Site Loader

Содержание

Твердотельное Реле Схема Принципиальная — tokzamer.ru

Для проверки открытия симистора необходимо использовать мегомметр. Это устройство бывает двух видов: внутреннего и внешнего.


Описание В отличие от электромеханических реле EMR , которые используют катушки, магнитные поля, пружины и механические контакты для управления и переключения питания, твердотельное реле или SSR не имеет движущихся частей, но вместо этого использует электрические и оптические свойства полупроводниковых полупроводников, выполняет его вход в функции изоляции и переключения выхода. Между цепями управления и нагрузкой качественная изоляция.

Однако твердотельные реле с очень высоким номинальным током плюс А все еще слишком дороги для покупки из-за их требований к силовым полупроводникам и теплоотдаче, и, как таковые, все еще используются более дешевые электромеханические контакторы.
Пару слов о твердотельных реле.


В этом примере подойдет любое предпочтительное значение резистора между Ом и Ом. С помощью триггерной цепи обрабатывается входной сигнал и происходит его переключение на выход.

Оно подобно диммеру умеет регулировать мощность нагрузки выходное напряжение , для этого на вход подают аналоговый сигнал — напряжение, ток или подключают переменное сопротивление.

Их главный плюс — практически полное отсутствие э-м помех, малый показатель шума при работе, экономия в плане потребления электричества и оперативность самой работы. С его помощью происходит притягивание контактов.

Отличия несущественные, на работу не влияют никак.

Однако порт цифрового выхода микроконтроллера может выдавать максимум 30 мА. А роль электронных ключей обычно исполняют встроенные в тело реле полупроводники — силовые транзисторы, симисторы, тиристоры.

ТВЕРДОТЕЛЬНОЕ РЕЛЕ ? ОШИБОЧКА ОДНАКО 🙂

Преимущества и недостатки

Для изготовления твердотельного реле можно использовать цепочки, состоящие из схемы управления и симистора. Чтобы улучшить процесс отвода тепла, следует использовать термопасту, разместив ее на всей площади контакта алюминиевого основания и полупроводникового элемента. Это связано с тем, что твердотельные реле переключения переменного тока используют SCR и триак в качестве выходного переключающего устройства, которое продолжает проводить после удаления входного сигнала до тех пор, пока переменный ток, протекающий через устройство, не опустится ниже своего порогового значения или не сохранит значение тока. Подходит для управления резистивной, емкостной и индуктивной нагрузкой.


В данном случае необходимо подобрать источник с мощностью достаточной для включения всей группы реле.

Но если токи высокие, будет происходить сильный нагрев элементов.

Прежде чем пытаться изготовить твердотельное реле самостоятельно, логично ознакомиться с базовой конструкцией подобных устройств, понять принцип их функционирования. Схема для подключения реле Все полупроводниковые устройства такого рода поделены на участки, среди которых: входная часть, оптическая развязка, триггер, а также цепи переключения и защиты.

При этом пиковые кратковременные значения тока могут достигать величины А.

Переключение происходит с высокой скоростью. Заливка компаундом Преимущества и недостатки В отличие от других типов реле, твердотельное лишено подвижных контактов.

Выходная цепь большинства стандартных твердотельных реле сконфигурирована для выполнения только одного типа переключающего действия, дающего эквивалент нормально разомкнутого однополюсного однополюсного SPST-NO режима работы электромеханического реле. Опто-триачный изолятор MOC имеет те же характеристики, но со встроенным обнаружением пересечения нуля, позволяющим нагрузке получать полную мощность без больших пусковых токов при переключении индуктивных нагрузок.
лекция 357 Твердотельное реле

Особенности процесса изготовления

Нагрузка нагревательного элемента составляет Вт.


Вход — это первичная цепь, в которой устанавливается постоянное сопротивление.

В обычных для приведения какой-либо электрический механизм в действие используются контакты, которые периодически замыкаются и размыкаются.

Выходная мощность порядка Вт. Здесь в схеме два варианта входа: ввод управления напрямую к диоду оптрона и входной сигнал подающийся через транзистор. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках.

Рекомендации о выборе кулеров приводятся в технической документации на конкретное твердотельное реле, поэтому давать универсальные советы нельзя. Соблюдая определенный ряд условий, твердотельные реле можно использовать для пуска асинхронных двигателей.

Похожие записи


Поэтому существует максимально возможная задержка выключения между удалением входного сигнала и отключением тока нагрузки в один полупериод. Между цепями управления и нагрузкой качественная изоляция. Эти реле, работающие бесшумно, являются хорошей заменой контакторам и пускателям. Такой же принцип регулировки используется в бытовых диммерах для освещения. Когда сигнал входного напряжения постоянного тока удаляется, выход не отключается внезапно, так как после срабатывания проводимости тиристор или триак, используемый в качестве переключающего устройства, остается включенным в течение оставшейся части полупериода, пока токи нагрузки не упадут ниже удерживающих устройств тока, в этот момент он выключается.

Видео: тестирование твердотельного реле. Нужно выделить такие свойства твердотельных реле: При помощи оптической развязки обеспечивается изоляция различных цепей электронного устройства. В твердотельных моделях эту роль выполняют тиристоры, транзисторы и симисторы.

С его помощью происходит притягивание контактов. Защита может находиться как внутри корпуса реле, так и отдельно. Обратите внимание на то, что у симисторов выводы обычно неоднозначно определяются, поэтому их нужно заранее проверить. Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор. В этом примере подойдет любое предпочтительное значение резистора между Ом и Ом.

Твердотельное реле вместо контактора.

Виды устройств

Для корректной работы твердотельного реле при маленьких токах нагрузки соизмеримых с током утечки необходимо устанавливать шунтирующее сопротивление параллельно нагрузке. В соотношении с методом коммукации выделяют: устройства, выполняющие нагрузки емкостного типа, редуктивного типа, слабой индукции; реле со случайным или мгновенным включением, используются в том случае, когда требуется мгновенное срабатывание; реле с наличием фазового управления, позволяют производить настройку нагревательных элементов, ламп накаливания.

Остальное наглядно демонстрирует схема: Схема включения твердотельного реле Характеристики Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели. А теперь давайте рассмотрим более детально процесс изготовления устройства.

Параметры мощности — от 3 до 32 Вт.

Обобщённая схема ТТР, наглядно показывающая, каким образом функционирует электронный прибор: 1 — источник напряжения управления; 2 — оптопара внутри корпуса реле; 3 — источник тока нагрузки; 4 — нагрузка Проходящий через фотодиод ток приходит на управляющий электрод ключевого транзистора или тиристора. Чтобы избежать возникновения перенапряжений при использовании реле, следует обязательно приобрести варистор или предохранитель быстрого действия. Выбор и покупка твердотельного реле Чтобы купить твердотельное реле, следует обратиться в специализированный магазин электроники, в котором опытные специалисты помогут подобрать устройство, в соотношении с необходимой мощностью.

Характеристики твердотельного реле

Сначала давайте рассмотрим входные характеристики оптоизолятора MOC доступны другие опто-триаки. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током — транзистор. От типа и особенностей развязки зависят общие конечные характеристики прибора и особенности его работы.

Отличия несущественные, на работу не влияют никак. Высокий уровень быстродействия позволяет избежать дребезга контактов во время работы устройства.

Комментарии

Таким образом, при использовании ТТР следует обращать внимание на характеристики переключаемых напряжений. Такие схемы отличаются высокой сложностью и лучше купить готовый прибор. Остальное наглядно демонстрирует схема: Схема включения твердотельного реле Характеристики Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели. Например, во время эксплуатации мощных устройств возникает необходимость в применении дополнительного элемента для отвода тепловой энергии.

Проверим это на практике, допустим вы столкнулись с таким изделием как на рисунке ниже, и хотите узнать, что оно собой представляет. Охлаждение Еще одним немаловажным фактором для надежной работы твердотельных реле является его рабочая температура. В его конструкции имеются силовые ключи на симисторах, тиристорах или транзисторах.
Твёрдотельное реле. Что это такое и как работает? Испытание на практике

Схема твердотельного реле — РАДИОСХЕМЫ

Современная электротехника и радиоэлектроника всё больше отказывается от механических узлов, имеющих значительные размеры и подверженных быстрому износу. Одной из областей, где это проявляется сильнее всего, являются электромагнитные реле. Все прекрасно понимают, что даже самое дорогое реле, с платиновыми контактами, рано или поздно выйдет из строя. Да и щелчки при переключении могут напрягать. Поэтому промышленность наладила активный выпуск специальных твердотельных реле.

 

Такие твердотельные реле могут использоваться практически везде, однако в настоящее время они пока ещё остаются очень дорогими. Поэтому имеет смысл собрать его самому. Тем более их схемы просты и понятны. Твердотельное реле работает как стандартное механическое реле — вы можете использовать низкое напряжение для переключения более высокого напряжения.

Схема твердотельного реле

Схема твердотельного реле

Пока на входе не присутствует напряжение постоянного тока (в левой части схемы), фототранзистор TIL111 открыт. Чтобы повысить защищённость от ложных срабатываний, база TIL111 подается эмиттер через 1М резистор. На базе транзистора BC547B будет высокий потенциал и, таким образом, он остается открытым. Коллектор замыкает управляющий электрод тиристора TIC106M на минус, и он остается в закрытом положении. Через выпрямительный диодный мост ток не проходит и нагрузка отключена.

При определенном входном напряжении, скажем, 5 вольт, диод внутри TIL111 загорается и активирует фототранзистор. Происходит закрытие транзистора BC547B и отпирание тиристора. Это создает достаточно большое падение напряжения на резисторе 330 Ом для переключения симистора TIC226 во включенное положение. Падение напряжение на симисторе в тот момент всего несколько вольт, так что практически всё напряжение переменного тока течёт через нагрузку. 

Симистор защищен от импульсов через 100 нФ конденсатор и 47 ом резистор. Чтобы создать возможность устойчивого переключения твердотельного реле с различными управляющими напряжениями, был добавлен полевой транзистор BF256A. Он действует как источник тока. Диод 1N4148 установлен, чтобы защитить цепь в случае неправильной полярности. Эта схема может быть использована в различных устройствах, с мощностью до 1,5 КВт, конечно если вы установите тиристор на большой радиатор.

Простое твердотельное реле своими руками

Твердотельное реле, представляющее собой мощный тиристорный (симисторный) электронный ключ удобнее, надежнее, имеет значительно больший ресурс и работает бесшумно, по сравнению с традиционными электромагнитными реле. Такой ключ-реле не имеет подвижных частей, искрящих-пригорающих-изнашивающихся контактов. Не трудно сделать (даже в кустарных условиях) такое электронное реле любой мыслимой степени защиты (пыль, влажность, агрессивные среды). В большинстве случаев электронные ключи-реле с успехом применяются для коммутации нагрузки на переменном токе в строящихся приборах и аппаратах, модернизируя или ремонтируя старые приборы (применяя мощные электронные ключи) улучшаем их характеристики. Например, выход из строя примененных в множестве бытовой техники механических термостатов с биметаллическими изгибающимися контактами – очень частая причина поломок. Применив подобный электронный ключ мы разгружаем контактную группу штатного механического термостата, колоссально повышая его ресурс.

Здесь, реле-электронный ключ предназначено для управления электрическими нагревателями-спиралями в специальной печи небольшой мощности. Твердотельное реле управляется температурным контроллером имеющим специальный выход. Для сопряжения с контроллером применен транзисторный каскад. В целом, схема исполнительной части повторяет [1], отличаясь исполнением. Здесь, в качестве ключей применены симисторы в корпусах ТОР-3, что позволило сделать сборку вполне компактной.

Простое твердотельное реле своими руками

Принципиальная схема твердотельного реле на симисторе. Здесь применен симистор ВТА-41, транзистор КТ315. Симисторная оптопара – МОС3020 (ток включения светодиода 30 мА). Цепочка С1, R3 предназначена для улучшения динамических характеристик симистора, меньшее из диапазона сопротивлений соответствует резистивной нагрузке ключа, большее – индуктивной. Резистор греется, лучше подобрать керамический, мощностью не менее 5 Вт. При необходимости, ключ может быть применен и для ручного включения, подобно [2], в этом случае транзисторный каскад удаляется, а на светодиод подается питание от маломощного сетевого блока. Такую схему исполнительного устройства можно применить и для контроллеров, не оснащенных специальным (для твердотельных реле) выходом. Достаточно, чтобы устройство управления имело обычный релейный выход, пусть и слабый. Нормально разомкнутую группу контактов штатного реле, следует при этом включить в разрыв питания светодиода.

В качестве радиаторов для симисторного ключа применены алюминиевые корпуса от отслуживших свой срок жестких дисков персонального компьютера. Они оказались вполне удобны для такого применения – преотлично нашлось место для крепления симистора, хорошо поместились и все детали высоковольтной части. Размер корпуса у HDD стандартен, имеются отверстия с нарезкой для специальных коротких саморезов. В ряде случаев, очень удобно применять и металлический корпус от старого системного блока. Модули симисторных ключей при этом монтируются на штатные места в специальную «корзину». Узко-высокий корпус-башню лучше проектировать для ее горизонтального положения, при этом все радиаторы с ключами внутри будут расположены вертикально, для нормального естественного охлаждения (не забыть про вентиляционные отверстия). Либо применять обдув и контроль температуры.

Мой блок управления будет трехфазным, это усложнит схему и увеличит громоздкость блока управления, зато втрое снизит проходящие токи, равномерно распределит греющиеся элементы (симисторы, элементы снабберов) и позволит задействовать пусть и перекошенную, но трехфазную деревенскую сеть.

Что понадобилось для работы.

Набор инструмента для электромонтажа, паяльник средней мощности (40…60 Вт) с принадлежностями, мультиметр, фен строительный или специальный для работы с термотрубками.


Набор инструмента для некрупных слесарных работ, ножницы по металлу, электрическая дрель или шуруповерт, набор сверл.

Материалы – отслужившие HDD, потребные радиоэлементы, крепеж, провод, мелочи

В своем электрическом хламе подобрал три гарантированно ненужных жестких диска, удалил платы контроллеров и механическую часть, оставил только крашеный порошковой краской алюминиевый поддон. В одном из вариантов HDD мотор дисков оказался насмерть запрессованным, оставил как есть, он не помешает.

Простое твердотельное реле своими руками

Разметил места креплений для крупных элементов. Керамический 10 Вт резистор снаббера закрепил жестяной обоймой вырезанной из банки от сгущенного молока (съесть, отмыть, высушить, отрезать торцы, выровнять). Обоймы с резисторами закрепил винтиками М3 (+гайки-шайбы-стопоры).

Простое твердотельное реле своими руками

Симисторы в выбранном месте прижал планками из нетонкого текстолита. Те же винтики М3 со всем сопутствующим, симистор изолировал от радиатора пластинкой из тонкой слюды. Под пластинку и под симистор плюхнул немного теплопроводящей пасты.

Простое твердотельное реле своими руками

Весь электромонтаж велся короткими жесткими проводами – толстой медной луженой проволокой изолированной термотрубкой. Схема несложная, хватило выводов механически закрепленных элементов. Для более удобного подключения нагрузки, сделал от ножек симистора короткие проволочные выводы, сигнал управления подключается к выводам торчащей оптопары. Чтобы не путаться, незадействованный вывод откусил.

Простое твердотельное реле своими руками

Испытания нагрузкой показали, что железка при работе с 2 кВт нагрузкой нагревается незначительно. Вместо сигнала управления зажигал светодиод оптопары от регулируемого БП, установив ток защиты 10 мА.

Простое твердотельное реле своими руками
Простое твердотельное реле своими руками

После проверки работоспособности каждого ключа, собрал трехфазный макет. Все три светодиода оптопар ключей (МОС3022, ток включения светодиода 10 мА) включены параллельно к одному транзисторному каскаду. Такое включение не рекомендуется – сложно достичь полной синхронности работы из-за неравенства, неидентичности оптопар. Мне пришлось применить оптопары имеющиеся. Из их большого количества отобрал три с одинаковыми измеренными параметрами светодиодов. Кроме того, возможной несинхронностью включения нагревателей в печи вполне можно пренебречь. Собственно, даже отказ одного из нагревателей скомпенсирует термоконтроллер.

Простое твердотельное реле своими руками

Согласующий транзисторный каскад собран на отдельной некрупной платке и снабжен специальными проволочными выводами для винтовых клемм контроллера. Для уменьшения возни с травлением платку спроектировал так, чтобы границы между широкими контактными площадками легко и удобно прорезать бормашиной.

Простое твердотельное реле своими руками

Контроллер для испытаний применил из временного состава миниатюрной печи для фьюзинга.

Простое твердотельное реле своими руками

В качестве нагрузки-индикатора включил три 60 Вт лампы накаливания. Чтобы ничего не замкнуло в самый неподходящий момент, смонтировал все крупные элементы на живую нитку на куске ДСП. Пришлось к рабочему столу протянуть и все три фазы. Все отлично, все три включаются синхронно и надежно.

Babay Mazay, март, 2020 г.


Литература

1. Самодельное твердотельное реле, блок управления муфельной печью.
2. Трехфазное твердотельное реле на 40 А.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

коммутация мощных нагрузок / Блог компании Unwired Devices LLC / Хабр

Привет, Geektimes!

Управление мощными нагрузками — достаточно популярная тема среди людей, так или иначе касающихся автоматизации дома, причём в общем-то независимо от платформы: будь то Arduino, Rapsberry Pi, Unwired One или иная платформа, включать-выключать ей какой-нибудь обогреватель, котёл или канальный вентилятор рано или поздно приходится.

Традиционная дилемма здесь — чем, собственно, коммутировать. Как убедились многие на своём печальном опыте, китайские реле не обладают должной надёжностью — при коммутации мощной индуктивной нагрузки контакты сильно искрят, и в один прекрасный момент могут попросту залипнуть. Приходится ставить два реле — второе для подстраховки на размыкание.

Вместо реле можно поставить симистор или твердотельное реле (по сути, тот же тиристор или полевик со схемой управления логическим сигналом и опторазвязкой в одном корпусе), но у них другой минус — они греются. Соответственно, нужен радиатор, что увеличивает габариты конструкции.

Я же хочу рассказать про простую и довольно очевидную, но при этом редко встречающуюся схему, умеющую вот такое:

  • Гальваническая развязка входа и нагрузки
  • Коммутация индуктивных нагрузок без выбросов тока и напряжения
  • Отсутствие значимого тепловыделения даже на максимальной мощности

Но сначала — чуть-чуть иллюстраций. Во всех случаях использовались реле TTI серий TRJ и TRIL, а в качестве нагрузки — пылесос мощностью 650 Вт.

Классическая схема — подключаем пылесос через обычное реле. Потом подключаем к пылесосу осциллограф (Осторожно! Либо осциллограф, либо пылесос — а лучше оба — должны быть гальванически развязаны от земли! Пальцами и яйцами в солонку не лазить! С 220 В не шутят!) и смотрим.

Включаем:

Пришлось почти на максимум сетевого напряжения (пытаться привязать электромагнитное реле к переходу через ноль — задача гиблая: оно слишком медленное). В обе стороны бабахнуло коротким выбросом с почти вертикальными фронтами, во все стороны полетели помехи. Ожидаемо.

Выключаем:

Резкое пропадание напряжения на индуктивной нагрузке не сулит ничего хорошего — ввысь полетел выброс. Кроме того, видите вот эти помехи на синусоиде за миллисекунды до собственно отключения? Это искрение начавших размыкаться контактов реле, из-за которого они однажды и прикипят.

Итак, «голым» реле коммутировать индуктивную нагрузку плохо. Что сделаем? Попробуем добавить снаббер — RC-цепочку из резистора 120 Ом и конденсатора 0,15 мкФ.

Включаем:

Лучше, но не сильно. Выброс сбавил в высоте, но в целом сохранился.

Выключаем:

Та же картина. Мусор остался, более того, осталось искрение контактов реле, хоть и сильно уменьшившееся.

Вывод: со снаббером лучше, чем без снаббера, но глобально проблемы он не решает. Тем не менее, если вы желаете коммутировать индуктивные нагрузки обычным реле — ставьте снаббер. Номиналы надо подбирать по конкретной нагрузке, но 1-Вт резистор на 100-120 Ом и конденсатор на 0,1 мкФ выглядят разумным вариантом для данного случая.

Литература по теме: Agilent — Application Note 1399, «Maximizing the Life Span of Your Relays». При работе реле на худший тип нагрузки — мотор, который, помимо индуктивности, при старте имеет ещё и очень низкое сопротивление — добрые авторы рекомендуют уменьшить паспортный ресурс реле в пять раз.

А теперь сделаем ход конём — объединим симистор, симисторный драйвер с детектированием нуля и реле в одну схему.

Что есть на этой схеме? Слева — вход. При подаче на него «1» конденсатор C2 практически мгновенно заряжается через R1 и нижнюю половину D1; оптореле VO1 включается, дожидается ближайшего перехода через ноль (MOC3063 — со встроенной схемой детектора нуля) и включает симистор D4. Нагрузка запускается.

Конденсатор C1 заряжается через цепочку из R1 и R2, на что уходит примерно t=RC ~ 100 мс. Это несколько периодов сетевого напряжения, то есть, за это время симистор успеет включиться гарантированно. Далее открывается Q1 — и включается реле K1 (а также светодиод D2, светящий приятным изумрудным светом). Контакты реле шунтируют симистор, поэтому далее — до самого выключения — он в работе участия не принимает. И не греется.

Выключение — в обратном порядке. Как только на входе появляется «0», C1 быстро разряжается через верхнее плечо D1 и R1, реле выключается. А вот симистор остаётся включённым примерно 100 мс, так как C2 разряжается через 100-килоомный R3. Более того, так как симистор удерживается в открытом состоянии током, то даже после отключения VO1 он останется открытым, пока ток нагрузки не упадёт в очередном полупериоде ниже тока удержания симистора.

Включение:

Выключение:

Красиво, не правда ли? Причём при использовании современных симисторов, устойчивых к быстрым изменениям тока и напряжения (такие модели есть у всех основных производителей — NXP, ST, Onsemi, etc., наименования начинаются с «BTA»), снаббер не нужен вообще, ни в каком виде.

Более того, если вспомнить умных людей из Agilent и посмотреть, как меняется потребляемый мотором ток, получится вот такая картинка:

Стартовый ток превышает рабочий более чем в четыре раза. За первые пять периодов — то время, на которое симистор опережает реле в нашей схеме — ток падает примерно вдвое, что также существенно смягчает требования к реле и продлевает его жизнь.

Да, схема сложнее и дороже, чем обычное реле или обычный симистор. Но часто она того стоит.

Цепь твердотельного реле

с использованием симисторов и коммутации с переходом через нуль

Твердотельное реле сети переменного тока или SSR — это устройство, которое используется для переключения тяжелых нагрузок переменного тока на уровне сети через изолированные триггеры минимального напряжения постоянного тока без использования механических подвижных контактов.

В этом посте мы узнаем, как построить простое твердотельное реле или цепь SSR с использованием симистора, BJT, оптопары перехода через нуль.

Преимущество твердотельных реле SSR над механическими реле

Реле механического типа могут быть довольно неэффективными в приложениях, требующих очень плавного, очень быстрого и чистого переключения.

Предлагаемая схема SSR может быть построена дома и использоваться в местах, где требуется действительно сложное управление нагрузкой.

В данной статье описывается схема твердотельного реле со встроенным детектором перехода через ноль.

Схема очень проста в понимании и построении, но обеспечивает такие полезные функции, как чистое переключение, отсутствие радиочастотных помех и способность выдерживать нагрузки до 500 Вт. Мы многое узнали о реле и о том, как они работают.

Мы знаем, что эти устройства используются для переключения тяжелых электрических нагрузок через внешнюю изолированную пару контактов в ответ на небольшой электрический импульс, полученный с выхода электронной схемы.

Обычно триггерный вход находится в непосредственной близости от напряжения обмотки реле, которое может составлять 6, 12 или 24 В постоянного тока, в то время как нагрузка и ток, коммутируемые контактами реле, в большинстве случаев находятся на уровне потенциалов сети переменного тока.

В основном реле полезны, потому что они могут переключать тяжелые, подключенные к их контактам, не приводя опасные потенциалы в контакт с уязвимой электронной схемой, через которую они переключаются.

Однако преимущества сопровождаются несколькими критическими недостатками, которые нельзя игнорировать.Поскольку контакты связаны с механическими операциями, иногда они совершенно не подходят для сложных схем, требующих высокоточного, быстрого и эффективного переключения.

Механические реле также имеют плохую репутацию генерировать радиопомехи и шум во время переключения, что также приводит к ухудшению качества его контактов со временем.


Для SSR на основе MOSFET, пожалуйста, обратитесь к этому сообщению. Проблемы генерации радиочастотных помех во время работы.

Кроме того, тиристоры и симисторы, интегрированные непосредственно в электронные схемы, требуют, чтобы линия заземления схемы была соединена с катодом, что означает, что секция схемы больше не изолирована от смертоносных напряжений переменного тока от устройства — серьезный недостаток с точки зрения безопасности к пользователю обеспокоен.

Однако симистор может быть очень эффективно реализован, если полностью устранить вышеупомянутую пару недостатков. Поэтому две вещи, которые должны быть устранены с помощью симисторов, если они должны быть эффективно заменены на реле, — это радиочастотные помехи при переключении и попадание опасной сети в цепь.

Твердотельные реле

спроектированы в точности с указанными выше спецификациями, что исключает влияние РЧ-сигналов, а также полностью обособляет две ступени друг от друга.

Коммерческие SSR могут быть очень дорогими и не подлежат ремонту, если что-то пойдет не так. Однако изготовление твердотельного реле полностью вами и использование его для необходимого приложения может быть именно тем, что «доктор прописал». Поскольку он может быть построен с использованием дискретных электронных компонентов, он становится полностью ремонтируемым, модифицируемым и, более того, дает вам четкое представление о внутренних операциях системы.

Здесь мы изучим создание простого твердотельного реле.

Как это работает

Как обсуждалось в предыдущем разделе, в предлагаемой схеме SSR или твердотельного реле радиочастотные помехи проверяются путем принудительного переключения симистора только вокруг нулевой отметки синусоидальной фазы переменного тока и использования Оптопара гарантирует, что вход находится вдали от сетевых потенциалов переменного тока, присутствующих в цепи симистора.

Давайте попробуем понять, как работает схема:

Как показано на схеме, оптрон становится порталом между триггером и схемой переключения.Триггер входа применяется к светодиоду оптопара, который загорается и заставляет фототранзистор проводить.
Напряжение от фототранзистора проходит через коллектор к эмиттеру и, наконец, достигает затвора симистора, чтобы управлять им.

Вышеупомянутая операция довольно обычна и обычно связана с триггером всех симисторов и тиристоров. Однако этого может быть недостаточно для устранения радиочастотного шума.

Секция, состоящая из трех транзисторов и некоторых резисторов, специально вводится с целью проверки генерации ВЧ, гарантируя, что симистор проводит только в окрестности нулевых пороговых значений синусоидального сигнала переменного тока.

Когда сеть переменного тока подключена к цепи, выпрямленный постоянный ток становится доступным на коллекторе оптранзистора, и он проводит, как описано выше, однако напряжение на переходе резисторов, подключенных к базе T1, регулируется так, чтобы оно начинает работать сразу после того, как сигнал переменного тока поднимется выше отметки 7 В. Пока форма сигнала остается выше этого уровня, T1 остается включенным.

Это заземляет напряжение коллектора оптранзистора, препятствуя току симистора, но в тот момент, когда напряжение достигает 7 вольт и приближается к нулю, транзисторы перестают проводить, позволяя симистору переключаться.

Процесс повторяется в течение отрицательного полупериода, когда T2, T3 проводят в ответ на напряжения выше минус 7 вольт, что снова означает, что симистор срабатывает только тогда, когда фазовый потенциал приближается к нулю, эффективно устраняя индукцию РЧ помех при переходе через нуль.

Принципиальная схема твердотельной цепи SSR

Список деталей для предлагаемой схемы твердотельного реле
  • R1 = 120 K,
  • R2 = 680K,
  • R3 = 1 K,
  • R4 = 330 K,
  • R5 = 1 M,
  • R6 = 100 Ом 1 Вт,
  • C1 = 220 мкФ / 25 В,
  • C2 = 474/400 В Металлизированный полиэстер
  • C3 = 0.22 мкФ / 400 В PPC
  • Z1 = 30 В, 1 Вт,
  • T1, T2 = BC547B,
  • T3 = BC557B,
  • TR1 = BT 36,
  • OP1 = MCT2E или аналогичный.

Схема расположения печатной платы

Использование оптопары SCR 4N40

Сегодня, с появлением современных оптопар, создание высококачественного твердотельного реле (SSR) стало действительно простым. 4N40 — одно из таких устройств, в котором используется фотоэлектрический тиристор для требуемого изолированного запуска нагрузки переменного тока.

Этот оптрон можно легко настроить для создания высоконадежной и эффективной цепи SSR.Эту схему можно использовать для запуска нагрузки 220 В через полностью изолированное логическое управление 5 В, как показано ниже:

Изображение предоставлено: Farnel

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, схема / печатная плата дизайнер, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Solid State Relay (SSR) — Типы SSR реле

Что такое твердотельное реле? Конструкция, работа, применение и типы реле SSR

В этой статье мы кратко обсудим SSR (твердотельное реле) , его конструкцию, работу, схемы и различные типы реле SSR в зависимости от его коммутационных свойств и входа. / выходные формы. Мы также обсудим преимущества и недостатки твердотельного реле (SSR) по сравнению с реле электромагнитных реле (EMR) .

Solid State Relay (SSR) - Types of SSR Relays Solid State Relay (SSR) - Types of SSR Relays

Что такое твердотельное реле (SSR)?

Твердотельное реле ( SSR ) — это электронное переключающее устройство, изготовленное из полупроводников , которое переключает (включает и выключает) цепь высокого напряжения, используя низкое напряжение на ее управляющих клеммах.

В отличие от EMR (электромагнитного реле), которое имеет катушку и механический переключатель (физические контакты), реле SSR использует оптопару для изоляции цепи управления от управляемой цепи.

Relay Symbols Relay Symbols

Разница между SSR и EMR

Работа SSR (твердотельного реле) и EMR (электромагнитного реле) или контактного реле одинакова, в то время как основное различие между SSR и EMR заключается в отсутствии механических частей и контакты в реле SSR. Обычно SSR имеет 1 контакт, а EMR — несколько контактов.

Другое отличие твердотельного реле от электромагнитного реле заключается в отсутствии скачков напряжения и шума во время работы SSR.Существует вероятность утечки тока от нескольких мкА до мА в реле SSR, в то время как значение тока утечки равно нулю (0) в EMR. С другой стороны, SSR отключает нагрузки переменного тока в точке нулевого тока нагрузки, что приводит к устранению шума, дребезга контактов и электрической дуги в случае индуктивной нагрузки по сравнению с реле EMR.

Конструкция SSR (твердотельное реле)

Клеммы реле SSR

Реле SSR имеет два набора клемм, т.е. входные клеммы и выходные клеммы.Эти клеммы приведены ниже:

Клеммы ввода или управления

Эти две клеммы являются клеммой управления вводом. Он подключен к цепи малой мощности, которая управляет его переключением.

Construction of SSR (Solid State Relay) - Terminal of SSR Relay Construction of SSR (Solid State Relay) - Terminal of SSR Relay Клеммы и соединения реле SSR

Управляющий вход реле SSR предназначен для цепи постоянного или переменного тока отдельно.

Выходные нормально открытые (NO) клеммы

Выходные клеммы реле SSR включаются и выключаются в зависимости от управляющего входа.

Обычно электрическое соединение между этими клеммами остается открытым. Когда реле активируется, эти клеммы соединяются вместе, обеспечивая замкнутый путь.

Выходные клеммы специально разработаны для цепи AC или DC . В отличие от реле EMR, реле SSR не может переключать сигнал постоянного и переменного тока с помощью одних и тех же клемм.

Выходной нормально закрытый (NC) Клемма

Эта клемма реле остается закрытой, пока реле не сработает.Когда реле срабатывает, ток не течет. Он открывается при активации реле.

ПРИМЕЧАНИЕ: Обычно используемые реле SSR не имеют клемм NC (нормально замкнутые). Но реле SSR форм B и C (обсуждается ниже) использует клемму NC.

Работа и работа реле SSR

Когда на входные управляющие клеммы реле SSR подается низкое напряжение, выходные клеммы нагрузки замыкаются.

Вход реле SSR активирует оптопару, которая переключает цепь нагрузки.Оптопара не имеет физического соединения и изолирует цепь низкого напряжения от цепи высокого напряжения.

Optocoupler Optocoupler

Оптопара имеет на входе светодиод , который излучает инфракрасный свет при подаче напряжения. Эти ИК-волны принимаются фотодатчиком (фототранзистор, фотодиод и т. Д.) На его выходе. Фотодатчик преобразует световой сигнал в электрический сигнал и включает цепь.

Чтобы активировать оптрон, его входное напряжение должно быть больше, чем его прямое напряжение . По этой причине реле SSR не срабатывают при напряжении ниже указанного.

Выходная схема реле SSR различается для цепей переменного и постоянного тока. Обычно он состоит из тиристоров TRIAC или для цепи переменного тока и силовых полевых МОП-транзисторов для цепи постоянного тока.

Схематическая модель реле SSR

Общая схема работы реле постоянного тока в переменный SSR Работа реле с модельной схемой приведена ниже:

DC to AC SSR relay Schematic DC to AC SSR relay Schematic

A DC Вход достаточного напряжения на клеммах управляющего входа.Имеется диод для защиты от обратной полярности применен DC .

Когда напряжение подается на светодиод оптопары, он излучает инфракрасный свет.

С другой стороны, Opto-TRIAC (приемник) улавливает свет и включается. Как только оптопара включается, через него начинает течь ток выхода AC .

В свою очередь, выход этой оптопары активирует симистор . Таким образом разрешается протекание переменного тока тока цепи нагрузки

Типы реле SSR

Существует различных типов реле SSR (твердотельных) .Они классифицируются либо по форме ввода / вывода, либо по свойству переключения.

Классификация на основе ввода / вывода

Ниже приведены некоторые из распространенных типов реле SSR, классифицированных на основе его входной и выходной цепи (AC / DC).

Реле постоянного тока

Это реле работает на входе постоянного тока для переключения цепи нагрузки переменного тока . Управляющий вход этого реле SSR работает только с входом DC .

Тот факт, что это реле не работает на входе AC , объясняется тем, что оптопара работает с DC . Его входные клеммы также являются направленными. Изменение полярности входа не активирует реле. Для защиты от обратной полярности входа используется диод.

Даже после подачи требуемого входа выходной переключатель этого SSR не активируется, а только тогда, когда на его выходные клеммы подается напряжение AC .

Ниже приведена схема реле SSR постоянного тока переменного тока.

DC to AC SSR relay DC to AC SSR relay

Связанная публикация: Типы трансформаторов и их применение

Реле переменного тока в переменный ток SSR

Реле SSR работает только тогда, когда на входе и выходе обеих цепей установлено значение AC .

Как известно, оптопара работает от напряжения DC . Таким образом, перед оптопарой используется выпрямитель для преобразования AC в DC .

Когда на его вход управления подается достаточное напряжение переменного тока, он активируется, обеспечивая прохождение переменного тока тока нагрузки.

Его схема представлена ​​ниже.

AC to AC SSR relay AC to AC SSR relay

DC-to-DC SSR Relay

Это реле может переключать нагрузку постоянного тока высокой мощности с использованием источника постоянного тока малой мощности.

Вход постоянного тока подается на оптопару, как описано в другом примере выше.

Однако для переключения нагрузки постоянного тока используется силовой MOSFET или IGBT .

Mosfet проводит ток только в одном направлении, поэтому также необходимо убедиться, что выходная нагрузка подключена с соблюдением правильной полярности.Защитный диод используется, чтобы избежать повреждения при обратной полярности.

DC to DC SSR relay DC to DC SSR relay

Если есть индуктивная нагрузка, с нагрузкой следует использовать диод свободного хода.

Реле постоянного / переменного тока SSR

Этот тип реле SSR может переключать нагрузку переменного и постоянного тока с помощью отдельных клемм.

В таких реле SSR используются полевые МОП-транзисторы последовательно с общими клеммами источника для переключения цепей AC и DC .

Его схема представлена ​​ниже.

AC & DC SSR AC & DC SSR

На этой схеме показана матрица фотодиодных ячеек в качестве светового датчика, который вырабатывает напряжение при активации светодиода. Это напряжение подается на затворы и исток N-MOSFET , соединенных последовательно.

Чтобы использовать это реле для цепи переменного тока , используются клеммы Drain полевых МОП-транзисторов , а клеммы источника питания не должны использоваться.

При использовании цепи постоянного тока , Drain & Source клеммы полевых МОП-транзисторов используются для переключения.

Классификация на основе коммутационных свойств

Реле SSR также классифицируются на основе их коммутационных свойств , которые приведены ниже.

Эти реле управляют цепями переменного тока и используются для управления желаемыми выходами в конкретном приложении.

Реле мгновенного включения SSR

Реле такого типа мгновенно переключает на цепь нагрузки всякий раз, когда подается достаточное входное напряжение. Он отключается при следующем переходе напряжения нагрузки через ноль после снятия управляющего входа.

Instant ON SSR relay Instant ON SSR relay

Реле SSR с нулевым переключением

Этот тип реле включается, когда подается входное напряжение и напряжение переменного тока нагрузки пересекает следующее нулевое напряжение.

Отключается как обычные реле SSR , когда входное напряжение снимается и напряжение переменного тока нагрузки достигает нуля вольт.

Работа реле переключения нуля достигается с помощью схемы, известной как схема перехода через ноль , которая обнаруживает переход через нуль и активирует TRIAC .

Zero Switching SSR relay Zero Switching SSR relay

Пиковое переключение реле SSR

Эти типы реле SSR включаются, когда выходное напряжение переменного тока достигает своего следующего пика после подачи необходимого входного управляющего напряжения.

Он также отключается после снятия входного напряжения и перехода через ноль выходного переменного тока.

В этих реле используется блок обнаружения пика, который запускает TRIAC , когда цикл выходного переменного тока достигает своего пика.

Peak Switching SSR relay Peak Switching SSR relay

Реле аналогового переключения SSR

В то время как эти другие типы переключения SSR зависят от выходного цикла переменного тока, переключение этого реле зависит от его входной амплитуды.

Пусковое выходное напряжение аналогового реле SSR пропорционально входному управляющему напряжению.

Предположим, что 3-32 В постоянного тока Входное реле 3 В представляет 0% и 32 В представляют 100% пикового напряжения переменного тока нагрузки.

При удалении управляющего входа реле выключается при следующем переходе через ноль на выходе переменного тока.

Классификация на основе полюсов и расстояния
Реле

SSR подразделяются на три типа или « Forms », учитывая их конфигурацию полюсов и расстояния.

Форма A или SPST NO Тип SSR

Форма A реле SSR — это SPST (однополюсное, одноходовое) реле с нормально разомкнутыми ( NO ) клеммами.Клеммы выходной нагрузки нормально разомкнуты, когда нет внешнего управляющего входа. Когда реле срабатывает, выходные клеммы соединяются вместе и пропускают ток.

На схеме ниже показано реле SSR, способное переключать переменный и постоянный ток на отдельных клеммах.

Form A SPST NO SSR Form A SPST NO SSR

Фотодиодный элемент используется в качестве светоприемника, а полевые МОП-транзисторы с общими источниками используются для переключения цепи нагрузки.

Форма B или SPST NC Тип SSR:

Форма B Реле SSR типа имеет нормально замкнутые клеммы нагрузки.Клеммы выходной нагрузки обычно подключены и пропускают ток при отсутствии управляющего входа. Предоставление управляющего входа откроет клеммы нагрузки и остановит ток.

Этот тип реле использует истощение MOSFET , которые включаются при нулевом входе и выключаются, когда его Vgs отрицательный.

На схеме ниже показано реле SPST NC формы B с использованием полевых МОП-транзисторов с истощением.

Form B SPST NC SSR Form B SPST NC SSR

Форма C или SPDT Тип SSR:

Форма C Реле SSR типа имеет две переключающие клеммы.

Имеется три клеммы нагрузки: Common, NC и NO .

Когда реле неактивно , общая клемма остается подключенной к клемме NC .

Когда реле активирует , общая клемма подключается к клемме NO .

Схема реле SPDT SSR приведена ниже.

Form C SPDT SSR Relay Form C SPDT SSR Relay

Также имеется управляющая схема переключения , которая предотвращает одновременное включение полевых МОП-транзисторов, обеспечивая временную задержку между их переключениями.

Преимущества и недостатки SSR (твердотельных) реле)

Преимущества:
  • Время переключения SSR намного на быстрее , чем реле EMR (электромеханическое реле).
  • Не имеет физических контактов .
  • Нет проблем с контактами искры и износ .
  • Их срок службы больше, чем у реле EMR.
  • Реле SSR Отключение при токе нагрузки 0 переменного тока, что предотвращает любые дуги или электрические помехи .
  • Вибрация или Перемещение не влияет на его работу.
  • Он имеет очень низкое энергопотребление по сравнению с реле EMR.
  • SSR реле очень легко управляется логикой схем ( микроконтроллеров )
Недостатки
  • У него сложная конструкция по сравнению с реле EMR
  • Имеется падение напряжения 75 через его клеммы нагрузки.
  • Имеет утечку ток в состоянии выключения .
  • Реле SSR рассеивают слишком много тепла .
  • Он не может переключать низкого напряжения по сравнению с реле EMR.
  • Включение реле SSR зависит от напряжения контролируемой цепи.

Сообщение по теме: Типы микросхем. Классификация интегральных схем и их ограничения

Области применения твердотельных реле ( твердотельных) Реле

Ниже приведены распространенные применения твердотельных реле в области электротехники и электроники.

  • Обычно реле SSR используется для переключения, то есть для управления включением / выключением питания переменного тока.
  • Он используется для управления мощностью, то есть управления скоростью двигателя, затемнения света и вентилятора, переключением мощности и т. Д.
  • Они также используются для управления электронагревателями для контроля температуры.
  • Кабина SSR используется в качестве защелки, что полезно в случае чайников.
  • В линиях связи реле SSR с оптопарой исключает протекающий через него ток управления реле.
  • Твердотельное реле в основном используется при переключении с высокой нагрузкой.
.Руководство по твердотельным реле

— Phidgets Support

Введение

«Хоккейная шайба» SSR, названная так из-за ее толстой формы и черного цвета. Они специально разработаны для переключения нагрузок переменного или постоянного тока, но никогда того и другого одновременно.

Твердотельные реле (SSR) включают или выключают питание, подаваемое на другие устройства, аналогично физическому переключателю. Однако вместо того, чтобы переключаться при взаимодействии человека, как физический переключатель, SSR переключаются электронным способом.С помощью SSR вы можете управлять сильноточными устройствами, такими как осветительные приборы или приборы с слаботочными сигналами, такими как стандартный сигнал постоянного тока с цифрового выхода. Многие SSR включаются при напряжении 3 В или выше. Это делает их идеальными для использования с выходами на Phidget InterfaceKits или любых других устройствах с цифровым выходом, таких как OUT1100 — Digital Output Phidget. Использование портов VINT Hub в режиме цифрового вывода может не работать, поскольку они могут не обеспечивать достаточной мощности для активации SSR.Если ваш цифровой выход недостаточно мощный, вы можете подключить внешний MOSFET, чтобы переключить более подходящий источник питания для управления SSR. ТТР

выполняют ту же работу, что и механические реле, но имеют следующие преимущества:

  • SSR во время работы создают меньше электромагнитных помех, чем механические реле. В основном это связано с отсутствием явления, называемого контактной дугой, которое присутствует только в механических реле, когда физические контакты реле имеют тенденцию к искрению внутри при переключении.Уменьшение помех также можно объяснить тем фактом, что в SSR не используются электромагниты для переключения.
  • Переключающие контакты механического реле со временем изнашиваются от дуги. SSR будет иметь более длительный срок службы, потому что его внутреннее устройство полностью цифровое. При правильном использовании они прослужат миллионы циклов.
  • SSR
  • включаются и выключаются быстрее механических реле (≈1 мс по сравнению с ≈10 мс).
  • SSR
  • менее восприимчивы к физическим вибрациям, чем механические реле.
  • Поскольку переключатель внутри SSR не является механическим переключателем, он не страдает от дребезга контактов и работает бесшумно.

Однако, по сравнению с механическими реле, SSR:

  • Дороже.
  • Будет рассеивать больше энергии в виде тепла (1-2% энергии, предназначенной для питания нагрузки).

Как работают SSR

Концептуальная схема внутренней части SSR.

Управляющие входы подключены внутри к светодиоду, который светит через воздушный зазор на световые датчики.Датчик освещенности подключен к транзисторам, которые открываются или закрываются, питая нагрузку реле. Когда транзистор закрыт , ток может свободно течь через реле, вызывая подключение нагрузки и источника питания. Когда транзистор открыт, почти весь ток блокируется, в результате чего нагрузка отключается от источника питания. Соединение светодиода с датчиками света называется оптопарой и является распространенным методом соединения двух частей схемы без прямого электрического соединения.

Базовое использование

Управление SSR не сложнее, чем включение и выключение светодиода. Включите, выключите, это так просто.

Способность SSR переключать нагрузку очень похожа на механическое реле или простой переключатель. Включая и выключая цифровой выход, управляющий реле, вы контролируете, подключена ли нагрузка к источнику питания.

Задача состоит в том, чтобы выбрать подходящий тип SSR для вашего приложения.Не существует единого SSR, подходящего для всех приложений. Чтобы выбрать SSR для вашего конкретного приложения, следуйте инструкциям в разделе «Выбор SSR».

Безопасность

Две принципиальные схемы, показывающие неправильные и правильные способы переключения электросети с помощью реле.

Поскольку реле переключают большие токи и напряжения, применяются стандартные меры безопасности при работе с электричеством. Никогда не касайтесь клемм, пока реле находится под напряжением. Если ваш SSR поставляется с пластиковой крышкой, используйте ее.Даже когда SSR выключен, будет течь очень небольшой ток.

При включении реле в цепь всегда рекомендуется размещать его между источником питания и нагрузкой, особенно при использовании более высоких напряжений. Если вместо этого установить реле между нагрузкой и землей, схема будет работать так же, но когда реле разомкнуто, нагрузка по-прежнему будет напрямую подключена к источнику питания. Это может вызвать проблемы с безопасностью, потому что кто-то может прикоснуться к клеммам на нагрузке, считая это безопасным, потому что устройство кажется выключенным.Если электричество найдет путь к земле через их тело, они будут поражены электрическим током. Если реле расположить между источником питания и землей, поражение электрическим током будет опасно только в том случае, если прикоснуться к клемме реле, находящейся под напряжением. Опять же, клеммы реле всегда должны быть должным образом закрыты, чтобы избежать риска поражения электрическим током.

Когда SSR выходит из строя, он чаще всего выходит из строя навсегда. Это связано с тем, что когда внутренний транзистор выходит из строя из-за чрезмерного тока или тепла, он обычно замыкается, позволяя току беспрепятственно проходить через него.Это означает, что, пока источник питания остается включенным, нагрузка будет запитана, что может создать угрозу возгорания или безопасности.

Выбор SSR

Определите ваше напряжение

Сначала определите, нужно ли переключать напряжение постоянного или переменного тока. Электрическая сеть и, следовательно, ваша настенная розетка работают от переменного тока, тогда как батареи и большинство небольших источников питания работают от постоянного тока.

Затем определите максимальное количество вольт, которое вы будете переключать. Если вы переключаете постоянный ток, особенно с батареями, предположите, что ваше напряжение как минимум на 25% больше, чем рассчитано на вашу батарею.На переменном токе возникают еще большие колебания, но твердотельные реле переменного тока предназначены для обработки этих скачков. Типичное напряжение переменного тока от настенной розетки в Северной Америке составляет 110 В переменного тока, тогда как в Европе оно обычно составляет 220 В переменного тока. Если вы подключаете переменное напряжение к розетке, проверьте, какой стандарт используется в вашей стране, и используйте это число в качестве напряжения.

Определите ваш текущий

Ток, потребляемый вашей нагрузкой при включении, влияет на размер SSR, который вам нужен, и насколько он будет горячим, когда он будет использоваться.Если вы знаете, сколько тока в среднем потребляет ваша нагрузка, это то, что мы называем Средний ток нагрузки . Если вы не знаете средний ток, но знаете мощность (номинальную мощность) вашей нагрузки, вы можете рассчитать средний ток нагрузки следующим образом:

Средний ток нагрузки знак равно Вт Рабочее напряжение {\ displaystyle {\ text {Средний ток нагрузки}} = {\ frac {\ text {Ватт}} {\ text {Рабочее напряжение}}}}

Затем вам нужно знать ток, потребляемый вашей нагрузкой при ее первом включении.Многие нагрузки требуют значительного броска тока при первом включении. Это создает значительную нагрузку на электронику внутри SSR. Если вы когда-нибудь замечали, что свет в доме на секунду приглушается при запуске печи, это вызвано запуском двигателя вентилятора. Точно так же, как требуется большое усилие, чтобы вывести тяжелый предмет из состояния покоя, изначально требуется большой ток для включения вентилятора или лампы накаливания. Очень сложно измерить саму Surge Current , поэтому мы используем множитель в зависимости от типа вашего устройства.Импульсный ток также обозначается как пусковой ток .

Приложение Множитель
Лампы накаливания 6x
Моторы 6x
светодиода 1x
Сложная электроника, то есть контроллеры двигателей, фиджи 6x
Люминесцентные светильники (только переменного тока) 10x
Трансформаторы 20x
Обогреватели 1x

Умножьте свой средний ток нагрузки на множитель для вашего типа устройства, чтобы вычислить импульсный ток.

Мне нужно переключить AC

Большинство приложений переменного тока будут переключать питание от сети с напряжением 110 до 240 вольт. Если это вы, перейдите в раздел «Напряжение сети (110–240 В переменного тока)».

Мы также покрываем низковольтные системы переменного тока — 28 В переменного тока (Вольт переменного тока) или менее. Для получения дополнительной информации посетите раздел SSR переменного / постоянного тока.

Мне нужно переключить DC

Если вам нужно переключить только небольшой ток — 9 А или меньше, рассмотрите наши компактные, экономичные SSR переменного / постоянного тока.

Если вам нужно переключить более 9 ампер, вам нужен серьезный SSR постоянного тока.

Если вам необходимо переключить до 4 небольших нагрузок 8 А или меньше, вы можете использовать цифровые выходы с открытым коллектором (с внешним питанием) на REL1100 — 4x изолированном SSR Phidget, которые могут быть подключены так, чтобы вести себя аналогично реле. Если вам нужно еще больше реле, обратите внимание на REL1101 — 16x Isolated SSR Phidget.

Мне нужно постепенное затемнение

Вместо простого включения / выключения нагрузки, если вы хотите постепенно уменьшить ее, вы можете использовать SSR с пропорциональным управлением.Они способны постепенно снижать среднюю мощность нагрузки пропорционально силе входного сигнала. Для получения дополнительной информации вы можете посетить раздел «Пропорциональный контроль SSR».

Напряжение сети (от 110 до 240 В переменного тока)

Мы продаем ТТР переменного тока на 120 или 240 В переменного тока. Если вы не уверены, какое напряжение вам может понадобиться переключить, реле на 240 В переменного тока можно без проблем использовать для переключения 120 В переменного тока. Обратите внимание, что мы очень консервативны в оценке SSR — наши реле на 120 В переменного тока рассчитаны производителем на 240 В переменного тока, а 240 В переменного тока — на 480 В переменного тока.Мы настоятельно не рекомендуем использовать их при номинальном напряжении производителя. Чтобы понять, почему, прочтите раздел «Защита SSR переменного тока».

Тип нагрузки — индуктивная или резистивная

На этом графике показана разница между переходом через ноль и случайным включением. Синяя линия представляет собой колебательное напряжение нагрузки переменного тока, а заштрихованные области представляют участки, когда реле включено и пропускает ток. Как вы можете видеть, SSR случайного включения сразу же открывается при активации, в то время как SSR включения с нулевым переходом ждет, пока напряжение не пересечет ноль, прежде чем размыкаться.
Полноразмерное изображение

Если ваша нагрузка индуктивная, вам нужно выбрать реле Random Turn On . Если ваша нагрузка резистивная, выберите реле Zero Crossing .

Ваша нагрузка, вероятно, будет индуктивной, если она построена на большой катушке с проволокой — типичные примеры — двигатели и трансформаторы. Нагрузка, считающаяся резистивной, также может иметь петли из проволоки — например, фены, тостеры, лампы накаливания используют элементы из скрученной проволоки для генерации тепла. Индуктивная нагрузка будет состоять из тысяч проводов — это вопрос масштаба.Не существует такой вещи, как полностью резистивная нагрузка, но нагрузка должна быть очень индуктивной, чтобы вызвать сбой в работе SSR при переходе через ноль.

SSR предназначены либо для немедленного включения ( Random Turn On ), либо для ожидания следующего «чередования» напряжения ( Zero Crossing ). При включении реле с нулевым переходом создают меньше электромагнитного «шума». Их лучше всего использовать с резистивными нагрузками — ТТР с нулевым переходом не могут отключать некоторые индуктивные нагрузки.Очень сложно определить, какие индуктивные нагрузки будут создавать проблемы — это выходит далеко за рамки этого документа. Если ваша нагрузка индуктивная, мы рекомендуем покупать SSR Random Turn On .

Приложение Тип нагрузки
Лампы накаливания резистивный
Люминесцентные светильники Индуктивный или резистивный *
Моторы Индуктивный
Трансформаторы Индуктивный
Обогреватели резистивный
Компьютер / Электроника резистивный
Источники питания переменного / постоянного тока (кирпичный) Индуктивный
Источники питания переменного / постоянного тока (облегченные переключатели) резистивный

* Для люминесцентных светильников старые блоки (магнитный балласт) могут быть индуктивными, а новые блоки часто резистивными (электронный балласт).

Выбор переменного тока SSR

Теперь, когда вы определили рабочее напряжение, средний и импульсный ток, а также тип нагрузки (индуктивную или резистивную), вы можете создать короткий список реле,

  • Максимальное напряжение нагрузки больше или равно вашему рабочему напряжению,
  • Максимальный импульсный ток больше или равен вашему импульсному току, а
  • Тип нагрузки соответствует тому, что вы выбрали для случайного включения / перехода через ноль.

Теперь сравните Максимальный ток нагрузки без радиатора значение для SSR в вашем списке со своим Средним током нагрузки. Если ваш средний ток нагрузки больше, вам может понадобиться радиатор. Чтобы выбрать радиатор, обратитесь к разделу «Выбор радиатора». В качестве альтернативы, посмотрите на другие SSR в вашем списке — там может быть SSR, который может выдержать ваш средний ток нагрузки без радиатора.

На этом этапе вы знаете, какой SSR вам нужен.

Вместо простого включения / выключения нагрузки, если вы хотите постепенно уменьшить ее, вы можете использовать SSR с пропорциональным управлением.Они способны постепенно снижать среднюю мощность нагрузки пропорционально силе входного сигнала. Для получения дополнительной информации вы можете посетить раздел «Пропорциональный контроль SSR».

Если вы хотите узнать больше о SSR в целом, ознакомьтесь с нашим разделом «Знаете ли вы?» раздел.

AC SSR Защита

MOV, который поставляется в комплекте с реле AC «Hockey Puck».

Ваш AC SSR от Phidgets поставляется с круглым диском на двух ножках (на фото).Это металлооксидный варистор (MOV), который следует устанавливать на клеммах нагрузки (большего размера) вашего SSR. MOV — это классический сетевой фильтр — недорогой компонент, который поглощает выбросы высокого напряжения. Скачки высокого напряжения вызываются индуктивными нагрузками, когда они выключены, а также очень часто происходят в электрической сети, когда работают близлежащие устройства. Даже если ваша нагрузка резистивная, используйте MOV для защиты SSR.

Сопоставить MOV с SSR непросто — вот почему мы включаем MOV в ваш SSR.Если MOV выбран для слишком низкого скачка напряжения, он быстро изнашивается. Если он выбран из-за слишком высокого скачка напряжения, он не защитит ТТР должным образом. Чтобы сбалансировать защиту SSR от срока службы MOV, мы обнаружили, что необходимо использовать SSR, рассчитанные на 240 В переменного тока в приложениях 120 В переменного тока, и SSR, созданные на 480 В переменного тока в приложениях на 240 В переменного тока. Если вам необходимо использовать наши SSR переменного тока при более высоком напряжении, чем мы рекомендуем, не используйте прилагаемый MOV.

По мере того, как MOV изнашиваются от использования, они становятся более чувствительными к обычным скачкам напряжения, что приводит к их более быстрому износу.Когда они полностью выйдут из строя, произойдет короткое замыкание, потенциально создающее опасность пожара. MOV, входящий в комплект вашего SSR, имеет встроенный предохранитель, который отключит MOV, когда он станет опасным. На всякий случай не устанавливайте SSR рядом с легковоспламеняющимися материалами.

Для справки: номер детали MOV, поставляемого с нашими SSR переменного тока, — TMOV20RP200E .

Пропорциональный регулятор SSR

Пропорциональные управляющие реле

(часто называемые просто «управляющие реле») — это твердотельные реле, которые можно использовать для управления мощностью нагрузки.Вместо того, чтобы снижать напряжение или каким-либо образом ограничивать ток — что было бы очень дорогим решением, пропорциональный SSR снижает мощность, быстро включая / выключая нагрузку, подавая полную мощность короткими импульсами.

Пропорциональные SSR управляются переменным напряжением — по мере увеличения управляющего напряжения нагрузка становится доступной для большей мощности. Наш продукт PhidgetAnalog может использоваться для управления пропорциональными SSR, поскольку аналоговый выход может выдавать различные величины напряжения, в отличие от цифрового выхода, который имеет только два состояния — высокое и низкое.Мы не продаем пропорциональные SSR, но их можно купить в Digikey, где они называются SSR с линейным управлением переменного тока.

Быстрое и грязное решение для диммирования с помощью Phidgets — это использование сервомотора RC с контроллером PhidgetAdvancedServo для вращения ручки на диммере. Из программного обеспечения серводвигатель RC поворачивается в желаемое положение, поворачивая ручку при ее повороте. Хотя это может показаться окольным путем достижения пропорционального управления, диммеры, как правило, намного дешевле, потому что они менее специализированы и производятся в большем количестве.

Примеры схем с ТТР переменного тока

Схема SSR переменного тока, переключающего общую нагрузку. К нагрузке добавлен металлооксидный варистор для защиты SSR.
Полноразмерное изображение

При подключении цепи переменного тока, особенно при длительной установке, может оказаться полезным купить книгу по электропроводке в жилых помещениях в местном хозяйственном магазине. Существует множество соглашений о подключении (и часто юридических кодексов), которые помогут вам спланировать ваш проект, а юридические кодексы часто являются отличным источником мудрости.

SSR постоянного тока (от 0 до 50 В постоянного тока)

Мы продаем SSR постоянного тока для этого переключателя с максимальной нагрузкой 50 вольт. Если вы не уверены, какие напряжения вы могли бы переключать в будущем, можно использовать твердотельные реле постоянного тока с более высоким напряжением для переключения более низких напряжений. Обычной инженерной практикой является покупка SSR, рассчитанного на напряжение на 50–100% выше, чем напряжение, которое вы планируете переключать. Например, если вы переключаете 24 В, разумно использовать SSR на 50 В.

Выбор DC SSR

Теперь, когда вы определили рабочее напряжение, среднее значение и импульсный ток, вы можете создать короткий список реле,

  • Максимальное напряжение нагрузки больше или равно вашему рабочему напряжению,
  • Максимальный импульсный ток больше или равен вашему импульсному току, а
  • Максимальный средний ток больше или равен вашему среднему току.

Теперь сравним Max. Ток нагрузки без радиатора Значение для SSR в вашем списке соответствует среднему току нагрузки. Если ваш средний ток нагрузки больше, вам может понадобиться радиатор. Чтобы выбрать радиатор, обратитесь к разделу «Выбор радиатора». В качестве альтернативы, посмотрите на другие SSR в вашем списке — там может быть SSR, который может выдерживать ваш средний ток нагрузки без радиатора. SSR, рассчитанные на большую нагрузку, чем нагрузка, которую вы используете, будут более эффективными (что означает меньшие потери энергии в виде тепла), чем SSR, работающий при максимальной нагрузке.

На этом этапе вы знаете, какой SSR вам нужен.

Если вы хотите узнать больше о SSR в целом, ознакомьтесь с нашим разделом «Знаете ли вы?» раздел.

Защита постоянного тока от SSR

А диод, входящий в комплект наших SSR для «хоккейной шайбы» постоянного тока. Катод отмечен линией. Синий символ показывает схему, эквивалентную диоду.
Полноразмерное изображение A DC SSR, переключающий электродвигатель. Набор 1018 Phidget InterfaceKit управляет SSR с помощью своих цифровых выходов.На двигателе показан диод, а между источником питания и остальной частью цепи включен предохранитель.
Полноразмерное изображение

Ваш DC SSR от Phidgets поставляется с диодом. Этот диод должен быть установлен поперек вашей нагрузки, а катод должен быть установлен в направлении положительной клеммы источника питания (как показано на схеме).

Если диод установлен в обратном направлении, при включении SSR произойдет короткое замыкание нагрузки, что, вероятно, приведет к выходу из строя диода, SSR или источника питания.Предохранитель, защищающий ваш источник питания, — это всегда хорошая идея. Вы можете поместить предохранитель между положительной клеммой источника питания и положительной клеммой на стороне нагрузки SSR.

Диод защищает SSR от сильных остаточных токов после выключения SSR. Когда ваша нагрузка приводится в движение, индуктивность создает магнитные поля вокруг проводки. Каждая нагрузка в какой-то степени индуктивна, и когда SSR выключается, магнитные поля будут проталкивать ток по теперь открытому SSR, легко повреждая его.Диод позволяет этим токам рециркулировать в нагрузке до тех пор, пока они не потеряют свою энергию.

Для справки, номер детали диода, который поставляется с нашими SSR постоянного тока, — 10A02-T .

Примеры схем с ТТР постоянного тока

Схема SSR постоянного тока, коммутирующего общую нагрузку, которая защищена диодом, включенным параллельно. Схема защищена плавким предохранителем, включенным последовательно после источника питания.
Полноразмерное изображение

Гальваническая развязка, встроенная в SSR постоянного тока, позволяет размещать их в цепи, как выключатель.Поскольку он изолирован, вам не нужно беспокоиться о заземлении или смещении напряжения.

При использовании ТТР постоянного тока всегда убедитесь, что положительная клемма нагрузки (помечена +) обращена к положительной клемме источника питания. Если клеммы нагрузки перевернуты, ваша нагрузка немедленно включится. Внутри SSR есть диод, который позволяет току свободно течь через него, когда SSR подключен неправильно. Эта функция включена, потому что в противном случае такая ошибка при подключении приведет к повреждению транзистора в DC SSR.

ТТР постоянного тока можно установить с любой стороны нагрузки, и он будет работать правильно, но есть преимущество в установке ТТР между источником питания и нагрузкой. Если нагрузка подключена к источнику питания, на ней всегда будет потенциально опасное напряжение, даже когда она не работает.

SSR переменного / постоянного тока (от 0 до 40 В постоянного тока / от 0 до 28 В переменного тока)

Небольшой универсальный SSR переменного / постоянного тока, установленный на плате Phidgets для легкого доступа к контактам.

Наши SSR переменного / постоянного тока построены на небольшой печатной плате, что делает их физически меньше, чем большие SSR «хоккейной шайбы», и дешевле.Они ограничены более низкими токами и не могут быть установлены на радиаторе.

Мы продаем SSR переменного / постоянного тока, которые могут переключать до 40 В постоянного тока или 28 В переменного тока. Это указано на страницах продукта SSR в разделе «Максимальное напряжение нагрузки». Нет нижнего предела для напряжений, которые могут переключать SSR переменного / постоянного тока. Если у вас напряжение близкое — будьте осторожны. Например, 36-вольтовая система, построенная из 3-х свинцово-кислотных аккумуляторов, может достигать 45 вольт при зарядке.

Выбор AC / DC SSR

Теперь, когда вы определили рабочее напряжение, среднее значение и импульсный ток, вы можете создать короткий список реле,

  • Максимальное напряжение нагрузки больше или равно вашему рабочему напряжению,
  • Максимальный импульсный ток больше или равен вашему импульсному току, а
  • Максимальный средний ток больше или равен вашему среднему току.

Если вас интересует минимальная стоимость, вы, скорее всего, выберете самый дешевый вариант, соответствующий этим критериям. Если вы заинтересованы в высокой эффективности работы и меньшем тепловыделении, подумайте о покупке SSR с более высоким номинальным током.

Ваш SSR переменного / постоянного тока от Phidgets имеет встроенную защиту от статического электричества и опасных остаточных токов после выключения SSR. Если переключаемая нагрузка питается от источника постоянного тока, установка диода поперек нагрузки обеспечит еще большую защиту.Обратитесь к разделу Защита SSR постоянного тока для получения дополнительной информации.

Чтобы узнать больше о SSR в целом, посетите «Знаете ли вы?» раздел.

Примеры схем с ТТР переменного / постоянного тока

Универсальный SSR переменного / постоянного тока, переключающий нагрузку постоянного тока. Клеммы нагрузки двунаправленные, поэтому не имеет значения, каким образом вы их подключаете. Дополнительный диод может быть добавлен для защиты SSR при переключении нагрузок постоянного тока.
Полноразмерное изображение

Гальваническая развязка, встроенная в SSR переменного / постоянного тока, позволяет размещать их в цепи как выключатель.Цепи без гальванической развязки требуют гораздо большей осторожности — правильного заземления, тщательного учета смещений напряжения.

Использование радиаторов с SSR для хоккейных шайб

«Хоккейная шайба» ССР с пластиковой крышкой (слева), термопрокладкой (справа). Все SSR для хоккейных шайб, продаваемые на Phidgets, поставляются с обоими этими аксессуарами, а также с диодом или варистором для защиты SSR. SSR «хоккейная шайба», закрепленный на небольшом радиаторе двумя винтами. Термопрокладка зажата между SSR и радиатором.ТТР

обеспечат обещанную надежность и долгий срок службы только в том случае, если они будут храниться в прохладном месте. Холодность, конечно, относительна, но хорошее практическое правило — держать металлическую основу SSR при температуре ниже 85 ° C (185 ° F). Термопара может использоваться для точного измерения температуры металлического основания.

Избыточное тепло обычно происходит из-за слишком большого тока и слишком малого радиатора. Также можно выделить много тепла при частом включении и выключении реле. Если ваше реле работает в течение коротких периодов времени, вам может не понадобиться такой большой радиатор — при условии, что реле никогда не оставляют случайно включенным на длительное время.Если пространство не является проблемой, лучше проявить осторожность.

Перед покупкой радиатора подумайте, действительно ли он вам нужен. Если ваше приложение работает при комнатной температуре, а ваш средний ток меньше Max. Ток нагрузки без радиатора Согласно спецификации вашего SSR, радиатор вам не понадобится. В качестве альтернативы, если в вашем проекте есть большое металлическое шасси, к которому может быть прикручен SSR, его можно использовать в качестве радиатора.

Каждый SSR, подходящий для использования с радиаторами, будет включать спецификацию того, какой ток он может переключать с каждым радиатором, который мы продаем.В этой спецификации предполагается, что над радиатором достаточный поток воздуха, и что он имеет комнатную температуру. У наших SSR есть лист металла внизу, где концентрируется тепло — здесь также измеряется тепло, чтобы определить, слишком ли горячий SSR. В комплект Phidgets входит термопрокладка с нашими SSR Hockey Puck (см. Изображение). Вы кладете эту площадку под SSR, когда устанавливаете ее на радиатор, или на большие металлические поверхности, которые могут рассеивать тепло. Прокладка выполняет ту же функцию, что и термопаста — помогает проводить тепло между основанием SSR и радиатором.Если вы предпочитаете использовать термопасту, вы можете использовать ее вместо прокладки. В наши радиаторы входят винты для крепления твердотельных реле. При затягивании SSR на радиаторе используйте отвертку хорошего размера, чтобы обеспечить хорошую проводимость.

Вы можете увидеть наш выбор радиаторов в категории реле нашего магазина.

Подключение проводов к хоккейной шайбе SSR

ТТР переменного тока с нормально подключенными проводами и MOV, установленным на стороне нагрузки. Монтажные наконечники TRM6, подключенные к SSR постоянного тока.

При подключении нагрузки к SSR провод закручивается по часовой стрелке вокруг клеммы, поэтому, когда винт затягивается, он затягивает провод сильнее. Мы рекомендуем использовать провода сечением до 10 AWG — если больше, на винтах не останется достаточно резьбы для затягивания, и они разорвутся. Провода большего размера можно прикрепить с помощью кабельного наконечника. Проушина зажимается под винт SSR, а провод присоединяется к проушине.

Ширина клеммной колодки (мм / порт) Рекомендуемый калибр проводов (AWG)
3.81 16–26
5,0 с 12 до 24
9,5 от 10 до 26

Ослабленные соединения проводов могут выделять много тепла — используйте достаточно большую отвертку при зажатии проводов нагрузки, чтобы убедиться, что винты затянуты достаточно сильно.

Знаете ли вы?

  • Напряжение сети ТТР переменного тока не может переключать постоянный ток. Они никогда не выключат нагрузку. SSR переменного тока выключаются дважды за цикл переменного тока, когда ток меняет направление и на мгновение становится нулевым.Например, в Северной Америке переменный ток составляет 60 Гц, поэтому у SSR переменного тока есть 120 возможностей выключения в секунду (SSR будет только оставаться выключенным, если управляющий сигнал низкий). Если SSR работает от постоянного тока, ток будет течь непрерывно, и нагрузка не отключится, даже если управляющий вход выключен.
  • AC SSR отключается автоматически каждый раз, когда ток нагрузки достигает нуля. Он снова включится почти сразу, пока сигнал, управляющий SSR, будет высоким.У SSR переменного тока будет низкое ненулевое значение тока, которое он считает «нулевым». В технических данных эта спецификация обычно называется «Минимальный ток нагрузки». Если ваша нагрузка требует меньше этого минимального тока, ваш SSR никогда не включится или не будет надежно включаться. Самое простое решение этой проблемы — подключить другую нагрузку параллельно первой, увеличивая ток, необходимый для нагрузки.
  • SSR Производители начали добавлять простую схему в SSR AC , через клеммы нагрузки, называемую демпфером.Демпфер поглощает очень быстрые электрические изменения, которые обычно могут вызвать случайное включение AC SSR . Когда включен SSR переменного тока, разница напряжений между выводами небольшая, поэтому демпфер оказывает очень небольшое влияние. Когда AC SSR выключен, демпфер активно защищает SSR, но за свою цену, так как пропускает через SSR небольшой ток, который тратится впустую.
  • В AC SSR используются биполярные транзисторы — старая технология, которая была заменена транзисторами CMOS в современных цифровых схемах.Биполярные транзисторы по-прежнему лучше справляются с высокими напряжениями. Биполярные транзисторы и построенные из них более сложные транзисторы будут терять постоянное напряжение, когда через них протекает ток. Набор транзисторов в вашем SSR потеряет около 1,7 вольт — поэтому в системе 120 В переменного тока вы потеряете около 1,5% в SSR. Эта энергия преобразуется в тепло внутри SSR, и нагрев этих транзисторов является причиной того, что SSR часто нуждаются в радиаторах.
  • SSR и полупроводники в целом обычно выходят из строя из-за короткого замыкания.Короткое замыкание — это цепь, внутренние детали которой повреждены, и ток может свободно течь по ней. Это означает, что ваша нагрузка, вероятно, будет постоянно включаться (до тех пор, пока вы не отключите источник питания) — убедитесь, что это не создает угрозы безопасности. Например, нагреватели для сауны имеют простое механическое отключение с термическим срабатыванием, чтобы защитить их в случае выхода из строя управляющей электроники.
  • SSR постоянного тока (по крайней мере, те, которые мы продаем) используют полевые транзисторы с металлическим оксидом и полупроводником (MOSFET).МОП-транзисторы не теряют постоянное напряжение — вместо этого, когда они включаются, они действуют как очень небольшое ограничение для протекания тока — резистор. При малых токах небольшое ограничение расходует очень мало энергии, обеспечивая высокий КПД и часто не требуя радиатора. Этот КПД теряется при увеличении тока — удвоение тока увеличивает выработку тепла в четыре раза.
  • Обычно полевой МОП-транзистор может блокировать ток только в одном направлении — как только напряжение меняется на противоположное, ток течет через диод, идущий параллельно полевому МОП-транзистору.Если бы для переключения переменного тока использовался полевой МОП-транзистор, нагрузка была бы включена половину времени. Распространенное решение — использовать два полевых МОП-транзистора вплотную друг к другу — именно это мы и делаем с нашими SSR AC / DC .
,

Меры предосторожности при использовании твердотельных реле | Средства автоматизации | Промышленные устройства

1. Конструкция с ухудшением характеристик

Снижение номинальных характеристик — важный фактор для надежности конструкции и срока службы продукта.
Даже если условия использования (температура, ток, напряжение и т. Д.) Продукта находятся в пределах абсолютных максимальных номинальных значений, надежность может значительно снизиться при продолжительном использовании в условиях высокой нагрузки (высокая температура, высокая влажность, высокий ток, высокое напряжение. и т. д.) Поэтому, пожалуйста, снизьте номинальные характеристики до уровня ниже абсолютного максимума и оцените устройство в фактическом состоянии.
Более того, независимо от области применения, если можно ожидать, что неисправность создаст высокий риск для жизни человека или имущества, или если продукты используются в оборудовании, в противном случае требующем высокой эксплуатационной безопасности, в дополнение к проектированию двойных цепей, то есть с включением таких функций, как цепи защиты или резервной цепи, также должны быть проведены испытания безопасности.

2. Приложение нагрузки, превышающей абсолютный максимум

Если значение напряжения или тока для любой из клемм превышает абсолютный максимальный номинал, внутренние элементы выйдут из строя из-за перенапряжения или перегрузки по току.В крайних случаях может расплавиться проводка или разрушиться кремниевые контакты P / N.
Следовательно, схема должна быть спроектирована таким образом, чтобы нагрузка никогда не превышала абсолютные максимальные значения, даже на мгновение.

3. Фотоэлемент

Соединитель фототриака предназначен исключительно для управления симистором. Предварительно необходимо запитать симистор.

4. неиспользуемые клеммы

1) Фотоприемник

Клемма № 3 используется со схемой внутри устройства.
Поэтому не подключайте его к внешней цепи. (6 контактов)

2) AQ-H

Терминал № 5 подключен к воротам.
Не подключайте напрямую клеммы № 5 и 6.

5. Короткое замыкание между клеммами

Не допускайте короткого замыкания между клеммами, когда устройство находится под напряжением, так как существует возможность поломки внутренней ИС.

6. При нагрузке ниже номинальной

SSR может выйти из строя, если он используется ниже указанной нагрузки.В таком случае используйте фиктивный резистор параллельно нагрузке.

Характеристики нагрузки

Тип Ток нагрузки
AQ-G Все модели 20 мА
AQ1 Все модели 50 мА
AQ8 Все модели 50 мА
AQ-J Все модели 50 мА
AQ-A (тип выхода переменного тока) 100 мА

7.Защита от шума и перенапряжения на входе

1) Фотоприемник и AQ-H

Если на входных клеммах присутствуют обратные перенапряжения, подключите диод обратно параллельно входным клеммам и поддерживайте обратное напряжение ниже обратного напряжения пробоя.
Ниже показаны типовые схемы.

<Фотоэлемент (6-контактный)>

2) ССР

Сильное шумовое импульсное напряжение, приложенное к входной цепи SSR, может вызвать неисправность или необратимое повреждение устройства.Если ожидается такой сильный выброс, используйте во входной цепи поглотитель шума C или R.
Ниже показаны типовые схемы

8.Рекомендуемый входной ток соединителя Phototriac и AQ-H

Дизайн в соответствии с рекомендованными условиями эксплуатации для каждого продукта.
Поскольку на эти условия влияет рабочая среда, убедитесь в соответствии со всеми соответствующими спецификациями.

9. Пульсации на входе источника питания

Если во входном блоке питания присутствует пульсация, обратите внимание на следующее:

1) Чувствительный к току тип (Phototriac Coupler, AQ-H)

(1) Для прямого тока светодиода при Emin поддерживайте значение, указанное в «Рекомендуемом входном токе».
(2) Убедитесь, что прямой ток светодиода для Emax. не превышает 50 мА.

2) Тип, чувствительный к напряжению (AQ-G, AQ1, AQ8, AQ-J, AQ-A)

(1) Эмин.должно превышать минимальное номинальное управляющее напряжение
(2) Emax. не должно превышать максимальное номинальное управляющее напряжение

10.Когда входные клеммы подключены с обратной полярностью

Название продукта Если полярность входного управляющего напряжения обратная
AQ1 、 AQ-J 、 AQ-A (AC) Изменение полярности не приведет к повреждению устройства из-за наличия защитного диода, но устройство не будет работать.
AQ-H 、 AQ-G 、 AQ8
AQ-A (DC)
Изменение полярности может привести к необратимому повреждению устройства. Будьте особенно осторожны, чтобы избежать изменения полярности или используйте защитный диод во входной цепи.

11.Защита от шума и перенапряжения на выходной стороне

1) Фотоприемник и AQ-H

На рисунке ниже показана обычная схема управления симистором. Пожалуйста, добавьте демпфирующую цепь или варистор, поскольку шум / скачок напряжения на стороне нагрузки могут повредить устройство или вызвать неисправности.
Типовые схемы показаны ниже.

<Фотоприемник типов SOP4 и DIP4>

<Фотоприемник типа DIP6>

Примечание: подключение внешнего резистора и т. Д., к терминалу №5 (выход) не нужен.

2) ССР

(1) Тип выхода переменного тока

Сильный импульсный импульс напряжения, приложенный к цепи нагрузки SSR, может вызвать неисправность или необратимое повреждение устройства. Если ожидается такой сильный выброс, используйте варистор на выходе SSR.

(2) Тип выхода постоянного тока

Если индуктивная нагрузка генерирует скачки напряжения, превышающие абсолютный максимум номинального значения, скачки напряжения должны быть ограничены.
Ниже показаны типовые схемы.

3) Ограничивающий диод и демпферная цепь могут ограничивать выбросы напряжения на сторона нагрузки. Однако длинные провода могут вызвать скачки напряжения. из-за индуктивности. Рекомендуется использовать провода как можно короче. можно минимизировать индуктивность.
4) Выходные клеммы могут стать токопроводящими, хотя входная мощность не подается, когда на них подается внезапное повышение напряжения, даже когда реле выключено.Это может произойти, даже если повышение напряжения между клеммами меньше, чем повторяющееся пиковое напряжение в выключенном состоянии. Поэтому, пожалуйста, проведите достаточные испытания в реальных условиях.
5) При управлении нагрузками, в которых фазы напряжения и тока различаются, при выключении происходит резкое повышение напряжения, и симистор иногда не выключается. Пожалуйста, проведите достаточные испытания на реальном оборудовании.
6) При управлении нагрузками с использованием типов напряжения с переходом через нуль, в которых фазы напряжения и тока различаются, симистор иногда не включается независимо от состояния входа, поэтому, пожалуйста, проведите достаточные испытания с использованием реального оборудования.

12. Очистка (для монтажа на печатной плате)

Для очистки флюса от припоя следует использовать погружную промывку с органическим растворителем. Если вам необходимо использовать ультразвуковую очистку, примите следующие условия и убедитесь, что при фактическом использовании нет проблем.

  • Частота: от 27 до 29 кГц
  • Мощность ультразвука: не более 0,25 Вт / см 2 (Примечание)
  • Время очистки: 30 с или менее
  • Используемое очищающее средство: Асахиклин АК-225
  • Другое: Погрузите печатную плату и устройство в очищающий растворитель, чтобы предотвратить контакт с ультразвуковым вибратором.

Примечание: относится к ультразвуковой мощности на единицу площади для ультразвуковых ванн

13. Замечания по монтажу (для типа монтажа на печатной плате)

1) Когда на печатной плате установлены различные типы корпусов, повышение температуры на выводе пайки сильно зависит от размера корпуса. Поэтому, пожалуйста, установите более низкую температуру пайки, чем условия пункта «14. Пайка »и подтвердите фактический температурный режим использования перед пайкой.
2) Если условия монтажа превышают наши рекомендации, это может отрицательно повлиять на характеристики устройства. Это может произойти из-за несоответствия теплового расширения и снижения прочности смолы. Пожалуйста, свяжитесь с нашим офисом продаж, чтобы узнать о правильности условий.
3) Пожалуйста, подтвердите тепловую нагрузку, используя настоящую плату, потому что она может быть изменена в зависимости от состояния платы или условий производственного процесса
4) Ползучесть припоя, смачиваемость или прочность пайки будут зависеть от условий монтажа или используемого типа пайки.
Пожалуйста, внимательно проверьте их в соответствии с фактическим состоянием производства.
5) Нанесите покрытие, когда устройство вернется к комнатной температуре.

14. Пайка

1) При пайке клемм для поверхностного монтажа рекомендуются следующие условия.

(1) Метод пайки ИК (инфракрасным оплавлением)
(Рекомендуемые условия оплавления: макс. 2 раза, точка измерения: паяльный провод)

T 1 = от 150 до 180 ° C
Т 2 = 230 ° C
T 3 = от 240 до 250 ° C
t 1 = от 60 до 120 с
t 2 = В течение 30 с
t 3 = В течение 10 с

(2) Другие методы пайки
Другие методы пайки (VPS, горячий воздух, горячая пластина, лазерный нагрев, импульсный нагреватель и т. Д.) по-разному влияют на характеристики реле, пожалуйста, оцените устройство с учетом фактического использования.

(3) Метод паяльника
Температура наконечника: от 350 до 400 ° C
Мощность: от 30 до 60 Вт
Время пайки: в пределах 3 с

2) При пайке стандартных клемм печатной платы рекомендуются следующие условия.

(1) Метод пайки DWS
(Рекомендуемое количество раз: максимум 1 раз, точка измерения: паяльный провод * 1)

Т 1 = 120 ° С
T 2 = Макс.260 ° С
t 1 = в течение 60 с
t 2 + t 3 = в течение 5 с

* 1 Температура пайки: макс. 260 & deg; С

(2) Другой метод пайки погружением (рекомендуемые условия: 1 раз)
Предварительный нагрев: Макс. 120 ° C, в течение 120 с, точка измерения: паяльный провод
Пайка: Макс. 260 ° C, в течение 5 с *, область измерения: температура пайки
* Фотоприемник и AQ-H: в течение 10 с

(3) Ручной метод пайки
Температура наконечника: от 350 до 400 ° C
Мощность: от 30 до 60 Вт
Время пайки: в пределах 3 с

• Мы рекомендуем сплав со сплавом Sn3.0Ag0.5Cu.

15. прочие

1) Если SSR используется в непосредственной близости от другого SSR или тепловыделяющего устройства, его температура окружающей среды может превышать допустимый уровень. Тщательно спланируйте расположение SSR и вентиляцию.
2) Клеммные соединения должны выполняться в соответствии с соответствующей электрической схемой.
3) Для большей надежности проверьте качество устройства в реальных условиях эксплуатации.
4) Во избежание опасности поражения электрическим током отключайте питание при проведении технического обслуживания.Хотя AQ-A (тип выхода постоянного тока) сконструирован с изоляцией для входных / выходных клемм и задней алюминиевой пластины, изоляция между входом / выходом и задней алюминиевой пластиной не одобрена UL.

16. Транспортировка и хранение

1) Сильная вибрация во время транспортировки может деформировать провод или повредить характеристики устройства. Пожалуйста, обращайтесь с внешней и внутренней коробкой осторожно.
2) Неадекватные условия хранения могут ухудшить пайку, внешний вид и характеристики.Рекомендуются следующие условия хранения:
  • Температура: от 0 до 45 ° C
  • Влажность: Макс. 70% относительной влажности
  • Атмосфера: Без вредных газов, таких как сернисто-кислый газ, минимальное количество пыли.
3) Хранение фотоэлемента (тип SOP)

В случае теплового воздействия пайки на устройство, которое поглощает влагу внутри упаковки, испарение влаги увеличивает давление внутри упаковки и может вызвать вздутие или трещину на упаковке.Устройство чувствительно к влаге и упаковано в герметичную влагонепроницаемую упаковку. После распечатывания убедитесь в соблюдении следующих условий.

• Пожалуйста, используйте устройство сразу после распечатывания. (В течение 30 дней при температуре от 0 до 45 ° C и макс. Относительной влажности 70%)
• Если устройство будет храниться в течение длительного времени после вскрытия упаковки, храните его в другой влагонепроницаемой упаковке, содержащей силикагель. (Используйте в течение 90 дней.)

17. конденсация воды

Конденсация воды возникает, когда температура окружающей среды внезапно меняется с высокой температуры на низкую при высокой влажности, или когда устройство внезапно переключается с низкой температуры окружающей среды на высокую температуру и влажность.
Конденсат вызывает такие отказы, как ухудшение изоляции. Panasonic Corporation не гарантирует неисправности, вызванные конденсацией воды.
Теплопроводность оборудования, на котором установлен SSR, может ускорить конденсацию воды. Пожалуйста, подтвердите, что в худших условиях фактического использования конденсата нет.
(Особое внимание следует уделять, когда детали, нагревающиеся при высокой температуре, находятся рядом с твердотельным реле.)

18. Ниже показан формат упаковки

※ Если щелкнуть каждую фигуру, откроется увеличение.

1) Лента и катушка (соединитель Phototriac)
2) Лента и катушка (AQ-H)
Тип Размеры ленты (единица измерения: мм) Размеры рулона бумажной ленты
(Единица измерения: мм)
8-контактный SMD
тип

(1) При выборе со стороны 1/2/3/4 контактов: № детали AQH ○○○○ AX (Показано выше)
(2) При выборе со стороны 5/6/8 контактов: Номер детали.AQH ○○○○ AZ
3) Трубка
Соединитель

Phototriac и AQ-H SSR упакованы в трубку, так как штифт № 1 находится на стороне стопора B. Соблюдайте правильную ориентацию при установке их на печатные платы.

<Тип СОП фотоэлемента>

<Тип DIP-соединителя фототриак и AQ-H SSR>

1.Уменьшить дв / дт

SSR, используемый с индуктивной нагрузкой, может случайно сработать из-за высокой скорости нарастания напряжения нагрузки (dv / dt), даже если напряжение нагрузки ниже допустимого уровня (срабатывание индуктивной нагрузки).
Наши SSR содержат демпферную схему, предназначенную для уменьшения dv / dt (кроме AQ-H).

2. Выбор постоянных демпфера

1) Выбор C

Коэффициент зарядки тау для C цепи SSR показан в формуле (1)

τ = (R L + R) × C ———— (1)

Установив формулу (1) так, чтобы она была ниже значения dv / dt, вы получите:

C = 0.632V A / [(dv / dt) × (R L + R)] —— (2)

Установив C = от 0,1 до 0,2 мкФ, dv / dt можно регулировать в диапазоне от нВ / мкс до n + В / мкс или ниже. Для конденсатора используйте либо металлизированную полиэфирную пленку конденсатора MP. Для линии 100 В используйте напряжение от 250 до 400 В, а для линии 200 В используйте напряжение от 400 до 600 В.

2) Выбор R

Если сопротивление R отсутствует (сопротивление R управляет разрядным током конденсатора C), при включении SSR произойдет резкое повышение dv / dt и начнет течь ток разряда с высоким пиковым значением.
Это может вызвать повреждение внутренних элементов SSR.
Следовательно, всегда необходимо вставлять сопротивление R. В обычных приложениях для линии 100 В необходимо иметь R = 10–100 Ом, а для линии 200 В — R = 20–100 Ом. (Допустимый ток разряда при включении будет отличаться в зависимости от внутренних элементов SSR.) Потери мощности от R, записанные как P, вызванные током разряда и током заряда от C, показаны в формуле (3) ниже. Для линии 100 В используйте мощность 1/2 Вт, а для линии 200 В используйте мощность выше 2 Вт.

P =

C × V A 2 × F

……… (3)

2

f = частота источника питания

Кроме того, при выключении SSR формируется цепь вызывного сигнала с конденсатором C и индуктивностью L цепи, и на обоих выводах SSR генерируется всплеск напряжения.Сопротивление R служит контрольным сопротивлением для предотвращения этого звона. Кроме того, требуется хорошее неиндуктивное сопротивление для R. Часто используются углеродные пленочные резисторы или металлопленочные резисторы.
Для общего применения рекомендуемые значения C = 0,1 мкФ и R = от 20 до 100 Ом. В индуктивной нагрузке бывают случаи резонанса, поэтому при выборе необходимо соблюдать соответствующие меры.

,

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *