Site Loader

Содержание

структурная схема электронных встраиваемых мини-вольтметров постоянного тока и других моделей. Принцип их работы

На первый взгляд может показаться, что вольтметр является узкоспециализированным прибором. Но на самом деле он может быть более востребован и иметь множество применений в быту. Особенно это относится к радиолюбителям и владельцам автомобилей. К примеру, с помощью данного аппарата можно настроить собранную электронную конструкцию, измерить вольтаж аккумулятора и напряжение домашней электросети.

Наиболее популярной разновидностью сегодня считаются цифровые вольтметры. В этой статье мы подробно разберем их особенности, рассмотрим разновидности, а также расскажем о том, как настраивать аппарат и правильно его использовать.

Особенности и технические характеристики

Основным применением цифровых вольтметров является проверка напряжения в электрической цепи. Главной особенностью такого прибора является удобство и простота эксплуатации. Также он отличается высокими показателями внутреннего сопротивления, что обеспечивает точность измерений.

К главным техническим характеристикам вольтметра относятся следующие.

  • Диапазон измерений: у цифровых моделей он составляет от 1мВ до 1 кВ. Этого вполне достаточно для проведения большинства замеров. Однако бывает и такое, что необходимо измерить крайне низкое напряжение или слишком высокое. Для этих целей требуются более сложные вольтметры.
  • Допустимая погрешность: чем меньше этот показатель, тем точнее получаемые результаты. Данная характеристика устанавливается производителем после первых испытаний и обычно указывается в процентах.
  • Внутреннее сопротивление: чем оно выше, тем точнее вольтметр. Аппараты с высоким сопротивлением практически не влияют на электроцепь.
  • Диапазон частот переменного напряжения.

Эти характеристики вы сможете найти в описании к той или иной модели вольтметра.

Сердцем аппарата, которое отвечает за вычисления, является структурная схема. О принципе ее работы мы поговорим далее. Для визуализации полученных данных многие цифровые вольтметры используют индикатор.

Принцип работы

В основе той самой схемы цифрового прибора лежат дискретные величины.

К основным составляющим схемы относятся:

  • входное устройство;
  • аналого-цифровой преобразователь;
  • цифровое отсчетное устройство;
  • управляющее устройство.

Входное устройство, играющее первостепенную роль в этой конструкции, оснащено делителем напряжения. Также оно выступает в роли преобразователя. Проходя через него, переменный ток превращается в постоянный. Аналогово-цифровой преобразователь изменяет аналоговый сигнал. На выходе получается цифровой код. Если модель поддерживает двоичные числа, процесс измерения проходит гораздо быстрее.

Старые аппараты поддерживали исключительно десятичный код.

Полученный после преобразования код поступает в отсчетное устройство, которое регистрирует измеряемую величину. Для объединения всех узлов вольтметра используется управляющее устройство.

Точность измерений вольтметра также зависит от стабильности опорного напряжения. Поэтому следует учитывать порог прецизионного делителя во входном устройстве и защиту от помех в цепочке.

Во время проведения лабораторных исследований точность замеров можно значительно увеличить с помощью фильтра в начале электрической цепи.

Тем не менее полностью исключить погрешности невозможно, можно лишь свести их к минимуму.

Дело в том, что источник питания вызывает помехи, изменяющие параметры сопротивления. Из-за этого показатели значительно уменьшаются.

Не стоит забывать, что точность выводимых вольтметром показаний зависит от их градуировки. Градуировка представляет собой совокупность действий по сопоставлению шкалы прибора с измеряемой величиной. Как правило, эта процедура выполняется в заводских условиях. Для этого сравниваются значения настраиваемого вольтметра и эталонного аппарата с самыми высокими показателями точности.

Обзор видов

Вольтметр не является многофункциональным приспособлением. Он выполняет лишь одну задачу – измерение напряжения электрической цепи. Однако на сегодняшний день было изобретено немало разновидностей вольтметров. Их классификация зависит от характеристик, которые берутся во внимание.

Давайте рассмотрим основные виды и параметры, по которым они подразделяются. Наиболее важный из них – это принцип работы. В зависимости от него вольтметры бывают двух типов:

  • электромеханические – электромагнитные и магнитоэлектрические;
  • электронные – аналоговые и цифровые.

Электромагнитные аппараты считаются самыми дешевыми и наиболее простыми.

Но из-за высокой индуктивности собственных обмоток заметно страдает точность измерений. Такие приборы чаще всего встречаются на электроподстанциях.

Магнитоэлектрические, наоборот, наименее доступны и применяются в основном для лабораторных исследований. Но не будем надолго останавливаться на этих разновидностях, так как речь идет о цифровых вольтметрах, а значит, нас интересуют только электронные. Электронный аппарат имеет табло для вывода результатов. На аналоговых устройствах оно состоит из шкалы и стрелки. На цифровых – представляет собой светодиодный дисплей.

Следующий рассматриваемый параметр – это назначение. Согласно ему, электронный вольтметр разделяется на:

  • прибор для измерения напряжения постоянного тока;
  • прибор для измерения напряжения переменного тока;
  • универсальный прибор для измерения обоих типов напряжения, с возможностью переключения режимов;
  • импульсный прибор для замеров одиночных импульсов.

Вольтметры для измерения постоянного тока бывают:

  • выпрямительными;
  • квадратичными.

Для измерения напряжения переменного тока в трехфазной сети применяется трехфазный вольтметр.

Особой разновидностью электронных вольтметров являются приборы с время-импульсным преобразованием. Они фиксируют напряжения только в определенные отрезки времени. Дополнительно аппарат учитывает импульсные колебания и среднюю частоту напряжения.

Вольтметры с двойным интегрированием предназначены для работы с постоянным током. Они основываются на принципе периодического повторения, при котором исходный код в цепи возвращается автоматически.

Дополнительно вольтметры разделяются по способу установки:

  • стационарные;
  • щитовые;
  • переносные.

К переносным относятся, например, миниатюрный и розеточный аппараты. Последний работает от электросети, мини-вольтметр работает на батарейках. Среди владельцев автомобилей востребована современная разновидность – круглый портативный вольтметр со светодиодным табло. Он легко позволяет замерить напряжение автомобильного аккумулятора.

Отдельно можно приобрести встраиваемые приборы. Они предназначены для тех блоков питания, которые производитель не оснащает вольтметром.

Как выбрать?

Широкий выбор моделей, представленных на современном рынке, позволяет подобрать вольтметр, соответствующий любым запросам и финансовым возможностям. О главных технических характеристиках, которые нужно учитывать при выборе в первую очередь, мы уже рассказали выше. Также следует выбирать аппарат, соответствующий своей области применения.

Но даже с учетом этих критериев круг выбора остается довольно широким. Мы рекомендуем обратить внимание на следующие бренды:

  • «Актаком» – Россия;
  • «АКИП» – Россия;
  • Circutor S. A. – Испания;
  • Good Will Instrument Co. – Тайвань;
  • Agilent – США.

Под этими торговыми марками выпускаются в основном качественные разнообразные приборы по доступным ценам.

Однако это лишь малая часть производителей, выпускающих качественную технику для замеров.

Как пользоваться?

Эксплуатация вольтметра допускается только при соблюдении трех важных условий. К ним относятся:

  • соответствие возможностей аппарата напряжению в участке цепи;
  • соответствие типу напряжения, которое может быть постоянным или переменным;
  • верное положение, в котором должен находиться вольтметр для корректной работы (вертикальное или горизонтальное, данная информация указывается на корпусе прибора).

Аналоговые вольтметры также требуют предварительной настройки.

Но в этот раз мы говорим о цифровых устройствах, которые в этом не нуждаются, что является еще одним доказательством удобства и простоты использования. Весь процесс измерения напряжения цифровым вольтметром можно разделить на 3 шага.

  1. Подсоединить провода. Для этого на цифровых моделях имеются специальные разъемы и гнезда. Установить переключатель в положение «включено».
  2. Если вольтметр является универсальным, установить тип напряжения и диапазон значений. При неизвестных значениях можно обозначить максимальный предел, а затем плавно его снижать до выявления читаемых значений.
  3. Установить параллельное подключение щупов к проводникам на выбранном участке цепи.

    Как видите, процесс не так сложен и не занимает большого количества времени.

    Однако стоит соблюдать осторожность. Халатное отношение может не только повредить устройство, но и нанести вред здоровью человека.

    Вот самые распространенные ошибки, которые совершаются при замерах.

    1. Переход с одного участка цепи на другой без переустановки значений или типа напряжения. Вольтметр может перегреться и даже сгореть.
    2. Из-за внешнего сходства вольтметр можно легко перепутать с амперметром.
    3. При длительной эксплуатации изоляция проводов на щупах приходит в негодность и проводник оголяется. Это может привести к поражению оператора электрическим током. Поэтому нужно регулярно осматривать аппарат на предмет повреждений.
    4. Некоторые покупатели предпочитают экономить на подобной технике, покупая дешевые аппараты от неизвестных производителей. Велик риск потратить деньги на непригодный для измерений вольтметр. Такие устройства лучше приобретать в специализированных магазинах. Лучше всего если товары имеют сертификат качества и гарантийный срок.

    В целом это все, что нужно знать о вольтметре для его домашнего использования.

    Данный прибор является очень полезным и ему всегда найдется применение. Так что эта покупка стоит того.

    Тем не менее, если работать приходится с электричеством, необходимо соблюдать предельную внимательность и быть подготовленными. Обязательно ознакомьтесь с прилагаемой инструкцией и техническими характеристиками именно вашей модели.

    В следующем видео вы узнаете, как подключить цифровой вольтметр с тремя проводами.

    Цифровой вольтметр с LED дисплеем

    Лицевая сторона

    Общее описание:

    Это простой, но в тоже время довольно точный вольтметр. Схема работает на основе АЦП (аналого-цифровой преобразователь) IC CL7107, сделанный компанией Intersil. В схеме имеется 40-контактная микросхема, которая отвечает за преоброзованике аналогового сигнала в цифровой. Схема, как это описано здесь может отображать любое напряжение постоянного тока в диапазоне 0-1999 Вольт.

    Технические характеристики:
    • Напряжение питания: + / — 5 В (симметричный)
    • Требования к питанию: 200 мА (максимум)
    • Диапазон измерения: + / — 0-1,999
    Особенности:
    • Малый размер
    • Простота конструкции
    • Низкая стоимость
    • Простая настройка
    • Малое количество внешних компонентов
    Как это работает?
    Схема:

    Дисплей MAN6960

    Аналого-цифровой преобразователь , (ADC отныне) более известен как двойной преобразователь наклона или интегрирующего преобразователя . Этот тип преобразователя , как правило, предпочтительнее, чем другие типы, так как он обладает более высокой точностью и прост в дизайне. Работу схемы проще понять, если она описана в два этапа. На первом этапе и в течение заданного периода входное напряжение интегрируется и на выходе интегратора в конце этого периода есть напряжение, которое прямо пропорционально входному напряжению. В конце установленного периода интегратор подается с внутренним опорным напряжением и на выходе схемы постепенно уменьшается, пока не достигнет уровня опорного напряжения (нуль). Второй этап известен как отрицательный период наклона и его продолжительность зависит от выхода интегратора в первом периоде. Поскольку продолжительность первой операции является фиксированной и длина второго является переменной можно сравнить два и таким образом входное напряжение на самом деле по сравнению с внутренним опорным напряжением, и результат кодируется и посылается на дисплей.

    Задняя сторона

    Все это звучит довольно просто, но это на самом деле серия очень сложных операций, которые все сделанные АЦП IC с помощью нескольких внешних компонентов, которые используются для настройки схемы и её работы. Более подробно схема работает следующим образом. Напряжение измеряется через точки 1 и 2 цепи и цепи через R3, R4 и C4, наконец, применяется к контактам 30 и 31 ИС. Это вход IC, как вы можете видеть из ее диаграммы (В высоких и в низких соответственно). Резистор R1 вместе с С1 используются для установки частоты внутреннего генератора (часы), который установлен на частоте около 48 Гц. В этот тактовой частоте насчитывается около трех различных показаний в секунду. Конденсатор C2, который соединен между выводами 33 и 34, ИС была выбрана, чтобы компенсировать погрешности, вызванной внутренним опорным напряжением, а также держит дисплей устойчивым. Конденсатор C3 и резистор R5 вместе образуют цепь, которая делает интеграцию входного напряжения и в то же время предотвращает разделение входного напряжения, делает контур быстрее и надежнее, возможность ошибки значительно снижается. Конденсатор C5 вынуждает инструмент отображать нуль, когда нет напряжения на его входе. Резистор R2 вместе с P1 используются для настройки прибора при вводе в эксплуатацию. Резистор R6 контролирует ток, который протекает через дисплей. Три правых дисплея подключены, чтобы они могли показать все цифры от 0 до 9, а первый слева может отображать только номер 1, и когда напряжение отрицательно знак минус. Вся схема работает от симметричной ? 5 В постоянного тока , которая применяется в контактах 1 (+5 В) , 21 (0 В) и 26 (-5 В) из IC.

    Изготовление:

    Прежде всего рассмотрим несколько основ в изготовлении электронной схемы на печатной плате. Плата выполнена из тонкого изолирующего материала, покрытого тонким слоем токопроводящей меди, которая формируется таким образом, чтобы сформировать необходимые проводники между различными компонентами схемы. Использование правильно спроектированной печатной платы очень необходимо, поскольку это ускоряет изготовление и существенно уменьшает возможность совершения ошибок. Медь должна быть луженая в процессе производства и покрыта специальным лаком, который защищает её окисления, а также чтобы делать пайки проще. Пайка компонентов к плате является единственным способом, чтобы построить вашу схему и от того, как вы это делаете зависит в значительной степени ваш успех или неудача. Эта работа не очень сложная, и если вы будете придерживаться нескольких правил, с которыми вы не должны иметь никаких проблем. Паяльник, который вы используете, должен быть легким и его мощность не должна превышать 25 Ватт. Есть много различных типов припоя на рынке и вы должны выбрать тот, который содержит необходимый флюс, чтобы обеспечить идеальную совместимость. Для того, чтобы спаять компонент правильно, вы должны сделать следующее: очистить компонент с помощью небольшого куска наждачной бумаги. Согните их на правильном расстоянии от компонента и вставьте компонент на своё место на борту.

    Размещение:

    PCB размеры: 77,6 мм х 44,18 мм или масштабировать его на уровне 35%

    Возьмите горячий утюг и поместите его кончик на поводке компонентов, держа конец проволочного припоя в точке, где ведущий выходит. Когда припой начинает плавиться и течь, подождать, он охватит равномерно всю область вокруг отверстия и поток кипит и выходит из-под припоя. Вся операция не должна занимать более 5 секунд. Если все было сделано правильно поверхность шва должна иметь светлое металлическую отделку и ее края должны быть гладкие. Если припой в трещинах или имеет форму капли, то вы сделали сухой шов и вы должны удалить припой и переделывать. Постарайтесь, чтобы не перегреть дорожки, поскольку можно сместить их с доски и разбить их. Не используйте больше припои, так как вы работаете с риском короткого замыкания соседних дорожек на плате, особенно если они очень близко друг к другу. Когда вы закончите вашу работу, нужно отрезать избыток компонентов и очистите доску тщательно подходящим растворителем, чтобы удалить все остатки флюса, которые могут по-прежнему остаться на нем.

    Рекомендуется начать работу по идентификации компоненто

    Цифровой вольтметр на очень высокую точность

    Целью этого дела было собрать очень точный вольтметр, с 3 цифрами после запятой. Нужен был вольтметр постоянного напряжения показывающий значения напряжения в диапазоне 0-10 В. Имеющиеся мультиметры не подходили. Поэтому после принятия решения о самостоятельном исполнении выбор пал на микросхему ICL7135.

    Схема точного цифрового вольтметра

    Генератор сделан на микросхеме 4047, он должен также питать преобразователь отрицательного напряжения. Вольтметр имеет три диапазона измерений: 2 V, 20 V, 200 V.

    В делителе применены резисторы 0,1%. При запуске системы возникла проблема её калибровки. Не имея доступа к эталонному прибору с точностью не менее 5 цифр, решено было купить готовый источник стабильных напряжений для калибровки. Основан он на AD584KH обеспечивает четыре уровня: 2,5 V и 5,0 V, 7,5 V и 10,0 V.

    На прилагаемых фотографиях видно измеренные значения. Корпус вольтметра была изготовлен из листовой стали, выдранной из корпуса старого компьютера. Питание идёт постоянным напряжением от БП на 15 В.

    Точность действительно сверх высокая. Показания реально стабильны, даже на открытых (не экранированных) измерительных проводах последняя цифра не «прыгает».

    Доработка модуля китайского вольтметра » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)

    Прелюдия

    Изучая как-то бескрайние просторы Интернета на предмет китайских полезностей, наткнулся я на модуль цифрового вольтметра:

    Китайцы «выкатили» вот такие ТТХ: 3-digit red color display; Voltage: 3.2~30V; Working temperature: -10~65’C. Application: Voltage testing.

    Не совсем он мне подходил в блок питания (показания не от нуля — но это расплата за питание от измеряемой цепи), зато недорого.
    Решил взять и разбираться на месте.

    Содержание / Contents

    На поверку модуль оказался не так уж и плох. Выпаял индикатор, срисовал схему (нумерация деталей показана условно):

    К сожалению, чип остался неопознанным — маркировка отсутствует. Возможно, это какой-то микроконтроллер. Номинал конденсатора С3 неизвестен, выпаивать мерять не стал. С2 — предположительно 0.1мк, тоже не выпаивал.А теперь о доработках, которые необходимы, чтоб довести этот «показиметр» до ума.

    1. Чтобы он начал измерять напряжение менее 3 Вольт, нужно выпаять резистор-перемычку R1 и на ее правую (по схеме) контактную площадку подать напряжение 5-12В с внешнего источника (выше можно, но нежелательно — стабилизатор DA1 сильно греется). Минус внешнего источника подать на общий провод схемы. Измеряемое напряжение подавать на штатный провод (который был изначально припаян китайцами).

    2. После доработки по п.1 диапазон измеряемого напряжения увеличивается до 99.9В (ранее он был ограничен максимальным входным напряжением стабилизатора DA1 — 30В). Коэффициент деления входного делителя около 33, что дает нам максимально 3 вольта на входе DD1 при 99,9В на входе делителя. Я подавал максимум 56В — больше у меня нету, ничего не сгорело :-), но и погрешность возросла.

    3. Если пересчитать делитель, то «показиметр» можно использовать не только как вольтметр — например, можно сделать индикацию тока, температуры и т.п.

    4. Чтобы переместить или совсем выключить точку, нужно выпаять ЧИП-резистор R13 10кОм, который находится рядом с транзистором и вместо него запаять обычный резистор 10кОм 0.125Вт между дальней от подстроечного ЧИП-резистора контактной площадкой и соответствующим управляющим сегментным выводом DD1 — 8, 9 или 10.
    Штатно точка засвечивается на средней цифре и база транзистора VT1 соответственно через ЧИП 10кОм подключена к выв. 9 DD1.

    Ток, потребляемый вольтметром, составил около 15мА и менялся в зависимости от количества засвеченных сегментов.
    После описанной переделки весь этот ток будет потребляться от внешнего источника питания, не нагружая измеряемую цепь.

    И в заключении еще несколько фото вольтметра.
    Заводское состояние
    С выпаяным индикатором, вид спереди
    С выпаяным индикатором, вид сзади
    Индикатор тонирован автомобильной тонировочной пленкой (20%) для уменьшения яркости и улучшения видимости индикатора на свету.
    Очень рекомендую его затонировать. Обрезков тонировочной пленки вам с удовольствием дадут бесплатно в любом автосервисе, занимающемся тонировкой.

    Также в Интернете встречаются иные модификации этого модуля, но суть переделок от этого не меняется — если Вам попался не такой модуль, просто скорректируйте схему по плате, выпаяв индикатор или прозвонив цепи тестером и вперед!

    Enjoy!

    Камрад, смотри полезняхи!

    Андрей (AVL_007)

    Новочеркасск Ростовской области

    Автолюбитель. Мотоциклист. Радиолюбитель. Мебельщик. А еще люблю путешествовать.

     

    СХЕМА ПОДКЛЮЧЕНИЯ ЦИФРОВОГО ВОЛЬТАМПЕРМЕТРА

    В настоящее время от всевозможных электронных устройств, которые по той или иной причине выведены из эксплуатации остаются различные блоки питания, как импульсные, так и собранные на понижающих трансформаторах. Их использование начинающими радиолюбителями в качестве лабораторного блока питания затруднено тем, что они имеют на выходе определённое стабилизированное напряжение. Однако появившиеся в продаже недорогие миниатюрные модули регуляторов напряжения и тока позволяют вкупе с такими-же миниатюрными цифровыми вольтметрами и амперметрами с успехом переделывать их в лабораторные блоки питания, порой даже без изготовления нового, более вместительного корпуса.

    Плата самодельного БП

    Остался блок питания, который давал на выходе стабилизированное напряжение 5V. Естественно появилось желание более интенсивно задействовать его в своих радиолюбительских нуждах. Тем более, что регулировка напряжения о 5,5 вольт до максимума, которую можно было производить с помощью подстроечного резистора, уже имелась. А ток на выходе легко достигал практически одного ампера.

    подключение цифрового вольтамперметра

    Для достижения желаемого необходимо установить на переднюю панель  измерительное устройство – вольтамперметр, регулятор напряжения (переменный резистор взамен подстроечника), переключатель вида измерения (вольтметр – амперметр) и соединительные клеммы.

    Крепление на панели БП цифрового вольтамперметра

    Это оказалось совсем не сложно. Вольтметр китайского производства доработанный по такому методу до возможности измерения и тока тоже, самодельный многооборотный резистор для более плавной и точной настройки, кнопочный переключатель ПК-1 и соединительные клеммы двух видов – стандартные для блоков питания и разъём RCA «тюльпан» — как показавший себя весьма удобным в этом качестве.

    Схема подключения блока

    Схема электрическая подключения цифрового вольтамперметра модуля

    Схема соединения дополнительно вводимых устройств совсем не сложная, а её реализация занимает времени ещё меньше чем рисование. Питание вольтамперметра лучше сделать обособленным, от дополнительной обмотки трансформатора через интегральный стабилизатор на 5 вольт, как вариант от подходящих батареек или аккумуляторов, тогда индикация напряжения на выходе будет начинаться с нуля. Переключатель вида измеряемой величины ПК-1, на него и устанавливаются необходимые дополнительные электронные компоненты схемы. Предохранитель обязателен.

    Схема электрическая подключения цифрового вольтамперметра модуля

    Всё уместилось, разве только пришлось слегка подпилить край печатной платы и модуль с выпрямителем и стабилизатором напряжения, с дополнительной обмотки штатного трансформатора, поместить в изолированный «бокс» (он оранжевого цвета) и отвести ему место внутри радиатора (он не нагревается).

    Сравнение показаний цифрового вольтамперметра

    Подстройка показаний вольтметра и амперметра прошла без осложнений. Показания вольтметра настраиваются расположенным на его плате подстроечным смд резистором, а амперметра при помощи изменения сопротивления измерительного резистора, обозначенного на схеме как «R измерительное резистор 0,2 Ом». Показания тока производятся в амперах. Показания относительно образцового измерителя выставляются довольно точно, но есть пока до конца не понятый нюанс: выставил показания вольтметра и они совпадают с образцовыми идеально, но после того как выставил показания амперметра показания вольтметра несколько сбиваются. И наоборот. Поэтому пришлось выбирать, чьи показания будут соответствовать, а чьи «читать» придётся с поправкой.

    Готовый БП с цифровым вольт-амперметром

    Вот такой получился в итоге блок питания: с отображением регулируемого выходного напряжения, с возможностью узнать текущее токопотребление (необходимо нажать не фиксируемую кнопку переключателя ПК-1) и двумя видами соединительных клемм. Собирать «с нуля» свой первый БП начинающему радиолюбителю не стоит, оптимальный вариант это доработка под свои нужды готового. Автор Babay iz Barnaula.

       Форум

       Обсудить статью СХЕМА ПОДКЛЮЧЕНИЯ ЦИФРОВОГО ВОЛЬТАМПЕРМЕТРА


    Цифровой амперметр и вольтметр для блока питания

    Опубликовал admin | Дата 23 декабря, 2013

         На рисунке 1 представлена схема цифрового амперметра и вольтметра, которая может быть использована, как дополнение к схемам блоков питания, преобразователей, зарядных устройств и т.д. Цифровая часть схемы выполнена на микроконтроллере PIC16F873A. Программа обеспечивает измерение напряжения 0… 50 В, измеряемый ток — 0… 5 А.


          Для отображения информации используются светодиодные индикаторы с общим катодом. Один из операционных усилителей микросхемы LM358 используется в качестве повторителя напряжения и служит для защиты контроллера при внештатных ситуациях. Все-таки цена контроллера не так уж и мала. Измерение тока производится косвенным образом, при помощи преобразователя ток-напряжение, выполненного операционном усилителе DA1.2 микросхемы LM358 и транзисторе VT1 – КТ515В. Почитать о таком преобразователе еще можно здесь и здесь. Датчиком тока в этой схеме служит резистор R3. Преимуществом такой схемы измерения тока состоит в том, что здесь отпадает необходимость точной подгонки миллиомного резистора. Скорректировать показания амперметра можно просто триммером R1 и в довольно широких пределах. Сигнал тока нагрузки для дальнейшей оцифровки снимается с нагрузочного резистора преобразователя R2. Напряжение на конденсаторе фильтра стоящем после выпрямителя вашего блока (вход стабилизатора, точка 3 на схеме)питания не должно быть более 32 вольт, это обусловлено максимальным напряжением питания ОУ. Максимальное входное напряжение микросхемного стабилизатора КР142ЕН12А – тридцать семь вольт.

         Регулировка вольтамперметра заключается в следующем. После всех процедур — сборки, программирования, проверки на соответствие на собранное вами произведение подают напряжение питания. Резистором R8 выставляют на выходе стабилизатора КР142ЕН12А напряжение 5,12 В. После этого вставляют в панельку запрограммированный микроконтроллер. Измеряют напряжение в точке 2 мультиметром, которому вы доверяете, и резистором R7 добиваются одинаковых показаний. После этого к выходу (точка 2) подключают нагрузку с контрольным амперметром. Равенства показаний обоих приборов в данном случае добиваются при помощи резистора R1.

         Резистор-датчик тока можно изготовить самому, используя для этого, например, стальную проволоку. Для расчета параметров этого резистора можно использовать программу «Программа для работы с проволокой» Программу скачали? Открыли? Значит так, нам нужен резистор номиналом в 0,05 Ом. Для его изготовления выберем стальную проволоку диаметром 0,7мм – у меня она такая, да еще и не ржавеющая. С помощью программы вычисляем необходимую длину отрезка, имеющего такое сопротивление. Смотрим скрин окна данной программы.

         И так нам нужен отрезок стальной нержавеющей проволоки диаметром 0,7мм и длиной всего 11 сантиметров. Не надо этот отрезок свивать в спираль и концентрировать все тепло в одной точке. Вроде все. Что не понятно, прошу на форум. Успехов. К.В.Ю. Чуть не забыл про файлы.

    Скачать “Цифровой амперметр и вольтметр для блока питания” Ism_U_I_873.rar – Загружено 1550 раз – 26 KB

    Скачать “Ism_U_I_873_dly-toka-50A” Ism_U_I_873_dly-toka-50A.rar – Загружено 799 раз – 807 B

    Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

    Просмотров:58 766


    ЦИФРОВОЙ ВОЛЬТМЕТР СЕТЕВОГО НАПРЯЖЕНИЯ НА МИКРОКОНТРОЛЛЕРЕ ATTINY

    ЦИФРОВОЙ ВОЛЬТМЕТР СЕТЕВОГО НАПРЯЖЕНИЯ НА МИКРОКОНТРОЛЛЕРЕ ATTINY

         Целью написания данной статьи является разработка встраиваемого цифрового вольтметра для измерения сетевого напряжения 220 В. Все началось с того, что у моего товарища возникла необходимость контролировать напряжение сети, для этого есть много способов. Самый простой – это контроль с помощью китайского цифрового мультиметра, т.к. он обеспечивает с приемлемой точностью измерение напряжения переменного тока. Не совсем удобно, его нужно периодически подключать к измеряемой цепи, а постоянное подключение нецелесообразно, т.к. бесполезно расходуется энергия «Кроны», а попытки запитать мультиметр от сетевого адаптера питания на 9 В и измерения напряжения сети привели к выходу мультиметра из строя. Второй способ – купить готовое устройство – реле напряжения щитового исполнения типа «Барьер». Тут есть некоторые факторы – в распределительном щитке не осталось лишнего места для установки хоть самого маломощного реле напряжения (2 модуля), и слегка завышенная цена на эти устройства. Покупные стрелочные вольтметры не обеспечивают приемлемой точности. Значит – есть выход из положения – изготовить цифровой встраиваемый вольтметр. Но и тут есть два варианта – изготовить на базе специализированной БИС АЦП КР572ПВ2 и изготовить на МК с встроенным АЦП. Первый вариант не устроил меня сразу, 40-выводный ДИП-корпус, два напряжения питания +5 В и -5 В, статическая индикация, сложная разводка платы, много навесных компонентов и т.п. Второй вариант – МК с встроенным АЦП.

         Был выбран второй вариант – собрать цифровой вольтметр сетевого напряжения на микроконтроллере ATTINY26, который содержит 10-разрядный АЦП, трехразрядный светодиодный индикатор с динамической индикацией, линейный стабилизатор 7805, ну еще несколько токоограничительных резисторов. Конечно, большая часть рассыпухи используется для работы бестрансформаторного БП. Ниже приведена схема. Для удобства чтения схемы условно разделил схему источника питания и цифровую часть. 

    схема цифрового вольтметра на микроконтроллере

         Детали: все диоды в схеме использованы типа 1N4007, но подойдут и любые другие с прямым током от 0,5 А и обратным напряжением 400 В, конденсатор C1 – обязательно пленочный, 1,5 мкФ 400 В, но лучше 630 В (надежнее). Все выводные резисторы, кроме R2 рассчитаны на 0,125-0,25 Вт, R2 – на 1-2 Вт, SMD резисторы применены типоразмера 1206. Подстроечный резистор RV1 лучше применить многооборотный типа 3296, это позволит более точно откалибровать вольтметр по образцовому вольтметру. Стабилитрон D1 мощностью 0,5 Вт 8,2 В, можно и на другое напряжение стабилизации, не рекомендую ниже 7,5 В и выше 10 В. Конденсаторы электролитические выбраны на 16 В, керамические SMD 100 нФ типоразмер 0805. МК – Attiny26 в дип-20 корпусе, светодиодный индикатор ТОТ3361 красного цвета свечения, такие светодиоды раньше применяли в телефонах с АОН «Русь 27». Для удобства подключения питающих проводов применен двухконтактный клеммник на плату.  

         Сборка. Итак, приступаем к сборке цифрового вольтметра на микроконтроллере, рисунок платы прилагается ниже.

    плата печатная цифрового вольтметра на микроконтроллере

         Устройство собрано на плате из односторонне фольгированного текстолита, размером 83х30 мм. Все выводные детали размещаем со стороны компонентов.

    плата с деталями цифрового вольтметра на микроконтроллере

         Гасящий конденсатор С1 1,5 мкФ 400 В размещаем со стороны монтажа.

    монтаж и конденсатор цифрового вольтметра

         Все запаяно, проверено на предмет обрыва/КЗ. В микроконтроллере программируются фьюзы так, что он тактировался от внутреннего RC-генератора 8МГц, т.е установить фьюзы CKSEL = 0100. Остальные фьюзы можно не трогать. Можно включать в сеть для проверки и настройки.

         Внимание: данное устройство не имеет гальванической развязки от питающей сети, а значит, все перепайки в схеме производить только после отключения схемы от сети, а настройку производить с помощью отвертки с хорошо изолированной ручкой 

       Производим пробное включение, собранное без ошибок устройство начинает работать сразу. Убедились, что на светодиодах есть какие-нибудь цифры, хоть далекие от идеала. Потом в ту же розетку включаем цифровой мультиметр для измерения действующего напряжения сети и с помощью движка подстроечного резистора (с соблюдением правил техники безопасности) устанавливаем на индикаторе напряжение, соответствующее показаниям контрольного вольтметра (мультиметра). После этого несколько раз проверяем соответствие показаний показаниям контрольного вольтметра. В случае необходимости корректируем все тем же подстроечником. На фото ниже показано работающее устройство.

    фото рабочего цифрового вольтметра на микроконтроллере


         Судя по яркости, не мешало бы применить светофильтр, это повысит контрастность изображения и читаемость в светлое время суток. Габариты собранного устройства 83х30х20 мм, что позволяет установить его в пластиковый квартирный щиток. А роль светофильтра выполняет его крышка с темного прозрачного пластика. Вот и все, цифровой вольтметр сетевого напряжения на микроконтроллере ATTINY26 готов к применению. В архиве прилагается схема, рисунок печатной платы в формате Sprint Layout 5.0, а также исходный код на CodeVision AVR 1.25, прошивка МК. Скачать файлы можно на ФОРУМЕ
         Материал предоставил i8086.

       Схемы на микроконтроллерах

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.