Site Loader

Пара электронных нагрузок в виде отдельных модулей / Блог им. kirich / iXBT Live

Я уже писал как минимум три обзора электронных нагрузок, как полностью самодельной, так и собранной из «конструктора», а также заводского изготовления. В данном случае оба варианта относятся скорее к классу «конструкторов», так как не являются функционально законченным изделием, хотя и могут работать сам по себе, но требуют как минимум блока питания.
Увидел я их почти год назад, заинтересовался, и вот решил таки купить, а заодно проверить как оно «покупать на Тао».
В общем кому интересна эта тема, думаю найдут для себя много интересного.

Отчасти предпосылкой купить была сложность с проверкой мощных БП, когда моих 300-400 Ватт совсем не хватало, отчасти расширение кругозора, ну и не последним в списке была попытка купить на Таобао, потому как там попадаются весьма интересные вещи.

Проблем при покупке не возникло, и в итоге через некоторое время я получил довольно объемную посылку. Здесь я сделал небольшую ошибку, доставка довольно недешевая, а железки мои довольно увесистые.

Упаковано все было просто отлично, но это стало и небольшим минусом, так как чем больше упаковочного материала, тем выше выходит стоимость доставки 🙁
На втором фото вы видите не два товара, а один. При этом справа одна из нагрузок, а слева то, во что она была упакована.
Вторая нагрузка была упакована еще лучше, но в данном случае это была упаковка продавца, такая вот мягкая коробочка.

Не, все классно, посредник не только упаковал хорошо, но и перед этим прислал письмо, мол уважаемый Кирич, мы тут получили две непонятные железяки, а как их проверить мы даже понятия не имеем, даже не знаем что оно такое…
На что я ответил, спокойно, не паникуйте, сравните с фото в магазине, если примерно похоже, то шлите 🙂

В общем докопался я до своего заказа и в итоге на столе лежали только две электронные нагрузки.

Первой покажу «глупую», т.е. без возможности подключения к компьютеру, просто нагрузку.
Заявленная мощность — до 300 Ватт
Напряжение — до 150 Вольт
Ток — до 40 Ампер
Режимы — CC\CV

В ассортименте было много разных вариантов, которые условно отличаются напряжением 150/60 Вольт, а также током 10/20/30/40 Ампер, а также конструкцией регулировки — разъем на плате, подстроечный резистор на плате или внешний переменный резистор.

Я выбрал сразу самый «навороченный» вариант и одновременно самый мощный, т.е. 150 Вольт, 40 Ампер, 300 Ватт с внешним резистором.
Как вы видите, конструкция состоит из по сути двух одинаковым модулей, соединенных вместе. Есть также вариант с мощностью 150 Ватт, состоящий из одного модуля.

Под внешним резистором подразумевается обычный переменный резистор на небольшой платке. Забегу сразу немного вперед, смысла заказывать так нет, для удобного управления надо либо заказывать нагрузку с диапазоном 60 Вольт, либо еще лучше — поставить многооборотный резистор.

Конструкция системы охлаждения (собственно самая тяжелая часть), состоит из двух вентиляторов и специального алюминиевого радиатора, через который продувается воздух.
За конструкцию 5 баллов, где бы разжиться подобным алюминиевым профилем, еще лучше если размера не 50х50мм, а например 80х80, ну хотя бы 60х60.

Пара довольно мощных, но и весьма шумных вентиляторов, закрытых защитными решетками. Сначала подумал, вот экономисты, поставили всего по два винта на решетку, потом оказалось, что вторую пару винтов просто вкручивать некуда. Не, все таки экономисты 🙂

Две платы управления соединенные вместе, хотя корректнее сказать — не разъединенные, так как при изготовлении они обычно так и идут.
С одной платы на другую протянут проводок и явно прослеживается идея, когда одна плата делается ведущей, а вторая ведомой.

Большая часть разъемов отсутствует, но попробую пояснить, что к чему.
Ref — регулировка внешним напряжением 0-5 Вольт.
Potentiometr — внешний переменный резистор, средний контакт выведен на тот же Ref, т.е. меняет напряжение в диапазоне 0-5 Вольт.
Fan — подключение вентилятора, провода просто припаяны без всяких разъемов.
Con 1, в левой плате запаян разъем — питание 12-15 Вольт.

Также есть место под разъем 74HC. Вообще это обычно обозначение серии логических микросхем, но что в данном случае, я не знаю. Один контакт идет на землю, четыре — к микроконтроллеру.
Con 4 — термодатчик.

На другой конец платы выведены силовые разъемы для подключения нагрузки, а также:
Con 2 — по сути стоит последовательно с силовым разъемом Vin, скорее всего туда должен ставиться предохранитель, реально там припаяна какая-то пластинка. Как вариант — подключить амперметр, но разъем какой-то хиленький для тока в 20 Ампер.
Con 3 — на этот разъем выведена земля, +12 Вольт и входное напряжения Vin. Сюда можно подключить вольтметр
Fan 2 — Подключение второго вентилятора (работающего на выдув), подключенного параллельно первому.

В качестве собственно нагрузки работают четыре полевых транзистора IRFP460A. Получается по 75 Ватт на один корпус TO-247, на мой взгляд это много, очень много, мощность превышена как минимум в 1.5 раза. Обусловлено это тем, что в линейном режиме полевые транзисторы работают гораздо тяжелее. Собственно потому в моей самодельной для мощности в 400 Ватт установлены 8 транзисторов, по 50 Ватт на корпус, и то это многовато.

Но вот то, что транзисторы подключены правильно, я не могу не отметить, каждому транзистору не только свой шунт, а и свой операционный усилитель. Точно такое решение я применял в своем варианте.

Плата прикручена на четыре винта через стойки, транзисторы имеют свой крепеж, причем не забыли не только термопасту, а и правильные винты с плоской шайбой + шайба Гровера.
Когда разбирал, то подсознательно ждал что радиаторы развалятся, но нет, все обошлось, радиаторы похоже склеены между собой.
Но вот стойки можно было закрутить и посильнее…

Снизу более явно видно, как соединены платы между собой. Кстати, для более корректного подключения силовых проводов надо подключать плюс к одной плате, а минус к другой.

Если к соединению силовых разъемов особо вопросов нет, то вот провода в лаковой изоляции для соединения питания модулей, выглядят как-то совсем неправильно. Я понимаю что они там просто спрятаны, но один провод касался стойки и со временем из-за вибрации он проскреб бы изоляцию. Вы конечно спросите, откуда вибрация. Так работает то два довольно мощных вентилятора, а большего подобным проводам и не надо.

Одна из «половинок» поближе.

1. Вход питания защищен не только предохранителем на ток в 1 Ампер, а и не забыли о диоде, защищающем от переполюсовки. Но кроме того поставили и кучу конденсаторов по цепи питания, даже удивительно 🙂
2. Хоть нагрузка и «глупая», но все равно содержит микроконтроллер. В данном случае он управляет режимами работы, защитой от превышения мощности, а также вентилятором.
3, 4. Три операционных усилителя LM321. Пара обслуживает датчики тока и управления транзисторами, а один (насколько я понял) режим CV.

Кстати о управлении вентиляторами. Сделано весьма продуманно. Если нагрузка холодная, то вентилятор выключен. Включается ступенчато при превышении мощности в 20-30 Ватт на один модуль постепенно поднимая мощность обдува.
Если отключить нагрузку при холодных радиаторах, то вентиляторы выключаются сразу. Но если сначала прогреть, то выключатся они только когда температура снизится примерно до 35 градусов.
Т.е. вентиляторы управляются ступенчато и в зависимости от мощности и температуры.

Параллельно входным, силовым клеммам установлен керамический конденсатор. В моей старой также есть конденсатор, но заметно большей емкости, потому иногда немного искрит при подаче питания на вход.

У менее мощной и более «умной» нагрузки вариантов выбора было заметно меньше, 60/150 Вольт и 5/10/20 Ампер. И опять я выбрал самый мощный и высоковольтный вариант и в данном случае это возможно было ошибкой.

  Ссылка на этот вариант, цена в зависимости от характеристик — USD 17.47-22.49

Вторая нагрузка выглядит заметно меньше размером, я бы даже сказал, что по своему она даже маленькая 🙂

Применен точно такой же вентилятор и радиатор, впрочем это неудивительно, я сам бы так сделал.

На одну из сторон вынесены шунты и клеммы для подключения к тестируемому источнику.
Хоть здесь ток всего 20 Ампер, против 40 у предыдущей, клеммы более основательные. А кроме того правая клемма может быть перепаяна немного по другому и тогда можно подключить внешний балластный резистор для увеличения мощности, правда для этого придется перепрошивать контроллер, а прошивок нет 🙁
Позже я узнал, почему такие мощные клеммы, дело в том, что есть версия этой нагрузки с током до 30, 40 и даже 50 Ампер!

На правую сторону вынесена плата управления, соединенная с силовой платой при помощи шлейфа.

По печатной плате уже можно понять, что она рассчитана на большее. при этом видно, что от каждого из силовых транзисторов идет отдельная цепь для выравнивания тока на транзисторах.
Правда не обошлось и без косяков, хотя в данном случае несущественных. К транзисторам подходит силовая дорожка, а измерительная должна подходить прямо к контактам шунта. Здесь это немного видно не левой паре силовых дорожек. У правой тройки сигнал берется прямо с вывода транзистора и напряжение измеряется в цепи шунт + дорожка, а так как сопротивление меди зависит от температуры, то и сигнал будет «плавать». Но так как эта цепь не участвует в измерении тока для самой нагрузки, то можно «понять и простить».

Важное дополнение, здесь присутствует и третья плата, конвертер UART-RS485. причем конвертер с гальванической развязкой и защитными супрессорами в цепи выхода. В общем считаем что зачет, действительно полезно.
У продавца написано, что при желании можно дополнить Bluetooth конвертером. Что же, весьма полезно, как я считаю.

Так как под рукой конвертера для подключения к компьютеру у меня не было, то купил самый дешевый, буквально за 1.1 бакса в ближайшем магазине.
Собран на базе Ch440 + MAX485, я считаю что за чуть больше доллара это отлично.

Подключение предельно простое, драйвер у меня в системе уже был, но если нет, то ищется в инете без проблем.
Дальше берем любой кусок провода, соединяем А с А и В с В, всё. Вообще нужен кабель типа витой пары, но в пределах квартиры будет работать даже через бельевую веревку 🙂

Выкручиваем стойку и второй винтик, теперь можно снять плату для осмотра.

Что интересно, на плате куча мест, залитых силиконом. Мне не совсем понятна цель данного действия, так как отцарапывается он без особых проблем. Как вариант — защита от влаги отдельных узлов схемы, но тоже маловероятно.

Снизу платы пусто, даже дорожек мало, при этом большая часть отдана под земляной полигон, играющий роль экрана.

Плата имеет несколько мест для установки разъемов и соответственно подключения внешних устройств.
Для начала UART, помеченный как ModbusRTU. Насколько я понимаю, для управления используется протокол Modbus, но все мои знания о нем ограничились пока прочтением статьи в википедии.

Ниже разъем SPI, я так понимаю, что он больше нужен для подключения программатора.
Еще ниже длинный ряд контактов, сюда выведены порты микроконтроллера и питание.

А вот что такое SWIM, немного правее и выше, я не понял. Похоже туда ставится какой-то джампер, средний вывод идет на микроконтроллер, крайние — земля и питание. Т.е. таким образом можно задать три сигнала — 1, 0 и Z. я в процессе пробовал все варианты, но никакой разницы не заметил.

Если в предыдущей нагрузке все было относительно просто, то здесь компонентов побольше.
1. Собственно «мозги», в виде микроконтроллера от STM.
2. Измерительный Ultralow Offset операционник OP07, усиливает сигнал с основного шунта.
3. Также на плате находится преобразователь напряжения LMC7660, он нужен для формирования отрицательного полюса питания операционных усилителей. Я делал нечто похожее в своей электронной нагрузке, там также была связка OP07 + 7660 в цепи измерения тока.
4. Также на плате установлено два прецизионных сдвоенных операционных усилителя OPA2277. 

А вот здесь начинаются небольшие странности.
На плате есть место под два операционных усилителя, при этом даже распаяна вся их обвязка, т.е. просто запаять еще пару OPA2277.
Но самое непонятное то, что первая пара ОУ обслуживает три транзистора, а так как ОУ сдвоенные, то один еще остается. С оставшимся я не разбирался, скорее всего он используется либо для измерения напряжения, либо для управления тремя последующими ОУ.
На каждый транзистор приходится по одной «половинке», так как транзисторов установлено три (ниже покажу). Также есть место для еще пары транзисторов, но им достаточно одного сдвоенного ОУ, зачем еще один, да еще и распаянной обвязкой идентичной первым? Загадка…

Цепь защиты по входному питанию решена как и на предыдущей нагрузке, полисвитч, диод от переполюсовки и кучка конденсаторов.

А вот те три транзистора, о которых я писал выше. плата рассчитана под пять транзисторов, причем даже видно два термодатчика, размещенные между первым и вторым, а также между четвертым и пятым транзисторами. Оба термодатчика видятся в программе управления. Вообще решение очень правильное, производитель явно решил перестраховаться.
Но вот три транзистора из совсем разных партий, оригинально 🙂
Справа виднеется место под разъем для второго вентилятора.

Как я писал выше, на левой стороне платы установлены шунты. Пара П-образных — измерительные для собственно контроллера, данные с этих шунтов отображаются в программе. Шунтов два из пяти, пять используется скорее всего в 50 Ампер версии.
Правее три штуки М-образных — шунты в цепи силовых транзисторов, они используются для выравнивания тока для каждого транзистора отдельно. При этом каждый шунт стоит в цепи с операционным усилителем и ток выравнивается очень точно. Точно такое решение я применял в своей мощной нагрузке, только там 8 транзисторов, 8 шунтов и 4 ОУ. Данное решение является самым правильным, потому как обеспечивает равномерное распределение тока между элементами. Даже можно применить вообще разные транзисторы, ток все равно будет распределен равномерно.

При этом что интересно, на странице товара есть фотографии и показана забавная комбинация, распаяны все ОУ, применен широкий шлейф, т.е. подразумевается что установлено 5 транзисторов, но измерительный шкнт один, а балансирующих — два.

В части обзора более мощной нагрузки я не снимал вентиляторы, но судя по виду там стоят такие же. Довольно мощные вентиляторы 50мм с мощностью почти 3 Ватта от Дельты.
Собственно вентиляторы и являются основными потребителями, потому для данной нагрузки хватит БП 12 Вольт 0.3-0.35 Ампера, а для мощного варианта 12 Вольт 0.6 Ампера.

Перед тем, как перейти к тестам, я взвесил оба устройства. Скорее всего вы спросите, зачем, если они явно не переносные.
Так как заказывались они через посредника, то вес начинает играть довольно большую роль.
Суммарный «полезный вес» составил 1218 грамм, вся упаковка весила 318 грамм, итого общий вес посылки был 1536 грамм. Кстати в процессе у меня вышло превышение расчетного веса, и образовалась задолженность в 1.3 бакса, но посредник все равно выслал посылку. На вопрос — что делать с долгом, мне ответили — это будет учтено при следующей покупке.

Так как первой я осматривал мощный вариант, то и проверять первым буду его.
Подключаем блок питания и переходим к тестам.

Сначала пару слов об управлении.
Каждый модуль управляется своей кнопкой. Короткое нажатие — включение/выключение, длительное — переключение режима работы. При этом:
1. Если долго удерживать кнопку в выключенном режиме, то при включении включится второй режим.
2. Нагрузка «помнит» последний используемый режим.

На первом фото правильная комбинация, зеленый-зеленый, в этом режиме работает режим СС.
Если включить только вторую нагрузку, то ничего не произойдет, сама по себе она не работает.
Две следующих комбинации могут работать, но весьма некорректно, потому использовать их нельзя, впрочем я лучше дальше покажу с примерами.

1. Подключаем к лабораторному БП и выставляем на выходе 30 Вольт, нагрузка выключена.
2. Включаем ведущую (слева), ток нагрузки выставляем на уровне 1 Ампера.
3. Включаем ведомую, ток стал 1.84 Ампера, а не 2, как ожидалось, налицо некорректная калибровка.
4. Выключаем ведущую, ток падает до нуля, сама по себе ведомая работать не умеет.

Ради интереса проверил минимальное падение на нагрузке, даже с учетом кабеля оно составило 0.64 Вольта при токе в 5.1 Ампера. Как-то не догадался измерить сколько реально, но по расчетам выходит около 0.5-0,6 Вольта.

Режим CV. Собственно это была одна из важных причин, почему я купил эти нагрузки. Данный режим нужен не очень часто, но он не может быть заменен режимом СС.
Поясню, если вы проверяете блок питания, то он работает в режиме CV (стабилизированное напряжение) и нагружать его надо в режиме СС (стабилизированный ток). Но если вы проверяете зарядное устройство, то здесь обратная ситуация, оно работает в режиме CC, а нагружать соответственно его надо нагрузкой работающей в режиме CV.
Данный режим скорее похож на аналог мощного стабилитрона, ну или эквивалент аккумулятора, подключенного к тестируемому зарядному устройству.
Да, под зарядным я подразумеваю именно зарядное устройство, а не блоки питания с USB выходом, которые ошибочно называют зарядными.

И так, что же я выяснил.
1. Выставляем на выходе блока питания напряжение в 50-60 Вольт, в данном случае было 54 Вольта.
2. Выводим регулятор нагрузки в крайнее правое положение и постепенным вращением влево добиваемся пока БП перейдет в режим стабилизации тока. Все, нагрузка работает в режиме CV стабилизируя напряжения не уровне в 52 Вольта. Если бы это был не лабораторный БП, а обычный, то он просто ушел бы в защиту, так как нагрузка всеми силами препятствовала бы его нормальной работе.
3. Вращением резистора влево снижаем напряжение еще ниже, например до 16 Вольт. На фото разные токи, это не глюк, просто фото собирались в процессе разных экспериментов и настройка лабораторного БП менялась в процессе экспериментов.
4. Но выяснилась первая проблема — если включить ведомую нагрузку, то напряжение просаживается до нуля. Получается что вместе они в таком режиме работать не могут.
5, 6. у меня получалось запустить ведомую нагрузку в этом режиме, но на самом деле она не работала, это было даже видно по тому, что не запускался ее вентилятор. Кроме того, малейшие изменения и она опять падала в режим КЗ.

Получается что в режиме CV работает только ведущая нагрузка, потому мощность ограничена на уровне 150 Ватт, а не 300, как в режиме СС.
Вторая проблема заключалась в том, что нагрузка рассчитана на 150 Вольт и весь этот диапазон уложен в неполный оборот переменного резистора, соответственно о точности регулировки говорить не приходится, очень грубо. 60 Вольт версия была бы более точной, а здесь скорее всего придется заменить резистор на многооборотный.

Кроме того просто поигрался с разной мощностью, 250-300 Ватт в режиме СС нагрузка рассеивает вообще без проблем, шумит правда громко. Кстати, вентиляторы управляются независимо, и иногда слышно как один снизил обороты, а второй работает на полную.
В режиме CV у меня получалось нагрузить на 160-162 Ватта, дальше раздавался короткий писк из динамика и нагрузка отключалась. Стабильная работа была в районе 155 Ватт.

Для следующего эксперимента использовалось все то же самое, что и выше плюс конвертер USB-RS485 и соединительный кабель.

Особо в процессе не фотографировал, да по сути и фотографировать особо было нечего, потому дальше будет некоторое количество скриншотов, тесты и некоторые пояснения и описания проблем, которые я встретил на своем пути.

На странице товара была ссылка на китайскую «байду», где был выложен весь необходимый софт для работы с данным модулем.
Название основной программы я изменил на более вразумительное — DCL, в остальном «как есть».

То же самое, но с оригинальным именем файла и дополнительной информацией. Как видите, дали много всего, но есть одна проблема, анивирус и система защиты ОС Вин 10 (я пробовал с Вин 7, 8, 10) ругаются на троян в двух файлах (они оба выше имеют одинаковый значок в виде красного квадрата). Так как пробовать все равно хотелось, то пришлось отключить антивирус и запускать все на свой страх и риск.

В итоге запустилось такое ПО. Вернее таким оно должно быть. Я пробовал перейти по ссылке на страницу разработчика, там написано что ПО в «экспериментальном» варианте, потому возможны глюки. Вообще производитель занимается изготовление различных измерительных модулей, но об этом ближе к концу обзора, так будет логичнее.
И так пояснения, что и где в этом ПО, часть стала понятная сразу, часть уже в процессе экспериментов, а последняя часть вообще после перевода с китайского.
1. Окно ввода параметров.
2. Кнопки задания величины параметра, соответственно с шагом 100, 10, 1, 0.1 и 0.01. Первый и последний как правило не используются. Верхние кнопки увеличивают, нижние уменьшают, все довольно логично.
3. Кнопки перехода в режим калибровки, понял назначение случайно, ниже расскажу.
4. Задание режима работы — CC, CV, CW, CR
5. Выбор СОМ порта и номера устройства на этом порту (RS485 поддерживает несколько устройств на одной линии).
6. Включение/выключение нагрузки.
7. А здесь мне пришлось просить знакомых китайских менеджеров, которые знают при этом и более понятный для меня язык :). Это запись результатов работы в файл.

Когда же я запустил ПО у себя на компьютере, то все было более непонятно, вот именно по этому ПО я и разбирался, что и зачем.
Причем точно такая же картина наблюдалась на всех домашних компьютерах и планшетах.
Особенно я подвис когда увидел ток в 655 Ампер.

Но не будем о грустном, поясню основные рабочие режимы.
1. СС, нагрузка постоянным током, задаем ток до 20 Ампер (реально максимум 20.1 Ампера) и если мощность не превышает 150 Ватт, то нагрузка переходит в рабочий режим. Если есть превышение, то сигналит и отключается.
2. CV, то же самое, но выставляем напряжение ограничения. При переходе в этот режим отображается максимум в 151 Вольт, что вполне логично, так как его обычно уменьшают, а не поднимают.
3. CW, довольно распространенный режим, постоянная мощность. Задаем мощность в Ваттах и нагрузка будет поддерживать эту мощность, отбираемую от источника.
4. CR, весьма редкий режим для дешевых устройств, но довольно распространенный для промышленных. Здесь можно задать сопротивление «виртуального резистора» которым будет являться нагрузка. т.е. ток нагрузки будет напрямую зависеть от напряжения источника. к сожалению данный режим очень грубый и дает выбрать только с дискретностью в 1 Ом.

Также выяснилось, что стартует нагрузка очень мягко и иногда это даже раздражает. Например при установке тока в 3 Ампера сначала ток резко поднимается примерно до 2.3-2.3 А, а затем очень плавно доходит до установленного значения. Общее время установки около 30 секунд.

Еще одна проблема, с которой я столкнулся, это то, что по току нагрузка не была откалибрована. Но «не было счастья, да несчастье помогло». Дело в том, что по напряжению калибровка была отличной. Но меня все время смущали две кнопки справа от кнопок установки параметров. при клике на них выдавало какие-то непонятные цифры типа 4556 и 65432, явно какие-то два значения. Сначала я думал что это можно включать имитацию помех или пульсаций, сбила с толку буква Мю. Но в один «прекрасный» момент я понял, что по напряжению нагрузка также начала жутко врать.
и тут я вспомнил, что перед этим тыкал эти кнопки и пробовал что-то выбирать кнопками задания величины. Ну а дальше дело техники.
И так, о калибровке. Справа от кнопок задания величины есть еще пара, верхняя — напряжение, нижняя — ток.
Покажу как калибровать на примере тока.
Последовательно с нагрузкой включаем амперметр.
1. Выбираем режим СС, задаем ток например 4.5 Ампера (чем больше, тем лучше).
2. Тычем правую нижнюю кнопку (около кнопки -0.01), на экран выведет некую константу, она будет иметь большое значение, например 52435 или 65432). используя кнопки установки параметров добиваемся чтобы реальный ток был равен установленному.
3. Включаем опять режим СС, задаем небольшой ток, например 0.5-1 Ампер.
4. Два раза нажимаем на ту же кнопку калибровки, выведет константу с меньшим значением, например 3452 или 4321), пользуясь те ми же кнопками установки добиваемся чтобы реальное значение тока соответствовало установленному.
5. Повторить пока не надоест 🙂 После каждого раза значение большего и меньшего тока будет все больше соответствовать реальному, вернее реальный все ольше будет соответствовать установленному.

С напряжением примерно так же, но здесь есть два пути, правильный и неправильный:
1. Неправильный, подаем стабилизированное напряжение и меняя константы добиваемся чтобы показометр нагрузки показывал точно. Такой способ очень быстрый, но из-за большой дискретности отображения и менее точный.
2. Правильный. Подаем на вход напряжение с ограничением по току, например БП включенный через лампочку, но лучше БП с ограничением тока.
Подключаем к клеммам нагрузки вольтметр.
Переводим нагрузку в режим CV, подаем на вход некое напряжение, например 20-60 Вольт (чем больше, тем лучше) и задаем к примеру на 5 Вольт меньше поданного. Теперь напряжение на входе должно быть равно установленному, так как его задает электронная нагрузка.
Нажимаем на правую верхнюю кнопку калибровки (справа от +0.01), попадаем в режим калибровки и кнопками задания параметров подгоняем режим так чтобы наш внешний вольтметр показывал то, что установлено.
После этого переходим опять в режим CV, выставляем к примеру 5 Вольт (2-5), и повторяем все со второй константой как в примере калибровки тока.
Дальше думаю все понятно, последовательным приближением добиваемся точной установки как верхнего, так и нижнего значения.

Я не проводил особо измерения именно для обзора, но вот как минимум одно информативное фото осталось.
Слева пример работы до калибровки, видно что ток явно завышался, я поднимал с дискретой в 1 Ампер, т.е. 0-1-2-3-4.
Кроме некорректного задания тока весь процесс установки занимал много времени, примерно 1 минута 40 секунд.
Справа пример после калибровки, я поднял до 5 Ампер, 0-1-2-3-4-5, ток устанавливался точно и все заняло около одной минуты.

Помимо собственно базовых параметров можно измерять (рассчитывать) такие величины как мАч и Втч, для этого внизу есть три окна отображающие соответствующие измерения. Часы идут пока нагрузка находится во включенном состоянии, независимо от установленного режима работы, как обнулять все эти значения, не знаю, так как их помнит сам блок. Я пробовал не только перезагружать ПО, а и запускать вторую копию программы из другой папки, потому для обнуления надо передергивать питание самой нагрузки, неудобно.
Но китайцы не были бы китайцами если бы не накосячили и здесь.

Помня как работал USB тестер, я решил провести подобный эксперимент и здесь, задал ток 4 Ампера, и начал делать скриншоты через каждый 6 минут, соответственно должны быть значения 400 мАч, 4 Втч/ 800 мАч, 8 Втч и т.д.
Но выяснилось, что показания мАч занижены ровно в 10 раз, впрочем я на это обратил внимание еще когда экспериментировал до этого, но просто решил перепроверить.
Ну вот как так?
Даже вспомнился фрагмент из книги Фальшивые зеркала.
У него на ладони стоит маленькая коробочка. Мы толпимся вокруг, пытаясь разглядеть, что же это такое.
— «Варлок-9300», — отвечает Шурка. — Наконец получилось так, как задумывал…
Коробочка — это крошечная лифтовая кабина. Самая обычная, коричневого цвета, с раздвигающимися дверями, с обрывком троса наверху.
Вот только высотой лифт десять сантиметров.
— Наиболее удобная форма, — говорит Маньяк. — «Девятитысячник» тоже должен был так работать, но не реализовалось…
— Саша… Сашенька, дорогой ты мой, — хрипло говорит Падла. — А ты уверен, что не напутал с размером? А?
— Вот о размере я как-то не подумал, — самокритично сообщает Маньяк, и я понимаю, что Падлу ждёт ещё один этап наказания за шуточку.
— Видимо, где-то с запятой ошибся…

Выше я писал, что насчет одного момента мне пришлось просить помощи у тех, для кого китайский язык является родным. Справа внизу рабочего окна программы включается запись лога работы, в итоге в папке с программой формируется csv файл с такими непонятными значениями.

Вообще предоставлено много средство для работы с нагрузкой, и отчасти именно по этому дальше не будет продолжения в виде окончательной сборки устройства, так как чувствую, все еще впереди.
Например существует гипотетическая возможность строить графики —

Насколько я понял, графики строятся на основании данных из другой программы, я ее скачал и она даже пытается работать, правда выводит ерунду, потому скриншот от разработчика.

Но еще большей причиной временной паузы в сборке было то, что в процессе поисков информации я наткнулся на модуль, который умеет измерять, отображать и управлять работой устройства.

Но реализовано все это несколько странно, у модуля есть собственные цепи измерения тока и напряжения, слева видно провода, которые идут к токоизмерительному резистору (причем очень правильному, с четырьмя выводами), но при этом модуль соединен и с 485 интерфейсом.
Кроме базовых возможностей заявлено что такое дополнение позволяет —
Опционально — управление по блютуз.
Установка порогов отключения нагрузки, например минимальное напряжение или ток, а также ограничение работы по времени.
Память режимов.
Компенсация падения напряжения на проводах
Ток до 50 Ампер
Кулонометр
18 бит АЦП.
Выбор языка — китайский, английский.

Есть правда и минус, даже на Тао этот модуль стоит около 28 баксов 🙁 Но вполне возможно, что раскошелюсь.

Но идея перейти на подобное управление вызвана еще глюками ПО.
1. Периодически на экране проскакивают спонтанные значения, благо на короткое время и никак не мешают
2. Управление. Товарищи, это капец. Я понимаю что версия ПО тестовая, но чтобы настолько…..
Даже в режиме просто выбора значения тока/ напряжения и т.п. изменение каждого параметра занимает около 3 секунд.
К примеру вам надо выставить 1.2 Ампера, выглядеть это будет так —
нажимаем 1,
3 секунды пауза,
нажимаем 0.1
3 секунды пауза
нажимаем 0.1
3 секунды пауза.

А теперь представьте сколько надо времени чтобы выставить к примеру ток 5.55 Ампера….

Но скажу честно, я пока не теряю надежды на то, что ПО «допилят», а кроме того могу сказать, что к сами нагрузка (т.е. к «железу») особых замечаний по сути и нет, сами по себе они работают неплохо, а кроме того имеют вполне вменяемую цену как для функционала, так и для качества изготовления.
Собственно потому у меня вопрос, возможно кто-то из программистов, кто тоже хочет подобное устройство, сможет помочь в плане программы. Возможно есть вариант прикрутить ардуину с нормальным экраном, кнопками и энкодером. В таком случае я могу заняться «железной» частью в плане перерисовывания схемы для повторения и можно совместно сделать вполне неплохое устройство.

К большой нагрузке пока неспешно ищу хороший амперметр с вольтметром, а также многооборотный резистор и корпус + БП. Но возможно подумаю о переводе её на цифровое управление. В любом случае в планах еще как минимум один обзор с применением.

На этом наверное у меня все. Заказывал нагрузку через посредника yoybuy.com, это была моя первая попытка покупать на Тао. могу сказать что работой посредника остался полностью удовлетворен, быстро, четко, правда теперь я им должен немного денег 🙂
В процессе я подсчитывал, сколько мне вышло все вместе и у меня вышло — 31.27 + 23.49 (сами товары) + 1.9 (доставка по Китаю) + 5,67 (услуги посредника) + 27.82 (доставка ко мне) — 10 (бонус на первую покупку) = $80.15. Реально я заплатил около 78.76, потому должен еще 1.39.
В основном высокая цена вышла из-за большого веса посылки, а кроме того на данный момент цена на модули стала немного ниже.

Зарегистрироваться можно либо с сайта, либо по этой ссылке, ссылка реферальная, может какой бонус перепадет.

Уже когда получил посылки, один из моих читателей подкинул ссылку на эти же товары, только на Али, там в сумме такой же комплект выходит 93 доллара, что примерно на 13 долларов дороже чем купил я месяц назад. но даже если бы цена была одинаковой, все равно я получил в добавок небольшой опыт работы с Тао, а это уже само по себе неплохо 🙂

 

Вот теперь точно все, как всегда жду комментариев, советов, вопросов, замечаний 🙂

Данную статью можно также обсудить на форуме.

 

РадиоКот :: Модульная электронная нагрузка

РадиоКот >Схемы >Аналоговые схемы >Измерения >

Модульная электронная нагрузка

Еще одно достаточно простое устройство, которое необходимо тем, кто постоянно имеет дело с изготовлением и/или ремонтом блоков питания. Легко адаптируется и масштабируется под свои задачи и собирается из имеющихся под рукой остатков потрошеных блоков питания, материнок и пр.

История.

Понадобилась как-то протестировать очередной блок питания, а резистора необходимой мощности и сопротивления под рукой не оказалось. Поскольку эта ситуация происходила не первый раз и изрядно надоела, пришлось по-быстрому сделать электронную нагрузку. Поиск в Интернете показал самую простую схему «Электронная нагрузка из операционного усилителя и мощного полевого транзистора» [1]:

Что и было по-быстрячку с небольшими модификациями успешно сделано, а потом и переделано.

Но чувство внутренней неудовлетворенности не дает покоя. А какой нужен радиатор? А если понадобиться больший ток? А как задействовать вторую половину операционника?

Порывшись на складах и найдя оставшиеся от замены вентиляторов на процессорах подходящие по размеру радиаторы (муха не сидела!), которые с трудом, но влезли в корпус от компьютерного БП, рабочая лаборатория была расширена Модульной электронной нагрузкой.

Да, радиаторы влезли, а вот вентилятор пришлось прикрутить снаружи.

В принципе, подобных устройств в интернете много, но это отличается возможностью расширения для получения необходимой токовой нагрузки и простотой подключения амперметра, не требующего огромных и низкоомных шунтов на большие токи.

Устройство представляет собой двухполюсник, не требующий внешнего питания (питается от испытуемого блока) и работающий в диапазоне напряжений 2,5-25В. Данная конструкция рассчитана на ток до 20А, но как мне кажется, легко масштабируется до 100А и более увеличением количества модулей. Также заменой модулей питания и транзисторов можно модифицировать под более высокие напряжения.

Схема устройства состоит из независимых сдвоенных модулей нагрузки и модуля управления:

Модуль нагрузки.

Модули нагрузки конструктивно сдвоенные, чтобы использовать оба канала операционника. Каждое плечо модуля при таких номиналах (R22=0.1 Ohm) и максимального управляющего напряжения Uref = 0.4В позволяет стабилизировать ток до 4А. Такой ток выбран исходя из того, что при максимальном напряжении 25В на транзисторе будет рассеиваться около 80Вт. Если не планируется использовать нагрузку при больших напряжениях, максимальный ток можно увеличить, уменьшив сопротивление резистора R22 и пересчитав остальную часть схемы по приведенным ниже формулам. Максимальное входное напряжение определяется рассеиваемой на транзисторах мощностью и максимальным напряжением элементов схемы (транзисторы, операционники, TL431).

Число модулей можно увеличивать для достижения необходимого тока нагрузки.

Рассмотрим работу модуля нагрузки на примере верхнего (по схеме) плеча. На U20, Q20 и R22 собран стабилизатор тока, управляемый напряжением по входу «+». Светодиод HL20 — для контроля наличия напряжения на модуле (заваляласть у меня парочка выпаяных SMD). Резистор R21 — чтобы при обрыве проводника с управляющим напряжением ток не начал определяться наводками и помехами. Резистор R24 используется для суммирования токов на измеритель. Диоды VD20-VD22 — для защиты от переполюсовки (периодически путаю красный с черным, сапером работать нельзя!).

Напряжение от испытуемого блока питания подается на контакты «U+» и «Gnd». На вход Uref подается управляющее напряжение от модуля управления

. С выхода Uti снимается сигнал на модуль индикации для работы сумматора токов. Резистор-перемычка R26 — для удобства разводки платы.

Вентилятор охлаждения подключается на один из модулей параллельно транзистору к точкам Jmp27-Jmp26 (Cooler+, Cooler-). Это обеспечивает учет тока через вентилятор сумматором.

Таким образом минимальный ток через электронную нагрузку примерно равен току через вентилятор+25мА (операционники и пр.).

Фото готового сдвоенного модуля нагрузки.

Все детали паяются как SMD, т.е. со стороны дорожек. Транзисторы с диодами выступают за плату и прижаты к радиаторам через резиновые термопроводные прокладки и термопасту, образуя вместе с прикрученой платой жесткую конструкцию.

Каждый модуль подключается отдельными толстыми (и короткими) проводами непосредственно на входные клеммы (на фото — красный и черный). Тонкими проводами (на фото — белый и зеленый) подается опорное напряжение и снимается сигнал с шунта для измерения тока. Транзисторы я использовал 40N03, но по-моему подойдут любые аналогичные более дешевые типа IRFZ44, поскольку их основная задача — греться, а основной параметр — рассеиваемая мощность. Диодные сборки — от блоков питания AT(X), от них же и большая часть остальных деталей.

 

Модуль управления.

Модуль управления состоит из источника опорного напряжения Uref, который задает максимальный ток через нагрузку и

неинвертирующего сумматора с усилением, который суммирует значения токов всех модулей.

В качестве источника опорного напряжения применена TL431 — для работы в широком диапазоне входных напряжений (от 3 до 25В).

Неинвертирующий сумматор с усилением построен по стандартной схеме и суммирует падение напряжений на токозадающих резисторах *R22 (R23 и других модулей). Состоит из U1, обвязки и суммирующих резисторов R24-R25, расположеных на модулях. Стандартная формула для расчета коэффициента усиления К расписана на схеме. Коэффициент усиления К нужно пересчитывать в зависимости от числа подключеных модулей

. Сумматор обеспечивает выход на блок измерения тока, например для тока через нагрузку 10А (по 2.5А на каждом из 4 модулей, по 0.25В на резисторах R22-R23) на выходе будет 1В. При расчетах следует учесть, что из-за особенностей микросхемы LM358 при напряжении питания 5В на ее выходе напряжение не поднимется выше 3.5В.

Расчет сумматора проводится в такой последовательности:

  1. Из конструктива берем число модулей: N
  2. Исходя их максимального тока всего блока Imax и сопротивления токозадающих резисторов (R22-R23) определяем максимальное «токовое напряжение» одного модуля (падение напряжения на R22-R23): Ui= Imax * R22 / N
  3. Задаем максимальное выходное напряжение сумматора (для подачи на измерительный модуль): Usum
  4. Вычисляем коэффициент усиления сумматора: К = Usum / (Ui * N)
  5. Вычисляем соотношение резисторов для сумматора: (R4+R5) = R3 * (K * N — 1) = R3 * (Usum / Ui — 1)


Например, при Uref(max)=0.5В, R23=R22=0.1 Ohm, Imax(для одного модуля)=5А. Для 4-х модулей (двух сдвоенных) — N=4, Imax=20А.

Отсюда для Usum=UOutMax=2В получаем К=1, (R4+R5) = 3 * R3. Аналогично для Usum=UOutMax=1В получаем К=0.5, (R4+R5) = R3

При изменении количества модулей нужно пересчитать резисторы сумматора!

Настройка сумматора заключается в подстройке резистором R4 коэффициента усиления, чтобы напряжение на выходе соответствовало току через нагрузку.

Диод VD1 — защита от переполюсовки.

Фото модуля управления. Справа видно, что первоначально планировалось ставить стабилитрон, но потом переиграно на TL431.

 

Модуль индикации.

В принципе можно использовать любой с соответствующими пределами (или входными делителями). Подключается к разъему XP1 «Выход на измеритель» по такой схеме: 1 — корпус, 2 — ключ, 3 — питание измерителя (в первом варианте контакты 3 и 4 объединены, во втором — питание отделено от измеряемого напряжения), 4 — входное напряжение нагрузки, 5 — ток нагрузи.

Я использовал слегка измененный (добавил защитные стабилитроны по входам и вернул подстроечный резистор по напряжению) «Суперпростой амперметр и вольметр на супердоступных деталях II (автовыбор диапазона)» с сайта https://vrtp.ru/index.php?act=categories&CODE=article&article=2792 от Eddy71 , который после полугода задалбываний (не только моих) любезно предоставил прошивку для «сильнотокового» режима до 99,9А [2]. Модуль индикации сфотографирован еще в процессе настройки, поэтому на нем висят всякие лишние детали.

 

Особенности работы (недостатки).

Модульня электронная нагрузка в первом варианте начинает устойчиво работать примерно от 5 вольт или выше, т.к. при более низком напряжении плохо работают модули нагрузки, не работает модуль индикации, не запускается вентилятор. А ведь добавлять отдельный блок питания лень, хочется оставить двухполюсник. Думаем, развиваем конструкцию, добавляем модули и получаем…

 

Пошерстив еще интернет в поисках решений, слегка изменена схема коммутации модулей. Чтобы нагрузка работала при меньшем напряжении (до 2.5В), нужно операционники и схему управления запитать через преобразователь, например через StepUp, от более высокого напряжения. Такое решение применено в «Эквивалент нагрузки с индикацией» [3].

В принципе, моя конструкция отличается от «Эквивалента нагрузки с индикацией» только модульностью и возможностью расширения (указаную выше статью я нашел, когда первый вариант моего устройства был уже собран). Поэтому добавлены модули питания (преобразователей напряжения) для модуля управления и вентилятора. А заодно изучена и на практике проверена топология

SEPIC.

Таким образом в первую версию внесены следующие изменения.

  1. Добавлены резисторы и конденсаторы в затворы транзисторов для снижения помех.
  2. Все управление (операционники в модулях нагрузки и модуле управления) а также модуль индикации запитаны от отдельного источника напряжения (назовем его Модуль Step-Up).
  3. Вентилятор запитан от второго источника, назовем его Модуль Back-Boost.
  4. При переходе от первой версии даже не пришлось резать дорожки — были отпаяны диоды VD1, VD20 и питание подано в соответствующие точки, что показало готовность первой версии изделия к усовершенствованию и развитию.


Почему добавлено два модуля?

Потому, что я хочу учитывать ток, потребляемый преобразователем вентилятора в общем токе нагрузки. К сожалению, ток преобразователя для питания модуля индикации и модуля управления не учитывается в измерениях, но он достаточно мал — 50-100мА по сравнению с тем, на который расчитана вся система.

Дополнительные модули питания собраны на MC34063. По принципам их работы отошлю к [4] «Повышающе-понижающий преобразователь напряжения для зарядки КПК от батареек» (https://www.radiohlam.ru/pitanie/KPK_sepic_34063.htm). Там же находится калькулятор для расчета подобных схем.

 

Модуль Step-Up (Модуль питания схем управления).

Собран по типовой схеме со стабилизатором на выходе. При входных напряжениях ниже 12В работает схема Step-Up, выдавая на выходе 11.5В, которые 78M09 стабилизирует до 9В. При повышении входного напряжения выше 12В схема отключается, пропуская все через себя на 78M09. Модуль порадовал тем, что запускается и работает при входном напряжении 2.5В !!!

Детали стандартные, без особенностей, SMD элементы размера 1206. Диод VD1 — шоттки, снят с платы винчестера. Конструктивно модуль крепится к корпусу, играющему роль радиатора, за 78M09, что не помешает при входных напряжениях выше 15В (все-таки модуль индикации кушает 50-80мА). Тестирование показало, что не стоит жадничать со входным конденсатором С1 — лучше поставить его 470-1000 мкФ, чтобы уменьшить импульсную помеху, которая пролезет на тестируемый блок питания.

Фото модуля питания схем управления

Рисунок платы и расположение деталей модуля питания схем управления

 

Модуль Back-Boost (Модуль питания вентилятора).

Собрать модуль по такой же схеме, как предыдущий, не удалось. Средний ток потребления стандартного вентилятора составляет 120-200мА и расчеты показывают, что при входном напряжении около 5В ток ключа микросхемы MC34063 достигает максимально допустимого 1500мА, а при снижении входного напряжения до 3В превысит его.

К тому же жалко повышать напряжение преобразователем до 15В, а потом снижать его стабилизатором до 7В для снижения оборотов вентилятора. Поэтому применена (а заодно и проверена на практике) топология SEPIC и внешний транзистор.

Останавливаться на работе схеме не буду, все описано в первоисточнике [4]. Мной в схему добавлен терморезистор в цепь обратной связи — чтобы зря не гонять воздух через холодные радиаторы. Т.е. цепь обратной связи, задающая выходное напряжение, состоит из верхнего плеча (R3) и параллельно-последовательного нижнего (R4, R5 и терморезистор R41). Простую формулу расчета вывести не удалось, поэтому прилагаю файл расчета резисторов делителя ElectronicLoad.

Результат работы Модуля Back-Boost заключается в том, при изменении входного напряжения от 4 до 25В на выходе будет стабильные 12Вольт (без применения терморезистора). А терморезистор добавляет функцию автоматической регулировки выходного напряжения от 8В при холодных радиаторах до 12,5В при нагретых. Терморезистор на проводочках вставляется в ребра радиатора Модуля нагрузки.

Детали такие же, как в предыдущем модуле. Транзистор Q1 можно ставить и менее мощный на ток от 3-4А, у меня стоит выпаяный с какой-то материнки 55N03 пока работает, хотя по напряжению маловато. Аналогично не стоит жадничать со входным конденсатором С1 — лучше поставить его 470-1000 мкФ, чтобы уменьшить импульсную помеху, которая пролезет на тестируемый блок питания. А вот выходной С3 увеличивать не стоит, можно даже уменьшить — вентилятору все равно.

Модуль Back-Boost имеет стандартные разъемы для подключения вентилятора (папа и мама) и просто включается перед вентилятором в разрыв цепи. Работает удовлетворительно, но при определенных напряжениях греется дроссель L1. Из существенных недостатков — не работает при входном напряжении ниже 4В. Но я вряд-ли буду использовать устройство при таких напряжениях, поэтому оставил все как есть.

Дальнейшие исследования показали, что при напряжении ниже 4В модуль работает, но обеспечивает необходимое выходное напряжения только на холостом ходу. При подключении вентилятора мощности не хватает для его питания. Я с детства не дружу с импульсными преобразователями, поэтому мои эксперименты в изменением конденсатора C4 и индуктивностями ни к чему не привели. Может кто-нибудь другой усовершенствует этот модуль. А пока запомним, что если планируется нагрузку использовать при больших токах и при низком напряжении, то следует позаботиться о хорошем пассивном охлаждении или отдельном вентиляторе.

Внимание! В процессе тестирования выяснилось, что модуль Back-Boost нельзя подсоединять к точкам Cooler+, Cooler- так как импульсная помеха от него лезет на вход операционного усилителя и поступает на затвор силового транзистора Q20, что в свою очередь приводит к сильным броскам тока нагрузки. Поэтому во втором варианте в модуль Back-Boost добавлены резисторы R6, R7 и он тоже подключен к сумматору токов. При этом, учитывая что его ток намного меньше, чем ток каждого модуля нагрузки, пересчитывать сумматор нет необходимости.

Фото модуля питания вентилятора (до доработки, резисторы R6, R7 отсутствуют)

Рисунок платы и расположение деталей модуля питания вентилятора

 

В результате схема Модульной электронной нагрузки (второй вариант) выглядит так:

 

Рисунок дорожек и расположение деталей второго варианта платы силового модуля

 

Рисунок платы и расположения деталей для модифицированого варианта модуля управления:

Рисунок платы и расположения деталей модуля управления.

Провода питания и «земли» всех модулей соединяются на входных клеммах.

Заменой этих модулей можно подогнать устройство для работы с другим входным напряжением без существенной модернизации основной схемы. Например установить высоковольтные силовые транзисторы и заменить модули Step-Up, Back-Bust для увеличения тестируемого напряжения. А те, кто не любит импульсные преобразователи, может всесто модулей Step-Up и Back-Bust установить обычный трансформаторный источник питания с выходным напряжением 12В и током около 300 мА (правда, при этом исчезнет «фича», когда нагрузка запитывается от испытуемого блока».

Блок питания слева на фото имеет почтенный возраст более 20 лет, и в принципе давно просится на модернизацию, но функции свои вполне выполняет, например ограничивает ток в нагрузке, хотя и не светится нижний сегмент в старшем разряде. Вольт-амперметр в нем также калибровался один раз при рождении уже не помню по каким приборам. (На момент опубликования статьи уже переделан)

Собраное устройство

На переднюю панель установлены гнезда для подключения нагрузки и стандартный разъем MOLEX для тестирования компьютерных блоков питания (оставлен только вход +12В).

Подано напряжение 2.5В, ток установлен 0.69А. Модуль Step-Up работает, обеспечивая функционирование нагрузки и индикации. Модуль Back-Boost не запустился (вентилятор не крутится).

Напряжение около 14В, ток 1.3А. Модуль Step-Up работает, Модуль Back-Boost работает (вентилятор крутится).

Все то же самое, только на блоке питания режим измерения тока (кнопочка В/мА нажата). Различие в показаниях спишем на некалиброваность обоих приборов. По идее на блоке питания должно показывать больший ток, чем на нагрузке за счет тока питания модуля индикации.

Ток нагрузки увеличен до 2.3А, в блоке питания сработала защита по току, напряжение снизилось до 2.5-3В (ручка регулятора U1 установлена по-прежнему на 13В). Модуль Step-Up продолжает работать, Модуль Back-Boost отключился (вентилятор не крутится).

 

Тестирование блока питания ATX с применением модульной электронной нагрузки (12В/11А).

 

P.S. Вот такое вот получилось устройство, как конструктор состоящее из модулей с возможностью расширения, добавления, замены или исключения отдельных модулей под конкретные задачи.

P.P.S. При испытания успешно со спецэффектами и выпусканием волшебного дыма, на котором работает вся электроника, при напряжении 12В и токе 10А минут через десять показал свою несостоятельность лабораторный блок питания, переделаный из компьютерного… А нагрузка улыбнулась и продолжает работать..

 

Источники вдохновения (Литература):

  1. Электронная нагрузка из операционного усилителя и мощного полевого транзистора (https://www.radiohlam.ru/raznoe/nagruzka.htm).
  2. Суперпростой амперметр и вольметр на супердоступных деталях II (автовыбор диапазона) (https://vrtp.ru/index.php?act=categories&CODE=article&article=2792)
  3. Эквивалент нагрузки с индикацией (https://remont-aud.net/publ/stati/prochie/ehkvivalent_nagruzki_s_indikaciej/34-1-0-99).
  4. radiohlam.ru — собери сам, помоги собрать другу (https://www.radiohlam.ru/index.htm)

Файлы:
Расчетка для управления вентилятором
Файлы схем и плат

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Мощная электронная нагрузка своими руками


Приветствую, Самоделкины!
Перед вами довольно мощные силовые биполярные транзисторы ТК235-32 с током коллектора аж 32 ампера и силовые диоды ДЧ135-80 на 80А.

Этих монстров автор YouTube канала «AKA KASYAN» приобрел на местной барахолке, к ним также прилагались соответствующие радиаторы.

Итак, что же можно сделать использую такие комплектующие? Первое, что приходит на ум — лабораторный линейный блок питания колоссальной мощности. Но такой уже имеется у автора в мастерской, а вот электронная нагрузка большой мощности — прибор гораздо более востребованный в данный момент (ну по крайней мере для автора данной самоделки), поэтому было принято решение сделать своими руками электронную нагрузку используя имеющиеся под рукой детали.

Для начала давайте пробежимся по основным характеристикам вышеупомянутого устройства. Диапазон регулировки тока буквально от 0 до 80А, кратковременно до 100А, в теории можно снять вплоть до 200А, при условии, что датчики тока (помечены на изображении ниже) будут заменены на более низкоомные.

Максимальное входное напряжение до 60В, можно и больше, все зависит от напряжения транзисторов.

Также электронная нагрузка имеет защиту от переполюсовки. Максимальная рассеиваемая мощность составляет порядка 1500-1600Вт. Такое устройство способно нагрузить практически любые источники питания, даже сварочные инверторы ему под силу, но тут важно не превысить максимальную мощность, а она тут, как уже было сказано выше, составляет 1600Вт. При этом стоит отметить, что все 1600Вт в данном случае пойдут на нагрев, так что это достаточно серьезный обогреватель.

Думаю, вы согласны с тем, что вышеприведенные характеристики действительно внушительные для линейной нагрузки. Токовые нагрузки с похожими параметрами стоят не мало, естественно наша версия будет без особых наворотов.

Внимание! Стоит сразу отметить несколько моментов во избежание дополнительных вопросов. Во-первых, схемы получилась довольно большой и скорее всего некоторые мелкие детали не будут видны. Схему в хорошем качестве вы найдете в архиве проекта. Также ссылка на скачивание архива находится в описании под оригинальным видеороликом автора.


Во-вторых, номиналы некоторых элементов схемы могут отличаться от тех что установлены на плате, но устройство будет работать в обоих случаях.

В-третьих, в схеме были применены наиболее предпочтительные транзисторы TIP142, это составные ключи, которыми просто управлять и драйвер при этом нагреваться почти не будет, но общая мощность нагрузки с указанными на схеме ключами будет меньше, чем в данном случае, так как транзисторы тут применены гораздо более мощные.


Четвертое. На печатной плате нет посадочных мест для силовых транзисторов и также они отсутствуют и для датчиков тока.


Также следует обратить внимание на надписи B(VT1), B(VT2) и т.д., эти точки подключаются к базам соответствующих силовых транзисторов.

Тоже самое касается маркировок E(VT1), E(VT2) и так далее, они подключаются к эмиттерам соответствующих транзисторов.

Ну и наконец последний, пятый пункт. Отмеченный на изображении ниже резистор задает пределы выходного тока.

Чем меньше значение данного сопротивления, тем больше ток. Указанный резистор необходимо подбирать.
Автор провел многочисленные эксперименты с получившимся устройством, чтобы выяснить какую мощность может рассеять транзистор в таком корпусе, максимальный ток коллектора, и как сильно будет нагружен управляющий драйвер при различных значениях тока на силовом транзисторе.

Испытания прошли успешно, ни один транзистор при этом не пострадал. Опытным путем стало ясно, что заявленные производителем 32А транзисторы держат. Корпус способен рассеять 150Вт, а при наличии вентилятора и все 200Вт.

Значение 200Вт с каждого транзистора, согласитесь, весьма неплохо. И того на каждый радиатор автор прикрутил, используя термопасту, 4 ключа. Таких радиаторов в данном случае 2 штуки.



Далее точно таким же образом на каждый радиатор были прикручены по одному 80-амперному диоду. О их назначении позже, а сейчас давайте перейдем к схеме электронной нагрузки.


По сути, это обыкновенный стабилизатор тока на операционном усилителе. Каждый канал операционного усилителя управляет своим каскадом, а таких каскадов у нас 8 штук.

Все каскады по факту соединены параллельно, но работа одного не зависит от другого. В эмиттерной цепи каждого транзистора подключен датчик тока в виде 2-ух параллельно включенных низкоомных резисторов мощностью по 5Вт. Значение сопротивления отдельного резистора от 0,1 до 0,22 Ом.


Операционный усилитель следит за падением напряжения на этом резисторе и сравнивает его с опорным. Далее в зависимости от разницы он увеличивает или уменьшает выходное напряжение, что в свою очередь приводит к открыванию или закрыванию транзистора драйвера, а, следовательно, то же самое происходит и с силовым транзистором.

Стоит отметить, что приведенная схема работает в линейном режиме, поэтому транзисторы в процессе открыты или закрыты частично, это зависит от выходного напряжения операционного усилителя.

Чем больше открыт силовой транзистор, тем больше ток в цепи и наоборот. Как уже было сказано выше, вся мощность выделяется в виде тепла на силовых транзисторах и датчиках тока, поэтому, если захотите повторить данный проект, в первую очередь позаботьтесь о хорошем охлаждении данных компонентов схемы. Автор использовал достаточно хорошие алюминиевые радиаторы в виде бруска.


Теперь давайте перейдем непосредственно к самой плате. Она получилась довольно неплохая. Так как у нас 8 каскадов и количество операционных усилителей должно быть соответствующим, поэтому были использованы микросхемы lm324 в количестве 2-ух штук.

Отдельно взятая микросхема состоит из 4-ех независимых операционников, именно то, что нужно.

Рассмотренная схема питается от линейного стабилизатора на 12В. Потребление схемы незначительное, поэтому стабилизатор 7812 в радиаторе не нуждается.

Как наиболее дешевый доступный и достаточно точный опорный источник — старая добрая tl431.

Регулировка тока осуществляется вращением переменного резистора:

Данный резистор по факту изменяет опорное напряжение. А так как мощность нагрузки у нас не маленькая, то был добавлен еще один переменный резистор меньшего сопротивления.


Первый переменник используется для грубой регулировки, второй соответственно для более плавной. Плата управления нуждается в маломощном источнике питания. Например, ее можно запитать от батареек или аккумуляторов. Такое решение сделает нагрузку полностью автономной.

Силовые диоды, о которых упоминалось в начале статьи, установлены на входе нагрузки. На них выполнена защита от переполюсовки. Обратное напряжение и ток диода стоит подбирать с двойным запасом. В дальнейшем автор планирует изменить защиту на другую, скорее всего на полевых транзисторах.


Также в данной конструкции применен мультифункциональный цифровой индикатор на 300В, 100А.

Теперь настало время силовых испытаний. Нагружать будем вот этот источник питания:


Это 12В 83А импульсный блок питания. Ток регулируется довольно плавно. Мощность, которую в данный момент рассеивает нагрузка составляет порядка 900Вт.

Вот так родился на свет еще один монстр, придумать другое название этому зверю довольно трудно, конские радиаторы и силовые ключи, зверская мощность, что ещё нужно для полного счастья. На сегодня это все. Благодарю за внимание. До новых встреч!

Видеоролик автора:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Набор для сборки простой электронной нагрузки 150 Ватт

Некоторое время назад товарищ, который занимается разными аккумуляторами, попросил меня придумать ему некий стенд для тестирования аккумуляторных сборок и одной из важных функций данного стенда является операция разряда этих сборок. Изначально планировалось все сделать самому, но выяснилось что в Китае продается дешевый и неплохой набор для сборки и в некоторых ситуациях выгоднее использовать его, чем делать все с нуля.

Вообще у меня уже довольно много обзоров разных электронных нагрузок, есть также обзор простой, полностью самодельной и я сегодня буду неоднократно к нему обращаться, так как данный набор во многом очень с ней похож.

Как я написал в предисловии, нагрузка понадобилась для разряда аккумуляторных сборок, в планах сделать прибор для тестирования и балансировки сборок до 19S и потому данный обзор будет далеко не последним.
Ток разряда большой не нужен, мощность планируется порядка 120-130 Ватт что вписывается в заявленные производителем 150 Ватт.

Кроме того в данном обзоре я объясню как вообще работает простая электронная нагрузка и почему мне понравился именно данный набор.

Для начала о продавце. На странице товара можно выбрать несколько вариантов:
1. Только печатная плата, цена около 1.6 доллара
2. Печатная плата и набор компонентов без силовых транзисторов — 3.8 доллара
3. Печатная плата и все компоненты включая силовые транзисторы — 4.9 доллара
4. Ампервольтметр — 2.2 доллара.

Кроме того в характеристиках заявлено — 150 Вт 15 В 0-10A / 72V 0-2A, т.е. предполагается наличие двух вариантов исполнения и об этом, а также о моей ошибке я расскажу позже.

К упаковке вопросов не возникло, как к магазинной, так и посредника. Комплект состоит из печатной платы и пакета с компонентами.

Я заказывал полный комплект, т.е. печатная плата, все компоненты и транзисторы. Ампервольтметр не стал заказывать так как мне он для проекта не нужен.

Размеры печатной платы 100х100мм, присутствуют дополнительные отверстия для крепления радиатора и самой платы в корпусе устройства.

Часть силовых дорожек вынесена на нижнюю сторону печатной платы, я рекомендую продублировать их медным проводом и припоем или хотя бы припоем.

Качество изготовления печатной платы отличное, помимо того что она легко паялась без дополнительного флюса (использовал только тот что в припое), так еще есть нормальная шелкография где обозначены места под компоненты, их порядковый номер и номинал. Фактически для сборки не нужна даже схема.

Список компонентов
Резисторы
1 кОм — 12шт
4.7 кОм — 4шт.
10 кОм — 1шт
20 кОм — 1шт
220 кОм — 4шт
0.22 Ома 5 Ватт — 4шт
Переменный резистор 4.7 кОм — 1шт

Конденсаторы
1 нФ — 4шт
100 нФ — 1шт
22мкФ 25 Вольт — 1шт
220 мкФ 16 Вольт — 1шт
1000мкФ 16 Вольт — 2шт

Диоды 1N5408 — 4шт
Транзисторы 110N8F6 — 4шт
Микросхема TL431A
Микросхема LM324N

Разные разъемы, выключатель и прочие мелочи.

Все резисторы кроме мощных, прецизионные, это хорошо, электролитические конденсаторы самые дешевые, но они на параметры не влияют.

На странице товара была принципиальная схема данной электронной нагрузки, но на мой взгляд она не очень информативна, потому ниже я разложу ее на составляющие части для более простого восприятия. Кроме того дам пояснения как можно увеличить мощность или изменить параметры и вообще какие элементы за что отвечают и как это все работает.

Сильно упрощенная схема электронной нагрузки обеспечивающей стабилизацию тока состоит из всего нескольких компонентов:
1. Переменного резистора
2. Операционного усилителя
3. Транзистора
4. Шунта.

С переменного резистора на вход операционного усилителя подается некое напряжение, операционный усилитель подает напряжение на полевой транзистор и через него начинает течь ток нагрузки, при этом ток попутно течет через шунт. На шунте падает некое напряжение, которое подается на второй вход операционного усилителя. Как только напряжение на входах операционного усилителя станет одинаковым, он выставит на своем выходе напряжение при котором транзистор будет открыт насколько чтобы поддерживать напряжение на шунте одинаковым с установленным при помощи переменного резисторе.
А так как напряжение падения на шунте напрямую зависит от тока через него, то в итоге схема будет поддерживать ток.

При этом получается, что ток нагрузки зависит от напряжения на входе.

Например с переменного резистора подали 0.4 Вольта, шунт имеет сопротивление 1 Ом, соответственно ток будет 0,4/1=0.4 Ампера.
Усложним пример, шунт сопротивлением 0.15 Ома, напряжение с переменного резистора 0.45 Вольта, 0.45/0.15=3 Ампера.

На точность поддержания тока влияют в основном две вещи:
1. Стабильность задающего напряжения
2. ТКС (зависимость сопротивления от температуры) шунта.

Показанная выше схема скорее всего будет работать, но делать это она будет неустойчиво, потому в более полном виде схема выглядит несколько больше.
Небольшое отступление, позиционные номера компонентов не соответствуют таковым на печатной плате и приведены просто для примера.

Здесь видны те же компоненты что я показывал выше, но к ним добавились еще некоторые, поясню их назначение.
Резистор R1, нужен для развязки нескольких каналов и для улучшения стабильности работы.
Резистор R2, ограничивает ток заряда затвора полевого транзистора защищая операционный усилитель.
Конденсатор С1, резистор R3 и R4 обеспечивают защиту от самовозбуждения схемы, чтобы нагрузка не превратилась в генератор.
Резистор R5 закрывает транзистор когда операционный усилитель обесточен, а кроме того обеспечивает небольшой ток нагрузки для выхода операционного усилителя и цепи защиты от самовозбуждения.

Так как нагрузка четырехканальная, то просто "дорисовываем" еще три канала и получаем почти полный вид обозреваемой платы.
Синим цветом я выделил четыре канала, видно что они абсолютно идентичны и соответственно можно их количество увеличивать и дальше. Общим для всех каналов является только счетверенный операционный усилитель.
Оранжевым выделена цепь управления, красный и черный соответственно силовые цепи.

В моей мощной электронной нагрузке именно так все и реализовано, только я делал 8 каналов и использовал двухканальные операционные усилители.

Но как я писал выше, на точность поддержания тока влияет точность стабилизации задающего напряжения и для этого в схеме есть источник опорного напряжения, выполненный на базе регулируемого стабилитрона TL431, его основное напряжение 2.5 Вольта.
А так как 2.5 Вольта это несколько многовато и если на шунтах будет падать такое напряжение то:
1. Будет большая рассеиваемая мощность
2. Минимальное напряжение нагрузки составит 2.5 Вольта + падение на транзисторах.

То последовательно с переменным резистором включен постоянный резистор R8 сопротивлением 22 кОм, вместе они образуют делитель примерно 1:5.5 и после переменного резистора напряжение меняется уже в диапазоне около 0-0.45 Вольта.
Меняя номиналы дополнительного резистора можно изменять диапазон регулировки без замены шунта, но такой способ имеет и свой минус — операционным усилителям при однополярном питании проще работать с большим напряжением, чем с меньшим и лучше сильно не снижать задающее напряжение.
Резистор R7 ограничивает ток питания стабилитрона.

Узел питания содержит диодный мост и четыре конденсатора, судя по всему изначально планировался стабилизатор питания операционного усилителя но его упразднили, а конденсатор емкостью 220 мкФ, который стоял после него, оставили. Ничем другим я не могу объяснить причину параллельного включения двух конденсаторов 1000мкФ и одного 220мкФ.

Также от этого диодного моста идет питание на разъемы подключения вентиляторов и ампервольтметра.

С теорией думаю понятно, перейдем к практике, а точнее — к сборке. Данная часть будет спрятана под спойлер, так как больше будет интересна только начинающим, хотя в процессе я буду пояснять нюансы использования тех или иных компонентов, а также их возможной замены.

В комплекте были постоянные резисторы, при этом все маломощные резисторы дали прецизионные, хотя в данном случае это не особенно важно, так как на точность поддержания тока влияют в основном только два из них.

Больше всего было резисторов номиналом 1 кОм, аж 12 штук, потому рекомендую начать именно с них.
>

После них устанавливаем остальные, это номиналы 220 кОм (4шт), 4.7 кОм (4шт) и по одному 22 и 10 кОм.

С одним из резисторов делителя возникла небольшая заминка, в комплекте дали 20 кОм вместо 22. Как я писал выше, данный резистор совместно с переменным резистором образуют делитель напряжения. Если номинал переменного резистора неизменен, то увеличение сопротивления этого резистора приведет к уменьшению максимального тока, соответственно уменьшение к увеличению тока.

Все резисторы установлены согласно номиналам, вместо 22 кОм поставил 20, который дали в комплекте.

Вторая заминка, на этот раз более серьезная. Один из конденсаторов 1 нФ был поврежден, скол около вывода и его емкость была около 150 пФ. Не знаю когда он повредился, при доставке или до того, но в итоге пришлось взять другой конденсатор того же номинала.

Не знаю зачем, но в комплекте дали диоды 1N5408, которые рассчитаны на ток 3 Ампера, а в мосте итого больше. Дело в том, что этот диодный мост питает пару вентиляторов, ампервольтметр и операционный усилитель, реальный общий ток думаю не более чем 500мА и вполне хватило бы 1N4007.
Попутно сразу устанавливаем TL431. На плате есть маркировка как устанавливать, хотя по большому счету в в данном случае это не имеет значения так как крайние выводы у нее соединены и даже если вы вставите ее наоборот, то работать будет также 🙂

Конденсаторы и панелька. Ну думаю что по поводу конденсаторов ошибиться трудно, на плате закрашенная часть маркировки — минус (короткий вывод), а разное расстояние между выводами и подписи не дадут ошибиться.

К операционному усилителю даже дали панельку в комплекте, устанавливаем ее так чтобы вырез совпадал с меткой на печатной плате. Я как-то однажды случайно установил панельку наоборот, потом в итоге чуть спалил микросхему, так как вставлял согласно ключу на панельке, будьте внимательны.

Куда устанавливать мощные резисторы думаю понятно, но я поясню некоторые нюансы замены.
Я писал что изменением номинала делителя можно изменить диапазон регулировки тока, но более корректно делать это изменением номинала шунта.
Нагрузка четырехканальная, в комплекте дали четыре резистора номиналом 0.22 Ома. При этом декларируется ток нагрузки 10 Ампер, т.е. по 2.5 Ампера на канал.
Если нам надо настроить нагрузку на 5 Ампер (в два раза меньше), то просто увеличиваем номинал этих резисторов в два раза, например 0.43 Ома, соответственно при увеличении тока пропорционально уменьшаем номинал.

Учтите. что резисторы могут сильно нагреваться и при их замене следует это учитывать. При этом нагрев напрямую зависит от номинала резистора (в данном включении).
Например при резисторах 0.22 Ома и токе 2.5 Ампера на канал мощность будет
0.22х2.5= 0.55 (падение при макс токе).
0.55х2.5=1.375 Ватта (мощность на резисторе)

Если поставить резисторы в два раза больше номиналом, то мощность на них снизится в два раза.

Для подключения вентиляторов и переменного резистора используются одинаковые разъемы, такие же как стоят на материнских платах. Разъем питания думаю также многим знаком.
Разъем питания неправильно установить не получится, а разъемы вентиляторов будут видны на следующем фото.

Плата рассчитана на установку транзисторов в корпусах ТО-220 или ТО-247, соответственно имеется 8 мест.
Разъемы вентиляторов размещены по краям платы ближе к радиатору, что вполне логично.

А вот здесь я поясню в чем была моя ошибка при заказе.
В описании товара указаны две версии набора, 15 Вольт 10 Ампер или 72 Вольта 2 Ампера. В обоих случаях общая мощность не превышает 150 Ватт. Но скорее всего надо было предварительно написать продавцу что надо именно 72 Вольта 2 Ампера, чего я не сделал.
В итоге еще на этапе установки низкоомных резисторов подумал — что-то не то. А когда дошел до транзисторов, то понял что именно "не то". Дело в том что в комплекте дали транзисторы 110N8F6, которые имеют максимальное напряжение всего в 80 Вольт, а кроме того шунты должны быть номиналом около 1 Ома, придется менять.

Теперь по поводу транзисторов и их замены.
Данная электронная нагрузка понравилась тем, что транзисторы управляются независимо, это является корректным решением. В подобных схемах транзисторы параллельно соединять нельзя так как из-за разброса характеристик работать они нормально не будут.
При этом не обязательно стремиться что бы в каждом канале были одинаковые транзисторы, можно спокойно применять с разными характеристиками, каждый канал подстроится "автоматически". Главное чтобы транзисторы были с запасом по напряжению.

Большинство полевых транзисторов больше ориентированы на ключевой режим работы (открыт/закрыт) и потому в линейном режиме их нельзя эксплуатировать "на полную мощность" ограничивая ее примерно на уровне 30 Ватт на корпус TO-220 и 50 Ватт на ТО-247. Собственно потому при применении транзисторов в корпусе ТО-247 нагрузка будет уже не 150, а 200 Ватт.
Здесь же транзисторы работают с небольшим перегрузом так как они в корпусе ТО-220, а на них рассеивается до 37.5 при рекомендованных 30.

Слева родные транзисторы, справа они же в сравнении с транзисторами в корпусе ТО-247.

А так выглядит установка радиатора на плате совместно с транзисторами в разных корпусах. К сожалению есть пара недоработок:
1. При установке транзисторов в корпусе ТО-220 радиатор смещается дальше от края платы и надо прокладывать изоляцию между ним и печатной платой.
2. Если крепить радиатор в штатные отверстия печатной платы, то он уходит от плоскости транзисторов примерно на 7 мм и придется выгибать выводы транзисторов, причем что с ТО-220, что с ТО-247.

Альтернативный вариант от китайского продавца, как по мне, то колхоз какой-то.

Хотя нет, если выше просто колхоз, то здесь скорее жесть 🙂

Радиатор я взял первый более менее подходящий по размерам, у меня уже был как-то его обзор. На самом деле радиатор должен быть немного другой конфигурации, например хорошо использовать радиаторы от процессоров, но стоит учитывать, что 150 Ватт тепла это довольно много, я бы рекомендовал использовать два радиатора а транзисторы расположить попарно.
Кроме того, будьте внимательны при разметке, транзисторы на плате расположены не совсем симметрично по отношению к ширине платы. Размеры не привожу так как размечать лучше "по месту".

Переходим к последним этапам, установке транзисторов.

Хоть данные транзисторы и получаются впритык если рассчитывать на 72 Вольта, заявленных в описании, мне они не подходят вообще так как планируемое напряжение составляет не менее 80 Вольт, а так как нужен еще и запас, то я планирую применить потом транзисторы рассчитанные на 150-200 Вольт.
Но попробовать хочется уже сейчас потому установил их в порядке эксперимента, как и радиатор, который потом будет заменен на более подходящий.

Радиатор временный, потому крепиться к плате будет только в одной точке, благо хоть она совпала с крепежными отверстиями радиатора 🙂
На плату в районе радиатора наклеил скотч, хотя конечно лучше что-то более прочное, а под единственный винт проложил картонную шайбу.
Небольшой нюанс, на фланцах транзисторов будет потенциал равный входному напряжению, потому есть два варианта монтажа:
1. Изолировать радиатор от корпуса
2. Изолировать транзисторы от радиатора.

На мой взгляд из-за большого тепловыделения правильнее использовать первый вариант, хотя он конечно добавляет некоторые сложности при монтаже. Есть правда еще третий вариант — переделать схему так, чтобы на фланцах транзисторов была земля, но это очень неудобно схемотехнически.

Получился такой вот временный вариант, для тестирования думаю будет достаточно.

В комплекте был и переменный резистор, у меня подобный уже участвовал в одном известном обзоре, но сопротивлением 10 кОм.
Если коротко, регулирует хорошо, 10 оборотов, проволочный.
Для подключения используем комплектный провод с разъемом, цвета получаются так: красный-плюс, черный-минус, желтый-регулировка, подключаем так как на фото, тогда регулировка будет корректная.

Но вот комплектная ручка приятно удивила, мне раньше такие не попадались. Дело в том, что у нее верхняя часть съемная (изначально это незаметно), а сам механизм реализован по принципу цанги, т.е никакие винты наружу не торчат. При этом ручка отлично центруется на валу резистора, 5 баллов однозначно!

Последний шаг, устанавливаем операционный усилитель внимательно контролируя положение ключа.

Вот собственно и все. Реально собрать всю конструкцию примерно за час без спешки даже для новичка, все компоненты ставтся как надо, все отмечено на плате и собирается интуитивно.

В итоге у меня еще остались компоненты:
1. Выключатель
2. Разъем питания
3. Неисправный конденсатор.

Второй разъем питания видимо дается в комплекте на случай если он выносится на крышку корпуса, выключатель скорее всего также используется для включения питания, но в моем варианте его паять некуда, ну а неисправный конденсатор, да просто звезды так сошлись.

На одну из сторон платы вынесены контактные площадки для подключения входа, амперметра, вольтметра и выход питания.
В принципе можно поставить клеммники, а можно просто припаять провода, кому как удобно, но есть некоторые нюансы подключения.

Подключать можно разными способами, попробую рассказать обо всех.
1. Просто плата без измерителей, разъемов и прочего.
2. То же самое, но если хочется поставить разъем, то скорее всего придется ставить перемычку вместо выхода на амперметр.
3. Подключение независимых амперметра и вольтметра, плюс — красный, минус — синий.
4. Если хочется установить цифровой ампервольтметр, то подключаем так:
Черный — общий силовой
Желтый — вход измерения тока
Красный — вход измерения напряжения
Красный тонкий — питание ампервольтметра.

Цветовая маркировка проводов подключения цифрового ампервольтметра дана соответственно тому, что я уже применял и в принципе может отличаться, потому лучше перепроверить перед подключением, обычно черный все таки это минус, а вход измерения тока звонится накоротко с черным.

Как вариант можно поставить и такой ампервольтметр, он более "продвинутый" но его подключение отличается.
Черный толстый — общий силовой
Красный толстый — Вход измерения тока
Желтый — вход измерения напряжения.
Красный тонкий — питание ампервольтметра.

Плюс у такого варианта есть термодатчик, что может быть очень полезным в устройстве с таким тепловыделением.

Оба этих ампервольтметра использовались в небольшой электронной нагрузке, хотя второй используется и сейчас.

И конечно немножко экспериментов.
Подключаем плату к регулируемому блоку питания, выставляем для пробы 32 Вольта и задаем ток нагрузки 5 Ампер, плата без проблем осилила 160 Ватт, но это уже предельный режим.

Проверил уход установки тока в зависимости от прогрева, не очень большой, но есть. По мере прогрева ток падает.

Вроде недолго экспериментировал, но уже почувствовал жар, измерил температуру и увидел что транзисторы прогрелись примерно до 110 градусов. Такого допускать ни в коем случае нельзя, например у моей мощной нагрузки защита от перегрева установлена на 90 градусов на радиаторе или около 95 на транзисторах.
Увеличение температуры транзисторов резко снижает надежность работы, особенно в линейном режиме.

Часто в комментариях вижу упоминание обычных резисторов в качестве нагрузки. Да, конечно их тоже можно применять, но при помощи резисторов труднее добиться например того, что показано на этих фото.
Здесь я понижал напряжение от 40 до 1 Вольта и смотрел как меняется ток нагрузки. В указанном диапазоне колебания составили 2.017-2.026 Ампера, что на мой взгляд довольно неплохо с учетом простой схемотехники.

Хотя и не планирую применять обычный ампервольтметр, но решил все таки проверить работу с ним. Для начала стоит сказать, что его подключение немного отличается от того, что я использовал в простой самодельной нагрузке.

Провода ампервольтметра подключены согласно порядку —
Черный
Желтый
Красный.

Провод питания подключен только один, черный пришлось отключить так как он влиял на результат измерений. Дело в том, что у моей электронной нагрузки ампервольтметр подключался последовательно с токоизмерительным шунтом, потому общий провод амперметра соединялся с общим проводом схемы. Здесь он включается последовательно с проверяемым источником и на мой взгляд это менее корректно.

В процессе написания обзора мне задали вопрос по поводу замены транзисторов, попробую пояснить отдельно.
1. Транзисторы выбираем исходя из типа корпуса и требуемой мощности, 30 Ватт ТО-220, 50 Ватт ТО-247.
2. Транзисторы по сути можно применять не только почти любые, а и разные одновременно.
3. Главным при выборе транзистора в основном является напряжение на которое он рассчитан, желательно чтобы оно было минимум в два раза больше входного.
4. Сопротивление в открытом состоянии почти ни на что не влияет, если разве что не поставить совсем высоковольтные транзисторы где оно идет уже на единицы Ом.
5. Лучше применять транзисторы в не изолированном корпусе и не изолировать их от радиатора.

Почему такие ограничения в плане мощности. Подавляющее большинство современных полевых транзисторов рассчитаны на ключевой режим работы и плохо работают в линейном режиме. Вернее работают они нормально, но с большими ограничениями по температуре, мощности, напряжению и току. Существуют полевые транзисторы которые нормально работают в таком режиме, но они настолько редки, что нет смысла их искать.

Также меня спрашивали, а на что их можно еще заменить.
Ну для начала можно применить транзисторы IGBT, по сути гибрид полевого и биполярного транзистора, но они стоят дороже. Кстати существует и обратный гибрид, биполярного с полевым.

Но никто не мешает применять биполярные транзисторы (собственно потому и хорошо подходят IGBT), у которых максимальная паспортная рассеиваемая мощность обеспечивается и в линейном режиме.
Включить в данной схеме их можно просто вместо полевого, но нужен транзистор с большим коэффициентом усиления, так как в отличии от полевого биполярные управляются током, а не напряжением.
Либо применить составную схему включения транзисторов (схема Дарлингтона), тогда общий коэффициент усиления будет произведением усиления первого и второго. Т.е. если у первого усиление 200, а у второго 70, то общий будет около 14000.

Пожалуй единственный недостаток биполярных (особенно составных) транзисторов — сложности при работе с малыми напряжениями, ниже чем 1.5-2 Вольта. Если вы не планируете тестировать источники с таким напряжением, то можно применить биполярные, в противном случае используем полевые.

Отлично подойдут известные транзисторы КТ827, но у меня их почти нет потому на фото их комплементарная пара КТ825. Они могут рассеивать до 125 Ватт.

Когда-то я даже использовал их в комплекте с такими радиаторами, как раз их размерчик 🙂 Правда они больше все таки под пассивный режим.

Внутри у них находится два транзистора включенные по схеме Дарлингтона плюс дополнительные компоненты.

Кстати подобные транзисторы также отлично подходят для линейных блоков питания и меня часто спрашивают о вариантах замены их на импортные. Я немного полазил по интернету и набрал список замен.
Практически полные аналоги транзистора КТ827: 2N6057, BDX87
КТ827А: BDX65A, BDX67, BDX87C, MJ3521, MJ4035
КТ827Б 2N6058, 2N6283, BDX63, BDX65, BDX67, BDX85B, BDX87B, MJ3001, MJ4034
КТ827В: 2N6057, 2N6282, BDX85, BDX85A, BDX87, BDX87A, MJ3000, MJ3520, MJ4033

Кстати продавец может высылать с разными транзисторами, при этом есть вариант с транзисторами в корпусе TO-247 (IRFP250. IRFP260), но скорее всего за дополнительные деньги. Как по мне, такой вариант был бы куда более интересен.

Ну и попутно поясню по поводу замены остальных компонентов.
Мелкие резисторы не критичны, главное примерно попасть в номинал, то же самое касается и конденсаторов.
Низкоомные резисторы которые выполняют функцию токоизмерительного шунта лучше выбирать с запасом по мощности так как тогда они будут меньше греться а следовательно у них будет меньше изменяться сопротивление и по мере прогрева ток не будет "убегать". Можно поставить более точные и качественные резисторы, но они стоят дорого.
Операционный усилитель также можно заменить на практически любой дешевый, например я применял LM358, но он двухканальный и их надо в два раза больше, но проще применить тот же LM324 благо стоит он копейки.

Питать нагрузку можно как от постоянного, так и от переменного тока, но важно следить чтобы напряжение питания операционного усилителя не превышало 20 Вольт. Сам по себе ОУ выдерживает спокойно до 30-35 Вольт, но напряжение на затворе полевого транзистора не должно быть выше 18-20 Вольт, а лучше до 15 потому я бы ограничил на этом уровне. Как вариант, питать эту цепь от небольшого стабилизатора.

В процессе тестов я все таки спалил один из транзисторов, произошло это случайно, я подал 40 Вольт и выставил ток нагрузки 5 Ампер получив при этом мощность в 200 Ватт. В итоге блок питания просто перешел в защиту от КЗ и на этом все закончилось.
Кроме этого выяснил что наводки на переменный резистор могут заметно влиять на установленный ток. Например когда я держал резистор в руках, ток был 4.1 Ампера, положил на стол, ток стал 4 Ампера. Неприятность может проявляться, а может нет, зависит как от БП самой нагрузки, так и от проверяемого.

Обозревая нагрузка в сравнении с моей старенькой самоделкой, которая со,рана на базе той же TL431, LM358 и одного транзистора. правда у меня есть стабилизатор питания операционного усилителя.

Какие доработки можно провести:
1. Управление вентиляторами от температуры, хотя бы при помощи простейшего термореле.
2. Уменьшить в два раза сопротивление шунтов и изменить номиналы делителя переменного резистора так, чтобы напряжение менялось в диапазоне 0—0.25 Вольта, шунты будут греться в два раза меньше.
3. Добавить режим CV при помощи второго ОУ, но здесь есть проблема с защитой от перегрузки.
4. Добавить стабилизатор напряжения для ОУ, например 7808 или 7809.
5. В моей нагрузке после TL431 стоит буферный операционный усилитель, на мой взгляд такое решение лучше, но добавлять сюда его очень неудобно.
6. Объединить две-три подобные платы для увеличения мощности, при этом одна плата будет ведущей, остальные ведомыми.

В корпусе показать пока не могу, так как его еще нет в наличии, он будет подбираться исходя из общих размеров всего комплекта. Кроме того я буду использовать с более продвинутым ампервольтметром, где будет контроль нижнего/верхнего напряжения и т.п.
Видеоверсия обзора

С описанием вроде все, постарался ничего не забыть и теперь можно подвести итоги.
Как по мне, то вариант весьма неплохой, цена небольшая, собирается легко и самое главное, после сборки работает 🙂
Не обошлось и без нюансов, например поврежденный конденсатор или не очень удобное расположение отверстий для крепления радиатора.
В описании заявлено 150 Ватт, на мой взгляд это максимальная мощность, я бы рекомендовал не нагружать больше 120 Ватт длительно без замены транзисторов на какие нибудь в корпусе TO-247 и обязательно использовать хорошее охлаждение.

Если планируется применять при напряжениях до 30-40 Вольт, то вполне можно покупать в комплекте с транзисторами. Но если планируете тестировать источники с большим напряжением, то я бы купил все кроме транзисторов, а вместо родных поставил что-то более высоковольтное.
Как вариант, можно просто купить печатную плату, компоненты применены не дефицитные и при желании можно найти их и дома.
Один комплект заказывать наверное будет не очень выгодно, лучше купить сразу несколько, тогда общая цена будет выгоднее.

Покупал через посредника yoybuy.com, стоимость с доставкой по Китаю около 6.8 доллара, общая стоимость доставки зависит от страны. Точную стоимость услуг посчитать не могу, так как в посылке было 4 товара от четырех продавцов.
Этот же набор на Алиэкспресс — ссылка

На этом все, буду рад вопросам, комментариям и советам.

Мощная электронная нагрузка своими руками

Приветствую, Самоделкины!
Данная статья посвящена довольно мощной электронной нагрузке, которая пригодится для проверки различных блоков питания.

Особенно данная самоделка пригодится радиолюбителям-самодельщикам, каким и является Роман, автор YouTube канала «Open Frime TV». Дальнейшая инструкция взята с вышеупомянутого YouTube канала.
Уже прошел примерно год, как автор собирал нагрузку на полевом транзисторе (видеоролик о сборке и тестах есть на канале автора).

На тот момент к устройству не было абсолютно никаких претензий, и оно полностью устраивало мастера. Но прогресс все-таки не стоит на месте и мощности блоков питания растут, этой нагрузки уже не хватает.

Так что настало время собрать что-нибудь мощнее. А раз делать мощнее, то необходимо использовать не один транзистор, а сразу несколько, и транзисторы к тому же должны быть не полевыми, а биполярными для работы в линейном режиме.

Отлично, наброски для проекта есть, можно постепенно приступать к эго реализации. В сети Интернет имеется просто огромное множество схем электронных нагрузок.

Какую же из них выбрать? На решение этого вопроса автор не стал тратить много времени, и взял за основу схему электронной нагрузки с YouTube канала «Red Shade».


Сама схема отличная, но вот решение по поводу платы автора данного проекта не устроило, поэтому пришлось ее переделывать под себя. Итак, на изображении ниже представлена сама схема нагрузки:

Итак, давайте разбираться, что здесь и зачем. В первую очередь смотрим на узел, отвечающий за стабилизацию тока.


Как видим, тут каждый транзистор снабжен своим операционным усилителем. Такое решение дает нам раздельный контроль тока даже, если у транзисторов параметры h31 будут различными, перекоса по току не будет.

Следующая особенность нагрузки — это возможность работы в 2-ух режимах. Первый — это режим тока.


Всем знакомый режим, когда мы опорным напряжением задаем определенный ток и каким бы ни было входное напряжение нагружаемого источника ток будет неизменным.

Второй режим — это режим резистора.

В таком включении опорное напряжение задается входным напряжением.
Казалось бы, для чего нужен данный (второй) режим? А все дело в том, что для проверки лабораторных блоков питания с функцией ограничения тока первым режимом пользоваться не удобно, так как начинаются качели.

Стабилизация тока должна присутствовать только у одного из двух устройств, именно по этой причине схема и содержит в себе 2 различных режима работы.

Идем дальше. В данной схеме присутствуют еще парочка приятных функций. Во-первых, это автоматическое управление кулером по нагреву, что довольно-таки удобно, так как при отключенной нагрузке устройство будет беззвучно стоять, не отвлекая вас от работы посторонним шумом. А как только температура радиатора возрастет, кулер автоматически включится и тем самым будет охлаждать схему.



Помимо вышеупомянутого решения, в схеме так же реализована защита от перегрева. Безусловно полезная штука.

Если вы забыли и оставили нагрузку без присмотра, можете быть уверенными, что она отключит себя сама, если температура превысит заданное значение.

Регулировка порога срабатывания защиты от перегрева производится вот этим подстроечным резистором:

Следующий шаг — трассировка печатной платы.

Автор довольно долго размышлял о том, как сделать так, чтобы все элементы были расположены на одной печатной плате. В конечном итоге решение было найдено. Автору пришла в голову шикарная идея расположить транзисторы так, как это делают в сварочных аппаратах. Сказано-сделано, радиаторы с транзисторами выведем на другую сторону.


Для более удобного крепления сделаны специальные отверстия под стойки и еще одни под крепления транзисторов к радиатору:

На данном этапе, автор признается, что совершил ошибку, так как сделал отверстия для крепежа транзистора очень далеко от его фактического расположения, поэтому в дальнейшем ему пришлось исправлять данный косяк.


Вот такая плата получилась:

В качестве радиаторов было решено использовать алюминиевый профиль.

Первым делом необходимо разрезать его на две равные части, а затем просверлить отверстия под крепеж. Далее нарезаем резьбу м3 и вот что в итоге получилось:

Следующим шагом прикручиваем транзисторы к радиатору.

Далее получившаяся конструкция должна собраться в одно целое:

При помощи десятых стоечек аккуратно соединяем радиаторы с платой. Теперь они уже точно никуда не денутся.

Из-за того, что отверстия для крепежа транзистора расположены не там, где это необходимо, ремонт данной платы очень сильно усложняется. Но давайте честно, спалить эту плату будет очень тяжело, так как 8 транзисторов могут протянуть через себя довольно приличный ток, да и к тому же перегрев схемы практически исключен, так как соответствующая защита на схеме присутствует.

Следующим шагом необходимо подобрать для нагрузки подходящий корпус и поместить ее туда, так как делаем мы ее как готовый прибор, который будет потом повсеместно использоваться. В качестве корпуса отлично подошел вот такой пластмассовый короб с довольно удобными перегородками:


Помимо непосредственно нагрузки в нем еще разместится парочка компонентов, а именно вольтамперметр и кулер.


Как известно, в стандартной комплектации, вольтамперметр позволяет измерить ток до 10А. Для данного проекта автор посчитал, что этого недостаточно и для расширения измерительного диапазона был приобретен вот такой шунт, который позволяет измерять токи до 100А:


Для данного проекта было решено применить 150-й кулер, так как он за счет внушительных лопастей способен создать отличный воздушный поток, а для нас это крайне важно. На наклейке кулера имеется информация о том, что ток потребления данного экземпляра может достигать целых 450мА.

В реальности это значение немного поменьше.

Следующим этапом приступаем к разметке корпуса, а затем сверлим необходимые отверстия. Кулер пришлось расположить сверху, так как габаритные размеры корпуса не позволяют разместить его внутри.

На передней панели расположим вольтамперметр, ручку регулировки тока и переключатель ток- резистор.


На задней панели расположились вход питания и нагрузочный провод.


Следующим шагом закрепляем все компоненты в корпусе. Немного термоклея не будет лишним. Вот так выглядит устройство после установки в корпус.

На этом все, можно закрывать крышку и приступать к тестам. Начнем тест с блока DPS5020. Попробуем нагрузить данный блок питания.

Как видим, нагрузка справляется отлично, нагрев в пределах допустимого. Далее нагрузим блок на SG3525.



Здесь тоже все отлично, нагрузка успешно справляется с поставленными задачами. Вот такое устройство в итоге получилось. Благодарю за внимание. До новых встреч!

Видеоролик автора:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

ЭЛЕКТРОННАЯ НАГРУЗКА С РЕГУЛИРОВКОЙ ТОКА

Для чего нужно такое устройство, как электронная нагрузка, наверное все в курсе — она позволяет создать имитацию очень мощного резистора на выходе блоков питания, зарядок, усилителей, ИБП и других схем при их настройке. Данная электронная нагрузка может выдержать более 100 Ампер тока, рассеивая более 500 Вт непрерывно и выдерживая 1 кВт мощности в импульсном режиме.

Схема самодельной электронной нагрузки на 500 Вт

Схема самодельной электронной нагрузки на 500 Вт

Схема в принципе несложная и тут используются два полевых транзистора с регулирующими ОУ. Каждый из двух каналов одинаков и включены они параллельно. Управляющие напряжения связаны между собой и нагрузка делится поровну между двумя мощными полевыми транзисторами. Здесь использованы для шунта 2 резистора на 50 А, формируя напряжение обратной связи 75 мВ. Очевидным преимуществом в выборе такого малого значения сопротивления (каждый шунт сопротивлением всего 1,5 миллиом) в том, что падение напряжения практически ничтожно. Даже при работе с нагрузкой 100 А, падение напряжения на каждом шунтирующем резисторе будет менее 0,1 В.

Схема самодельной электронной нагрузки на 500 Вт

Недостатком использования такой схемы в том, что требуется ставить ОУ с очень низким входным смещением, так как даже небольшое изменение смещения может привести к большой погрешности в контролируемом токе. Например, при лабораторных испытаниях, всего 100 мкВ напряжения смещения приведет к изменению тока нагрузки на 0,1 А. Кроме того, трудно создать такие стабильные управляющие напряжения без использования ЦАП и прецизионных ОУ. Если вы планируете использовать микроконтроллер для управления нагрузкой, нужно будет либо использовать прецизионные ОУ для усиления напряжения с шунта, совместимые с ЦАП на выходе (например, 0-5 В) или использовать прецизионный делитель напряжения для создания управляющего сигнала.

Схема самодельной электронной нагрузки на 500 Вт

Схема самодельной электронной нагрузки на 500 Вт

Вся схема была собрана на куске текстолита методом упрощённого монтажа и размещена на верхней части большого алюминиевого блока. Поверхность металла отполирована для того, чтобы обеспечить хорошую теплопроводность между транзисторами и радиатором. Все соединения с большим током — не менее 5 проводов толстого многожильного провода, тогда они смогут выдерживать не менее 100 А без существенного нагрева или падения напряжения.

Схема самодельной электронной нагрузки на 500 Вт

ЭЛЕКТРОННАЯ НАГРУЗКА С РЕГУЛИРОВКОЙ ТОКА

Выше приведено фото макетки, на которой впаяны два операционных усилителя повышенной точности LT1636. А модуль DC-DC преобразователя используется для преобразования входного напряжения на стабильных 12 В для контроллера вентилятора системы охлаждения. Вот они — 3 вентилятора на боковой стороне радиатора.

   Форум по схеме

   Обсудить статью ЭЛЕКТРОННАЯ НАГРУЗКА С РЕГУЛИРОВКОЙ ТОКА


Активная нагрузка с измерением емкости аккумулятора

Представляем проект самодельной активной электронной нагрузки. Сама по себе активная нагрузка не является чем-то особенным, но здесь расширение базы представляет собой микроконтроллер, используемый для измерения тока, напряжения и мощности и тестирования емкости любых аккумуляторов от 100 мА/ч до 99 А/ч с функцией автоматического отключения нагрузки от источника после достижения установленного напряжения разряда. Дополнительным действием микроконтроллера является управление скоростью вентилятора в зависимости от температуры радиатора.

Схема измерителя ёмкости АКБ с электронной нагрузкой

Работа базовой схемы активной нагрузки довольно проста — силовой транзистор последовательно соединен с резистором измерения мощности источника с источником питания (например, блоком питания, аккумулятором). Транзистор управляется сигналом ошибки, генерируемым в измерительном усилителе на основе сигнала напряжения, получаемого с измерительного резистора, и сигнала напряжения, подаваемого с потенциометра управления. Разница этих сигналов заставляет транзистор открываться или закрываться через измерительный усилитель для их выравнивания. Это влияет на величину тока, протекающего через транзистор, и, следовательно на ток, поступающий от проверяемого источника. Напряжение, пропорциональное току протекающему через него в соответствии с законом Ома, подается на измерительный резистор.

Конечно, эта базовая схема имеет много различных модификаций, например более одного силового транзистора, дополнительные управляющие транзисторы, MOSFET-транзистор вместо биполярных, улучшенные версии операционных усилителей и так далее.

В данном проекте использован самый простой вариант с одним полевым транзистором STW20NB50 в корпусе TO-247. Транзистор напрямую управляется сдвоенным операционным усилителем LM358, питаемым от одного напряжения 9 В. Измеряемое напряжение от силового резистора (2 параллельных резистора 0R1 5 Вт) подается через простой RC-фильтр на инвертирующий вход первого усилителя, а на неинвертирующий вход другого операционного усилителя для усиления напряжения перед передачей в микроконтроллер — измерение тока.

Напряжение двух последовательно соединенных потенциометров управления также подается на вход неинвертирующего первого усилителя, создание системы грубой и точной регулировки, поглощенной текущей нагрузкой. В первом ОУ генерируется сигнал ошибки, управляющий силовым транзистором. Транзистор работает линейно, что несколько необычно для MOSFET, но совершенно нормально в данном случае.

Внимание: эта схема активной нагрузки может не выдержать обратного подключения проверяемого источника питания!

Проект основан на микроконтроллере ATtiny26. Он управляется внутренним генератором с частотой 8 МГц, который при первых нескольких срабатываниях калибруется «вручную» методом проб и ошибок, изменяя параметр, введенный в регистр генератора OSCCAL в начале программы (несколько раз корректируя, компилируя и программируя). Хотя в схеме есть функция измерения емкости батареи, которая заключается в подсчете принятой нагрузки как функции времени, не считаем необходимым стабилизировать время с помощью кварца, поскольку это не лабораторное оборудование, и небольшие отклонения отсчитываемого времени (после калибровки генератора) мало влияет на результат измерения АКБ. Если кто-то хочет стабилизировать таймер кварцем — можете сделать и так.

Программа была написана полностью на ассемблере и занимает доступную память процессора, всего 2 КБ.

АЦП подаются через блокирующий конденсатор в конце AVCC и в качестве источника использования эталонного напряжения внутреннее напряжение 2,56 В. Измерения проводятся циклически каждые 200 мсек в основном цикле программы.

Чтобы просмотреть ток и напряжение с точностью до 0,01, точность обработки АЦП была программно увеличена с 10 до 12 бит. Без этой процедуры точность индикации напряжения в предполагаемом диапазоне 30 В составляла 30 В / 1023 (АЦП) = ~ 0,03 В, что не очень.
Благодаря передискретизации до 12 бит точность показаний напряжения составила 30 В / 4095 (АЦП) <0,01 В. Для тока с предполагаемым диапазоном 10 А избыточная дискретизация была по существу ненужной, потому что 10 А / 1023 (АЦП) = ~ 0,01 А, что достаточно.

При каждом измерении делается много «быстрых» показаний с АЦП, из которых извлекается среднее значение, который затем попадает в «свободный» круговой буфер, который циклически заполняется при каждом измерении. Среднее значение этого буфера берется только для дальнейших правильных расчетов тока или напряжения. В результате показания достаточно стабильны и достаточно быстро реагируют на изменения измеряемых величин.

Температура радиатора измеряется схемой на датчике Dallas (это может быть 18B20 или 18S20 — программа распознает и настраивает) с точностью до ближайших градусов, и на этой основе определяется, как быстро крутить вентилятор радиатора — чем он горячее, тем быстрее вращение. При включении питания вентилятор запускается с высокой скоростью и через некоторое время достигает минимальной скорости согласно температуре.

Измерение емкости аккумулятора состоит в основном из суммирования текущих показаний через заданные временные интервалы (здесь 1 с) и последующего интегрирования этой суммы для интервалов определенного времени (здесь 1 ч = 3600 с). Например, пусть это будет текущее измерение 1 А; если мы суммируем его в течение часа каждую секунду, то получаем сумму показаний = 1 A х 3600 с = 3600 Ас; если разделим его на постоянный период интеграции, равный 3600 с (1 час), то получим 3600 Ас / 3600 с = 1 А в час.

Давайте проверим, будет ли ток = 4 А в течение 10 часов, тогда что получится? 4 A х 36000 с = 144000 Ас -> 144000/3600 = 40 Ач.

Чтобы измерить емкость аккумулятора он должен быть подключен к нагрузке с минимальными грубыми и точными потенциометрами (отключение нагрузки) и с максимальным потенциометром регулировки напряжения отсечки. На дисплее должно отображаться напряжение на аккумуляторе, например, 12,15 В и ток без нагрузки. Единица напряжения должна быть записана как «V» (с заглавной буквой), если это маленькая буква «v», следует кратковременно нажать кнопку, чтобы активировать функцию отключения нагрузки, чтобы вернуться к большому «V».

Теперь отрегулируем напряжение отсечки для потенциометра, например, для 12-вольтовой кислотной батареи это будет полное напряжение разряда 10,20 В (1,7 В / элемент, разные источники могут давать немного разные размеры, особенно в зависимости от его производителя). Нажимаем долго (более 3 секунд) функциональную кнопку отключения нагрузки, пока буква «V» не изменится на маленькую «v». Поверните потенциометр напряжение до максимального значения и оставить уже — с изолирующей нагрузкой вернутся в режим ожидания.

Теперь достаточно установить желаемый ток нагрузки, желательно на 20 часов (обычно в соответствии с рекомендациями для кислотных АКБ), например, 2,5 А для аккумулятора 50 А/ч, и ждать сигнала завершения — пикание. В зависимости от состояния АКБ, это может занять несколько часов. Благодаря функции отключения нагрузки не нужно беспокоиться о том, чтобы пропустить момент полной разрядки и повредить аккумулятор — нагрузка отключится автоматически. На дисплее можем прочитать значение емкости и времени измерения, которое прошло.

Измерение емкости активируется автоматически после обнаружения тока не менее 50 мА без какой-либо операции нажатием кнопки и регулировкой напряжения отключения, описанных выше — они служат только для активации режима контроля напряжения и отключения нагрузки.

На одном из выходов процессора имеется передача от программного обеспечения USART со скоростью 9600 8N1 в односекундном цикле, в которую включена информация, идентичная показанной на дисплее в виде кодов ASCII. Вы можете отправить передачу данных, например, на компьютер через любой адаптер RS232-TTL / USB и прочитать информацию непосредственно на любом терминале, указав соответствующий COM-порт адаптера. Переданные данные включают в себя коды ASCII, управляющие терминалом, а именно коды CR + LF на концах линии и код CLRSCR для очистки экрана в начале каждой передачи, благодаря чему данные отображаются в окне терминала в фиксированном месте (прокрутка окна при получении данных не производится).

Микроконтроллер напрямую управляет буквенно-цифровым ЖК-дисплеем 2×16 в 4-битном режиме. Дисплей отображает 6 параметров,

  • в верхней строке: напряжение, ток, температура радиатора;
  • в нижней строке: мощность, мощность, время измерения.

В схеме есть несколько потенциометров. Они используются для коррекции измерений напряжения и тока, а также контрастности дисплея и для регулировки уровня тока нагрузки (грубой и точной), а также для установки напряжения отсечки для измерений А/ч.

Источник питания служит силовой трансформатор мощностью 3 Вт и напряжением 12 В. Стандартный встроенный стабилизатор в версии SMD обеспечивает напряжение 5 В для питания всей схемы, в то время как стабилизатор 9 В в корпусе TO-92 для операционного усилителя припаян со стороны дорожек, напряжение отфильтровано несколькими электролитическими конденсаторами и керамикой.

Электронная схема была разделена на две печатные платы: плату процессора с взаимодействующими цепями и плату нагрузки с транзистором и резисторами. Они разработаны так, что их можно разделить на две части или оставить как одну большую плату. В случае разделения платы соединяются с помощью коротких отрезков проводов, предпочтительно кабелей, и размещаются в корпусе так, чтобы они были как можно ближе друг к другу (как можно короче соединительные провода). Силовой транзистор присоединен к достаточно большому радиатору с вентилятором.

Вся схема была размещена в типичном металлическом корпусе от блока питания компьютера АТХ. На одной из стенок прикреплена лицевая панель с отверстием для дисплея. В дополнение к дисплею имеются также бананы-разъемы для подключения проверяемого источника и потенциометров регулировки. Благодаря тому, что это корпус от БП компьютера, тут уже есть разъем для сетевого 220 В шнура питания.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *