающий резистор сопротивлением до 300 Ом.
Рис. 18.26. Схема аудиовизуального индикатора электрического поля на микросхеме КР140УД1208
На основе компаратора DA1 КР554САЗБ может быть собрана схема фото- или термочувствительного реле, рис. 18.27 [18.8]. В первой из схем
(слева) в качестве светочувствительного элемента использован фотодиод VD1 КФДМ (или иной), входящий в состав сбалансированного резистивного моста. Балансировку моста осуществляют регулировкой потенциометра R2. К диагонали моста подключены входы компаратора DA1. Схема отрегулирована таким образом, чтобы при изменении уровня светового потока, падающего на приемную площадку фотоприемника, происходило переключение компаратора.
Примечание.
Если перед светочувствительным элементом установить светофильтр, можно создать прибор, чувствительный к излучению в определенной области спектра. Если использовать поляризационный светофильтр, прибор будет реагировать только на световой поток соответствующей поляризации. Такие устройства можно использовать, например, для автоматического открывания дверей ворот или гаража, когда к ним подъезжает автомобиль хозяина. Для повышения надежности срабатывания реле можно воспользоваться схемой совпадения, таким образом, реле будет срабатывать, если свойства сигнала-ключа будут отвечать, по меньшей мере, двум ключевым признакам.
В качестве нагрузки в реле [18.8] использовано оптоэлектронное реле 5П19.10ТМА-3-6, коммутирующее лампу накаливания, либо иную другую нагрузку.
Рис. 18.27. Схема фото- или термочувствительного реле на компараторе КР554САЗБ
Совет.
Вместо оптоэлектронного можно использовать и обычное электромагнитное реле с током срабатывания до 50 мА, обмотку которого в целях защиты выходного транзистора компаратора следует защитить параллельно подключенным диодом или электролитическим конденсатором.
Светодиод HL1 предназначен для визуального контроля момента срабатывания компаратора.
При желании фото- чувствительное реле (рис. 18.27, слева) легко преобразовывать в термочувствительное (рис. 18.27, справа). В качестве термочувствительного элемента можно использовать обычный кремниевый диод VD1, например, КД103А>
КД102А и др. Для снижения инерционности контроля в качестве датчика следует выбирать диод с минимальной массой.
Несколько модифицировав схему (рис. 18.27), можно получить реле времени для использования освещения подъездов и лестничных клеток, рис. 18.28 [18.8].
При кратковременном нажатии на любую из параллельно установленных на каждом этаже кнопок SB1—SBn кратковременно (на время, определяемое произведением R1C2), примерно на 60 с, включится лампа накаливания. Конденсатор С2 должен иметь малый ток утечки.
Пороговый индикатор превышения заданного уровня температуры, схема которого представлена на рис. 18.29 [18.9], может быть использован для автоматического регулирования теплового режима теплиц, инкубаторов, нагревательных узлов, систем сигнализации и т. д.
В устройстве использован компаратор DA1, нагруженный на светодиодный излучатель HL1. Питание индикатора стабилизировано. В качестве датчика температуры использован терморезистор R3 (или иной датчик). Рабочая точка (температура срабатывания) задается регулировкой потенциометра R4. Схему легко настроить на включение или отключении нагрузки (индикатора), поменяв его входы местами. В качестве датчика можно использовать, при необходимости, элементы, чувствительные к изменению освещенности (фоторезисторы), электрического поля (полевые транзисторы) и т. д.
Генератор на основе инвертирующего компаратора напряжения с гистерезисом на микросхеме К1464СА1, рис. 18.30,
вырабатывает короткие импульсы прямоугольной формы частотой 16 кГц [18.2]. Длительность импульса равна 0,7R4C1, паузы — 0,7R1C1, следовательно, период импульсов равен 0,7C1(R4+R1), а частота — 1,44/Cl (R4+R1).
Рис. 18.31. Схема удвоителя частоты на основе компараторе
Рис. 18.30. Схема генератора прямоугольных импульсов на компараторе
Пороговое устройство–компаратор может быть использовано в качестве широкодиапазонного (в определенных пределах) удвоителя частоты сигналов, рис. 18.31 [18.10]. Работа устройства основана на запоминании уровня сигналов на том или ином входе компаратора и последующем динамическом сопоставлении их уровня в ходе переходных процессов при заряде/раз- ряде конденсаторов.
В итоге на выходе устройства формируется последовательность импульсов с удвоенной по отношению к входному сигналу частотой, рис. 18.32. Входной сигнал имеет частоту 500—1000 Гц при амплитуде до 10 В.
Для иных частот потребуется подбор RC-элементов входных цепей.
Рис. 18.32. Входные и выходные сигналы удвоителя частоты на основе компараторе
Рис. 18.33. Схема устройства защиты от перенапряжения
Простое устройство (рис. 18.33) предназначено для защиты радиоэлектронного оборудования от недопустимых перепадов напряжения [18.11]. При снижении напряжения на входе устройства ниже некоторого заданного при помощи потенциометра R4 уровня сработает реле, отключив/подклю- чив своими контактами нагрузку, элемент защиты или стабилизации и т. п.
В качестве стабилитрона VD1 можно использовать стабилитрон на напряжение 3,3—5,1 В. Величина сопротивления R1 вычисляется исходя из того, чтобы напряжение на входном резистивном делителе R1—R2 примерно соответствовало напряжению на его движке, установленном посередине (т. е. примерно 2,4 В для стабилитрона КС147). Рассчитать
U, -U,
величину этого сопротивления можно из выражения: Rl=——-R2,
где Uj — входное напряжение срабатывания устройства, U2 — напряжение, примерно равное 2,4 В для стабилитрона КС147. Так, для 1^=100 В Rl=407 (390) кОм.
Напряжение питания устройства может быть выбрано в пределах 9—24 В. Следует лишь учитывать, чтобы реле надежно и без гистерезиса переключалось, а элементы схемы работали без перегрузок. На практике устройство можно использовать для автоматической записи телефонных разговоров. В этом случае параллельно резистору R2 рекомендуется подключить электролитический конденсатор емкостью не менее 100 мкФ.
Схема включения компаратора, рис. 18.34 [18.3], позволяет за счет наличия в его входных цепях RC-элементов отфильтровывать высокочастотные (R2C1) и низкочастотные (R1C2) наводки на полезный сигнал.
Пороговое устройство для слежения за температурным режимом, рис. 18.35, выполнено на микросхеме LM393 [18.12]. В качестве датчика температуры использован терморезистор R2, имеющий отрицательный температурный коэффициент. Для измерений используется традиционная мостовая резистивная схема.
Для сравнений уровней напряжения на диагонали моста использован компаратор. Порог срабатывания компаратора плавно регулируют потенциометром R4. Для звуковой индикации используют зуммер BF1 с пятивольтовым питанием (или заменяющий его мультивибратор с телефонным капсюлем в цепи нагрузки).
Рекомендуемые уровни напря
жений: 4,9 В — на выводе 5 микросхемы; 2,9 В — на выводе 6.
Параллельно шинам питания включают электролитический (470 мкФ) и керамический (0,1 мкФ) конденсаторы.
С использованием линейки однотипных компараторов (рис. 18.36) можно получить устройство светодиодной индикации уровня входного сигнала, например, радиоприемника, аудиоплеера [18.13]. Сетка опорных напряжений образуется на резистивном делителе R1—R9, образованном однономинальными резисторами. Входное напряжение поступает на неинвертирующие входы всех компараторов одновременно.
По мере повышения уровня входного напряжения поочередно будут высвечиваться светодиоды снизу вверх (по схеме), визуально в соответствии с уровнем входного сигнала будет перемещаться вверх-вниз или влево-вправо светящаяся точка, динамически показывающая уровень сигнала на входе устройства.
Чувствительность индикатора можно варьировать, подбирая соотношение номиналов входного резистивного делителя R10/R11.
Вход устройства можно подключить к движку потенциометра узла электронной настройки радиоприемника. В этом случае светодиодная шкала будет индицировать частоту приема, что особенно удобно при эксплуатации радиоприемника или передатчика в темное время суток.
Используя изложенный выше принцип поочередного управления нагрузками при изменении уровня входного управляющего напряжения, можно решить задачу многокомандного управления нагрузками по двухпроводной линии, рис. 18.37 [18.14]. Для этого использован выносной пульт-делитель напряжения, дающего при нажатии на кнопки S1—S8 сетку опорных управляющих напряжений.
Для дешифровки и преобразования уровней напряжения, поступающих по двухпроводной линии, использована линейка из восьми однотипных компараторов. Выходы компараторов через токоограничивающие резисторы R20—R27 соединены с входами КМОП-инверторов, в качестве которых могут быть использованы элементы КМОП-микросхем серии К561у К564у например, К561ЛН1УК561ЛН2 и им подобные (К564ЛЕ5, К561ЛА7 с параллельно включенными входами по схеме инвертора). Диодные цепочки, выполненные на германиевых диодах, предназначены для выполнения условия установки нулевого уровня сигнала на выходе задействованного канала управления.
Как следует из анализа схемы многоканального управления нагрузок, устройство избыточно усложнено. Например, за счет использования всего одной специализированной поликомпараторной микросхемы — амплитудного мультиплексора UAA180 (К1003ПП1) эта же задача может быть решена в расширенном варианте: двухпроводное управление 12-ю нагрузками при токе нагрузки до 10 мА [18.15—18.17].
Рис. 1837. Схема двухпроводного восьмикомандного управления по двум проводам
Рис. 1838. Схема многокомандного управления нагрузками по двухпроводной линии
Поликомпараторное устройство многокомандного управления нагрузками по двухпроводной линии [18.15] представлено на рис. 18.38.
Оно выполнено на основе специализированной микросхемы UAA180 (К1003ПП1), предназначенной для 12-ти ступенчатого дискретного преобразования уровня аналогового сигнала на управляющем входе в номер коммутируемого канала индикации. При размыкании одного из ключей S1—S12 на управляющем входе микросхемы DA1 формируется сигнал с напряжением по сетке 0—0,5—1,0— … 5,5 В (всего 12 уровней). Соответственно величине управляющего сигнала к шине питания подключается одна из 12-и нагрузок, варианты выполнения которых А и В представлены на рис. 18.38.
Если в качестве нагрузки включить резистор сопротивлением порядка 1 кОм и более, с этого сопротивления можно снимать логический сигнал с уровнем 1/0 для управления цифровыми логическими КМОП- устройствами.
Для формирования сетки напряжений необходим подбор номиналов резистивного делителя R1—R11. Проще всего подобрать эти резисторы можно путем замены каждого из резисторов потенциометром, регулировкой которого при нажатии на одну из кнопок S1—S11 следует добиться срабатывания требуемого канала индикации. Далее потенциометр можно заменить обычным резистором (или их набором) соответствующего номинала.
Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. — СПб.: Наука и Техника, 2013. —352 с.
Компаратор на операционном усилителе. Практикум.
В данной статье разберёмся как работает компаратор на операционном усилителе.
Операционные усилители – очень мощный инструмент современного радиолюбителя. Одной из самых простых схем его использования является подключение по схеме компаратора.
Название компаратор прижилось в отечественной литературе. Произошло оно от заимствования с английского слова compare = сравнить. Поэтому многие радиолюбители называют компаратор сравнивающим устройством.
Обычно для экономии стоимости данные схемы реализуют на операционных усилителях, но бывают и специализированные микросхемы компараторов. Они, как правило, имеют лучшее быстродействие и меньшее падение напряжения на самой микросхеме, но их невозможно использовать в качестве операционного усилителя. В данной статье речь пойдёт о использовании именно операционника (ОУ) в качестве компаратора. А вариант с использованием специализированных компараторов будет рассмотрен позже.
Наглядно эта схема показана на следующем рисунке:
Рис.1. Схема подключения операционного усилителя в качестве компаратора.Давайте вместе разберемся в её работе.
Наиболее понятно, работа данной схемы представляется в виде работе некоторого постоянно сравнивающего устройства, которое постоянно сравнивает сигнал 1 и сигнал 2 подаваемые на вход компаратора. Выход оно устанавливает исходя из следующего:
Сигнал 1 больше по напряжению, чем сигнал 2?
Если да, то выход устанавливается в 10В (напряжение питание операционного усилителя). Если нет, то в 0В.
Рис.2. Наглядное описание работы компаратораНа первый взгляд в работе данной схемы нет ничего необычного, но существует бесчисленное множество применений работы данной схемы. В основном это устройства, которые переводят аналоговый сигнал в некоторую логическую величину: ДА или НЕТ. Это может быть и индикатор зарядки батареи, и датчик критического уровня жидкости в сосуде или любой другой аналоговый сигнал, который переходи какое-то определённое значение.
Разберём несколько из примеров использования компараторов (рекомендованных для домашней сборки), для того чтобы лучше разобраться в том, как работает данная схема.
1. Датчик перегрева радиатора
Данная схема работает по следующему принципу: В зависимости от температуры терморезистор R5 будет иметь разное значение сопротивления. С ростом температуры его сопротивление увеличивается.
Если температура не достигла заданной, то напряжение на выходе компаратора равно 0, и светодиод не горит.
При достижении температуры, установленной потенциометром R3, компаратор переключается, светодиод загорается, информируя нас о том, что терморезистор R5 перегрелся. В этот момент нужно как-то охладить работу вашей схемы, например, включив вентилятор или насос для прокачки воды. Это легко реализовать подключением в качестве нагрузки к выходу компаратора обычное электромагнитное реле.
Рис.3. Схема подключения датчика температуры.2. Индикатор зарядки/разрядки батареи с двумя фиксированными уровнями.
Задача данного датчика крайне проста: проинформировать держателя батарейки о полном её заряде и скором прекращении работы. Данная схема отличается от предыдущей тем, что строиться на базе не одного, а двух компараторах, но это не беда для современной техники. Дело в том, что большинство современных операционных усилителей выпускаются в корпусе DIP8/SO8 и в своём составе содержат два операционных усилителя. К примеру, вот фрагмент даташита (технического описания микросхемы) используемого мною ОУ:
Рис. 4. Расположение выводов у микросхемы ОУ NE5532.Решается она следующим образом: входное напряжение поступает на сложный делитель R3-R5-R7. В результате получаются два аналоговых уровня соответствующих не инвертирующим входам ОУ.
Тот, что получается между резисторами R3-R5 будет говорить нам о глубоком разряде аккумулятора, так как он будет срабатывать при достаточно низком напряжении.
Тот, что получается между резисторами R5-R7 будет говорить нам о полном заряде аккумулятора, так как он будет срабатывать при высоком напряжении на клеммах аккумулятора.
Сразу замечу, что схема мной собиралась не раз и тестировалась на лабораторном блоке питания и реальной батарейке. По этому все комментарии по настройке тут особо не нужны, так как схема работает сразу практически без настройки. Схема отлично работает с 9В свинцовыми и МеОН аккумуляторами. Для популярных в последнее время Li-ion батареек она несколько изменяется: современные Li-ion батарейки работают в диапазоне 4,2-2,4В. Для них питание операционного усилителя выбирается на уровне 2,4В (под стандартный стабилизатор), фиксированный уровень сравнения вместо 2,5В становится 1,2В и используются низковольтные ОУ. В остальном схема точно такая-же.
Рис.5. Схема индикатора зарядки/разрядки батареи.Несколько тонкостей работы с компараторами.
Данный материал написан для людей, которые уже попробовали поработать с компараторами и хотят углубиться в данной теме:
1. Чувствительность компаратора зависит от величины минимального напряжения между входами. Если вы стараетесь сделать очень точные измерения, по типу вытащить 0,001*С из схемы срабатывания охлаждения, то будьте готовы к тому, что у вас это не получиться в виду ограничений микросхемы
2. Во время переключения некоторое время компаратор переключается. Это свойство проявляется в основном при детекции вч сигналов. Если ваши рабочие частоты лежат до 100 кГц, то о данном параметре на всех современных ОУ можете не заморачиваться. В противном случае смотрите на величину скорости роста сигнала. Обычно у современных ОУ эта величина составляет единицы/десятки вольт в микросекунду. В вашем случае она считается по формуле:
Если данная величина получилась больше, чем параметр ОУ, то меняйте оу. На экране осциллографа при этом у вас будет сильное сваливание от прямоугольного сигнала на выходе ОУ к треугольному сигналу.
3. В некоторых случаях полезно реализовать гистерезис(запаздвание) на положительной обратной связи, но это рассмотрим подробнее в одном из следующих занятий практикума.
В конце концов вот вам приятный подарок, раз уж вы дочитали до конца. Вот видео автора данной статьи о компараторах, из которого можно подчеркнуть много интересного и полезного.
Заключение
А теперь собственно ваше практическое задание: на основе вышеизложенного собрать простую схему на компараторе и показать её любому своему знакомому с объяснениями как это работает. Особенно рекомендую собрать схему на датчик перегрева и протестировать её работу на примере стакана с горячей водой. Присылайте свои фото и комментарии с практикумом на адрес info{собака}meanders.ru. А в качестве бонуса фотографии самого интересного практикума я выложу ниже в данной статье со ссылками на собравшего.
Компараторы и триггеры Шмитта на ОУ
Всем доброго времени суток. В предыдущих статьях я рассказывал о применении операционных усилителей в линейных схемах, где ОУ охвачен отрицательной обратной связью, которая позволяет строить усилители, параметры которых будут в основном определяться элементами обвязки ОУ. Данная статья расскажет о применении ОУ без обратной связи или даже с положительной обратной связью (ПОС).
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Работа операционного усилителя без обратной связи
Как известно напряжение на выходе ОУ UВЫХ определяется произведением входного дифференциального напряжения UД (разность напряжений между входными выводами) на коэффициент усиления ОУ по напряжению КU
Операционные усилители имеют очень большой коэффициент усиления ОУ по напряжению КU = 105 … 106, а выходное напряжение не может выйти за пределы напряжения питания (обычно несколько меньше). Поэтому, для того чтобы ОУ работал в качестве усилителя напряжения максимальное входное дифференциальное напряжение не должно превышать нескольких десятков мкВ (при UПИТ = 15 В, КU = 105, UД ≈ 150 мкВ). С учётом вышесказанного можно сделать вывод, что без применения отрицательной обратной связи, которая снижает усиление ОУ в схеме, применение ОУ бесполезно, так как при входных напряжениях в несколько милливольт ОУ войдёт в насыщение с выходным напряжением равным напряжению питания.
Но существуют схемы, в которых операционные усилители применяются без обратной отрицательной связи, а в некоторых случаях специально вводят положительную обратную связь (ПОС) для увеличения коэффициента усиления схем. Одним из видов таких схем являются пороговые устройства, в состав которых входят различные компараторы, триггеры Шмитта, детекторы уровней напряжения.
Принцип работы компаратора
Простейшим пороговым устройством является компаратор. Он сравнивает напряжение, которое поступает на один из его входов, с опорным напряжением, которое присутствует на другом его входе. Простейший компаратор получается из операционного усилителя, в котором отсутствует отрицательная обратная связь. Рассмотрим принцип работы компаратора напряжений на основе ОУ, схема которого изображена ниже
Использование ОУ в качестве компаратора и графики входного и выходного напряжений.
В основе компаратора лежит ОУ на инвертирующий вход, которого поступает входное напряжение UBX, а неинвертирующий вход соединён с источником опорного напряжения UОП. Принцип работы компаратора изображённого на рисунке заключается в следующем: когда входное напряжение UBX больше опорного UОП, то выходное напряжение принимает значение отрицательного напряжения насыщения –UНАС и остаётся неизменным пока входное напряжение UBX не уменьшиться ниже опорного напряжения UОП, в этом случае на выходе будет напряжение положительного насыщения +UНАС.
На рисунке изображен компаратор с инвертирующим выходным сигналом по отношению к входному сигналу. Для того, чтобы не происходило инверсии на выходе необходимо поменять подключение выводов ОУ, то есть входной сигнал должен поступать на неивертирующий вход, а опорное напряжение на инвертирующий вывод. Тогда при превышении опорного напряжения на выходе ОУ будет положительное напряжение насыщения, а при входном напряжении меньше, чем опорное напряжение на выходе будет присутствовать отрицательное напряжение насыщения ОУ.
Основные схемы компаратора
Существует много разновидностей компараторов, но в из основе лежат две основные схемы: одновходовая и двухвходовая. Одновходовая схема позволяет сравнивать разнополярные напряжения по модулю, то есть по абсолютной величине. Двухвходовый же компаратор сравнивает два напряжения с учётом знака. Расссмотрим обе схемы подробнее.
Схема одновходового компаратора.
На рисунке выше изображён одновоходовый компаратор, позволяющий сравнивать два разнополярных напряжения по абсолютному значению (по модулю). В его основе лежит инвертирующий сумматор, в котором отсутствует отрицательная обратная связь, поэтому ослабления коэффициент усиления операционного усилителя не происходит. В результате чего на инвертирующем входе ОУ происходит суммирование входного напряжения UBX и опорного напряжения UОП приведённого к инвертирующему входу UПРИВ, а результат суммирования усиливается ОУ и выводится на его выход. Для того чтобы происходило сравнение необходимо фактически производить операцию вычитания, то есть напряжения на входах UBX и UПРИВ должны иметь разную полярность.
Приведённое напряжение UПРИВ можно вычислить по следующему выражению
Резистор R3 предназначен для компенсации входного тока смещения и должен быть равен величине параллельно соединённых резисторов R1 и R2
Основным недостатком данной схемы является необходимость использования стабилизированного отрицательного напряжения, что приводит к усложнению схемы. Поэтому одновходовый компаратор не получил широкого распространения.
Наибольшее распространение получила схема двухвходового компаратора, в котором отсутствует необходимость в отрицательном напряжении. Схема данного компаратора приведена ниже
Схема двухвходового компаратора.
В основе двухвходового компаратора лежит дифференциальный усилитель, в котором отсутствует отрицательная обратная связь, поэтому разность между входным напряжением UBX и UОП опорным напряжение усиливается ОУ, не имеющего снижения коэффициента усиления из-за отсутствуя ООС, и выделяется на выходе ОУ. В данной схеме входные резисторы R1 и R2 имеют одинаковое значение.
Компараторы применяются в широком спектре схем:
- Триггеры Шмитта и в схемах формирования сигнала, преобразующих сигнал произвольной формы в прямоугольный или импульсный сигнал.
- Детекторы уровня – схемы, в которых происходит индицирование момента достижения входным сигналом заданного уровня опорного напряжения.
- Генераторы импульсных сигналов, например, треугольной или прямоугольной формы.
При использовании компаратора в схемах, где входное напряжение медленно меняется и амплитуда сигнала очень близка к опорному напряжению, то шумы на входном выводе могут вызвать ложные срабатывания компаратора и на его выходе могут появиться дополнительные импульсы, что продемонстрировано на рисунке ниже
Появление ложных импульсов на выходе компаратора.
Для устранения таких ложных срабатываний компаратора, в его схему вводится некоторый гистерезис, путём добавления положительной обратной связи (ПОС) к операционному усилителю.
Триггер Шмитта
Как сказано выше для устранения ложных срабатываний компаратора, известных, как «дребезг контактов» необходимо использовать схему компаратора с петлёй гистерезиса, которая получила название триггера Шмитта.
В одной из статей я рассказывал о триггере Шмитта выполненном на транзисторах. Он характеризуется тем, что в отличие от компаратора имеет так называемую петлю гистерезиса. То есть компаратор переключается из высокого уровня напряжения в низкий при одной и той же величине входного напряжения, а триггер Шмитта имеет два уровня (порога) переключения. Данное различие иллюстрирует изображение ниже
Изменение входного и выходного напряжения компаратора (справа) и триггера Шмитта (слева).
Уровни напряжения, при которых происходит переключение триггера Шмитта называются верхним уровнем (порогом) срабатывания триггера UВП и нижним уровнем (порогом) срабатывания триггера UНП.
Для реализации триггера Шмитта применяют ОУ охваченные положительной обратной связью (ПОС), которая реализуется подачей на неинвертирующий вход части выходного напряжения. Схема триггера Шмитта изображена ниже
Триггер Шмитта на операционном усилителе.
Работа триггера Шмитта во многом похожа на работу компаратора, только в отличие от него в триггере опорное напряжение не постоянно, а зависит от разности выходного и опорного напряжений, то есть имеет различные значения.
Рассмотрим инвертирующий триггер Шмитта. В исходном входное напряжение не превышает верхнего уровня срабатывания триггера UВП, поэтому на выходе присутствует положительное напряжение насыщения UНАС+ (примерно на 1 – 2 В ниже положительного напряжения питания UПИТ+). Когда входное напряжение достигает верхнего порога переключения UВП выходное напряжение резко упадёт до уровня отрицательного напряжения насыщения UНАС-(примерно на 1 – 2 В выше отрицательного напряжения питания UПИТ-). Верхний уровень напряжения переключения триггера Шмитта определяется следующим выражением
Далее триггер остаётся в устойчивом состоянии до тех пор, пока входное напряжение не станет меньше нижнего порога срабатывания UНП, а на выходе триггера установится положительное напряжение насыщения UНАС+. Нижний порог срабатывания триггера определяется следующим выражением
Таким образом, петля гистерезиса будет зависеть от соотношения резисторов R2 и R3, а ширина петли гистерезиса UГИС определяется разностью верхнего порога срабатывания UВП и нижнего порога срабатывания UНП
Триггеры Шмитта на ОУ являются основой для построения различных генераторов импульсов, поэтому важнейшими характеристиками ОУ работающих в импульсных схемах является быстродействие, которое зависит от задержек срабатывания и времени нарастания выходного напряжения.
Ограничение уровня выходного напряжения компаратора и триггера Шмитта
Применение положительной обратной связи (ПОС) в компараторах и триггерах Шмитта ускоряет переключение схем, но в связи с тем, что выходное напряжение UВЫХ изменяется от UНАС+ до UНАС-, то время переключения составляет довольно значительную величину (от долей до единиц микросекунд).
Кроме того существует проблема несовместимостей уровней выходного напряжения, к примеру, при напряжении питания ОУ UПИТ = ±15 В, выходное напряжение составит UВЫХ ≈ ±14 В (UНАС+ ≈ +14 В, а UНАС- ≈ -14 В), в то время как уровни ТТЛ микросхем составляют около +5 В или 0 В.
Для устранения вышеописанных проблем применяют так называемую привязку или ограничение уровня выходного напряжения, для этого в компаратор или триггер Шмитта вводят ООС в виде различных схем ограничения. Простейшими ограничительными схемами являются диоды или стабилитроны. Схема триггера Шмитта с ограничение выходного напряжения показана ниже
Триггер Шмитта с ограничением выходного напряжения при помощи стабилитрона в цепи ООС.
Ограничение выходного напряжения в триггере Шмитта работает следующим образом. При поступлении на инвертирующий вход напряжения меньше, чем напряжение опорного уровня (UВХОП), то выходное напряжение UВЫХ начинает изменяться в положительном направлении и при достижении напряжения стабилизации стабилитрона UСТ напряжение на выходе перестанет расти, а будет изменяться только ток. При этом выходное напряжение будет равняться напряжению стабилизации стабилитрона (UВЫХ = UСТ).
В случае если входное напряжение начнёт увеличиваться, выше опорного напряжения, то на выходе напряжение начнёт уменьшаться и в этом случае направление тока через стабилитрон начнёт изменяться на противоположный, а стабилитрон начнёт вести себя как диод. В результате падение напряжения на нём составит примерно 0,7 В независимо от величины протекающего через него тока, а на выходе напряжение составит -0,7 В.
Таким образом, при использовании стабилитрона выходное напряжение триггера Шмитта составит: UВЫХ1 = UСТ (при отсутствии ограничения UНАС+) или UВЫХ2 ≈ 0,7 (при отсутствии ограничения UНАС-).
Для симметричного ограничения выходного напряжения могут применяться последовательно включенные диоды или стабилитроны, что показано на рисунке ниже
Триггер Шмитта с симметричным ограничением выходного напряжения.
В данной схеме реализуется симметричное ограничение выходного напряжения относительно опорного напряжения, причем выходное напряжение выше опорного напряжения ограничивается стабилитроном VD1, а напряжение при этом составит на 0,7 В больше напряжения стабилизации. В случае же выходного напряжения ниже опорного, то выходное напряжение будет на 0,7 В ниже напряжения стабилизации стабилитрона VD2.
При расчёте компараторов и триггеров Шмитта с ограничением выходного напряжения в качестве UНАС+ необходимо использовать UСТ (когда используется один стабилитрон) или UСТVD1 (при двухстороннем ограничении). А вместо UНАС- необходимо использовать значение падения напряжения на диоде примерно 0,7 В (при одном стабилитроне) или UСТVD2 (при двухстороннем ограничении).
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Знакомство с компараторами на примере чипа LM339
Ранее мы с вами познакомились с такими интегральными схемами, как таймер 555, счетчик 4026, логические вентили, а также сдвиговые регистры и декодеры. Теперь же пришло время узнать о компараторах. Несмотря на кажущуюся простоту, компараторы — куда более интересные устройства, чем может показаться на первый взгляд. Читайте далее, и сможете убедиться в этом самостоятельно.
Крайне наглядная картинка, объясняющая работу компаратора, была найдена мной в книге Чарльза Платта Электроника: логические микросхемы, усилители и датчики для начинающих. С некоторыми изменениями эта иллюстрация приведена ниже:
Компаратор имеет два входа, обозначаемые знаками минус (инвертирующий вход) и плюс (неинвертирующий вход), и один выход. Для нормальной работы выход компаратора обязательно должен быть подключен к плюсу источника питания через подтягивающий резистор. Почему нельзя было сделать это просто внутри микросхемы, скоро станет понятно.
Используется компаратор следующим образом. На инвертирующий вход подается эталонное напряжение. Когда напряжение на втором, неинвертирующем, входе больше эталонного, выход компаратора имеет высокое напряжение. Если же напряжение на неинвертирующем входе ниже эталонного, выход компаратора имеет низкое напряжение. Проще говоря, компаратор сравнивает два значения напряжения и на выходе говорит, какое больше. Входы компаратора можно использовать и наоборот, тогда выход компаратора будет инвертирован.
В качестве типичной микросхемы, содержащей внутри себя целых 4 компаратора, можно назвать LM339. Данный чип выпускается как в виде SMD-компонента, так и варианте для монтажа через отверстия. Распиновка у LM339 следующая:
Данная иллюстрация взята из даташита микросхемы [PDF].
На практике компараторы чаще всего используют одним из следующих образов:
Важно! По неудачному стечению обстоятельств, компаратор обозначается на схемах точно так же, как и операционный усилитель. Однако операционные усилители работают иначе, нежели компараторы, и их не следует путать. Определить, что именно используется в схеме, обычно можно по указанному названию чипа.
В левой части схемы изображен компаратор, чей выход соединяется с неинвертирующим входом через потенциометр или резистор. Это — так называемая положительная обратная связь. Благодаря ей достигается гистерезис. То есть, если напряжение на неинвертирующем входе будет колебаться в некотором коридоре возле эталонного, выход компаратора не будет постоянно изменяться. Если помните, триггер Шмитта (чип 74HC14) делает то же самое.
Кстати, можно заметить, что одна из связей на потенциометре в положительной обратной связи как бы лишняя. Как объяснил мне Melted Metal, так принято делать на случай потери контакта движка потенциометра с резистивной дорожкой.
Что же касается правой части схемы, на ней изображена схема двухпорогового компаратора. Если вход схемы, обозначенный, как signal, имеет напряжение между low и high, на выходе схемы образуется высокое напряжение. В противном случае напряжение на выходе низкое.
На следующем фото изображена первая схема, собранная на макетной плате:
Потенциометр слева задает напряжение на инвертирующем входе, а потенциометр справа — на неинвертирующем. Потенциометр по центру участвует в положительной обратной связи. Напряжение на обоих входах отображается при помощи миниатюрных цифровых вольтметров. Поскольку напряжение на неинвертирующем входе выше эталонного, светодиод, подключенный к выходу компаратора, горит.
Обратите внимание, что на входы неиспользованных компараторов также подается высокое и низкое напряжение. Это увеличивает надежность работы схемы и уменьшает потребляемую ею электроэнергию. Не имеет значения, на какой из входов подается высокое напряжение, а на какой — низкое. Главное, чтобы выход каждого отдельного компаратора был строго определен.
Вторую схему в собранном виде здесь я не привожу. Так что, вам придется поверить мне на слово, что она работает 🙂
Помимо всех озвученных выше, следует иметь в виду еще пару важных моментов:
- Через компаратор не следует пропускать слишком большой ток. Ток больше 20 мА может его сжечь;
- Напряжение на выходе компаратора может быть как выше, так и ниже напряжения на любом из входов. То есть, выход можно питать от совершенно другого источника питания. А питание на саму микросхему при этом может идти от третьего. Для правильной работы микросхемы нужно только, чтобы все эти источники имели общую землю;
Последнее обстоятельство позволяет использовать компаратор в качестве преобразователя уровня сигнала. Кроме того, теперь наконец-то стало ясно, зачем были все эти сложности со внешним подтягивающим резистором.
Вообще, компаратор можно рассматривать, как очень простой вольтметр или АЦП. В частности, с его помощью не представляет труда собрать индикатор уровня заряда Li-Ion аккумулятора. Если же у вас есть лишний фоторезистор (см заметку Мои первые страшные опыты с Arduino) или фототранзистор, на базе компаратора можно сделать датчик освещения. Если же вместо фоторезистора воспользоваться термометром типа TMP36, можно собрать устройство, управляющее кулером или кондиционером, способное регулировать температуру.
Наконец, компаратор можно использовать в качестве логического элемента НЕ, а также, если соединить выходы нескольких компараторов, в качестве элемента И. Отсюда несложно получить ИЛИ, по форуме x || y = !(!x && !y)
, ровно как и любую другую булеву функцию. Само собой разумеется, при желании можно придумать и другие применения.
А какие безумные варианты использования компараторов приходят вам на ум?
Метки: Электроника.
Цифровой компаратор — Википедия
Цифрово́й компара́тор или компара́тор ко́дов логическое устройство с двумя словарными входами, на которые подаются два разных двоичных слова равной в битах длины и обычно с тремя двоичными выходами, на которые выдаётся признак сравнения входных слов, — первое слово больше второго, меньше или слова равны. При этом выходы «больше», «меньше» имеют смысл, если входные слова кодируют числа в том или ином машинном представлении.
Часто цифровые компараторы не имеют выходов «больше», «меньше», а только выход «равно».
Может быть построен на логических элементах, работа которых основана на самых различных физических принципах, но современные компараторы обычно представляют собой полупроводниковые электронные устройства работающие в двоичной логике.
Промышленностью компараторы выпускаются в виде законченных компонентов — микросхем с разной длиной сравниваемых слов и других параметров. Примеры микросхем цифровых компараторов: КМОП-логика — 4063 и 4585, ТТЛ — 7485 и 74682-89 и многие другие.
Компараторы широко используются в вычислительной технике, измерительной технике, радио- и проводной связи, бытовых приборах. Например, цифровые часы с будильником содержат цифровой компаратор, при совпадении текущего времени с заданным, подается звуковой сигнал.
Аналоговым эквивалентом цифрового компаратора является аналоговый компаратор напряжений или токов. Некоторые микроконтроллеры имеют входные встроенные аналоговые компараторы, состояние выходов которых может быть считано программой контроллера или вызывать её прерывание подпрограммой.
Для примера рассмотрим два 4-битных слова A{\displaystyle A} и B{\displaystyle B}, пусть эти слова представляют собой некоторые натуральные числа, представленные в двоичном виде, причем 3-й разряд будет старшим:
- A=A3,A2,A1,A0{\displaystyle A=A_{3},A_{2},A_{1},A_{0}},
- B=B3,B2,B1,B0{\displaystyle B=B_{3},B_{2},B_{1},B_{0}}
Здесь каждая буква с нижним цифровым индексом представляет один из битов в числах.
- Равенство (эквивалентность)
Двоичные числа A{\displaystyle A} и B{\displaystyle B} будут равны, если все пары соответственных битов обоих чисел равны, то есть:
- A3=B3{\displaystyle A_{3}=B_{3}}, A2=B2{\displaystyle A_{2}=B_{2}}, A1=B1{\displaystyle A_{1}=B_{1}} и A0=B0{\displaystyle A_{0}=B_{0}}.
В двоичной записи чисел их цифры это или 0, или 1. Булева функция для равенства любых двух цифр Ai{\displaystyle A_{i}} и Bi{\displaystyle B_{i}} (здесь логическая операция «ИЛИ» обозначена символом +{\displaystyle +}, а «И» символом точки) может быть выражена как:
- xi=Ai⋅Bi+A¯i⋅B¯i{\displaystyle x_{i}=A_{i}\cdot B_{i}+{\overline {A}}_{i}\cdot {\overline {B}}_{i}}.
При этом xi{\displaystyle x_{i}} равна 1 только если Ai{\displaystyle A_{i}} и Bi{\displaystyle B_{i}} равны.
Для равенства Ai{\displaystyle A_{i}} и Bi{\displaystyle B_{i}}, все функции xi{\displaystyle x_{i}} (для i = 0, 1, 2, 3) должны быть равны 1.
Поэтому признак равенства Ai{\displaystyle A_{i}} и Bi{\displaystyle B_{i}} записывается в виде логической функции как
- (A=B)=x3⋅x2⋅x1⋅x0{\displaystyle \ (A=B)=x_{3}\cdot x_{2}\cdot x_{1}\cdot x_{0}}.
Двоичная функция (A=B){\displaystyle (A=B)} равна 1 только если все пары цифр двух чисел равны.
- Неравенство (неэквивалентность)
Чтобы определить наибольшее из двух двоичных чисел, мы рассмотрим отношение величин пар значащих цифр, начиная со старших битов к младшим битам до нахождения неравенства в некоторой позиции. Когда неравенство найдено, то, если соответствующий бит A{\displaystyle A} равен 1 и такой же бит B{\displaystyle B} равен 0, то мы считаем, что A>B{\displaystyle A>B}.
Это последовательное сравнение может быть выражено логическими выражениями как:
- (A>B)=A3⋅B¯3+x3⋅A2⋅B¯2+x3⋅x2⋅A1⋅B¯1+x3⋅x2⋅x1⋅A0⋅B¯0{\displaystyle (A>B)=A_{3}\cdot {\overline {B}}_{3}+x_{3}\cdot A_{2}\cdot {\overline {B}}_{2}+x_{3}\cdot x_{2}\cdot A_{1}\cdot {\overline {B}}_{1}+x_{3}\cdot x_{2}\cdot x_{1}\cdot A_{0}\cdot {\overline {B}}_{0}},
- (A<B)=A¯3⋅B3+x3⋅A¯2⋅B2+x3⋅x2⋅A¯1⋅B1+x3⋅x2⋅x1⋅A¯0⋅B0{\displaystyle (A<B)={\overline {A}}_{3}\cdot B_{3}+x_{3}\cdot {\overline {A}}_{2}\cdot B_{2}+x_{3}\cdot x_{2}\cdot {\overline {A}}_{1}\cdot B_{1}+x_{3}\cdot x_{2}\cdot x_{1}\cdot {\overline {A}}_{0}\cdot B_{0}}.
(A>B){\displaystyle (A>B)} и (A<B){\displaystyle (A<B)} — выходные двоичные переменные, которые равны 1 когда A>B{\displaystyle A>B} или A<B{\displaystyle A<B} соответственно.
Для примеров приведены таблицы истинности тривиального однобитового и двухбитового компараторов.
Логическая функция однобитового цифрового компаратора описывается таблицей истинности:
Таблица истинности двухбитового компаратора: