Урок математики на тему Дуговая схема
Дата. 18.11.15
Предмет. Математика.
УМК “Перспективная начальная школа” Автор Чекин А.Л.
Тема Действие сложения. Дуговая схема.
Целевой блок
Задачи урока
Образовательные: Познакомить с дуговой схемой, с составом числа 5.
Способствовать развитию: математического развития.
Воспитывать:точность
Планируемые результаты
Предметные: Знать состав числа 5.
Личностные: Стремление к самоизменению – приобретению новых знаний и умений.
Метапредметные:
Регулятивные УУД: Выполнять и контролировать действие по заданному образцу и правилу.
Коммуникативные УУД: Умение оформлять свою мысль в устной речи.
Познавательные УУД: Преобразовывать информацию из одной формы в другую: находить и формулировать решение примеров с помощью простейших моделей (рисунков, схем)
Инструментальный блок
Тип урока
онз
Учебно-методический комплекс
Учебники, тетради
Организационно-деятельностный блок
Основные понятия
Сложение, состав чисел
Организация пространства
Работа парами, коллективная работа
Межпредметные связи
Русский язык
Деятельность учителя
Деятельность учащихся
1.Создание психологического комфорта
Просыпаемся с утра — нам считать уже пора.
Открываем мы тетрадь — снова хочется считать.
1, 2, 3, 4, 5 — я иду тебя искать!
Математика, приди и всему нас научи!
2. Создание ситуации успеха
Повторение сторон:
Положьте 4 палочки справа и 3 палочки слева.
Над 4 палочками положьте палочек меньше
Под 3 палочками положите больше палочек
Из палочек постройте замкнутую линию, у которой будет столько вершин. (показываю цифру 4)
Постройте незамкнутую линию, у которой будет столько звеньев (5)
3. Физминутка
Хомка
4. Постановка учебной цели
Сегодня у нас очень важная тема – она пригодится вам решать задачи в будущем.
5. Решение учебной задачи
посмотрите, прочтите и скажите сколько будет? 3+2
Откуда вы узнали?
Что означает число 3?
Не заметил ли ты на рисунке другой знак, обозначающий это же число зайчат?
Что обозначает знак 2?
Не заметил ли ты на рисунке другой знак, обозначающий это же число?
Кто объяснит смысл знака +?
Не заметил ли ты другой знак, обозначающий общее число?
Давайте обозначим рисунок кружочками.
Сколько кружочков мы нарисуем сначала вместо зайчат?
Сколько кружочков мы нарисуем вместо котят?
Сколько всего животных?
А мы видим сколько было зайчат и сколько было котят?
Кто это сделает?
Это называется дуговая схема .
6. Этап первичного закрепления. Работа по учебнику с.59.
-№ 3
-№7
7. Работа в тетрадях.
-№6 стр.60
-№7 стр. 60
7 Рефлексия
Что нового узнали на уроке?
Понравилась ли тебе твоя работа на уроке?
Что тебе понравилось и не понравилось?
Чья работа тебе понравилась?
Урок окончен, спасибо за урок!
Выполняют на партах
Хомка, хомка, хомячок, полосатенький бочок.
Хомка раненько встаёт, щёчки моет, шейку трёт,
Подметает хомка хатку и выходит на зарядку.
Раз, два ,три, четыре, пять-хомка хочет сильным встать!
Это число зайчат
Это же число зайчат обозначено дугой.
Цифра 2 обозначает число котят.
На рисунке обозначено это же число маленькой дугой.
Н ахождение общего числа животных
На рисунке общее число обозначено большой дугой
3
2
5
Нет
Начертить дуги
(О о о) ( о о)
Составление рассказа по картине, по данной математической записи
1+2
Работа парами.
Выполнение сложения с помощью схем
К записи 3+1 построить дуговую схему
К рассказу о лягушках построить дуговую схему
что это такое, причины возникновения, свойства
Наблюдать искровые разряды приходилось каждому, в том числе и людям, далёким от познаний в электротехнике. Гигантскими искровыми разрядами сопровождаются грозы. Высвобождение огромной энергии, сконцентрированной в электрическом разряде молнии (см. рис. 1), сопровождается ослепительной вспышкой раскалённого ствола. Одним из видов искровых разрядов, созданных человечеством, является дуговой разряд, или попросту, электрическая дуга.
На сегодняшний день причины возникновение и свойства электрической дуги детально изучено наукой. Физики установили, что в области её горения возникает огромная концентрация зарядов, которые образуют плазму ствола. Температуры столба достигает нескольких тысяч градусов.
Что такое электрическая дуга?
Это загадочное явление впервые описал русский учёный В. Петров. Он создавал электрическую дугу, используя батарею, состоящую из тысяч медных и цинковых пластин. Изучая процесс зажигания дуги постоянным током, учёный пришёл к выводу, что воздушный промежуток между электродами при определённых условиях приобретает электропроводимость.
Одним из условий возникновения электрического пробоя является достаточно высокая разность потенциалов на концах электродов. Чем выше напряжение, тем больший газовый промежуток может преодолеть разряд. При этом образуется электропроводный газовый столб, который сильно разогревается во время горения дуги.
Возникает резонный вопрос: «Почему воздух, являющийся отличным изолятором в обычном состоянии, вдруг становится проводником?».
Объяснение может быть только одно – в стволе дуги образуются носители зарядов, способные перемещаться под действием электрического поля. Поскольку в воздухе, в отличие от металлов, нет свободных электронов, то вывод напрашивается только один – ионизация газов (см. рис. 3). То есть, запуск процесса насыщения газа ионами, являющимися носителями электрического заряда.
Ионизация воздуха происходит под действием различного вида излучений, включая рентгеновское и космическое облучение. Поэтому в воздухе всегда находятся небольшое количество ионов. Но поскольку ионы почти сразу рекомбинируются (превращаются в нейтральные атомы и молекулы), то концентрация заряженных частиц всегда мизерная. Получить вспышку дуги при такой концентрации невозможно.
Для возникновения дугового разряда нужен лавинообразный процесс ионизации. Его можно вызвать путём сильного нагревания газа, которое происходит при зажигании.
При размыкании контактов происходит эмиссия электронов, скапливающихся на очень маленьком пространстве. Под действием напряжённости электрического поля отрицательные заряды устремляются к электроду с положительным знаком.
При достижении напряжения пробоя, между электродами возникает искровой разряд, разогревающий область между электродами. Если ток достаточно большой, то количество тепла будет достаточно для запуска лавинообразного процесса ионизации воздуха.
На участке, который называют дуговым промежутком, образуется ствол, называемый столбом дуги и состоящий из горячей проводимой плазмы. По этому стволу протекает ток, поддерживающий разогревание плазмы. Так происходит процесс зажигания дугового разряда.
Насыщение плазменного ствола ионами разных знаков приводит к значительному увеличению плотности тока, а также к рекомбинации части ионов. Разогревание плазмы приводит также к увеличению давления в стволе. Поэтому часть ионов улетучивает в окружающее пространство.
Если не поддерживать образование новых зарядов, то произойдёт гашение дуги. Как мы уже выяснили, устойчивому горению сопутствуют 2 фактора: наличие напряжения между электродами и поддержание высокой температуры плазмы. Исключение одного из них, приведёт к гашению дуги.
Таким образом, можем сформулировать определение электрической дуги. А именно электрическая дуга — это вид искрового разряда, сопровождающегося большой плотностью тока, длительностью горения, малым падением напряжения на промежутке ствола, характеризующегося повышенным давлением газа, в котором поддерживается высокая температура.
Электрическая дуга отличается от обычного разряда большей длительностью горения.
Строение
Электрическая дуга состоит из трёх основных зон:
- катодной;
- анодной;
- плазменного столба.
В сварочных дугах размеры катодной и анодной зоны незначительные, по сравнению с длиной столба. Толщина этих зон составляет тысячные доли миллиметра. В зоне катодного падения напряжения (на конце отрицательного электрода) наблюдается наличие катодных пятен, которые образуются в результате сильного нагревания.
На рисунке 4 изображена схема строения дуги, создаваемой сварочным аппаратом.
Рис. 4. Строение сварочной дугиОбратите внимание: с целью достижения наглядности, на картинке сильно преувеличены электродные зоны. В действительности их толщина измеряется в микронах.
Свойства
Высокая плотность тока в стволе электрической дуги определяет её главные свойства:
- Чрезвычайно высокую температуру плазменного ствола и околоэлектродных зон.
- Длительное горение, при поддержании условий образования ионов.
Эти свойства необходимо учитывать при борьбе с возникновением электрической дуги, так и при её применении в некоторых сферах.
Полезное применение
Как это ни странно, но физики нашли применение этому электрическому явлению ещё на этапе развития науки об электричестве. Пример тому – лампочка Яблочкова. Она состояла из двух угольных электродов, между которыми зажигалась электрическая дуга.
У этой лампы были два недостатка. Электроды быстро изнашивались (выгорали), а спектр света смещался в ультрафиолетовую зону, что негативно влияло на зрение. По этим причинам дуговые лампы не нашли широкого применения и их быстро вытеснили лампы накаливания, существующие до сегодняшнего дня.
Исключение составляют дугоразрядные лампы, а также мощные прожектора, используемые преимущественно в военных целях.
Дуговой разряд стал массово применяться на практике с момента изобретения сварочного аппарата. Дуговую сварку применяют для сварки металлов. (см. рис. 5)
Используя проводимость плазмы, включая в сварочную цепь специальные сварочные электроды, достигают высокой температуры в сосредоточенном пятне. Регулируя сварочный ток, сварщик имеет возможность настроить аппарат на нужную температуру дугового разряда. Для защиты ствола от тепловых потерь, металлические электроды покрыты специальной смесью, обеспечивающей стабильность горения.
Электрическую дугу применяют в доменных печах для плавки металлов. Дуговая плавка удобна тем, что можно регулировать её температуру путём изменения параметров тока.
Наряду с полезным применением, в электротехнике часто приходится бороться с дуговыми разрядами. Не контролированный дуговой разряд может нанести существенный вред на линиях электропередач, в промышленных и бытовых сетях.
Рис. 6. Дуговой разряд на ЛЭППричины возникновения
Исходя из определения, можем назвать условия возникновения электрической дуги:
- наличие разнополярных электродов с большими токами;
- создание искрового разряда;
- поддержание напряжения на электродах;
- обеспечение условий для сохранения температуры ствола.
Искровой разряд возникает в двух случаях: при кратковременном соприкосновении электродов или при приближении к параметрам пробоя. Мощный электрический пробой всегда зажигает ствол.
При сохранении оптимальной длины дуги температура плазмы поддерживается самостоятельно. Однако, с увеличением промежутка между электродами, происходит интенсивный теплообмен ствола с окружающим воздухом. В конце концов, в стволе, вследствие падения температуры, образование ионов лавинообразно прекратится, в результате чего произойдёт гашение пламени.
Пробои часто случаются на высоковольтных ЛЭП. Они могут привести к разрушению изоляторов и к другим негативным последствиям. Длинная электрическая дуга довольно быстро гаснет, но даже за короткое время горения её разрушительная сила огромна.
Дуга имеет склонность к образованию при размыкании контактов. При этом контакты выключателя быстро выгорают, электрическая цепь остаётся замкнутой до момента исчезновения ствола. Это опасно не только для сетей, но и для человека.
Способы гашения
Следует отметить, что гашение дуги происходит и по разным причинам. Например, в результате остывания столба, падения напряжения или когда воздух между электродами вытесняется сторонними испарениями, препятствующими ионизации.
С целью недопущения образования дуг на высоковольтных проводах ЛЭП, их разносят на большое расстояние, что исключает вероятность пробоя. Если же пробой между проводами всё-таки случится, то длинный ствол быстро охладится и произойдёт гашение.
Для охлаждения ствола его иногда разбивают на несколько составляющих. Данный принцип часто используют в конструкциях воздушных выключателей, рассчитанных на напряжения до 1кВ.
Некоторые модели выключателей состоят из множества дугогасительных камер, способствующих быстрому охлаждению.
Быстрой ионизации можно достигнуть путём испарения некоторых материалов, окружающих пространство подвижных ножей. Испарение под высоким давлением сдувает плазму ствола, что приводит к гашению.
Существуют и другие способы: помещение контактов в масло, автодутьё, применение электромагнитного гашения и др.
Воздействие на человека и электрооборудование
Электрическая дуга представляет опасность для человека своим термическим воздействием, а также ультрафиолетовым действием излучающего света. Огромную опасность таит в себе высокое напряжение переменных токов. Если незащищённый человек окажется на критически близком расстоянии от токоведущих частей приборов, может произойти пробой электричества с образованием дуги. Тогда на тело, кроме воздействия тока, окажет действие термической составляющей.
Распространение дугового разряда по конструктивным частям оборудования грозит выжиганием электронных элементов, плат и соединений.
Видео по теме
Ручная дуговая сварка: ГОСТ, технология, режимы, виды
Ручная дуговая сварка – это быстрый и надежный способ неразъемного соединения металлических деталей. Сварка кузнечным способом была известна людям уже несколько тысячелетий назад, она отличалась большой трудоемкостью и требовала долгого обучения и накопления опыта. В начале XX века начала применяться электродуговая сварка, металл нагревался до температуры плавления с помощью электрической дуги. За столетие возможности электродуговой сварки существенно возросли, а удобство работы сварщика повысилось. Теперь этой технологией может овладеть любой домашний мастер.
Ручная дуговая сваркаПроцедура выполнения дуговой сварки
Технология ручной дуговой сварки состоит из следующих основных операций
- Подготовка заготовок и оборудования. Свариваемые поверхности необходимо тщательно очистить от ржавчины, остатков старой краски и других жидких и твердых загрязнений. Очистку проводят механическим и химическим способом. Заготовки размещают на сварочном столе или на полу так, чтобы зазор между соединяемыми деталями был минимальным, и фиксируют струбцинами и другими приспособлениями. Один провод от сварочного аппарата присоединяют к детали, другой к держателю электрода.
- Розжиг дуги. Подают напряжение на электрод и подносят его к заготовкам, кратким касанием и отведением на 3 мм разжигают дугу. Ручная дуговая сварка началась.
- Выполнение шва. Держатель ведут вдоль линии сварочного соединения с постоянной скоростью, сохраняя расстояние до детали. По окончании операции напряжение отключают.
- Завершающие операции. Производится зачистка соединения от окалины и неровностей, крепления с деталей снимаются, и они предаются на дальнейшие операции.
Процесс дуговой сварки
В зависимости от особенностей изготавливаемой конструкции и соединяемых материалов, в технологию дуговой сварки могут включаться и другие операции, такие, как предварительный нагрев заготовок, подача защитного газа и другие. Но в любом случае ручная сварка требует от сварщика точного глазомера, хорошей координации движений и твердой руки.
Принцип действия
Тепло, достаточное для плавления кромок соединяемых заготовок, получают от электрической дуги. В зоне действия дуги образуется область жидкого расплава, в которой перемешивается металл обеих заготовок. При остывании они кристаллизуются и образуют единое целое, или сварочный шов. Эту область расплава, перемещающуюся вслед за электродом и дугой вдоль линии шва, называют сварочной ванной. Металлический электрод стержень покрывают специальным составом, или флюсом. При нагревании он расплавляется, выделяя инертный газ, образующий защитное облачко над рабочей зоной и препятствующий окислению расплава.
Схема ручной дуговой сварки
Для поддержания электродуги на держатель и на заготовки подают напряжение от источника.
Ручную дуговую сварку ведут как постоянным, так и переменным током. Для этого применяются специализированные или универсальные источники.
Ручная дуговая сварка цветных металлов и сплавов, отличающихся повышенной химической активностью в нагретом состоянии, проводится в атмосфере специально подаваемых в рабочую зону защитных газов.
Устройство сварочного выпрямителя
Ученые и изобретатели постоянно вносят усовершенствования и изобретают новые методы для такой важной в жизни людей технологии, как ручная дуговая сварка
Особенности ручной дуговой сварки
Главной особенностью технологии является создание неразъемного, прочного и долговечного соединения заготовок. Дуговая сварка — наверное, самая распространенная сегодня сборочная операция. Ее используют при производстве самых разнообразных изделий и конструкций, включая высоконагруженные узлы, сохраняющих прочность при статических, динамических и периодических нагрузках, в условиях экстремальных температур, агрессивных сред, высоких и низких давлений и радиационного облучения.
Для получения прочного и долговечного соединения ручная дуговая сварка требует устойчивого электроснабжения. Кроме того, сварочные работы нужно проводить в сухом помещении или во временных палатках, для защиты рабочей зоны от влаги и сильных порывов ветра
Классификация и способы
По типу применяемого электрода ручная дуговая сварка может быть:
- Плавящимся.
- Неплавящимся.
По типу применяемого тока
- Постоянным.
- Переменным.
- Трехфазным.
Классификация дуговой сварки
По предварительной термической подготовке деталей
- Обычная.
- «На горяче».
По степени автоматизации процесса различают
- Ручную.
- Полуавтоматическую.
Существуют и другие виды, применяемые в особых условиях на производстве.
Преимущества ручной дуговой сварки
Основные преимущества технологии перед другими видами сварки заключаются в следующем:
- Работать можно в любом пространственном положении.
- Доступна работа в стесненных условиях.
- Возможно соединять различные металлы и сплавы.
- Простота использования и освоения.
- Мобильность.
Но, кроме очевидных достоинств, методу свойственны и недостатки:
- Вредные факторы, влияющие на здоровье сварщика.
- Зависимость качества от квалификации и опыта.
- Малая производительность.
Последний фактор не так важен при ограниченном объеме работ, типичном для домашней мастерской.
Используемые электроды
Все электроды подразделяются на две большие группы:
- Плавкие;
- Неплавкие.
Электроды
Плавкие применятся намного шире, они расходуются в процессе работы, а их металл включается в шовный материал. Флюсовый порошок, которым они обмазаны, сгорает в пламени электродуги. При этом выделяются химически малоактивные газы, образующие защитную атмосферу над сварочной ванной.
Неплавкие делается из тугоплавкого материала, в основном вольфрама, они не расходуется во время сварки и служит лишь для подведения тока к дуге. Защитную атмосферу в этом случае создают подачей газа через шланг или насыпая флюсовый порошок вдоль линии сварки.
Кроме того, они различаются по диаметру. Диаметр определяет как сварочный ток, который на него необходимо подать, так и максимальную толщину соединяемых деталей.
Источники питания
Для ручной электросварки применяют следующие разновидности источников тока:
- Трансформаторы. Уходящий в прошлое, громоздкий и очень тяжелый источник. Преобразует высокое напряжение питающей сети в пониженное, пропорционально увеличивая силу тока. Ручная дуговая сварка переменным током требует высокого мастерства сварщика, источник сильно зависит от стабильности параметров питающей электросети и вызывает в ней помехи и броски напряжения. Не рекомендуется для начального обучения.
- Выпрямители. Представляет собой тот же громоздкий сварочный трансформатор, дополненный выпрямительным блоком. Ручную дуговую сварку ведет постоянным током, но при этом сохраняет остальные недостатки трансформатора.
- Инверторы. Современный сварочный аппарат. В нем переменный ток из сети путем многократных преобразований превращается в постоянный ток, напряжение которого стабилизировано. Работа его не зависит от изменений напряжения в питающей сети, и сам он также не вызывает бросков напряжения. Отличается малым весом и габаритами, его легко переносить, а маломощные модели вообще можно носить на плечевом ремне. Это очень удобно при сварке протяженных конструкций, например, заборов. Оснащен электронными системами стабилизации параметров дуги и защиты от прилипания электрода. Идеально подходит как для начального обучения, так и для дальнейшей работы. Доступен по цене.
- Полуавтоматы. В качестве источника тока используется инвертор. В этом классе аппаратов используется сварочная проволока, подаваемая в рабочую зону специальным механизмом. Вместо флюсового напыления применяется прямая подача газа из баллона в рабочую зону. Многократно превосходит инвертор по производительности и по диапазону доступных для соединения металлов и сплавов. В несколько раз дороже инвертора равной мощности.
- Сварочный полуавтомат
- Трансформатор для сварки
Для начального обучения и небольших объемов работ лучше выбрать инвертор, для сложных работ или больших объемов больше подойдет полуавтомат.
Положение электродов во время работы
От правильного положения и траектории движения электрода во время ручной дуговой сварки напрямую зависит как качество соединения, так и производительность работы сварщика
Наиболее распространены траектории, ориентированные вдоль оси электрода. Движение таким образом помогает поддерживать оптимальный дуговой зазор. Слишком короткая дуга вызывает перегрев рабочей зоны, разбрызгивание металла и прилипание электрода. Слишком длинная дуга может вызвать непровар, появление пор или угасание дуги.
Далее следует освоить равномерное движение вдоль линии соединения деталей. Если движение будет строго поступательным, получится ровный и тонкий шов, ширина которого может превышать диаметр электрода не более чем в полтора раза. Такую траекторию используют для сваривания листов и профилей малой толщины, при исполнении многослойных соединений.
Следующий тип траектории — к продольному движению добавляются короткие поперечные перемещения, напоминающие очень плотную строчку «зигзаг» на швейной машинке. Здесь также очень важно следить за тем, чтобы в крайнем положении каждого «стежка» не увеличивался дуговой зазор.
Надо выполнять движение змейкой всей кистью. Такой вид траектории позволяет добиться существенно большей ширины и глубины проплавки.
Ширина такого сварочного соединения может в три, а у опытного сварщика — и в пять раз превышать диаметр электрода.
Основы безопасности при работе
Ручная дуговая сварка является источником повышенной опасности. Основные факторы, вредящие здоровью сварщика и лиц, работающих рядом с ним, следующие:
- Высокая температура дуги и рабочей зоны, могущая вызвать ожоги.
- Разбрызгивание раскаленного металла и разлет частиц шлака при зачистке.
- Мощное ультрафиолетовое излучение, приводящее к заболеваниям кожи и глаз вплоть до слепоты.
- Высокое напряжение питающей сети.
- Вредные сварочные газы и пары металла, вдыхание которых приводит к отравлению и заболеваниям органов дыхания.
- Пожароопасность.
Электрододержатели и защитные приспособления
Исходя из этого, следует соблюдать следующие требования по безопасности
- Использовать индивидуальные средства защиты: маску со светофильтром, респиратор, краги сварщика и невоспламеняющуюся спецодежду и обувь.
- Обеспечить качественную вытяжную вентиляцию.
- Перед началом работы осмотреть оборудование на предмет отсутствия механических повреждений и нарушения изоляции.
- Надежно закрепить свариваемые заготовки инвентарными крепежными приспособлениями или специальной оснасткой.
- Не загромождать рабочую зону, следить за положением кабелей и шлангов.
- После окончания сварных работ выключить оборудование.
Выполнение этих требований позволит сохранить здоровье и сберечь материальные ценности.
Что влияет на качество и размеры сварного шва
Одна из важных характеристик, определяющих качество сварного соединения — это провар, определяемый как отношение ширины шва к его глубине в поперечном сечении.
На геометрические показатели влияют следующие факторы:
- Сила тока. Чем она больше, тем большей глубины проплава можно достигнуть. Глубина проплава зависит также от плотности свариваемого материала — чем плотнее металл, тем меньшей глубины удастся добиться при той же силе тока. Сила тока не оказывает существенного воздействия на ширину.
- Тип применяемого тока. При сварке постоянным током соединение получается более узким, а при использовании переменного тока той же интенсивности-более широким.
- Диаметр электрода также оказывает влияние на глубину и ширину шва. При большем больше диаметре электродуга получается мощнее, позволяя получить более широкий шов.
- Рабочее напряжение также влияет на параметры шва — при его повышении ширина шва увеличивается.
Схема сварки под флюсом
Флюс, сгорая в пламени дуги, выделяет защитные газы, а твердые остатки образуют шлак, также попадающий в сварочную ванну.
Химический состав шлака оказывает сильное влияние на качество.
Он:
- улучшает качество обработки стали;
- стабилизирует тепловой режим рабочей зоны и повышает скорость плавления;
- облегчает формирование сварного шва;
- повышает стабильность электродуги.
Существует способ ручной дуговой сварки, при котором используются цельнометаллические плавящиеся электроды, а флюс в виде порошка насыпается вдоль линии будущего шва. По мер прохождения сварочной ванны порошок плавится, а при остывании шлак отделяется от поверхности сваренного металла. Такой способ применяет на промышленных предприятиях в специальных случаях.
В целом автоматическая сварка дает намного лучшие, а главное, стабильные результаты качества работ, чем ручная дуговая. Причина этого заключается в том, что все параметры процесса, включая положение сварочной головки, угол ее наклона и расстояние до поверхности контролируются компьютером. К тому же автомат не утомляется, его внимание не рассеивается и он не подвержен влиянию вредных факторов рабочей зоны.
Как варить швы в разных положениях
Ручная дуговая сварка позволяет варить в самых разнообразных положениях. ДЛЯ каждого из них существуют свои технологические указания, направленные на обеспечение высокого качества работ.
Параметры режима ручной дуговой сварки
Нижнее положение
Сварщик находится сверху относительно рабочей зоны, заготовки расположены горизонтально. Это самое простое и самое распространенное положение. В нем необходимо следить лишь за полным проплавлением сечений и не допускать прожогов. Требуется надежно закрепить заготовки инвентарными крепежными средствами, а под них подложить специальные монтажные прокладки из меди.
Скачать ГОСТ 5264-80
Вертикальное положение
В этом положении начинает действовать такой осложняющий работу фактор, как земное притяжение. Под его воздействием расплавленный металл будет стремить покинуть сварочную ванну и стечь вниз. Работу рекомендуется вести в направлении снизу вверх, чтобы стекающие расплавленные капли попадали на сформированный шовный материал. Этот прием заметно снижает скорость работы, но позволяет сохранить качество. При выборе направления сверху вниз скорость повысится, но заметно упадет глубина проплава.
Сварка вертикальных швов
Потолочное положение
Это самое сложное положение, в котором приходится работать сварщику. Чтобы расплавленный металл не пролился вниз, требуется снизить вес сварочной ванны до такой степени, чтобы он удерживался силами поверхностного натяжения. Это достигается уменьшением скорости и периодической приостановкой работ для того, чтобы металл успевал схватываться.
Ручная дуговая сварка в потолочном положении
Умение работать в потолочном положении — признак высокой квалификации сварщика.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
определения, причина возникновения и как обезопасить себя
В статье узнаете что такое электрическая дуга, вспышка, как она появляется, историю происхождения, а также ее опасность, что происходит во время электрической дуги и как себя обезопасить.
Электробезопасность имеет первостепенное значение для поддержания любого эффективного и производительного объекта, и одной из самых серьезных угроз для безопасности работников является электрическая дуга и вспышка дуги. Советуем вам статье предотвращение поражения электрическим током.
Электрические пожары приводят к катастрофическим повреждениям, а в промышленных условиях они часто бывают вызваны электрическими дугами того или иного типа. В то время как некоторые типы электрических дуг трудно не заметить, «вспышка дуги громкая и сопровождается большим ярким взрывом», некоторые электрические дуги, такие как дуговой разряд, более тонкие, но могут быть столь же разрушительными. Неисправности дуги часто являются причиной электрических пожаров в жилых и коммерческих зданиях.
Проще говоря, электрическая дуга — это электрический ток, который намеренно или непреднамеренно разряжается через зазор между двумя электродами через газ, пар или воздух и создает относительно низкое напряжение на проводниках. Тепло и свет, производимые этой дугой, обычно интенсивны и могут использоваться для специальных применений, таких как дуговая сварка или освещения. Непреднамеренные дуги могут иметь разрушительные последствия, такие как: пожары, опасность поражения электрическим током и повреждение имущества.
Электрическая дугаЭлектрическая дуга история происхождения
В 1801 году британский химик и изобретатель сэр Хэмфри Дэви продемонстрировал электрическую дугу своим товарищам в Лондонском королевском обществе и предложил название — электрическая дуга. Эти электрические дуги, выглядят как неровные удары молнии. За этой демонстрацией последовали дальнейшие исследования электрической дуги, показал русский ученый Василий Петров в 1802 году. Дальнейшие успехи в ранних исследованиях электрической дуги позволили получить такие важные в отрасли изобретения, как дуговая сварка.
По сравнению с искрой, которая является только мгновенной, дуговой разряд представляет собой непрерывный электрический ток, который выделяет так много тепла от несущих зарядов ионов или электронов, что он может испарять или плавить что-либо в пределах диапазона дуги. Дуга может поддерживаться в электрических цепях постоянного или переменного тока, и она должна включать в себя некоторое сопротивление, чтобы повышенный ток не оставался без контроля и полностью разрушал фактический источник цепи с его потреблением тепла и энергии.
Практическое применение
При правильном использовании электрические дуги могут иметь полезные цели. На самом деле, каждый из нас выполняет ряд ежедневных задач благодаря ограниченному применению электрических дуг.
Электрические дуги используются в:
- вспышках камер
- прожекторах для освещения сцены
- люминесцентного освещения
- дуговой сварки
- дуговых печах (для производства стали и таких веществ, как карбид кальция)
- плазменных резаках (в которых сжатый воздух объединяется с мощной дугой и преобразуется в плазму, которая имеет способность мгновенно разрезать сталь).
Опасность электрической дуги
Электрические дуги также могут быть чрезвычайно опасными, если они не преднамеренны в использовании. Ситуации, когда электрическая дуга создается в неконтролируемой среде, как в случае вспышки дуги, могут привести к травмам, смерти, пожару, повреждению оборудования и потере имущества.
Чтобы защитить работников от электрических дуг, компании должны использовать следующие продукты дуговой вспышки, чтобы уменьшить вероятность возникновения электрических дуг и уменьшить ущерб в случае их возникновения лучше использовать
Перчатки с защитным дуговым разрядом — эти перчатки предназначены для защиты рук от поражения электрическим током и сведения к минимуму травм в случае электрического проишествия.
Дуговая вспышка определение
Определение дуговых вспышек — нежелательный электрический разряда, который проходит через воздух между проводниками или из проводника к земле. Вспышка дуги является частью дугового разряда, который является примером электрического взрыва, вызванного соединением с низким импедансом, которое проходит через воздух к земле.
Когда возникает дуговая вспышка, она создает очень яркий свет и интенсивное тепло. Кроме того, он может создать дугу, которая может вызвать травмирующую силу, которая может серьезно ранить кого-либо в этом районе или повредить что-либо поблизости.
Что происходит во время вспышки дуги
Вспышка дуги начинается, когда электричество покидает намеченный путь, и начинает распространяться по воздуху в направлении заземленной зоны. Как только это происходит, он ионизирует воздух, что еще больше снижает общее сопротивление вдоль пути, по которому идет дуга. Это помогает привлечь дополнительную электрическую энергию.
Дуга будет двигаться таким образом, чтобы найти ближайшее расстояние к земле. Точное расстояние, которое может пройти вспышка дуги, называется границей вспышки дуги. Это определяется потенциальной энергией и множеством других факторов, таких как температура воздуха и влажность.
При работе по повышению безопасности вспышки дуги, установка будет часто отмечать границу вспышки дуги, используя клейкую ленту для пола. Любой, кто работает в этой области, должен будет носить средства индивидуальной защиты (СИЗ).
Потенциальная температура дуговой вспышки
Одной из самых больших опасностей, связанных с вспышкой дуги, является чрезвычайно высокая температура, которую она может создать. В зависимости от ситуации, они могут достигать высоких температур в 35000 градусов по Фаренгейту или 19426.667 градусов Цельсия. Это одна из самых высоких температур в мире, которая примерно в 4 раза выше, чем на поверхности Солнца.
Даже если фактическое электричество не касается человека, тело человека получит колоссальные повреждения, если он находится рядом с ним. В дополнение к прямым ожогам, эти температуры могут что-то поджечь в этом районе.
Как выглядит вспышка электрической дуги
Следующее видео показывает, насколько быстрой и взрывной может быть вспышка дуги. На этом видео показана управляемая вспышка дуги с «испытательным манекеном»:
Как долго длится вспышка электрической дуги
Вспышка дуги может длиться где-то от доли секунды до нескольких секунд, в зависимости от ряда факторов. Большинство вспышек дуги не длятся очень долго, потому что источник электричества быстро отключается автоматическими выключателями или другим защитным оборудованием.
Самые современные системы в настоящее время используют устройства, известные как элиминаторы дуги, которые обнаруживают и гасят дугу всего за несколько миллисекунд.
Однако, если система не имеет какого-либо типа защиты, вспышка дуги будет продолжаться до тех пор, пока поток электричества не прекратится физически. Это может произойти, когда работник физически отключает электричество от зоны или когда повреждение, вызванное вспышкой дуги, становится достаточно серьезным, чтобы каким-то образом остановить поток электричества.
Посмотрите на реальный пример дуговой вспышки, которая продолжается в течение длительного периода времени, в следующем видео. К счастью, люди на видео были одеты в свои средства индивидуальной защиты и остались без травм. Мощный взрыв, громкий шум, яркий свет и огромная температура — все это чрезвычайно опасно.
Потенциал повреждения от вспышки электрической дуги
Из-за высоких температур, интенсивных взрывов и других результатов дуговой вспышки, дуговые вспышки могут очень быстро нанести большой ущерб. Понимание различных типов повреждений, которые могут возникнуть, может помочь предприятиям планировать свои обязанности по обеспечению безопасности.
Потенциальный ущерб собственности
- Тепло — тепло от дуговой вспышки может легко расплавить металл, что может повредить дорогостоящие машины и другое оборудование.
- Пожар — тепло от этих вспышек может быстро привести к пожару, который может распространиться через объект, если его не остановить.
- Взрывы — дуговой удар, который может возникнуть в результате дуговой вспышки, может разбить окна, расколоть дерево в этой области, погнуть металл и многое другое. Все, что хранится в радиусе взрыва дуги, может быть повреждено или уничтожено за считанные секунды.
Потенциальная травмы человека от вспышки электрической дуги
- Ожоги — ожоги второй и третьей степени могут возникнуть в доли секунды, когда кто-то находится вблизи вспышки дуги.
- Удар током — если вспышка дуги проходит через человека, он получит удар, как на электрическом стуле. В зависимости от силы тока, этот удар может быть смертельным.
- Слуховое повреждение — дуговые вспышки могут вызывать очень громкие шумы, которые могут привести к необратимому повреждению слуха тех, кто находится в этом районе.
- Повреждение зрения — Дуговые вспышки могут быть очень яркими, что может привести к временному или даже долговременному повреждению глаз.
- Ущерб от взрыва дуги — Взрыв дуги может создать силу, которая составляет тысячи фунтов на метр. Это может сбить человека с ног на несколько метров. Это также может вызвать переломы костей, коллапс легких, сотрясение мозга и многое другое.
Ношение средств индивидуальной защиты может обеспечить значительную степень защиты, но не может устранить все риски. Сотрудники, которые присутствуют при возникновении дуговой вспышки, всегда находятся под угрозой, независимо от того, какие СИЗ они носят.
Потенциальные причины вспышки электрической дуги
Вспышки дуги могут возникать по разным причинам. В большинстве случаев основной причиной будет поврежденный элемент оборудования, такой как провод. Это также может быть результатом того, что кто-то работает над оборудованием, что позволяет электричеству выходить с пути, к которому он обычно привязан.
Даже когда есть потенциальный путь за пределами проводки, электричество будет идти по пути наименьшего сопротивления. Вот почему вспышка дуги не обязательно произойдет, как только что-то будет повреждено или появится альтернативный путь. Вместо этого электричество будет продолжать идти по намеченному пути, пока не станет доступен другой вариант с меньшим сопротивлением.
Вот некоторые вещи, которые могут создать путь с меньшим сопротивлением и, следовательно, вызвать вспышку дуги:
- Пыль — в пыльных местах электричество может начать проходить через проводку или другое оборудование через пыль.
- Уроненные инструменты — например, если инструмент упал на провод, он может повредить его и пропустить электричество в инструмент. Оттуда он должен найти другой путь, чтобы продолжить свое движение.
- Случайное прикосновение — если человек касается поврежденной области, электричество может распространяться через его тело.
- Конденсация — когда образуется конденсат, электричество может выходить из проводки через воду, и тогда возникнет дуга.
- Отказ материала — Если провод поврежден до точки, в которой возникли проблемы с прохождением электричества, путь может быть более устойчивым, чем выход за пределы провода.
- Коррозия — Коррозия может создать путь за пределами проволоки, после чего возникает вспышка дуги.
- Неправильная установка — Если оборудование установлено неправильно, это может затруднить или сделать невозможным для электричества следовать по намеченному пути, что может вызвать вспышку дуги.
Предотвращение вспышек электрической дуги
Первый шаг в безопасности вспышки дуги сводит к минимуму риск возникновения. Это можно сделать, выполнив оценку электрического риска, которая может помочь определить, где находятся самые большие опасности на объекте. IEEE 1584 является хорошим вариантом для большинства объектов и поможет выявить общие проблемы.
Регулярные проверки всего высоковольтного оборудования и всей проводки являются еще одним важным шагом. Если есть какие-либо признаки коррозии, повреждения проводов или другие проблемы, их следует устранить как можно скорее. Это поможет безопасно хранить электрические токи внутри машин и проводов.
Некоторые конкретные области, которые должны быть проверены, включают в себя любые электрические распределительные щиты, щиты управления, панели управления, корпуса розеток и центры управления двигателями.
Надлежащая маркировка
В любом месте на объекте, где могут существовать высокие электрические токи, должны быть надлежащим образом отмечены предупреждающими метками дуги. Они могут быть приобретены предварительно изготовленными или распечатаны на любом промышленном принтере этикеток по мере необходимости. В статье 110.16 Национального электротехнического кодекса четко указано, что этот тип оборудования должен иметь маркировку для предупреждения людей о рисках.
Обесточивающее оборудование при выполнении технического обслуживания
Всякий раз, когда машина требует какой-либо работы, она должна быть полностью обесточена. Обесточивание машины — это больше, чем просто выключение. Все машины должны быть отключены и физически отключены от любого источника питания. После отсоединения следует также проверить напряжение, чтобы убедиться, что скрытая энергия не накапливалась.
В идеале должна существовать политика блокировки, которая установит физическую блокировку источника питания, чтобы его нельзя было случайно подключить обратно, пока кто-то работает на машине.
Предохранители
По возможности, автоматические выключатели должны быть установлены на всех машинах. Эти автоматические выключатели быстро обнаружат внезапный скачок напряжения и немедленно остановят поток. Даже при использовании автоматических выключателей может возникнуть дуговая вспышка, но она будет длиться лишь часть времени, так как электрический ток будет отключен.
Однако даже очень короткая вспышка дуги может привести к смертельному исходу, поэтому автоматические выключатели не должны рассматриваться как достаточная программа обеспечения безопасности вспышки дуги.
Стандарты безопасности
Все объекты должны учитывать различные стандарты безопасности при использовании дуговых вспышек, которые были установлены государственными и частными учреждениями. Определение того, какие стандарты должны соблюдаться, может помочь обеспечить соответствие объекта местным правилам и нормам, а также обеспечить безопасность объекта.
Ниже приведены наиболее распространенные стандарты безопасности дуговой электрической вспышки:
- OSHA — OSHA имеет несколько стандартов, в том числе 29 CFR частей 1910 и 1926. Эти стандарты охватывают требования для производства, передачи и распределения электроэнергии.
- Национальная ассоциация противопожарной защиты (NFPA) — стандарт NFPA 70-2014 , Национальный электротехнический кодекс (NEC) относится к безопасной электрической установке и практике. Стандарт NFPA 70E , Стандарт электробезопасности на рабочем месте, детализирует различные требования к предупредительным надписям, включая предупредительные надписи, касающиеся дуговых вспышек и дуговых взрывов. Он также предлагает рекомендации по внедрению лучших практик на рабочем месте, чтобы помочь сотрудникам, работающим с высоковольтным оборудованием, быть в безопасности.
- Канадская ассоциация стандартов Z462 — Это очень похоже на стандарты NFPA 70E, но применимо для канадских компаний.
- Лаборатории страховщиков Канады — этот набор стандартов предназначен для любой ситуации, когда производится, передается или распределяется электроэнергия, и охватывает требования безопасности. Аналогично стандартам OSHA, но для Канады.
- IEEE 1584 — это набор руководящих принципов для точного расчета опасности дуговых вспышек.
Дуговая сталеплавильная печь — Википедия
Дуговая сталеплавильная печь — электрическая плавильная печь, в которой используется тепловой эффект электрической дуги для плавки металлов и других материалов.
Раскалённые электроды Загрузка материала в печьВ обозначении дуговой сталеплавильной печи, как правило, присутствует её ёмкость в тоннах (например, ДСП-12). Диапазон печей варьируется от 1 до 400 тонн. Температура в ДСП может достигать 1800 °C.
Дуговая сталеплавильная печь (ДСП) состоит из плавильной ванны (рабочего пространства), регулятора мощности дуги и вспомогательных технологических механизмов, позволяющих открыть (закрыть) свод печи, собрать шлак и выпустить расплавленный металл.
Регулирование мощности электрической дуги производится программно-адаптивным регулятором, который с помощью привода перемещает электроды в вертикальной плоскости. Известны регуляторы электрической дуги с электромеханическим приводом, которые вследствие своей инерционности не получили большого распространения и сейчас практически полностью вытеснены регуляторами с электрогидравлическим приводом.
Как правило, ДСП имеет индивидуальное электроснабжение через так называемый «печной» трансформатор, подключённый к высоковольтной линии электропередач. Мощность трансформатора может достигать 300 МВА. Его вторичное напряжение находится в пределах от 50 до 300 В (в современных печах до 1200 В), а первичное от 6 до 35 кВ (для высокомощных печей до 110 кВ). Вторичное напряжение регулируется при помощи ступенчатого переключателя, который сохраняет свою работоспособность также и в режиме плавки.
Плавка стали производится в рабочем пространстве печи, которое ограничено сверху куполообразным сводом, снизу и с боков, соответственно, сферическим подом и стенками, кожух которых изнутри выложен огнеупорным материалом. Съёмный свод может быть набран из огнеупорных кирпичей, опирающихся на опорное кольцо, или, как и стенки печи, может быть сделан из водоохлаждаемых панелей. Через три симметрично расположенных в своде отверстия в рабочее пространство введены токопроводящие графитовые электроды, которые с помощью специальных механизмов могут перемещаться вверх и вниз. Печь обычно питается трёхфазным электрическим током, также существуют печи постоянного тока. Современная мощная дуговая печь используется преимущественно как агрегат для плавки шихты и получения жидкого полупродукта, который дальнейшей обработкой доводят до требуемого химического состава.
Впервые в мире возможность использования дуги для плавления металлов была показана В. В. Петровым в 1803 году. Петров показал, что с помощью такой дуги можно не только расплавлять металлы, но и восстанавливать их из окислов, нагревая их в присутствии углеродистых восстановителей. Кроме того, ему удалось получить сваривание металлов в электрической дуге.
В 1810 году Сэр Гемфри Дэви провёл экспериментальную демонстрацию горения дуги. В 1853 году Пишон попытался построить электротермическую печь. В 1878-79 годах Сэр Вильгельм Сименс получил патент на электрическую печь дугового типа. В 1899 году первая дуговая сталеплавильная печь прямого действия, построенная Эру.
Хотя ДСП применялись во время второй мировой войны для получения сплавов стали, широкое распространение получила только после её окончания.
Переливание металла в промежуточный ковшПлавка в ДСП, после осмотра печи и ремонта пострадавших участков футеровки (заправка), начинается с завалки шихты. В современные печи шихту загружают сверху при помощи загрузочной бадьи (корзины). Для предохранения подины от ударов крупными кусками шихты на дно бадьи загружают мелкий лом. Для раннего шлакообразования в завалку вводят известь 2-3 % от массы металлической шихты. После окончания завалки в печь опускают электроды, включают высоковольтный выключатель и начинают период плавления. На данном этапе возможна поломка электродов (при плохой проводимости между электродом и шихтой исчезает электрическая дуга и электрод упирается в непроводящий кусок шихты). Регулирование отдаваемой мощности осуществляется изменением положения электродов (длины электрической дуги) либо напряжения на электродах. После периода расплавления в печи образуется слой металла и шлака. Шлак скачивают через шлаковую летку (рабочее окно), постоянно присаживая шлакообразующие, в течение всего периода плавления, с целью удаления фосфора из расплава. Шлак вспенивают углеродсодержащими материалами для закрытия дуг, для лучшей его скачиваемости и уменьшения угара металла.
Выпуск готовой стали и шлака в стальковш осуществляется через сталевыпускное отверстие и жёлоб путём наклона рабочего пространства (или, если печь оборудована вместо жёлоба донным выпуском, то через него). Рабочее окно, закрываемое заслонкой, предназначено для контроля за ходом плавки (замер температуры металла и отбор пробы химического состава металла). Также рабочее окно может использоваться для подачи шлакообразующих и легирующих материалов (на малых печах). На современных сверхмощных печах подача шлакообразующих во время плавки осуществляется через специальное отверстие в своде конвейерной подачей. Углеродистые материалы для вспенивания шлака подаются в печь либо порционно через свод, либо вводятся инжекционными горелками струёй сжатого воздуха. Перед выпуском и во время выпуска в стальковш добавляются легирующие и раскислители, а при отсекании печного шлака ещё и шлакообразующие материалы.
Использование электрической энергии (электрического тока), возможность расплавить шихту (металлолом) практически любого состава, точное регулирование температуры металла и его химического состава подтолкнуло промышленность к использованию ДСП в ходе второй мировой войны для производства легированной стали, качественного литья и, как следствие, деталей оружия и боеприпасов. Сегодня дуговые сталеплавильные печи производят различные сорта сталей и чугунов, а также могут являться источником сырья (полупродукта) для АКП и МНЛЗ.
Высокий местный перегрев под электродами; трудность перемешивания и усреднения химического состава стали; значительное количество продуктов горения и шума во время работы.
Основными задачами автоматизированного управления процессом плавки являются:
- Централизованный контроль технологического процесса и работы печи с выдачей информации о регистрации и сигнализации отклонений от заданных значений.
- Управление технологическим процессом.
- Управление энергетическим режимом, обеспечивающие максимальное использование мощности печи.
- Управление вспомогательными операциями.
- Сбор и отборка информации с выдачей необходимой документации.
- Контроль за работой оборудования с сигнализацией и регистрацией неисправностей[1].
- ↑ Глинков Г.М., Маковский В.А. АСУ ТП в черной металлургии. — 2-е. — М.: Металлургия, 1999. — С. 251—263. — 310 с. — ISBN 5-229-01251-х.
- Свенчанский А. Д., Смелянский М. Я. Электрические промышленные печи. — М.: 1970.
- Лебедев И. А.,. Электрическая печь // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Линчевский Б. В., Соболевский А. Л., Кальменев А. А. Металлургия чёрных металлов. — М.: 1986.
- Сапко А. И. Исполнительные механизмы регуляторов мощности дуговых электропечей. М., Энергия, 1969. — 128 с.
Рефлекторная дуга ☑️ строение, части и их функции, виды, общая схема, последовательность прохождения нервного импульса по дуге, примеры дуг и рефлексов
Рефлекторная дуга – это последовательный путь, который проделывают нервные импульсы во время осуществления рефлекса. Дуга состоит из множества отдельных звеньев, которые взаимосвязаны между собой и отвечают за конкретную функцию нервной системы.
Понятие рефлекторной дуги
Объяснять простыми словами, что такое рефлекторная дуга, не так уж сложно.
Это цепь нейронов, которые в определенной последовательности передают нервные импульсы от очага раздражения к головному мозгу и центрам ЦНС.
Нервная дуга является основой полноценного функционирования всей нервной системы человека.
Единицей дуги является рефлекс. Это ответная реакция организма на воздействие раздражителя.
Строение и части рефлекторной дуги
Нервная дуга состоит из пяти основных звеньев:
-
Сенсорный рецептор выполняет функции звена, где начинается рефлекторная дуга. По сути это нервное окончание нейрона или клетки, которая первой принимает на себя воздействие раздражителя;
-
Вторым звеном является афферентный нейрон. Его задача отправить центральной нервной системе информацию о раздражителе, которая была воспринята рецептором;
-
Третье звено – это нервный центр. Нервные клетки, расположенные в спинном или головном мозгу, осуществляют выдачу нужного рефлекса. Вставочные нейроны, из которых состоит нервный центр, производят анализ, обработку и передачу импульсов от начального рецептора до следующего звена – эфферентного нейрона;
-
Четвертое звено – тот самый эфферентный нейрон. Он бывает двух видов в зависимости от вызываемой реакции – двигательные, которые обращаются к мышцам, и секреторные – направляющиеся к секреторным образованиям;
-
Последним звеном дуги, где она по сути заканчивается, является рабочий орган. Это могут быть как мышцы, так и секреторные структуры. Взаимодействие всех звеньев можно рассмотреть на схематическом рисунке.
Интересно! Нормальное проявление рефлекса возможно только при условии, что все звенья рефлекторной дуги будут в рабочем состоянии.
Виды рефлекторных дуг
Биология выделяет несколько видов нервных дуг, которые отличаются строением, приемом раздражения и ответной реакцией. Разберем основные из них.
Моносинаптическая дуга
Другими словами простая рефлекторная дуга, которая состоит из двух нейронов – афферентного и эфферентного, связанных между собой одним синапсом.
Такие цепи в сложно развитых организмах практически не встречаются, поскольку в них самые простые рефлексы являются полисинаптическими.
К примерам моносинаптических рефлексов можно отнести следующие:
-
коленный;
-
движение локтевого сустава;
-
закрывание рта;
-
ахиллово сухожилие;
-
брюшной рефлекс;
-
раздражение подошвы.
Полисинаптические
Сложные рефлекторные дуги имеют в своем составе вставочные нейроны, рецепторы и эффекторы. Причем два последних элемента обычно располагаются в разных органах.
От моносинаптических рефлексов полисинаптические отличаются тем, что на время рефлекса влияет сила раздражения, на его выраженность – интенсивность раздражения.
Основные примеры полисинаптических рефлексов:
Соматическая
Соматическая нервная дуга иннервирует «сому»., т. е. органы, которые происходят из сомитов:
Дуга состоит из чувствительного, вставочного и двигательного нейрона. Она отвечает за сознательные мышечные движения, за реакцию на зрачковые, слуховые и осязательные раздражители.
Например, отдергивание руки от горячей поверхности или острого предмета, зажмуривание глаз от яркого света, движение коленным суставом при проверке доктором рефлексов в районе коленной чашечки.
Также соматическая дуга осуществляет неосознанные движения – ходьба, жестикуляция руками, улыбка.
Вегетативная
Вегетативная рефлекторная дуга не имеет вставочных нейронов. Она состоит из чувствительного нейрона, который расположен в корешке спинного нерва, и двигательного нейрона, соединенных между собой синапсом. Всего таких пар две.
Автономные рефлексы отвечают за обмен веществ, теплообмен, сердечно-сосудистую функцию, кашель, дыхание, пищеварение, слюноотделение, размножение и рост. Вегетативные реакции не подчиняются сознанию.
Схема соматического и вегетативного рефлекса показана на рисунке. Подписи позволяют понять, где что расположено, и как происходит взаимосвязь.
Принципы рефлекторной деятельности
Мы уже разобрали, что рефлекторная дуга – это многокомпонентный нейронный путь. В начале этого пути находятся рецепторы, которые постоянно попадают под воздействие внутренних и внешних раздражителей.
Полученное раздражение рецепторы преобразуют в нервные импульсы, которые по чувствительным нейронам передаются в нервные центры ЦНС, расположенные в спинномозговом отделе или в головном мозге.
Вставочные нейроны, находящиеся в нервных центрах, получают эту информацию и передают ее двигательными нервными клетками рабочим органам.
Рабочими органами могут быть любые части тела, которых коснулись раздражители. Они получают информационный импульс, который указывает им, как реагировать на раздражение – отдернуть руку, сомкнуть ладонь, чихнуть, моргнуть, глотнуть, поднять ногу, согнуть колено, переварить пищу, закрыть глаза, почесать затылок и т. д.
Все рефлексы, происходящие в организме, с точки зрения физиологии можно разделить на две большие группы:
-
Условные, появившиеся за время жизни. Такими являются слюноотделение, чтение, вождение транспорта, сгибательный рефлекс. То есть все, чему можно намеренно научиться под воздействием определенных условий.
-
Безусловные, передающиеся генетически. К ним следует отнести мигательный рефлекс, жевание, глотание, сосание, мочеиспускание, кашель, мигание, размножение.
устройство, принцип работы и сфера применения
В металлургии электродуговая печь является незаменимым оборудованием. Основное ее назначение – это переплавка металлов под воздействием высокой температуры. Такие тепловые агрегаты бывают различных видов. Они отличаются своими конструктивными характеристиками и особенностью использования.
Сфера применения
Первые дуговые печи изобрели еще в девятнадцатом веке. Использовались они для выплавки металлов. Со временем оборудования существенно усовершенствовали. На сегодняшний день дуговые печи стали незаменимыми в металлургической промышленности.
Процесс переплавки стали в дуговых печах осуществляется за счет высокого температурного режима, который достигается посредством электрической дуги. Таким образом, происходит преобразование энергии электрической в тепловую.
Благодаря высоким техническим характеристикам дуговые печи применяют для создания различных сплавов, которые используют в своих нуждах оборонные и авиационные структуры. С помощью такого теплового оборудования можно получить однородные сплавы любых металлов.
Некоторые виды дуговых печей используют для определения физико-химических анализов. Такие исследования в основном проводятся для выявления количества составляющих различных материалов.
Устройство электродуговой печи
Независимо от конструктивных особенностей все дуговые печи устроены практически одинаково. Тепловые сталеплавильные агрегаты состоят из таких основных элементов:
- механическое устройство;
- электрический отдел;
- автоматизированное управление системой;
- приспособление для подачи в рабочую часть материалов;
- емкость, в которой осуществляется плавка;
- система удаления отходов;
- газоочистка.
Цилиндрической формы корпус печи включает в себя разъемные части – кожух и днище. Каркас имеет высокую устойчивость к значительным температурным воздействиям.
Конструкция имеет держатели, в которые устанавливаются графитированные электроды. К ним подсоединены подающие электроэнергию кабели. В процессе работы печи между электродами образуется постоянная дуга. Благодаря ей в устройстве возникают температура, которая обеспечивает плавку металлов.
Как выглядит электродуговая печьК закрытом корпусе печной конструкции встроены приборы, предназначенные для автоматического управления всей системой. Контроль процесса плавки осуществляется с помощью дверок. Для удаления шлаков в каркасе находится несколько полостей. Через них также осуществляется внос различных добавок для корректировки состава металла.
Погрузка шихты в печь может осуществляться через рабочее окно или сверху. Устройства с подачей материала через специальный проем обычно небольшого размера. Загружать металлический лом в такие агрегаты модно ручным способом с помощью широкой лопаты.
Печи с верхней подачей шихты – это более мощные и габаритные устройства. Они имеют достаточно сложную конструкцию. Механизм устройства может быть трех видов:
- поворотный свод;
- выкатывающийся корпус;
- откатываемый свод.
Наиболее распространены дуговые агрегаты с поворотным механизмом.
Принцип работы сталеплавильных электродуговых агрегатов
Основной функцией дуговых печей является выделение тепла дуге, за счет высокого скопления электроэнергии. Благодаря этому выполняется плавка металла со значительной скоростью нагрева.
Гореть дуга может как в парах перерабатываемого материала, так и в обычной атмосфере. Самыми востребованными в промышленной сфере являются электродуговые сталеплавильные печи. Для производства стали расходуется вторичное сырье – лом. Процесс его расплавки состоит из нескольких этапов:
- подымается свод;
- загружается в печь шихта с помощью специального крана;
- свод закрепляется на место;
- подается электрическое питание на электроды;
- электропроводники касаются загруженного в агрегат лома;
- образуется межфазное замыкание;
- срабатывает автоматический подъем держателей с электродами;
- происходит загорание электрической дуги.
Таким образом, начинается работа печи, которая происходит при высокой температуре мощности. Состоит она из таких основных стадий:
- Расплавление металлического лома. Накаленная шихта покрывается защитной пленкой, которая преграждает к материалу доступ вредных газов. При этом осуществляется впитывание различных плохо влияющих на качество металла веществ.
- Процесс окисления. Происходит корректировка вредных элементов. В это время повышается температура в агрегате. Ее значение становится на 120 градусов выше установленного для плавки металла предела. Фосфор и сера должны занимать в общем составе не более 0,15 процентов. Также осуществляется контроль уровня водорода и азота.
- Восстановление. С материала устраняются элементы серы, и состав металла доводится до нормативных показателей.
Процесс работы печного устройства во многом зависит от его конструктивных и функциональных особенностей.
Виды и характеристика электродуговых печей
Современные дуговые печи бывают различных размеров и имеют отличительный набор функций.
Дуговые печи косвенного действия
Горение дуги в таких печах происходит между электродами, которые находятся над расплавленной массой. За счет этого осуществляется тепловой обмен между материалом и источником передачи энергии. Излучение, исходящее от дуги, а также конвекция позволяет нагреть металл до необходимой для его плавки температуры.
Дуговые печи косвенного действия оснащены таким электрооборудованием:
- электропривод механизма подач расходуемых электродов;
- трансформатор;
- регулировочное устройство.
Такие печи бывают емкостью 0,5 и 0,25 тонн. Максимальная мощность силового трансформатора может быть 600 КВ/А.
Поступление тока от трансформаторной подстанции к электродам осуществляется посредством гибких кабелей. Регулировка дистанции между электрическими проводниками производится за счет автоматизированного управления.
В электродуговых печах косвенного действия невысокий коэффициент выделения угара и испарения металла. Снижение выхода парообразных веществ достигается за счет высокого расположения эклектической дуги от материала для расплавки.
Используют дуговые косвенные печи для переплава различных цветных металлов и их сплавов. Часто такое тепловое оборудование при выплавке некоторых видов никеля и чугуна.
Косвенные дуговые печи сравнительно небольшие и в них невозможно осуществлять все процессы переплавки металлов, так как некоторые сплавы требуют большей мощности и более высокого температурного режима.
Дуговые печи прямого действия
В таких печных устройствах дуга образуется между электрическим проводником и расплавленным металлом, который благодаря этому нагревается. За чет прямого контакта между электродом и материалом происходит высокое испарение металла.
Электродуговые печи прямого действия являются достаточно мощным оборудованием, которое способно работать на трехфазном токе. Они выделяются высокой производительностью и применяются в основном для выплавки в слитки различных тугоплавких металлов, включая конструкционные и высоколегированные стали.
Электродуговая печь прямого действияЭлектропечь оснащена механизмами с гидравлическим или электромеханическим приводом, которые позволяют осуществлять наклоны для слива расплавленной стали, поворачивать и поднимать свод, а также перемещать электроды. К держателям проводников ток поступает за счет охлаждаемых воздух медных труб или шин.
Процесс зажигания электродов производится посредством снижения их к расплавленному металлу. После этого во время подъема проводников образуется электрическая дуга.
Дуговые печи сопротивления
Особенностью печей сопротивления является то, что дуга образуется внутри переплавляемого материала. Шихта может быть направлено относительно электрического разряда параллельно или последовательно.
Дуговые печи сопротивления не имеют функции наклона. Расплавленная масса проходит через специальное отверстие – летку. Электроды расположены в конструкции вертикально. Они имеют сравнительно большие размеры. Благодаря этому агрегат может работать с большой мощностью и при значительной величине тока.
В печах данного вида плавка металлов происходит с высоким показателем удельного сопротивления. Такое оборудование используется для плавления и восстановления руды. С помощью дуговых печей сопротивления можно получить сплавы чугуна, карбида, абразивов, кальция, а также никелевого штейна. Тепловые установки сопротивления в отличие от других видов дуговых печей способны доводить температурный режим до запредельных показателей.
Вакуумные дуговые печи
Такие агрегаты относятся к оборудованию прямого действия. Дуга в вакуумных печах горит в парах или инертном газе переплавляемого металла. Процесс происходит при низком давлении. Различают два типа вакуумных печей:
- С расходуемым электродом. Дуга в таких устройствах горит между переплавляемым электрическим проводником и ванной жидкого металла.
- С нерасходуемым электродом. Электрический разряд возникает между графитовым электропроводником и металлом, который расплавляется.
Как в первом, так и втором варианте плавление осуществляется в вакуумной камере. Все нагревающиеся элементы такого оборудования охлаждаются с помощью воды. Благодаря этому в вакуумных печах можно осуществлять различные действия при достаточно высоких температурах.
Агрегаты с нерасходуемым электродом практически не используются в промышленности. Основным их назначением является выплавка небольшого размера слитков в лабораторных условиях. Они являются хорошим инструментом для проведения различных анализов.
Пример электродуговой печиДуговые вакуумные печи с расходуемым электродом обширно применяются в промышленных целях. В таких устройствах во время работы с металлом происходят такие процессы:
- плавление;
- восстановление;
- раскисление;
- кристаллизация.
При этом при высокой температуре газовые летучие примеси удаляются, и происходит распад неустойчивых соединений. Благодаря этому в вакуумных дуговых печах можно получить материал с низким содержанием неметаллических примесей и газов.
Вакуумные печи используют в промышленных целях в таких отраслях как ракетостроение и атомная энергетика. С помощью такого оборудования можно получить слитки массой более 50 тонн.
Плазменно-дуговые печи
В таких установках металл нагревается за счет проходящей вместе со струей плазмы инертного газа электрической дуги. Такой процесс обеспечивает чистоту расплавляемого материала, а также позволяет значительно увеличить производительность печного оборудования.
В плазменно-дуговых печах происходит выплавка металлов с невысоким содержанием кислорода. Процесс плавления осуществляется в нейтральной атмосфере, что позволяет создать все условия для максимального выхода газов. Выплавка металла происходит с высокой скоростью.
Пламенно–дуговые печи используют для изготовления стали и сплавов высокого качества. Их применение обходится намного дешевле выплавки металла в вакуумных печах.
Преимущества и недостатки
Применение электродуговых печей для выплавки стали широко используется в металлургической промышленности. Основными преимуществами использования такого оборудования является возможность проведения таких операций:
- расплавка шихты независимо от ее состава;
- быстрый нагрев металла в печи;
- регулировка температурного режима;
- раскисление металла и получение в результате материала с низким содержанием примесей.
При переплавке стали в печном агрегате создаются все условия для снижения угара легирующих компонентов. Это обеспечивает снизить потери металлов в результате окисления при высоких температурах.
Электродуговые агрегаты широко используются в промышленных целях для переплавки различных металлов. С их помощью можно получить качественные крепкие стальные сплавы. Эффективность работы дуговой печи во многом зависит от качества теплового прибора. Поэтому приобретать следует надежное оборудование у известных и проверенных производителей.