Вольтметр с растянутой шкалой для любого диапазона напряжений
Вольтметр с растянутой шкалой позволяет измерять узкий диапазон напряжений, например от 10 до 15 вольт. Это удобно в случае контроля заряда-разряда аккумулятора для автомобиля или других аналогичных случаев, когда важно отслеживать точные значения напряжений в небольшом диапазоне, их колебания. Рассчитать и сделать такой вольтметр несложно самостоятельно.
Суть вольтметра
В некоторых случаях применение обычного вольтметра с линейной шкалой может быть не очень удобным. Например для контроля напряжения заряда-разряда автомобильного или другого подобного аккумулятора более удобен вольтметр со шкалой не от нуля а, скажем, от значения 10 вольт. Так как до более низких значений такие аккумуляторы обычно не разряжаются, а если разряжаются, то это говорит лишь об их неправильной эксплуатации, вероятной неработоспособности и значительной потере ёмкости.
Таким образом, вольтметр с растянутой шкалой дает возможность отслеживать значения именно в рабочем диапазоне напряжений (например
В качестве стрелочного индикатора (измерительной головки) можно применить любой подходящий по размеру, например от старого тестера (вольтметра, амперметра, омметра и др.) или даже малогабаритные стрелочные индикатора уровня записи/воспроизведения от звуковой радиоэлектронной аппаратуры. При этом потребуется лишь рассчитать параметры номиналов используемых в схеме деталей и откалибровать шкалу индикатора под новые значения. Как это сделать и рассказываем ниже.
Схема вольтметра
Схема предельно простая, она показана на рисунке-иллюстрации ниже.
В основе схемы лежит пороговый элемент, в качестве которого применён стабилитрон VD1 с необходимым значением напряжения стабилизации. Второй аналогичный стабилитрон VD2 включён встречно-последовательно с первым чтобы снизить температурную нестабильность схемы при работе в условиях больших колебаний окружающей температуры.
Напряжение Uр (разностное) на резисторе R будет равно разности между значениями входного напряжения схемы и напряжением стабилизации стабилитронов (Uстаб). И прибор, соответственно, покажет изменение этой разницы в пределах от
И тогда сопротивление резистора R можно рассчитать по следующей несложной схеме:
R = 2Uр / Iстаб
здесь 2Uр — предел измерения прибора в вольтах,
Iстаб — допустимый максимальный ток стабилитронов в амперах.
Значение сопротивления при этом получится в Омах)
Например в случае аккумуляторной батареи с номинальным рабочим напряжения 12 вольт подойдут два стабилитрона с напряжением стабилизации:
Uстаб = 10 вольт (каждый)
Тогда и нижний предел измерений прибора будет равен 10 вольтам
Вольтметр с растянутой шкалой. Расчёт диапазона измерений
Такой вольтметр в отличие от обычного позволяет с большой точностью измерить напряжение в некотором заданном диапазоне. Например для контроля напряжения автомобильного аккумулятора очень удобен будет вольтметр со шкалой от 10 до 15 вольт, так как он дает возможность отслеживать даже незначительные изменения напряжения в этом диапазоне.
Примечание автора: далее в тексте статьи будет использован нестандартный значок «дельта»
Поскольку такой значок отсутствует на клавиатуре, я стану обозначать его как ^U.
Для того, чтобы сделать шкалу «растянутой», в измерительную схему достаточно добавить пороговый элемент, например стабилитрон с необходимым значением напряжения стабилизации. А если добавить ещё один такой стабилитрон, включённый встречно, то это значительно уменьшит суммарную температурную нестабильность всей схемы, которая представлена на рисунке ниже:
Напряжение на входе схемы распределяется между резистором R и стабилитронами VD1 VD2. Если падение напряжения на стабилитронах неизменно, то на резисторе оно будет равно разности между входным значением и напряжением стабилизации стабилитронов Uстаб. И тогда прибор покажет не значение входного напряжения, а только его изменение в пределах от 0 до 2^U.
Сопротивление резистора R можно рассчитать обычным способом для схем стабилизации:
R = 2^U / Iстаб.max, где 2^U — предел измерения прибора, Iстаб — ток стабилитронов.
На практике, для контроля напряжения двенадцативольтовой кислотной аккумуляторной батареи можно использовать два стабилитрона с напряжением стабилизации каждого по 10 вольт, резистор R сопротивлением 120 Ом и вольтметр с пределом измерения 3 вольта. Шкалу вольтметра в этом случае следует проградуировать в значениях от 10 до 13 вольт.
4. Стрелочный вольтметр с растянутой шкалой 10…15 В
СТРЕЛОЧНЫЙ ВОЛЬТМЕТР С РАСТЯНУТОЙ ШКАЛОЙ 10…15 В
Прибор будет полезен автолюбителям для измерения с высокой точностью напряжения на аккумуляторе, но он может найти и другие применения,
Рис. 4.6 Вольтметр с растянутой шкалой
где требуется контролировать напряжение в интервале 10…15 В с точностью 0,01 В.
Известно, что о степени заряженности автомобильного аккумулятора можно судить по его напряжению. Так, у полностью разряженного, разряженного наполовину и полностью заряженного аккумулятора оно соответствует 11,7, 12,18 и 12,66В.
Для того чтобы измерить напряжение с такой точностью, нужен либо цифровой вольтметр, или стрелочный с растянутой шкалой, позволяющий контролировать интересующий нас интервал.
Схема, приведенная на рис. 4.6, позволяет, используя любой микроамперметр со шкалой 50 мкА или 100 мкА, сделать из него вольтметр со шкалой измерения 10…15 В.
Схема вольтметра не боится неправильного подключения полярности к измеряемой цепи (в этом случае показания прибора не будут соответствовать измеряемой величине).
Для предохранения микроамперметра РА1 от повреждения при перевозках используется включатель S1, который при закорачивании выводов измерительного прибора препятствует колебаниям стрелки.
В схеме использован прибор РА1 с зеркальной шкалой, типа М1690А (50 мкА), но подойдут и, многие другие. Прецизионный стабилитрон VD1 (Д818Д) может быть с любой последней буквой в обозначении. Подстроечные резисторы лучше использовать многооборотные, например R2 типа СПЗ-36, R5 типа СП5-2В.
Для настройки схемы потребуется блок питания с регулируемым выходным напряжением О…15 В и образцовый вольтметр (удобней, если он будет цифровым). Настройка заключается в том, чтобы, подключив блок питания к зажимам Х1, Х2 и постепенно увеличивая напряжение до 10 В, добиться резистором R5 «нулевого» положения стрелки прибора РА1. После этого напряжение источника питания увеличиваем до 15 В и резистором R2 устанавливаем стрелку на предельное значение шкалы измерительного прибора. На этом настройку можно считать законченной.
Рис. 4.7. Схема для более точного измерения сетевого напряжения
На основе данной схемы прибор можно выполнить многофункциональным. Так, если выводы микроамперметра подключать к схеме через галетный переключатель 6П2Н, можно сделать режим обычного вольтметра, подобрав добавочный резистор, а также тестер для проверки цепей и предохранителей.
Прибор можно дополнить схемой (рис. 4.7) для измерения перемен- ного сетевого напряжения. При этом шкала у него будет от 200 до 300 В, что позволяет более точно измерять сетевое напряжение.
Измеритель напряжения с растянутой шкалой
Эксплуатируя и настраивая различные устройства, которые питаются от сети 220 В, бывает нужно контролировать величину напряжения. В этом случае в ход обычно идет малогабаритный мультиметр, находящийся в данный момент на рабочем столе. Однако чтобы повысить эффективность работы и творчества, предлагается изготовить несложный вольтметр напряжения переменного тока на основе стрелочного индикатора, который бы непрерывно контролировал сетевое напряжение.
Принципиальная схема прибора показана на рисунке выше. Напряжение 220 В через выпрямительный диод VD1 и резистор R1 поступает на транзистор VT1, который в таком включении работает в режиме обратимого лавинного пробоя — как микромощный стабилитрон. От величины сопротивления подстроечного резистора R2 зависит чувствительность прибора. Пока напряжение на переходе эмиттер-база транзистора VT1 не превысит +6…9 В (зависит от типа и конкретного экземпляра транзистора), ток через этот переход слишком мал и напряжение между выводами база-эмиттер VT2 меньше +0,55 В, что недостаточно для его открывания. Как только напряжение на этих выводах станет больше 0,6…0,65 В, транзистор начнет открываться и стрелка микроамперметра уйдет с нулевой отметки. Этот транзистор работает как эмиттерный повторитель, что позволяет снизить температурную нестабильность показаний прибора и обойтись без специальных элементов термокомпенсации.
Усилитель тока на транзисторе VT2 получает питание от простого бестрансформаторного источника питания с параметрическим стабилизатором на диодах VD2, VD3 и светодиодах HL1, HL2, выполняющих роль стабилитрона с напряжением стабилизации 5,0…6,5 В, одновременно с функцией стабилизации выпрямленного напряжения они предназначены и для подсветки шкалы прибора. Оксидные конденсаторы C1, C3 сглаживают пульсации выпрямленного напряжения, конденсатор C2 гасит излишки тока сетевого питающего напряжения. От сопротивления подстроечного резистора R4 зависит насколько можно растянуть шкалу измерений.
Постоянные резисторы типов С1-4, С2-14, С2-23, МЛТ. Подстроечный резистор R4 типа СП3-29А или любой другой, желательно малогабаритный сопротивлением 4,7…10 МОм. Конденсаторы C1, СЗ серий К50, К52, К53 или их импортные аналоги. Неполярный конденсатор C2 типов К73-16, К73-24, К73-39 на напряжение не менее 630 В. Диоды 1N4006 можно заменить на любые из серий КД209, КД410, КД243Д, КД247Г, 1N4007. Сверхяркие светодиоды RL30-CB744D синего цвета свечения можно заменить на RL50-CB744D, DB5-448ABD-C, DB5-448ABD-B или аналогичными с прямым рабочим напряжением 2,8…3,6 В при токе 20 мА. Оба биполярных транзистора могут быть любыми из серий КТ3102, КТ6111, SS9014, ВС549, 2SC184. Указанные серии транзисторов имеют отличия в типе корпусов и цоколевке выводов. Транзистор VT2 желательно подобрать с коэффициентом передачи тока базы не менее 400. Микроамперметр можно применить любой малогабаритный от индикатора тока записи бытового магнитофона, например, М4387, М4762.1, М4761. Следует учитывать то, что от типа стрелочного индикатора зависит насколько можно растянуть шкалу измеряемого напряжения. Так, при сопротивлении резистора R5 равным 0 Ом с рамкой М68501 (ток полного отклонения 300 мкА) на шкале уложится диапазон напряжений в 15 В, а с чувствительными рамками М4260, М4204 с током полного отклонения 50 мкА шкала прибора сжимается до 8 В. Конечно, такой чувствительный прибор (216…224 В) может найти ограниченное применение, но он нагляден и интересен для различных экспериментов и испытаний.
Наладка осуществляется следующим образом. Подстроечным резистором R2 регулируется чувствительность прибора, а резистором R4 — ширина диапазона измеряемых напряжений, при увеличении его сопротивления диапазон шкалы расширяется. Благодаря наличию каскада усилителя тока на транзисторе VT2. прибор может работать практически с любыми измерительными рамками с током полного отклонения стрелки от 10 до 1000 мкА.
Для калибровки прибора желательно использовать точный цифровой вольтметр (не хуже ±1%) и автотрансформатор. Для постоянного контроля за напряжением сети рекомендуется установить диапазон измеряемых напряжений около 198…242 В (отклонение ±10%) или 176…242 В (-20…+10%). Если необходим более точный контроль, то можно изготовить шкалу на 215…225 В. После окончательной настройки прибора подстроечные резисторы рекомендуется заменить постоянными, такого же сопротивления, что значительно повысит стабильность показаний и надёжность прибора.
Пропорционально изменив сопротивление резистора R1 и ёмкость конденсатора C2, можно контролировать напряжение переменного тока, значительно отличающееся от 220 В. Светодиоды используются для подсветки шкалы прибора, что часто оказывается очень удобным. Если в подсветке нет необходимости, то их можно заменить одним стабилитроном на 5,6 В, например, 1N4734A, КС156Г.
скачать архив
Стрелочный вольтметр с растянутой шкалой 10…15 в
Прибор будет полезен автолюбителям для измерения с высокой точ ностью напряжения на аккумуляторе, но он может найти и другие применения, где требуется контролировать напряжение в интервале 10… 15 В с точностью 0,01 В.
Известно, что о степени заряженности автомобильного аккумулятора можно судить по его напряжению. Так, у полностью разряженного, разряженного наполовину и полностью заряженного аккумулятора оно соответствует 11,7, 12,18 и 12,66 В.
Для того чтобы измерить напряжение с такой точностью, нужен либо цифровой вольтметр, или стрелочный с растянутой шкалой, позволяющий контролировать интересующий нас интервал.
Схема, приведенная на рис. 4.6, позволяет, используя любой микроамперметр со шкалой 50 мкА или 100 мкА, сделать из него вольтметр со шкалой измерения 10…15 В.
Схема вольтметра не боится неправильного подключения полярности к измеряемой цепи (в этом случае показания прибора не будут соответствовать измеряемой величине).
Для предохранения микроамперметра РА1 от повреждения при перевозках используется включатель S1, который при закорачивании выводов измерительного прибора препятствует колебаниям стрелки.
В схеме использован прибор РА1 с зеркальной шкалой, типа М1690А (50 мкА), но подойдут и многие другие. Прецизионный стабилитрон VD1 (Д818Д) может быть с любой последней буквой в обозначении. Подстроечные резисторы лучше использовать многооборотные, например R2 типа СПЗ-Зб, R5 типа СП5-2В.
Для настройки схемы потребуется блок питания с регулируемым выходным напряжением 0…15 В и образцовый вольтметр (удобней, если он будет цифровым). Настройка заключается в том, чтобы, подключив блок питания к зажимам Х1, Х2 и постепенно увеличивая напряжение до 10 В, добиться резистором R5 «нулевого» положения стрелки прибора РА1. После этого напряжение источника питания увеличиваем до 15 В и резистором R2 устанавливаем стрелку на предельное значение шкалы измерительного прибора. На этом настройку можно считать законченной.
На основе данной схемы прибор можно выполнить многофункциональным. Так, если выводы микроамперметра подключать к схеме через галетный переключатель 6П2Н, можно сделать режим обычного вольтметра, подобрав добавочный резистор, а также тестер для проверки цепей и предохранителей.
Прибор можно дополнить схемой (рис. 4.7) для измерения переменного сетевого напряжения. При этом шкала у него будет от 200 до 300 В, что позволяет более точно измерять сетевое напряжение.
⚡️Переделка стрелочных вольтметров | radiochipi.ru
В статье описываются два варианта простых и надежных стрелочных вольтметров предназначенных для эксплуатации в жестких условиях. Не во всех случаях целесообразно использовать современные цифровые измерительные приборы.
В некоторых ситуациях, например, в гараже, на даче, когда требуется повышенная защита от грозовых разрядов, нужна работа в широком диапазоне температур окружающего воздуха, будет целесообразней использовать магнитоэлектрические измерители, не требующие дополнительного питания, включаемые по простым схемам и отличающиеся очень большим сроком службы.
Вариант 1
Вольтметр на базе прибора Ц24
На рис.1 представлена принципиальная схема простого вольтметра сетевого напряжения переменного тока. Особенность этого вольтметра в том, что он изготовлен на базе готового вольтметра промышленного изготовления Ц24. Вольтметр Ц24 представляет собой микроамперметр, в корпус которого установлены все необходимые радиоэлементы, для измерения напряжения сети переменного тока 230 В.
Этот вольтметр обычно устанавливался в отечественные регулируемые автотрансформаторы выпуска 1960-х годов, предназначенные для питания ламповой радиоаппаратуры. Позднее в таких автотрансформаторах стали применять менее информативный, имеющий малый срок службы, но более стильный по тем временам, линейный газоразрядный индикатор. Выпущенный в 1962 году измеритель Ц24 успешно выполняет свою задачу и в настоящее время.
Промышленный вольтметр включал в себя микроамперметр РА1 (ток полного отклонения стрелки около 1.5 мА, сопротивление обмотки 360 Ом), резисторы R2 – R5 и германиевые диоды VD5, VD6. Вольтметр подвергся доработке: вместо двух параллельно включенных резисторов сопротивлением по 200 кОм был установлен один большей мощности сопротивлением 100 кОм – это резистор R2, а также, был установлен узел на светодиодах для индикации включения в сеть и для подсветки шкалы прибора.
Резисторы R2 – R4 ограничивают ток через микроамперметр РА1, германиевые диоды VD5, VD6 выпрямляют напряжение переменного тока. Использование двух выпрямительных диодов вместо одного исключает заметное дрожание легкой стрелки микроамперметра при ее питании от однополупериодного выпрямителя.
Для индикации включения прибора и подсветки шкалы в корпус микроамперметра установлены два сверхьярких светодиода HL1, HL2. Конденсатор С1 гасит избыток поступающей на светодиоды энергии. Резистор R1 уменьшает броски тока через мостовой выпрямитель VD1 – VD4. Импульсные броски тока, например, при включении в сеть, искрении в розетке, весьма негативно влияют на кристаллы сверхъярких светодиодов, для их уменьшения установлен оксидный конденсатор С2.
Конструкция и детали стрелочных вольтметров
Все детали этого измерителя размещены в корпусе микроамперметра РА1. Резисторы R2 – R4 и диоды VD5, VD6 размещены на заводской монтажной плате (рис.2), а элементы, относящиеся к узлу подсветки, зафиксированы в корпусе микроамперметра под этой платой термоклеем и дополнительно приклеены клеем «Момент» на основе полихлоропреновых каучуков.
Подойдет также аналогичный клей «Момент кристалл» или «Квинтол». Светодиоды приклеены снизу от шкалы (рис.3), а элементы R1, С1, VD1 – VD4 приклеены под монтажной платой. Резистор R1 желательно применить импортный разрывной или отечественный типа Р1-7.Остальные резисторы ВС, С1-4, С1 -14, С2-23, МЛТ, РПМ.
Если вольтметр будет установлен в не отапливаемом помещении (гараж, сарай), то использование металлопленочных резисторов нежелательно, более надежными окажутся углеродные резисторы. Конденсатор С1 применен малогабаритный импортный, предназначенный для работы в сети переменного тока 275 В. Вместо такого конденсатора можно применить пленочные конденсаторы на рабочее напряжение переменного тока 630 В, например, типа К73-17, К73-24. Конденсатор С2 типа К50-68, К53-14, К53-19 емкостью 22… 100 мкФ.
Германиевые диоды могут быть любые из серий Д2, Д9, Д18, Д20, ГД507. Кремниевые диоды 1N4148 можно заменить 1 N914 или отечественными из серий КД510, КД521, КД522. Сверхъяркие светодиоды RL50- CB744D синего цвета свечения имеют яркость 6000 мКд при токе 20 мА, вместо таких светодиодов можно установить любые аналогичные, например, «белые» RL50-WH744D – 8000 мКд.
Для лучшего рассеивания света, в зоне установки светодиодов, черный корпус микроамперметра окрашивают густым слоем белого лака для ногтей. Такая краска быстро сохнет и не отслаивается при повышенной влажности и перепадах температуры.
Вариант 2
Вольтметр на базе микроамперметра
Если в вашем распоряжении не окажется готового вольтметра Ц24, рис.4, то вместо него можно применить любой микроамперметр с током полного отклонения стрелки 100… 1500 мкА, например, М2001/1,М2003-М1. При применении более чувствительного микроамперметра, резистор R2 должен быть установлен на значительно большее сопротивление. При выборе микроамперметра нелишним будет обратить внимание на то, какое у него должно быть рабочее положение – вертикальное или горизонтальное.
Для калибровки прибора используют автотрансформатор и мультиметр. При отсутствии профессионального измерительного оборудования можно воспользоваться любительскими мультиметрами «среднего класса», например, типа MY-67, MY-68, М320, TJ1-4M.
Желательно наличие не менее трех контрольных приборов, одновременно включенных параллельно калибруемому измерителю. К сожалению, популярные у многих цифровые мультиметры низшей ценовой категории серий М-8хх, обычно не обеспечивают приемлемой точности измерений напряжения переменного тока 50 Гц.
Изготовленный прибор можно смонтировать, например, на корпусе установленного в гараже предохранительного щитка, магнитного пускателя или зарядного устройства для автомобильного аккумулятора. Если найдется свободное место на передней панели лабораторного блока питания, корпусе сетевого разветвителя, водонагревателя или другого устройства с сетевым питанием, то установка такого вольтметра повысит эксплуатационные качества модернизированного аппарата.
Высокое входное сопротивление цифровых мультиметров может дать ошибочный результат при измерении напряжений у источников питания при обрыве в измеряемой цепи. Или, например, при измерении ЭДС севшего гальванического элемента CR2032 мультиметром с входным сопротивлением 20 МОм без нагрузочного резистора дает результат 3.2 В, а при измерении напряжения стрелочным мультиметром ТЛ-4М с входным сопротивлением 30 кОм результат был 1.8 В. В таких ситуациях удобнее пользоваться вольтметрами с относительно низким сопротивлением.
Принципиальная схема несложного вольтметра постоянного тока показана на рис.5. В наличии имелся распространенный в прошлом веке щитовой микроамперметр М4200 со шкалой на 75 В. Чтобы не изготавливать другую шкалу, было решено на его основе изготовить вольтметр с четырьмя диапазонами: 0.75, 7.5, 75 и 750 В. Входное сопротивление вольт-метра на диапазоне 0.75 В составляет около 0.75 кОм. на других диапазонах кратно этому значению, т.е. на диапазоне «750 В- – 750 кОм.
При нажатой кнопке SA1.1 вольтметр работает на диапазоне «0.75» В. Напряжение на РА1 поступает через токоограничительный резистор R1, терморезистор RT1 с положительным температурным коэффициентом сопротивления и замкнутые контакты переключателя SA1. Диоды VD1, VD2 защищают PVI от повреждения при перегрузке.
В случае, если, например, на вход вольтметра будет ошибочно подано сетевое напряжение 230 В переменного тока или его выпрямленное значение с конденсатора фильтра 300…350 В, терморезистор RT1 быстро разогреется, его сопротивление резко увеличится, ток в цепи будет ограничен до 2.5 мА, что безопасно для R1, VD1, VD2, PV1. В случае если бы в цепи вместо терморезистора был включен только один R1 соответствующего сопротивления, этот резистор был бы мгновенно поврежден.
Таким образом, из-за человеческих ошибок и отсутствия у недорогих измерительных приборов элементов защиты в мире было повреждено немало мультиметров. Некоторые цифровые мультиметры средней и высокой ценовой категории оснащаются такой же защитой на терморезисторе или электромагнитным выключателем.
При нажатии на кнопку SA1.2 в цепь включается токоограничительный резистор R3, вольтметр будет работать на диапазоне «7.5 В». При включении диапазона «75 В- последовательно с R3 включается резистор R4, а на диапазоне «750 В» ток на PV1 будет поступать через все токоограничительные резисторы в измеряемой цепи.
Прибор дополнительно оснащен узлом «индикатора фазы», собранном на R2, HL1. Хотя этот узел может быстро определить фазный провод в сетевой розетке, как и многочисленные «отвертки- индикаторы», его назначение несколько иное – оперативно отслеживать утечки сетевого напряжения во вторичную цепь в незаземленных источниках питания. Это необходимо для оценки рисков повреждения при работе с устройствами, содержащими полевые, СВЧ транзисторы, МОП, КМДП микросхемы, чувствительные к повреждениям диоды, светодиоды.
Конструкции и детали стрелочных вольтметров
Вольтметр был смонтирован в пластмассовом корпусе от фотореле «ФР-75А» ТУ 32-1501-75. Вид на компоновку деталей показан на рис.6. Размеры коробки около 122x88x48 мм. Вид устройства в сборе фото в начале статьи. Микроамперметр М4200 без встроенных резисторов, при их наличии, резисторы нужно удалить из корпуса микроамперметра.
Микроамперметр можно заменить М42300 или другим аналогичным, например, М4260. М2003-М1. Чтобы не переделывать шкалу, токоограничительные резисторы можно пересчитать под другие значения диапазонов, например: 0.5, 5.0, 50, 500 Вольт.
Переключатель SA1 – счетверенный П2К с зависимой фиксацией с двумя группами контактов, соединенными параллельно. Перед монтажом переключатель следует разобрать, контакты очистить от окислов, пластиковые корпусы кнопок изнутри вычистить и промыть этиловым спиртом. При сборке переключателя трущиеся пластмассовые и металлические части можно смазать густой силиконовой смазкой для оргтехники.
Терморезистор RT1 установлен на текстолитовых стойках, применен сопротивлением около 300 Ом от электронного балласта компактной электролюминесцентной ламы «Camelion Lh36- AS-M Е27 Т3», обозначен как MZ5. Подойдет любой аналогичный сопротивлением 270… 330 Ом при комнатной температуре. Чем мощнее лампа, тем меньшего сопротивления терморезистор в ней может быть установлен. При формовке его жестких выводов не повредите корпус терморезистора.
Резистор R1 проволочный мощностью 5…7 Вт. В процессе работы и перегрузки прибора этот резистор не нагревается, применение обычных металлопленочных и углеродных резисторов на его месте нежелательно из-за разбрызгивания, выгорания токопроводящего слоя в момент перегрузки, из-за чего изменяется сопротивление резисторов, с последующим их обрывом. Остальные резисторы любого типа общего применения, R3 – R5 припаяны к соответствующим контактам SA1.
Вместо диодов 1N4007S можно установить любые из серий 1N4001 – 1 N4007, UF4001 – UF4007, КД209, КД243, КД247. Диоды припаяны к лепестковым контактам микроамперметра. Лампа тлеющего разряда HL1 малогабаритная импортная оранжевого свечения, была выбрана из нескольких десятков, самой яркой оказалась миниатюрная лампочка от подсветки клавиш импортных роторных выключателей. Неплохой результат был и у тиратронов МТХ-90, но их размеры намного больше и меньше угол обзора.
Лампа приклеена к внутренней стороне прозрачной крышки корпуса цианакриловым клеем. Сенсор Е1 сделан из металлического корпуса импортного германиевого транзистора типа SFT352, учитывайте, что ни один из его выводов не соединен с корпусом транзистора. Можно использовать имеющие немного другие размеры корпуса отечественные транзисторы МП39, ГТ402 и аналогичные.
На разноцветные щупы XI, Х2 надеты термоусадочные трубки разных цветов, что облегчает их идентификацию, когда на рабочем столе используется несколько измерительных приборов.
Перед настройкой вольтметра установите стрелку прибора регулировочным винтом на нулевое деление шкалы. Настройку начинают с подбора резистора R1.
Если не удастся подобрать одиночный проволочный резистор необходимого сопротивления, можно установить два последовательно включенных проволочных резистора: первый мощностью 5 Вт сопротивлением 47 или 51 Ом, второй мощностью 2…3 Вт сопротивлением 3…12 Ом, также можно применить самодельный.
После поочередно подбирают сопротивление резисторов R3 – R5. При отсутствии мощных резисторов подходящего сопротивления, можно установить на их место резисторы чуть большего сопротивления, а параллельно с каждым из этих резисторов включить по 2 шт. последовательно включенных резисторов мощностью 0.25 Вт сопротивлением сотни кОм – единицы МОм.
После необходимых проверок изготовленного прибора не испытывайте из любопытства защиту на RT1 ненужными перегрузками. Если понадобится этим вольтметром найти фазный провод сетевой проводки, желательно переключить SA1 в положение «750 В», что повысит безопасность его использования.
Вольтметр с растянутой шкалой — Мегаобучалка
Вольтметр — электротехнический словарь на букву В
Поделись с друзьями! Поддержи сайт! Спасибо =)
Вольтметром называется электрический прибор, который предназначен для измерения ЭДС, читай напряжения, участка электрической цепи. Вольтметр в электрической цепи обозначается кружком, в котором ставится латинская буква V или русская В, что читается как «вольт». В честь известного ученого Алессандро Вольта.
Таким образом, вольтметр измеряет напряжение в единицах вольтах
Продолжая тему истории можно сказать, что первый аналог вольтметра был изобретен русским ученым Рихманом Г.В. в 18 веке. Тот прибор назывался «указателем электрической силы» и его принцип действия заложен до сих пор в работе электростатического вольтметра.
Как включается вольтметр в цепь
Вольтметр включается в цепь параллельно измеряемому участку цепи. Ниже приведена простая схема включения вольтметра в цепь и схема включения через измерительный трансформатор.
Типы вольтметров
Вольтметры имеют широкий спектр видов, в зависимости от принципа действия и области применения.
По классу измеряемого напряжения
- — нановольтметр (для измерения сверхнизких напряжений, вплоть до 1нВ, и может использоваться в научных и метрологических целях)
- — микровольтметр
- — милливольтметр
- — вольтметр (12, 24, 30, 100, 220, 300, 500 В)
- — киловольтметр (для определения величин напряжения порядка единиц-десятков киловольт, может использоваться при проведении испытаний высоковольтного оборудования)
- — векторметр (прибор, измеряющий силу тока, напряжение и угол сдвига фаз и может использоваться при испытании магнитных свойств сталей и лабораторных исследованиях сложных схем и устройств)
- — селективные вольтметры служат для измерения переменного напряжения в диапазоне частот от 20 Гц до 35 Мгц, согласно ГОСТ 9781-85
По принципу действия
(принцип действия вольтметра схож с принципом действия амперметра, который подробно расписан по ссылке )
- — электромеханические вольтметры
- — магнитоэлектрические Мxx (этот тип вольтметров достаточно точен и имеет высокую чувствительность, однако, на показания сильно влияет форма кривой напряжения и используются только для цепей постоянного тока)
- — электромагнитные Эxx (используются как щитовые приборы, просты в изготовлении, потребляют около 5 Вт мощности и их показания сильно зависят от частоты)
- — электродинамические Дxx (наиболее точные, измеряют действующее значение напряжения постоянного и переменного тока)
- — электростатические Сxx (используются для измерения высоких напряжений постоянной и переменной величины)
- — выпрямительные (измерение напряжений низких частот, )
- — термоэлектрические Тxx (имеют низкое входное сопротивление и малую перегрузочную способность)
- — электронные Фxx, Щxx
- — аналоговые
- — цифровые
По назначению
- — постоянного тока
- — переменного тока
- — импульсные
- — фазочувствительные
- — селективные
- — универсальные
По конструкции
- — щитовые
- — переносные
- — стационарные
Вольтметр с растянутой шкалой
Схема вольтметра с растянутой шкалой позволит измерить небольшие отклонения напряжения (дельта U) относительно входного напряжения. Для обыкновенного вольтметра эта задача не является простой.
Где может использоваться схема вольтметра с растянутой шкалой?
- — контроль напряжения питающей сети
- — контроль напряжения на регулирующей аппаратуре
- — оценка разряженности аккумуляторных батарей
С помощью стабилитрона Д1 расширяется рабочий участок шкалы вольтметра. Пороговое значение напряжения стабилитрона Д1 составит UCT = U — ДU. Когда входное напряжение достигает порогового значения, то стабилитрон пробивается. Ток через стабилитрон увеличивается, а напряжение изменяется не на много. Второй встречный стабилитрон Д2 включается встречно и такое включение позволяет уменьшить температурную нестабильность.
Входное напряжение делится между резистором R и стабилитронами. Так как падение напряжения на стабилитронах остается неизменным, то падение напряжения на резисторе будет равно разности входного напряжения и напряжения стабилитрона.
Сопротивление резистора определяют, как R=2ДU/Iст.макс
где 2ДU – предел измерения прибора, Iстаб- ток стабилизации