Site Loader

Содержание

Электрическая цепь — Википедия

Материал из Википедии — свободной энциклопедии

Электрическая цепь

Условное обозначение электрической цепи
Изучается в Теория электрических цепей[d]
Альтернативное имя гальваническая цепь
Commons-logo.svg Медиафайлы на Викискладе

Электри́ческая цепь (гальвани́ческая цепь) — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение.

Изображение электрической цепи с помощью условных знаков называют электрической схемой (рисунок 1).

Неразветвленные и разветвленные электрические цепи[править | править код]

Commons-logo.svg
Рисунок 1 — Разветвленная цепь

Электрические цепи подразделяют на неразветвленные и разветвленные. Во всех её элементах неразветвленной цепи течёт один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 1. В ней имеются три ветви и два узла. В каждой ветви течёт свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течёт одинаковый ток) и заключённый между двумя узлами. В свою очередь, узел есть точка цепи, в которой сходятся не менее трёх ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 1), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом.

Линейные и нелинейные электрические цепи[править | править код]

Линейной электрической цепью называют такую цепь, все компоненты которой линейные. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы (подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и катушки индуктивности. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной.

Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту, от напряжения на этом компоненте называется вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток.

В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.

Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.

Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке). Этот подход называют «линеаризацией». При этом к цепи может быть применён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные, являются практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).

Законы, действующие в электрических цепях[править | править код]

  • Электротехника: Учеб. для вузов/А. С. Касаткин, М. В. Немцов. — 7-е изд., стер.— М.: Высш. шк., 2003.— 542 с.: ил. ISBN 5-06-003595-6
  • Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3.

Схемы электрических цепей и ЭДС

Схемы электрической цепи, понятие параметров и элементов электрических цепей:

Для начала вспомним определения:

Параметрами электрической цепи называется величина, связывающая ток и напряжение на конкретном участке цепи (r – сопротивлением, рис. 1 а; L – индуктивностью, рис. 1 б; C  – ёмкостью, рис. 1 в. ).

Элементами электрической цепи называют отдельные устройства входящие в электрическую цепь и выполняющие в ней определённую функцию. Пример отдельных элементов и простой схемы электрической цепи:

Тоэ - 5а элементы

Рис.1

                                             Схемы электрических цепей:

        При конструировании, монтаже и работе электрических установок (электрооборудования) нельзя обойтись без электрических схем. Электрические схемы по своему назначению различаются на несколько типов: структурные, функциональные, принципиальные, монтажные, однолинейные, и др.

        Принципиальная схема даёт полное представление о работе электроустановки, полный состав элементов и связи между ними.

         Схема электрической цепи – это графическое представление изображения электрической цепи, которая содержит условные обозначения элементов и соединение этих элементов. Условные обозначение в электрических схемах установлены стандартами системы ЕСКД. Различают последовательное и параллельное соединение элементов в схемах и электрических цепях. Сложные электрические схемы образуются в результате включения групп элементов соединенных между собой последовательно или параллельно (см. на рис. 2).

Тоэ - 6(3)

 Рис.2

                                Электродвижущая сила (ЭДС):

       Физические процессы получения электрической энергии различаются в зависимости от вида преобразуемой энергии, где главное различие состоит в природе сил, которые разделяют положительный и отрицательный заряды в веществе. На электрически заряженные частицы кроме сил электрического поля при определенных условиях действуют сторонние силы, обусловленные неэлектромагнитными процессами (тепловые процессы, химические реакции и т.д.)

             В результате действия сторонних сил в источнике электрической энергии происходит разделение электрических зарядов и образуется электродвижущая сила (ЭДС).

                Величина, характеризующая способность стороннего поля и индуцированного электрического поля вызывает электрический ток, называется электродвижущей силой.

     Для примера рассмотрим преобразование тепловой энергии в электрическую:

            В замкнутой цепи из двух разных металлов при одинаковой температуре (контактов 1 и 2) электрический ток не возникает, так как контактные разности потенциалов в обоих контактах  одинаковы, но направлены в противоположные стороны по цепи (см. рис. 3):

Тоэ - 7а

        Рис.3

 

Электрическая цепь и её схема. Что такое электрическая схема?

Ассоциативное представление

Какие ассоциации возникают при словосочетании электрическая цепь? Должно быть сразу возникает картина в виде источника питания, простой батарейки, потом от неё идут провода, которые подсоединены к лампочке, а её нить накала светится ярким светом. Это простейшая схема электрического фонарика с лампой накаливания, только вот ещё тумблер подключить и всё готово. Это бытовая, обыденная ассоциация, которая скорее всего возникнет у не специалиста в электротехнике.

Какая ассоциация возникает с электрической цепью у специалиста электротехника? Пожалуй, в первую очередь, это будет осветительная сеть, ну или электрическая цепь, где подключается асинхронный двигатель через магнитный пускатель. Это уже профессиональная ассоциация.

У физика, который занимается наукой и исследованиями в области электродинамики электрическая цепь будет ассоциирована с электромагнитными полями, источниками полей, с приборами и научной аппаратурой.

Занимающийся практической электроникой скорее всего представить печатную плату со множеством контактных дорожек на ней и впаянных в неё элементов. Специалист разработчик микроэлектронных схем, который создаёт новые микросхемы, чипы, драйвера устройств, будет ассоциировать электрическую цепь с топологией микросхем (микрочип).

Все эти ассоциации будут верными, но они не являются определениями электрической цепи. Понимание и знание того, что такое электрическая цепь и в чём её отличие от электрической схемы — это ключ ко всей теории электрических цепей.

Определение электрической цепи

Одно из самых лучших определений электрической цепи имеет следующее содержание.

Совокупность устройств и объектов, образующих пути для электрического тока, электромагнитные процессы в которой могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении, называют электрической цепью

Это полное определение, но возможен его сокращённый минимизированный вариант, который может быть вот таким:

Электрическая цепь — это соединение элементов образующих контур, в котором возможно существование электрического тока

Следует разобрать логически эти определения, чтобы получить тот самый ключ, о котором сказано выше. Давайте попробуем по порядку сделать такой разбор.

Логический разбор определений электрической цепи

В определениях, и в полном и кратком, речь идёт о совокупности и соединении элементов (устройств и объектов). Это означает, что не разрозненно, что имеется какое-то сочетание, объединение тех самых элементов. Это говорит нам также о том, что элементы способны к такому соединению. Далее можно сделать вывод, что должны существовать способы и виды таких соединений. Назовём это первым условием определяющим электрическую цепь.

Слова о том, что такое соединение образует пути (контур), в котором может существовать электрический ток — это второе условие определяющее электрическую цепь. Отсюда следует, что возможны такие сочетания элементов, в которых тока быть не может в принципе. Самое важное здесь — это электрический ток, который хотя бы потенциально может осуществится в путях и контуре. Дело в том, что путь тока всегда замкнут, такова его природа. Поэтому путь всегда замкнут и он именуется контуром. Из этого второго условия следует, что существуют пути, которые можно назвать ветвями, и контуры, без которых ток не может образовать замкнутый путь. Отсюда возникает топология электрических цепей. Ток обязательно имеет источник, поэтому как минимум один элемент будет являться источником тока (ЭДС).

Остаётся только уточнение из полного определения, где говорится о свойстве совокупности устройств и объектов (элементов). В ней могут происходить электромагнитные процессы, что вполне объяснимо самой природой электрического тока. Там где не может быть потока электричества (ток), не может быть и электромагнитных явлений. Отсюда следует, что наличие электромагнитных процессов говорит нам о существовании тока. Зачем же нужно такое уточнение? Есть такое явление, как электромагнитная волна, которое для краткости можно объяснить как возмущение в электромагнитном поле. Для того, чтобы отмежеваться от волновых явлений, дальше по тексту сказано, что электромагнитные процессы ограничиваются лишь теми, которые описываются с помощью понятий об ЭДС, токе и напряжении. Это фактически третье условие, которое не заметно до тех пор, пока ничего не известно об электромагнитных волнах и излучении.

Чем глубже будут проанализированы логически определения, чем лучше знания слов, образующих определение, тем лучше (глубже) будут поняты эти определения. Такую процедуру можно провести с любыми грамматически верными выражениями, не только с вышеприведёнными.

Электрическая схема

Почти каждому человеку приходилось пользоваться хоть раз в жизни географической картой. Во всяком случае, ещё со школы с тем, что такое глобус и географические карты, знаком каждый. Географический глобус или карта не являются Землёй или частью её поверхности. Точно в таком же соотношении находятся электрическая схема и электрическая цепь. Схема метрополитена указывает где какие пути и станции, где узловые развязки, где с одной линии (кольца) можно перейти на другую. Схема всегда является символическим изображением чего-либо, но она никак не может заменить собой оригинал.

Достаточно кратко можно определить так:

Электрическая схема — это символическая запись электрической цепи

Точно также, как был сделан логический разбор определения цепи, можно сделать разбор определения схемы. Самое важное всего в двух словах. Это символ и запись. Способы и виды соединений в электрической цепи, а также элементы цепи, все они имеют свою

символическую запись. Из многих символов, точно также как и из алфавита языка, собираются слоги, слова, фразы, простые и сложные предложения, и даже целые сочинения. Электрическая схема больше похожа на иероглифическую запись, потому как состоит из графических символов. Для того, чтобы уметь читать электрические схемы, нужно начинать с алфавита базовых символов, а затем надо научится правильно сочетать эти элементы, чтобы затем уметь составлять по ним реальные электрические цепи.

Электрические схемы бывают разными, в зависимости от своего функционального назначения. Есть схемы, где в первую очередь показаны функциональные узлы и их назначение. Это похоже на оглавление в книге, сразу виден план повествования, а в схеме ясно представляется, что именно каждая часть схемы делает. Есть схемы монтажные, где символически показано какие элементы цепи и где они расположены, как смонтированы на плате, в щите, в панели и т. д. Из монтажной схемы трудно сделать выводы о работе электрооборудования, но легко выполнять монтаж и демонтаж, замену и профилактику. Есть ещё принципиальные схемы, где символы элементов расположены так, что читая схему можно понять и описать всю работу электрической цепи.

Для расчётов и анализа электрических цепей, используют в первую очередь принципиальные схемы, а при разработке и модернизации цепи нужны в том числе и функциональные схемы и монтажные (установочные). Когда приходится иметь дело со сложным электрооборудованием, например, конвейерная линия или автоматический комплекс, то все схемы собираются в альбомы, которые могут иметь более 100 листов различных форматов.

Освоив алфавит электрических схем, или как иначе говорят — язык схемотехники, вы сможете научится не только читать схемы, но и самостоятельно проектировать новые электрические цепи.

Самая простая электрическая цепь и её схема

Пользуясь определением электрической цепи и схемы, можно изобразить схему простейшей электрической цепи. Такая комбинация элементов была представлена ещё в самом начале статьи. Это цепь состоящая минимум из одного источника тока (ЭДС) и одного нагрузочного элемента, которым для наглядности может служить электрическая лампа накаливания.

Дата: 20.06.2015

© Valentin Grigoryev (Валентин Григорьев)

Элементы электрической цепи

Содержание:
  1. Схемы электрических цепей
  2. Активные и пассивные элементы электрической цепи
  3. Условные обозначения элементов электрической цепи
  4. Трехфазные электрические цепи

Каждая электрическая цепь включает в себя различные устройства и объекты, создающие пути для прохождения электрического тока. Для описания электромагнитных процессов, происходящих в каждом из них, применяются такие понятия, как электродвижущая сила, ток и напряжение.

Условно все элементы электрической цепи разделяются на три составные части:

  • Первая представлена источниками питания, вырабатывающими электроэнергию.
  • Вторая – элементами, преобразующими электричество в другие виды энергии. Они больше известны, как приемники.
  • Третья часть состоит из передающих устройств – проводов и других установок, обеспечивающих уровень и качество напряжения.

Схемы электрических цепей

Элементы электрических цепей могут соединяться в схемах различными способами. Для каждого из них существуют определенные закономерности, установленные и сформулированные учеными Омом и Кирхгофом. Соединение потребителей в электрических цепях может быть последовательным, параллельным и комбинированным.

Последовательное соединение. В этом случае с увеличением количества потребителей, происходит рост общего сопротивления цепи. Отсюда следует, что значение общего сопротивления будет состоять из суммы сопротивлений каждой подключенной нагрузки. Поскольку на всех участках цепи проходит одинаковый ток, в связи с этим на каждый элемент распределяется только часть общего напряжения. Если какой-либо прибор или устройство перестает работать, наступает разрыв цепи. То есть, при выходе из строя хотя бы одной лампочки, остальные тоже не будут работать, как это случается, например, в елочных гирляндах. Однако в последовательную цепь можно включить большое количество элементов, каждый из которых рассчитан на значительно меньшее сетевое напряжение.

Параллельное соединение. В этом случае к двум точкам электрической цепи подключается сразу несколько потребителей. Напряжение на каждом участке будет равно напряжению, приложенному к каждой узловой точке.

На представленной схеме хорошо просматривается возможность протекания тока различными путями. Ток, притекающий к месту разветвления, далее проходит к двум нагрузкам, имеющим определенное сопротивление. В результате, он оказывается равным сумме токов, расходящихся от данной точки. Происходит снижение общего сопротивления цепи с увеличением ее общей проводимости, состоящей из проводимостей обеих ветвей. Соединение обеспечивает независимую работу потребителей. То есть, при выходе из строя одного из них, остальные будут нормально работать, поскольку цепь остается не разорванной.

Комбинированное соединение. На практике большинство приборов могут включаться в цепь сразу обоими способами – последовательно и параллельно. Поэтому такие соединения получили название комбинированных. Например, выключатели и вся автоматическая защитная аппаратура соединяется последовательно, обеспечивая тем самым разрыв цепи. Розетки или лампочки, наоборот, всегда включаются параллельно, чтобы исключить их взаимодействие между собой.

Применение такого подключения вызвано еще и различным энергопотреблением бытовых электроприборов. При постоянном напряжении их сопротивления также будут различаться между собой. Таким образом, за счет комбинированного подключения удается равномерно распределить нагрузку на линиях и не допустить перегрузок на отдельных участках цепи.

Активные и пассивные элементы электрической цепи

Элементы, входящие в состав электрических цепей, могут быть активными и пассивными. Основным признаком активных составляющих, считается их способность отдавать электроэнергию. Типичными представителями являются генераторы и другие источники электроэнергии, усилители электрических сигналов и другие. Пассивными элементами считаются различные виды потребителей и накопителей электрической энергии. К ним относятся конденсаторы, резисторы, катушки индуктивности и другие двухполюсные устройства. Существует многополюсная аппаратура, функционирующая на базе двухполюсных элементов.

Все активные элементы электрической цепи могут быть независимыми и зависимыми. В первую категорию входят источники напряжения и тока. В свою очередь, источник напряжения считается идеализированным элементом цепи, у которого напряжение на зажимах не зависит от протекающего через него электрического тока, а внутреннее сопротивление имеет нулевое значение. Источник тока также является безупречным элементом, у которого ток не зависит от напряжения на зажимах, а значение внутреннего сопротивления стремится к бесконечности.

Зависимые источники напряжения и тока именуются таковыми, когда эти величины зависят от параметров напряжения и тока на другом участке цепи. Типичными представителями являются электролампы, транзисторы, усилители, функционирующие в линейном режиме. Основные пассивные элементы электрической цепи представлены резисторами, индуктивными катушками и конденсаторами, с помощью которых регулируются параметры тока и напряжения на отдельных участках.

Резистивное сопротивление относится к идеализированным элементам цепи. Его основным свойством является необратимое рассеивание энергии. Зависимость напряжения и тока резистивного сопротивления выражается формулами: u = iR, i = Gu, в которых R является сопротивлением, измеряемым в Омах, а G – проводимостью, измеряемой в сименсах. Соотношение этих величин между собой выражено формулой R = 1/G.

Идеализированные индуктивные элементы цепи способны накапливать энергию магнитного поля. Основным параметром считается линейная индуктивность, находящаяся в линейной зависимости между магнитным потоком и током, графически представляющая собой вебер-амперную черту. Индуктивность является также и коэффициентом пропорциональности, измеряемом в Генри.

Ёмкостные элементы – конденсаторы обладают свойством накапливать энергию электрического поля. Показатель линейной емкости представляет собой линейную зависимость между зарядом и напряжением, выраженной формулой q = Cu.

Условные обозначения элементов электрической цепи

Для удобства анализа и расчетов электрических цепей, все их составляющие отображаются в виде специальных схем. Данные схемы состоят из условных обозначений используемых элементов и способов их соединения. Условные обозначения в странах СНГ могут отличаться от символики, принятой в других государствах, соответственно, будут различаться и сами схемы, поскольку использовались различные системы графических маркировок.

Все элементы на схемах условно разделяются на три группы:

  1. К первой относятся источники питания, преобразующие другие виды энергии в электрическую. В этом случае они считаются первичными. Ко вторичным источникам относятся, например, выпрямительные устройства, у которых электроэнергия имеется на входе и на выходе.
  2. Вторая группа представлена потребителями энергии, преобразующими электрический ток в тепло, освещение, движение и т.д.
  3. В третью группу входят управляющие элементы, без которых невозможна работа любой цепи. Сюда входят соединительные провода, коммутационная аппаратура, измерительные приборы и другие устройства аналогичного назначения.

Все эти составляющие охвачены единым электромагнитным процессом, поэтому они включаются в общую схему с использованием специальных условных знаков. Следует учитывать, что вспомогательные элементы могут не указываться на схемах. Не указываются и соединительные провода, если их сопротивление значительно ниже, чем у составных элементов. Источники питания обозначаются в виде электродвижущей силы. При необходимости проставляются пояснительные надписи.

Трехфазные электрические цепи

Любая трехфазная система состоит из трех отдельных электрических цепей, в каждой из которых действует синусоидальная электродвижущая сила с одинаковой частотой, создаваемая одним и тем же источником энергии. Необходимая энергия обычно создается трехфазным генератором. Между цепями образуется сдвиг на 120 градусов.

Основным преимуществом трехфазной цепи считается ее уравновешенность. Она заключается в суммарной мгновенной мощности, принимающей постоянную величину на все время действия ЭДС. В самом трехфазном генераторе существует три самостоятельные обмотки, сдвинутые относительно друг друга на 120 градусов, так же как и начальные фазы электродвижущей силы.

Если для соединения каждой фазы использовать отдельный провод, то в конечном итоге это привело бы к созданию несвязной системы из шести проводников. Прежде всего, это невыгодно с точки зрения экономии, поскольку получается значительный перерасход материалов. Поэтому были разработаны наиболее оптимальные связанные системы соединения трехфазных электрических цепей.

Одним из таких способов является соединение звездой, когда все три фазы обмоток соединяются в общей нулевой точке. Таким образом, получается трех- или четырехпроводная система. В последнем варианте предполагается использование нулевого провода. Он может не применяться при наличии симметричной системы, с одинаковыми токами фаз. Однако в случае несимметричной нагрузки с разницей фазных токов, в нулевом проводе создается ток, равный сумме векторов этих фазных токов. При выходе из строя одной из фаз, нулевой провод может заменить ее и предотвратить аварийную ситуацию в трехфазной цепи. Однако в этом качестве его можно использовать лишь кратковременно, поскольку данный провод рассчитан на более низкие нагрузки, по сравнению с фазами.

Другой способ – соединение треугольником, когда конец одной обмотки соединяется с началом другой, образуя, таким образом, замкнутый контур. Каждая фаза находится под линейным напряжением, равным фазному напряжению. Однако фазный ток будет отличаться от линейного в меньшую сторону в 1,72 раза.

Электрическая цепь и ее составные части. Видеоурок. Физика 8 Класс

На данном уроке мы повторим условия существования электрического тока и рассмотрим такое понятие, как электрическая цепь и ее основные элементы. В конце урока приведем конкретный пример сборки электрической цепи карманного фонарика.

Тема: Электромагнитные явления

Урок: Электрическая цепь и ее составные части

Вспомним, что на прошлом уроке мы оговаривали три условия наличия электрического тока:

1. наличие зарядов;

2. наличие источника тока (гальванического элемента и др.). Источник тока создает электрическое поле внутри проводника, что является причиной движения зарядов;

3. наличие электрической цепи. О последнем понятии мы будет говорить сегодня.

Электрическая цепь должна содержать источник тока (рис. 1–3), т. е. элемент, который создает в цепи электрическое поле и обеспечивает движение заряженных частиц, и потребитель тока, т. е. например, любой бытовой прибор (рис. 4): лампочку, фонарик, компьютер, телевизор, стиральную машину, холодильник и т. п. Источник тока и потребители всегда соединяются проводами (проводниками), т. е. такими элементами, которые способны проводить электрический ток и обладают большим количеством свободных заряженных частиц.

Рис. 1. Гальванический элемент (Источник)

Рис. 2. Аккумулятор (Источник)

Рис. 3. Электростанция (Источник)

Рис. 4. Потребители тока (Источник) (Источник) (Источник) (Источник) (Источник) (Источник)

Таким образом, электрическая цепь имеет следующие основные составные элементы: источник тока, потребители тока, соединительные провода.

Конечно же, потребители тока сами по себе состоят из более мелких элементов, каждый из которых имеет свое название, функцию и особенности. Электрические цепи бывают сложными и простыми, мы начнем их изучение с простейших вариантов, например, с устройства карманного фонарика. В его составные части входят: источник питания, лампочка, соединительные провода и выключатель. В конце урока мы соберем электрическую цепь, аналогичную цепи внутри фонарика и обсудим ее принцип работы.

Для удобства электрические цепи принято изображать в виде схем, в которых приняты определенные обозначения различных элементов. Условные обозначения элементов электрических цепей известны и классифицированы определенным образом, их достаточно много, но мы познакомимся с основными из них.

Определение. Электрическая цепь, изображенная на рисунке, называется электрической схемой.

 

 

Гальванический элемент (источник тока)

Как видно из рисунка, длинной полоской обозначают положительный полюс источника, а короткой – отрицательный

 

 

Гальваническая батарея (аккумулятор)

Таким образом обозначается соединение нескольких гальванических элементов

 

Соединяющиеся провода

Место соединения проводов обозначается жирной точкой, которую еще зачастую именуют узлом

 

 

Несоединяющиеся провода

Провода, которые не соединяются, в точке пересечения никак особо не выделяются

 

Лампа накаливания (лампочка)

 

Зажимы для подключения электроприборов

К подобному элементу на схеме можно подключать какой-либо электроприбор

 

Ключ (выключатель)

Элемент цепи для ее замыкания и размыкания

 

Электрический звонок

Для запоминания этого обозначения можно заметить, что оно похоже на грибочек

 

Резистор

Этот элемент цепи имеет большое сопротивление

 

Нагревательный элемент

                 

Плавкий предохранитель

Прибор, который обеспечивает безопасность работы электрической цепи

 

Указанные в таблице элементы являются составными частями простейших электрических цепей.

Рассмотрим простейшую электрическую цепь на примере устройства карманного фонарика. В нее входят источник питания, лампочка накаливания, соединительные провода и выключатель (ключ).

Собирать цепь удобно в следующей последовательности: сначала подключим лампочку к одному из полюсов источника тока (батарейки), затем второй контакт на лампочке подключаем к разомкнутому предварительно ключу (выключателю) и, чтобы замкнуть цепь, второй контакт ключа соединяем со свободным полюсом источника тока.

После сбора цепи видно, что лампочка не горит, т. к. она все еще разомкнута с помощью ключа, и электрический ток не идет (не выполнено условие замкнутости электрической цепи). Теперь замыкаем ключ, и лампочка загорается (рис. 5), т. к. цепь становится замкнутой и все условия существования электрического тока выполнены.

Рис. 5.

Изобразим схему собранной нами электрической цепи с использованием приведенных в таблице условных обозначений (рис. 6).

 

 

 

 

 

Рис. 6.

Конечно же, бессмысленно рассматривать с практической точки зрения те электрические цепи, в которых не выполняется работа электрического тока. О действии электрического тока и о выполнении им работы мы поговорим позже.

На следующем уроке нашей темой будет «Электрический ток в металлах».

 

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. – М.: Мнемозина.
  2. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Академик (Источник).
  2. Интернет-портал Mukhin.ru (Источник).
  3. YouTube (Источник).

 

Домашнее задание

  1. Стр. 78: вопросы № 1–4, стр. 79: упражнение № 13. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  2. В вашем распоряжении есть гальванический элемент, лампочка, два ключа и соединительные провода. Нарисуйте принципиальную схему электрической цепи, в которой лампочка загорается только тогда, когда включены оба ключа.
  3. Железный гвоздь и отрезок медного провода воткнули в лимон. Потечет ли ток  через провод, которым соединяют гвоздь и медный провод?
  4. С потолка в месте крепления люстры свисают три провода, по которым после подключения люстры идет ток. Если люстру подключить правильно, два выключателя работают таким образом, что один из них включает и выключает одну лампу, а другой – остальные три. Нарисуйте схему соединения ламп в люстре, выключателей и источника тока.

Электрическая цепь — это… Что такое Электрическая цепь?

Рисунок 1 — Условное обозначение электрической цепи

Электри́ческая цепь  — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение.

Изображение электрической цепи с помощью условных знаков называют электрической схемой (рисунок 1).

Классификация электрических цепей

Неразветвленные и разветвленные электрические цепи

Рисунок 2 — Разветвленная цепь

Электрические цепи подразделяют на неразветвленные и разветвленные. На рисунке 1 представлена схема простейшей неразветвленной цепи. Во всех элементах ее течет один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 2. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 2), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом

Линейные и нелинейные электрические цепи

Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы (подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и индуктивности. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной.

Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту от напряжения на этом компоненте называют вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток.

В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.

Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.

Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке). Этот подход называют «линеаризацией». При этом к цепи может быть прменён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные относятся практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).

Законы, действующие в электрических цепях

См. также

Литература

  • Электротехника: Учеб. для вузов/А. С. Касаткин, М. В. Немцов.— 7-е изд., стер.— М.: Высш. шк., 2003.— 542 с.: ил. ISBN 5-06-003595-6
  • Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3

Ссылки

Электрические цепи, элементы электрических цепей. Условные обозначения элементов электрической цепи

Электротехнические устройства очень важны в жизни современного цивилизованного человека. Но для их работы необходимо соблюдение целого ряда требований. В рамках статьи мы внимательно рассмотрим электрические цепи, элементы электрических цепей и как они функционируют.

Что нужно для работы электротехнического устройства?

Для его функционирования должна быть создана электрическая цепь. Её задача – передавать энергию устройству и обеспечивать требуемый режим работы. Что же называют электрической цепью?

электрические цепи элементы электрических цепейТак обозначают совокупность объектов и устройств, которые образуют путь передвижения тока. При этом электромагнетические процессы могут быть описаны с помощью знаний об электрическом токе, а также тех, что предлагает электродвижущая сила и напряжение. Стоит отметить, что, говоря о таком понятии, как элемент электрической цепи, сопротивление в данном случае будет играть довольно значительную роль.

Нюансы графической маркировки

Чтобы удобнее было анализировать и рассчитывать электрическую цепь, её изображают в виде схемы. В ней содержатся условные обозначения элементов, а также способы из соединения. В целом, что собой представляет электрическая цепь в виде схемы, хорошо дают понять, использованные в статье фотографии. Периодически можно встретить рисунки с иными схемами. Почему это так? Обозначения элементов электрической цепи схем, созданных на территории СНГ и других стран, немного разнятся. Это происходит из-за использования различных систем графической маркировки.

условные обозначения элементов электрической цепиОсновные элементы электрической цепи, в зависимости от конструкции и роли в схемах, могут быть классифицированы по разным системам. В рамках статьи их будет рассмотрено три.

Виды элементов

Условно их можно разделить на три группы:

  1. Источники питания. Особенностью данного вида элементов является то, что они могут превращать какой-то вид энергии (чаще всего химическую) в электрическую. Различают два типа источников: первичные, когда в электрическую энергию превращается другой вид, и вторичные, которые на входе, и на выходе имеют электрическую энергию (в качестве примера можно привести выпрямительное устройство).
  2. Потребители энергии. Они преобразовывают электрический ток во что-то другое (освещение, тепло).
  3. Вспомогательные элементы. Сюда относят различные составляющие, без которых реальная цепь не будет работать, как то: коммутационная аппаратура, соединительные провода, измерительные приборы и прочее, подобное по назначению.

Все элементы охвачены одним электромагнитным процессом.

Как трактовать изображения на практике?

Чтобы рассчитать и проанализировать реальные электрические цепи, используют графическую составляющую в виде схемы. В ней, размещённые элементы изображаются с помощью условных обозначений. Но здесь есть свои особенности: так, вспомогательные элементы обычно на схемах не указываются. Также, если сопротивление у соединительных проводов значительно меньше, чем у составляющих, то его не указывают и не учитывают. Источник питания обозначается как ЭДС. При необходимости подписать каждый элемент, указывается, что у него внутреннее сопротивление r0. Но реальные потребители подставляют свои параметры R1, R2, R3, …, Rn. Благодаря этому параметру, учитывается способность элемента цепи преобразовывать (необратимо) электроэнергию в другие виды.

Элементы схемы электрической цепи

Условные обозначения элементов электрической цепи в текстовом варианте представлены быть не могут, поэтому они изображены на фото. Но всё же описательная часть должна быть. Так, необходимо отметить, что элементы электрической цепи делят на пассивные и активные. К первым относят, например, соединительные провода и электроприёмники.

нелинейные элементы электрической цепиПассивный элемент электрической цепи отличается тем, что его присутствием при определённых условиях можно пренебречь. Чего не скажешь о его антиподе. К активным элементам относят те из них, где индуцируется ЭДС (источники, электродвигатели, аккумуляторы, когда они заряжаются и так далее). Важными в этом плане являются специальные детали схем, которые обладают сопротивлением, что характеризуется вольт-амперной зависимостью, поскольку они взаимно влияют друг на друга. Когда сопротивление является постоянным независимо от показателя тока или напряжения, то данная зависимость выглядит как прямой отрезок. Называют их линейные элементы электрической цепи. Но в большинстве случаев, на величину сопротивления влияет и ток, и напряжение. Не в последнюю очередь это происходит из-за температурного параметра. Так, когда элемент нагревается, то сопротивление начинает возрастать. Если данный параметр находится в сильной зависимости, то вольт-амперная характеристика неодинакова в любой точке мысленного графика. Поэтому элемент называется нелинейным.

Как вы видите, условные обозначения элементов электрической цепи существуют разные и в большом количестве. Поэтому запомнить их сразу вряд ли удастся. В этом помогут схематические изображения, представленные в данной статье.

В каких режимах работает электрическая цепь?

Когда к источнику питания подключено разное количество потребителей, то соответственно меняются величины токов, мощностей и напряжения.

элемент электрической цепи сопротивлениеА от этого зависит режим работы цепи, а также элементов, что в неё входят. Схему используемой на практике конструкции можно представить, как активный и пассивный двухполюсник. Так называют цепи, которые соединяются с внешней частью (по отношению к ней) с помощью двух выводов, которые, как можно догадаться, имеют разные полюса. Особенность активного и пассивного двухполюсника состоит в следующем: в первом имеется источник электрической энергии, а во втором он отсутствует. На практике широко используются схемы замещения во время работы активных и пассивных элементов. То, какой будет режим работы определяется параметрами последних (изменения благодаря их корректировке). А сейчас давайте рассмотрим, какими же они бывают.

Режим холостого хода

Он подразумевает отключение нагрузки от источника питания с помощью специального ключа. Ток в данном случае становится равным нулю. Напряжение же выравнивается в местах зажимов на уровень ЭДС. Элементы схемы электрической цепи в данном случае не используются.

Режим короткого замыкания

При таких условиях ключ схемы замкнут, а сопротивление равняется нулю. Тогда напряжение на зажимах также = 0.

основные элементы электрической цепиЕсли использовать оба режима, которые были уже рассмотрены, то по их результатам могут быть определены параметры активного двухполюсника. Если ток изменяется в определённых пределах (которые зависят от детали), то нижняя граница всегда равна нулю, и эта составляющая начинает отдавать энергию внешней цепи. Если показатель меньше нуля, то отдавать энергию будет именно он. Также необходимо принять во внимание, что если напряжение меньше нуля, то это значит, что резисторами активного двухполюсника потребляется энергия источников, с которыми существует связь благодаря цепи, а также запасы самого устройства.

Номинальный режим

Он необходим для обеспечения технических параметров как всей цепи, так и отдельных элементов. В данном режиме показатели близятся к тем величинам, что указаны на самой детали, в справочной литературе или технической документации. Следует учитывать, что каждое устройство имеет свои параметры. Но три основных показателя можно найти почти всегда – это номинальный ток, мощность и напряжение, их имеют все электрические цепи. Элементы электрических цепей также все без исключения обладают ими.

Согласованный режим

Он используется для обеспечения максимальной передачи активной мощности, которая идет от источника питания к потребляемому энергию. При этом нелишним будет высчитать параметр полезности.

пасивный элемент электрической цепиКогда осуществляется работа с данным режимом, необходимо соблюдать осторожность и быть готовым, что часть схемы выйдет из строя (если заранее не проработать теоретические аспекты).

Основные элементы во время проведения расчетов для электрических цепей

Они используются в сложных конструкциях, чтобы проверить, что и как будет работать:

  1. Ветвь. Так называют участок цепи, на котором одна и та же величина тока. Ветвь может комплектоваться из одного/нескольких элементов, которые последовательно соединены.
  2. Узел. Место, где соединяется как минимум три ветви. Если они соединены с одной парой узлов, то их называют параллельными.
  3. Контур. Подобным образом именуют любой замкнутый путь, который проходит по нескольким ветвям.

Вот такие деления имеют электрические цепи. Элементы электрических цепей во всех случаях, кроме ветви, обязательно присутствуют в множестве.

Условные положительные направления

Их необходимо задавать, чтобы правильно формулировать уравнения, которые описывают происходящие процессы. Важность направления есть для токов, ЭДС источников питания, а также напряжений.

линейные элементы электрической цепиОсобенности нанесения разметок на схемы:
  1. Для ЭДС источников они указываются произвольно. Но при этом необходимо учитывать, что полюс, к которому направлена стрелка, обладает более высоким потенциалом, по сравнению со вторым.
  2. Для токов, которые работают с источниками ЭДС – должны совпадать с ними. Во всех других случаях направление является произвольным.
  3. Для напряжений – совпадает с током.

Виды электрических цепей

Как их различают? Если параметры элемента не зависят от тока, что протекает в нём, то его называют линейным. В качестве примера можно привести электропечь. Нелинейные элементы электрической цепи обладают сопротивлением, которое растёт при повышении напряжения, что подводится к лампе.

Законы, которые понадобятся при работе с цепями постоянного тока

Анализ и расчет будут гораздо эффективнее, если одновременно использовать закон Ома, а также первый и второй законы Кирхгофа.

обозначения элементов электрической цепиС их помощью можно установить взаимосвязь между теми значениями, которые имеют токи, напряжения, ЭДП по всей электрической цепи или на отдельных её участках. И это всё на основе параметров элементов, которые в них входят.

Закон Ома для участка цепи

Для нас важна сила тока (I), напряжение (U) и сопротивление (R). Данный закон выражается такой формулой: I=U/R. При расчёте электрических цепей иногда более удобно использовать обратную величину: R=I/U.

Закон Ома для полной цепи

Он определяет зависимость, которая устанавливается между ЭДС (Е) источника питания, у которого внутреннее сопротивление равно r, током и общим эквивалентом R. Формула выглядит I = E/(r+R). Сложная цепь обладает, как правило, несколькими ветвями. В них могут включаться другие источники питания. Тогда воспользоваться законом Ома для полноценного описания процесса становится проблематично.

Первый закон Кирхгофа

Любой узел электрической цепи имеет алгебраическую сумму токов, которая равна нулю.

элементы электрической цепиТоки, которые идут к узлу, в данном случае берутся со знаком плюс. Те, что направлены от него – с минусом. Важность этого закона заключается в том, что с его помощью устанавливается зависимость между токами, которые находятся на разных узлах.

Второй закон Кирхгофа

Алгебраическая сумма ЭДС в любом выбранном замкнутом контуре является равной просуммированному числу падений напряжений на всех его участках. Всегда ли это так? Нет.

элементы схемы электрической цепиЕсли в электрическую цепь были включены источники напряжений, то данный показатель будет равен нулю. Во время записи уравнения согласно этому закону необходимо:
  1. Выбрать направление, по которому будет осуществляться обход контура.
  2. Задать положительные показатели для токов, ЭДС и напряжений.

Заключение

Итак, мы рассмотрели электрические цепи, элементы электрических цепей и практические особенности взаимодействия с ними. Несмотря на то что тема предполагает объяснение с помощью несложной терминологии, из-за своего объема она достаточно сложна для понимания. Но, разобравшись в ней, можно понять процессы, происходящие в электрической цепи и назначение ее элементов.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *