Site Loader

Силовой трансформатор: принцип работы устройства

На сегодняшний день трансформаторы считаются главными электрическими устройствами. Они используются не только на производстве, но и в быту. В этой статье вы найдете информацию про силовые трансформаторы. Силовой трансформатор – это электрическое устройство, которое передает энергию между своими контурами. Весь этот процесс происходит благодаря законам магнитной индукции.

Их применяют как приборы, которые могут повышать, или понижать напряжение. Эта уникальная способность может обеспечивать максимальную передачу тока.

Параметры силового трансформатора

Силовой трансформатор имеет номинальное напряжение. Оно может рассчитываться в зависимости от конструкции. В зависимости от конструкции он будет рассчитываться либо:

  • Между фазой и землей.
  • Между фазами.

Вот основные элементы, из которых состоит силовой трансформатор:

  1. Первичная обмотка (W1).
  2. Вторичная обмотка (W2).
  3. Стержень магнитоотвода.
  4. Ярмо магнитоотвода.

Силовой масляный трансформатор обычно состоит из двух обмоток и проволоки, которая содержит в себе изоляцию. Сердечник должен изготавливаться из железа.

Виды силовых трансформаторов

Силовой трансформатор в зависимости от области применения может иметь несколько видов:

  1. Силовое понижающее устройство. Его часто используют для понижения напряжения.
  2. Трехфазный и однофазный трансформатор. Достаточно часто их используют в трехфазной электрической системе. Вам предпочтительно будет применять три однофазных трансформатора. Они необходимо для того чтобы обеспечивать предприятие постоянным током.
  3. Электрический силовой трансформатор. Его используют для распределения нагрузки. Эти устройства применяют для защиты системы электроснабжения.
  4. Силовой автотрансформатор. Используется на тех предприятиях, где разница между высоким и низким напряжением не превышает 2%.
  5. Открытый трансформатор. Его используют для установки на улице. Он способен работать даже при минусовых температурах.

Силовой трансформатор и его принцип работы

Переменный ток должен пройти через обмотку и произвести постоянно меняющийся ток. Этот поток постоянно будет меняться по своей амплитуде и направлению. Согласно закону Фарадея ЭДС должно индуцироваться за одну секунду. Он имеет такой же принцип работы как и трансформатор Тесла. Это время считается оптимальным. Если цепь в последней обмотке будет закрыта, тогда через нее сможет пройти электрический ток.

Если силовой трансформатор использует переменный ток, тогда он будет окружать катушку. Но если рядом расположить еще одну катушку, тогда потокосцепление станет направленным.

Ремонт и защита силового трансформатора тока

Отремонтировать силовой трансформатор достаточно сложно. Этот процесс отнимает не только много времени, но и денег. Выполнять этот процесс должен только специалист со стажем. Если в его конструкции будут неправильные соединения, то это может поставить вашу жизнь под угрозу. Существует немного заводов, которые могут выполнить его ремонт. Вот основные компании, которые могут взяться за эту работу:

Дифференциальная защита должна обеспечиваться в силовом трансформаторе. Она считается более эффективной, чем релейная защита. Для того чтобы надежно защитить современные силовые трансформаторы можно использовать специальную программу Transformer Designer.

Дифференциальное реле должно сравнивать между собою мощность первичного и вторичного тока. Если в вашем трансформаторе образуется дисбаланс, то реле активизируется, и будет защищать реакторы. Вторичная обмотка должна быть подключена к текущей катушке реле. Защита трансформатора должна быть пропорциональна смещению и или отклонению коэффициента разности токов.

Обмотку трансформатора можно провести самостоятельно. В обмотке должен находиться четный слой обмотки. Провод должен быть выведен обратно через выходное отверстие. Между слоями обмотки необходимо устанавливать хлопковые полосы, которые будут использованы от перегревания. Следить за повышением температуры можно также с помощью специальной жидкости, которая будет пропитывать слой изоляции. Собирать силовой трансформатор можно только опытным электрикам. Многие изготовители трансформаторов заботятся о том, чтобы вы самостоятельно смогли определить причину поломки. Определить поломку можно с помощью релейной защиты.

Схемы соединения обмоток силовых трансформаторов

В первичной обмотке каждая фаза должна распределяться под углом в 120 градусов. Первичная обмотка должна магнитно быть связана с вторичной через нейтральные точки. Ток может иметь значительное количество нечетных составляющих. Если силовые трансформаторы соединены с каждой фазой, то они смогут возвращаться в нормальное положение. Благодаря этой схеме вы узнаете как сделать трансформатор своими руками.

Эта схема обмотки считается наиболее простой. Также иногда часто может искажаться уровень выходящего напряжения. Технология линейного соединения может использоваться крайне редко. На сегодняшний день выбор силовых трансформаторов значительно увеличился.

Читайте также: измерительные трансформаторы.

Схема силового трансформатора

Для транспортировки электрической энергии на большие расстояния используются силовые трансформаторы, которые позволят снизить потери при электропередаче. Это осуществляется за счет передачи вырабатываемого генераторами электричества на электрическую подстанцию. На этой подстанции амплитуда напряжения, что поступает в линию электропередач, будет повышаться. Если вам необходимо купить трансформатор сухой силовой, вы можете сделать это в компании «Терра-Ток». Для уточнения подробностей позвоните нам.

Краткое описание принципа работы

Если схематично описать данное устройство, представьте стальной сердечник с двумя катушками, которые имеют обмотки. Одна из них – первичная, другая – вторичная. Когда переменный ток начинает прохождение по первичной обмотке, в магнитопроводе (сердечнике) образуется магнитный поток, возбуждающий электродвижущую силу во вторичной обмотке. Если она (вторичная обмотка) не присоединена к цепи, которая потребляет энергию, то сила ее тока равна нулю. При подсоединении к цепи электроэнергия потребляется, и сила тока в первичной обмотке возрастает пропорционально, согласно с законом сохранения. Так происходит процесс преобразования и распределения энергии.

Электрическая схема силового трансформатора

Конструкция силового сухого трансформатора включает в себя:

  • Магнитопровод;
  • Остов с нижней и верхней балками;
  • Обмотки низкого и высокого напряжения;
  • Отводы низковольтные и высоковольтные;
  • Регулировочные обмоточные ответвления;
  • Нижняя часть вводов низкого и высокого напряжения.

Обмотки трансформаторных фаз пропускают через себя ток нагрузки, а изготавливаются они из таких металлов, как алюминий или медь. Намотанные концентрические обмотки выполняются цилиндрами, которые располагаются один в другом. Для низкого напряжения (НН) обмотка бывает винтовой и цилиндрической. Она располагается вблизи стержня, чтобы изоляционный слой было проще сделать. Далее на нее устанавливается цилиндр, что обеспечивает изоляцию между сторонами низкого и высокого напряжений. На этот цилиндр монтируется обмотка высокого напряжения (ВН), которая может быть многослойной или непрерывной.

Регулирование выходного напряжения

Есть два способа для регулирования выходного напряжения. Они зависят от типа переключателя, которые могут изменять количество на обмотке витков либо с отключением нагрузки, либо под нагрузкой. Наиболее востребован второй способ.

Области применения разных схем соединения обмоток

СИЛОВЫЕ ТРАНСФОРМАТОРЫ 10(6)/0,4 КВ

ОБЛАСТИ ПРИМЕНЕНИЯ РАЗНЫХ СХЕМ СОЕДИНЕНИЯ ОБМОТОК

Отсутствие у изготовителей и заказчиков четкого представления о принципиальных отличиях свойств силовых трансформаторов малой мощности с разными схемами соединения обмоток приводит к ошибкам в их применении. Причем неправильный выбор схемы соединения трансформаторных обмоток не только ухудшает технические показатели электроустановок и снижает качество электроэнергии, но и приводит к серьезным авариям.
Об этом напоминают нижегородские проектировщики Алевтина Ивановна Федоровская и Владимир Семенович Фишман, которые в своем материале акцентируют внимание на разнице в реакции трансформаторов на несимметричные токи, содержащие составляющую нулевой последовательности.

СХЕМЫ СОЕДИНЕНИЯ ОБМОТОК И СВОЙСТВА ТРАНСФОРМАТОРОВ

В соответствии с ГОСТ 11677-85 [1] силовые трансформаторы 10(6)/0,4 кВ мощностью от 25 до 250 кВА могут изготавливаться со следующими схемами соединения обмоток:

«звезда/звезда» – Y/Yн;

«треугольник–звезда» – Д/Yн;

«звезда–зигзаг» – Y/Zн.

Принципиальное отличие технических характеристик трансформаторов с различными схемами соединений обмоток заключается в разной реакции на несимметричные токи, содержащие составляющую нулевой последовательности. Это прежде всего однофазные сквозные короткие замыкания, а также рабочие режимы с неравномерной загрузкой фаз. 

Как известно, силовые трансформаторы 6(10)/0,4 кВ имеют трехстержневой стальной сердечник, на каждом стержне которого располагаются первичная и вторичная обмотки соответствующей фазы – А, В и С. Магнитные потоки трех фаз в симметричных режимах работы циркулируют в стальном сердечнике трансформатора и за его пределы не выходят. 
Что происходит при нарушении симметрии с преобладанием нагрузки одной из фаз на стороне 0,4 кВ? Такие режимы работы исследуются с использованием теории симметричных составляющих [2]. Согласно этой теории любой несимметричный режим работы трехфазной сети представляется в виде геометрической суммы трех симметричных составляющих тока и напряжения: это составляющие прямой, обратной и нулевой последовательностей.
Рассмотрим режим максимальной однофазной несимметрии – режим однофазного короткого замыкания (ОКЗ) на стороне 0,4 кВ трансформатора со схемой соединения обмоток Д/Yн. 
Картина токов симметричных составляющих в обмотках в этом режиме представлена на рис. 1. В неповрежденных фазах на стороне 0,4 кВ геометрическая сумма трех симметричных составляющих тока равна нулю (рабочей нагрузкой фаз пренебрегаем), а в поврежденной фазе эта сумма максимальна и равна току ОКЗ. Его величина определяется известной формулой:

 

где Uл – линейное напряжение;
R1, R0, X1, Х0 – соответственно активные и реактивные сопротивления прямой и нулевой последовательности.

СОПРОТИВЛЕНИЯ ПРЯМОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Сопротивления прямой последовательности R1 и X1 трансформаторов с разными схемами соединения обмоток определяются одними и теми же формулами и отличаются незначительно:

Заглянув в каталоги, нетрудно убедиться, что входящие в эти формулы известные величины Ркз и Uк от схем соединения обмоток трансформатора практически не зависят, а следовательно, от них не зависят и сопротивления прямой последовательности. 
В отличие от этих сопротивлений, сопротивления нулевой последовательности трансформаторов с разными схемами соединения обмоток отличаются принципиально.

СОПРОТИВЛЕНИЯ НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Рассмотрим картину векторов токов и магнитных потоков в трансформаторе со схемой соединения обмоток Д/Yн (рис. 2).

В таких трансформаторах токи прямой, обратной и нулевой последовательностей протекают как в первичной, так и во вторичной обмотках. При этом токи нулевой последовательности в первичной обмотке замыкаются внутри нее и в сеть не выходят. Создаваемые токами нулевой последовательности первичных и вторичных обмоток намагничивающие силы (ампер-витки) направлены встречно и почти полностью компенсируют друг друга, что обуславливает небольшую величину реактивных сопротивлений трансформатора. При этом сопротивления прямой и нулевой последовательностей приблизительно равны: R1 = R0; Х1 = Х0.
В трансформаторах со схемой соединения обмоток Y/Zн в аналогичном режиме ОКЗ токи нулевой последовательности протекают лишь по вторичной обмотке трансформатора, однако магнитного потока нулевой последовательности они не создают, что объясняется особенностью схемы Zн – «зигзаг». 
Эта особенность состоит в том, что на каждом стержне трансформатора расположено по одной вторичной полуобмотке двух разных фаз (рис. 3). В режиме ОКЗ намагничивающие силы, создаваемые токами нулевой последовательности в этих полуобмотках, направлены встречно и друг друга взаимно компенсируют. При этом токи нулевой последовательности в первичной обмотке отсутствуют. В таких трансформаторах сопротивления нулевой последовательности оказываются меньше сопротивлений прямой последовательности: R0 < R1; Х0 < Х1.

Рис. 1. Токи симметричных составляющих в обмотках трансформатора в режиме однофазного короткого замыкания

IA21, IA22, IA20, IB21, IB22, IB20, IC21, IC22, IC20 – токи фаз А, В, С прямой, обратной и нулевой последовательностей вторичной обмотки;
IA11, IA12, IA10, IB11, IB12, IB10, IC11, IC12, IC10 – токи фаз А, В, С прямой, обратной и нулевой последовательностей первичной обмотки.

Рис. 2. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Д/Yн

Рис. 3. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Zн 

Как следует из формулы (1), это обеспечивает большую величину тока ОКЗ у трансформаторов со схемами Y/Zн по сравнению с трансформаторами со схемами Д/Yн.
Теперь обратимся к трансформаторам со схемой соединения обмоток Y/Yн. Как известно, в обмотках, соединенных в звезду без выведенной нулевой точки, токи нулевой последовательности протекать не могут. Поэтому в режиме ОКЗ токи этой последовательности протекают только во вторичной обмотке трансформатора.
Совпадающие по фазе магнитные потоки нулевой последовательности, создаваемые токами вторичной обмотки, выходят за пределы магнитного сердечника и замыкаются через металлический кожух трансформатора (рис. 4). Это определяет значительно большую величину сопротивлений нулевой последовательности таких трансформаторов: R0 >> R1; X0 >> X1.

Рис. 4. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Yн

Следует отметить, что в отличие от сопротивлений прямой последовательности трансформаторов, которые можно рассчитать, сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн расчету не поддаются. Их можно определить только экспериментально. Величина этих сопротивлений во многом зависит от конструкции кожуха трансформатора, от величины зазоров между сердечником и кожухом и т.п. 
Схема замера сопротивлений нулевой последовательности приведена в ГОСТ 3484.1-88 [3]. К сожалению, в этом документе указано, что такие замеры предприятия-производители проводят по просьбе заказчиков. Вероятно, в последние годы таких просьб от заказчиков не поступает, а изготовители эти замеры самостоятельно не производят, считая, что в них нет необходимости. В результате проектировщики при выполнении расчетов пользуются старыми справочными данными. Однако использовать устаревшую информацию надо чрезвычайно осторожно, ведь конструкции современных трансформаторов, в частности кожухов, а также материалы, из которых они изготовлены, существенно изменились.
Кроме того, имеющиеся на сегодня данные по сопротивлениям нулевой последовательности трансформаторов крайне скудны и противоречивы. Так, согласно замерам Минского трансформаторного завода, выполненным много лет назад, реактивные сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн превышают сопротивления прямой последовательности в среднем в 10 раз. В то же время в ГОСТ 3484.1-88 имеется фраза о том, что эти сопротивления могут отличаться на два порядка. И этим сегодня противоречия не исчерпываются[4].

ПОЧЕМУ НЕОБХОДИМО ЗНАТЬ РЕАЛЬНЫЕ ЗНАЧЕНИЯ СОПРОТИВЛЕНИЙ

Реальные значения сопротивлений нулевой последовательности знать необходимо, поскольку они определяют величину тока ОКЗ. Чем больше эти сопротивления, тем меньше ток ОКЗ, соответственно труднее осуществить защиту трансформатора. 
В нормальных режимах работы большие сопротивления нулевой последовательности при неравномерной загрузке фаз трансформатора на стороне 0,4 кВ приводят к ухудшению качества электроэнергии у потребителя. 
Так, если принять R1 = R0, X1 = X0, что характерно для трансформаторов со схемами соединения обмоток Д/Yн, то получим:

Таким образом, при этих условиях ток ОКЗ на выводах 0,4 кВ трансформатора будет равен току трехфазного КЗ.
Однако, если R0>>R1 и X0>>X1, что характерно для трансформаторов со схемами соединения обмоток Y/Yн, то величина тока ОКЗ оказывается значительно меньше тока трехфазного КЗ, то есть Iокз << I3фкз. Какие при этом могут возникнуть трудности с защитой, особенно если она выполнена со стороны обмотки ВН предохранителями 6(10) кВ, можно показать на конкретном примере. 
На рис. 5 изображена схема подключения трансформатора 100 кВА, 6/0,4 кВ питания собственных нужд (ТСН) ПС 110/35/6 кВ. На ПС с переменным оперативным током такие трансформаторы устанавливаются на ОРУ и подключаются к воздушному вводу, идущему от силового трансформатора к вводной ячейке ЗРУ-6(10) кВ. Защита трансформатора, включая кабель 0,4 кВ до щита 0,4 кВ, выполняется предохранителями 6 кВ. Токи КЗ в конце защищаемой предохранителями зоны – при вводе на щит 0,4 кВ приведены в табл. 1. Как из нее видно, минимальное значение тока КЗ через предохранители 6 кВ имеет место при однофазном замыкании на стороне 0,4 кВ.

Таблица 1. Токи короткого замыкания в конце защищаемой предохранителями зоны за трансформатором 100 кВА, 6/0,4 кВ, Д/Yн при вводе на щит 0,4 кВ

Рис. 5. Схема подключения трансформатора 100 кВА, 6/0,4 кВ для питания собственных нужд ПС 110/35/6 кВ

Согласно существующим рекомендациям по условиям отстройки от броска тока намагничивания трансформатора мощностью 100 кВА номинальный ток предохранителей принимается равным Iн.пр = (2 ÷ 3) Iн.тр. В данном случае Iн.пр  2 ·10 А  20. Принимаем Iн.пр = 20 А.

Минимальный отключаемый ток предохранителем типа ПКТ-6 кВ, 20 А согласно каталожным данным составляет Iмин.откл.пр = 240 А, что значительно больше токов КЗ, приведенных в табл. 1.
Таким образом, защита предохранителями типа ПКТ 6 кВ оказывается нечувствительной. Более того, при протекании тока КЗ ниже минимально отключаемого, предохранитель не только не защищает оборудование, но и разрушается сам, вызывая аварию. 
В качестве защитного аппарата можно рассмотреть возможность использования предохранителей зарубежных фирм, например марки Merlin Gerin. Номинальный ток предохранителя специалисты компании рекомендуют выбирать из условия Iпр. 0,1с  12 Iном.тр.Пользуясь времятоковой зависимостью, приведенной в [5], определяем, что этому условию удовлетворяет предохранитель Fusarc c номинальным током 20 А, минимальный ток отключения которого равен 55 А. Казалось бы, этот предохранитель надежно защищает электрооборудование, т.к. минимально отключаемый им ток меньше минимального тока КЗ: 62 А  55 А. Однако время отключения данным предохранителем тока КЗ, равного 62 А, составляет 7 с. При таком длительном времени необходимо учитывать эффект спада тока, вызванный увеличением активного сопротивления кабеля вследствие его нагрева [6]. В результате спада тока его значение приближается к минимальному току отключения предохранителя –55 А, что делает защиту ненадежной.
Улучшить надежность защиты можно путем применения силового трансформатора 6/0,4 кВ со схемой соединения обмоток Y/Zн. В этом случае минимальный ток короткого замыкания через предохранители увеличивается до 80 А, а время его отключения предохранителем сокращается до 0,6 с и защита становится достаточно надежной.
Если же в рассмотренном примере будет применен трансформатор со схемой соединения обмоток Y/Yн, то минимальный ток КЗ через предохранители составит лишь 22 А. Очевидно, что защитить электрооборудование предохранителями 6 кВ при таком токе невозможно. Недостатки трансформаторов со схемой соединения обмоток Y/Yн проявляются и в нормальных режимах работы при неравномерной загрузке фаз. Потери напряжения в более загруженной фазе могут резко возрасти по сравнению с менее за-груженными фазами, особенно при большой загрузке трансформатора и низком cos f нагрузки.
Однако означает ли всё вышесказанное, что трансформаторы со схемой соединения обмоток Y/Yн не должны изготавливаться вообще? Представляется, что это не так. Не всегда большая величина сопротивления нулевой последовательности трансформатора является недостатком. Например, при применении трансформаторов более 1000 кВА может возникнуть проблема устойчивости однофазной коммутационной аппаратуры 0,4 кВ к току ОКЗ. В этом случае большая величина сопротивления нулевой последовательности трансформатора со схемой Y/Yн поможет решить эту проблему.
Что же касается защиты таких трансформаторов, то она решается с помощью релейной защиты и выключателя 6(10) кВ, а с низкой стороны – с помощью вводного автомата.

ВЫВОДЫ

Для трансформаторов малой мощности (от 25 до 250 кВА), защищаемых предохранителями со стороны ВН, безусловное преимущество имеет схема соединения обмоток Y/Zн. Несколько меньший эффект дает схема Д/Yн. Схему Y/Yн для таких трансформаторов применять не следует.
Схема соединения обмоток трансформаторов Y/Yн может применяться в сравнительно редких случаях для более мощных трансформаторов при необходимости ограничения тока однофазного КЗ с целью повышения устойчивости коммутационной аппаратуры.
Предприятиям-изготовителям силовых трансформаторов следует в обязательном порядке производить замеры их сопротивлений нулевой последовательности.

ЛИТЕРАТУРА

1. ГОСТ 11677-85. Трансформаторы силовые. Общие технические условия.
2. Ульянов С.А. Короткие замыкания в электрических системах. – М.: Госэнергоиздат, 1952. – 280 с.
3. ГОСТ 3484.1-88 (СТ СЭВ 1070-78). Трансформаторы силовые. Методы электромагнитных испытаний.
4. Справочник по проектированию электроснабжения, линий электропередачи и сетей / Под ред. Большама Я.М., Круповича В.И., Самовера М.Л. и др. – М.: Энергия, 1975. – 696 с.
5. Каталог на предохранители Fusarc Merlin Gerin (стандарт DIN).
6. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.

По данным: http://www.news.elteh.ru/arh/2006/41/09.php

Основные и резервные защиты трансформатора, виды, схема

Трансформаторы и автотрансформаторы конструктивно весьма надежны благодаря отсутствию у них движущихся или вращающихся частей. Несмотря на это, в процессе эксплуатации возможны и практически имеют место их повреждения и нарушения нормальных режимов работы. Поэтому трансформаторы и автотрансформаторы должны оснащаться соответствующей релейной защитой.

Все основные виды защиты трансформатора можно разделить на две группы:

  • основные
  • резервные.

В соответствии с назначением для защиты трансформаторов (автотрансформаторов) при их повреждениях и сигнализации о нарушении нормальных режимов работы применяются следующие типы защит:

  • Дифференциальная защита для защиты при повреждениях обмоток, вводов и ошиновки трансформаторов (автотрансформаторов)
  •  Токовая отсечка мгновенного действия для защиты трансфер мотора (автотрансформатора) при повреждениях его ошиновки, вводов и части обмотки со стороны источника питания
  • Газовая защита для защиты при повреждениях внутри бака трансформатора (автотрансформатора), сопровождающихся выделением газа, а также при понижениях уровня масла.
  •  Максимальная токовая или максимальная направленная защита или эти же защиты с пуском минимального напряжения для защиты от сверх токов, проходящих через трансформатор (автотрансформатор), при повреждении как самого трансформатора (автотрансформатора), так и других элементов, связанных с ним. Защиты от сверх токов действуют, как правило, с выдержкой времени.
  •  Защита от замыканий на корпус
  • Защита от перегрузки, действующая на сигнал, для оповещения дежурного персонала или с действием на отключение на подстанциях без постоянного дежурного персонала.
    Кроме того, в отдельных случаях на трансформаторах (автотрансформаторах) могут устанавливаться и другие виды защиты.

Релейная защита трансформатора – это система, состоящая из измерительных и коммутационных устройств, отключающая трансформатор при ненормальных режимах работы и в случае ситуаций приводящих к повреждению.

К ненормальным и опасным режимам работы силового трансформатора относятся:

  • перегрузка по одной или трем фазам, приводящим к повышению тока, проходящего через обмотки,
  •  замыкание на землю или на нейтраль одного или всех выводов трансформатора с высокой или низкой стороны,
  • межфазные замыкания внутри обмоток и со стороны выводящих шин,
  • замыкания внутри обмоток трансформатора.

Во всех этих случаях сигналом возникновения опасной ситуации служат повышение проходящего через короткозамкнутый участок тока и понижение напряжения.

Релейная защита должна надежно зафиксировать отклонение тока или напряжения и отключить трансформатор или поврежденный участок.

Из изложенного следует, что защита трансформаторов и автотрансформаторов должна выполнять следующие функции:

  • отключать трансформатор (автотрансформатор) от всех источников питания при его повреждении;
  •  отключать трансформатор (автотрансформатор) от поврежденной части установки при прохождении через него сверх тока в случаях повреждения шин или другого оборудования, связанного с трансформатором (автотрансформатором), а также при повреждениях смежного оборудования и отказах его защиты или выключателей;
  •  подавать предупредительный сигнал дежурному персоналу подстанции (или электростанции) при перегрузке трансформатора (автотрансформатора), выделении газа из масла, понижении уровня масла, повышении его температуры.

Защита по максимальному току (МТЗ)

Рис.1 схема релейной защиты трансформатора по максимальному току

Защита по максимальному току трансформатора  срабатывает при превышении тока, проходящего через трансформатор (Рис. 1). Реле автоматики А0 и А1 срабатывают при токе, превышающем ток короткого замыкания для данной обмотки. Измерение тока осуществляется через трансформатор тока, включенного на две шины А и С.

При наличии межфазного замыкания на шине В через другие шины все равно протекает большой ток. Одно или два реле автоматики запускают цепь запуска реле времени Т.

Задержка реле времени требуется для лучшей селективности защиты – чем ближе трансформатор по линии к источнику энергии, тем меньшее должно быть время срабатывания. Реле времени через определенный промежуток времени запускает промежуточное реле.

L, управляющей цепью реле отключения YAT. Реле отключения после срабатывания отключает входы и выходы трансформатора от источника и потребителя энергии и блокируется по цепям либо реле времени, либо промежуточного реле.

Силовые трансформаторы относительно малой мощности обычно защищают предохранителями со стороны высшего напряжения и предохранителями или автоматами со стороны отходящих линий низшего напряжения. Ток плавкой вставки высоковольтного предохранителя выбирается с учетом отстройки от бросков тока намагничивания при включении силового трансформатора под рабочее напряжение. С учетом этого номинальный ток предохранителя.

Резервная токовая защиты

В качестве резервной защиты трансформаторов тупиковых и отпаечных подстанций используется максимальная токовая защита (МТЗ) с пуском напряжения или без пуска напряжения.

МТЗ устанавливается на каждой стороне трансформатора. Со стороны питания (110кВ,220кВ) МТЗ, как правило, действует с дву­мя выдержками времени.

С меньшей выдержкой времени на отключение ввода 10кВ, а с большей – на отключение трансформатора со всех сторон.

В случае, когда с высокой стороны трансформатора установле­ны короткозамыкатель и отделитель, основные защиты без выдержки времени, а резервные защиты с наибольшей выдержкой времени действуют на включение короткозамыкателя, тем самым создавая искусс­твенное однофазное короткое замыкание, отключаемое защитой пита­ющих линий. В бестоковую паузу (при АПВ питающих линий) произво­дится автоматическое отключение отделителя, после чего повреж­денный трансформатор (автотрансформатор) оказывается полностью отключенным.

Передача команды – импульса на отключение выключателя с пи­тающей стороны линии при повреждении в трансформаторе, не имею­щем выключателя с высокой стороны, может выполняться и без вклю­чения короткозамыкателя (для создания искусственного короткого замыкания).Такая команда может подаваться с помощью телеотключе­ния по высокочастотному каналу.

С целью ближнего резервирования защит трансформатора пре­дусматривается резервная независимая МТЗ-110кВ.

Эта защита является полностью автономной как по цепям то­ка,оперативным цепям, так и по выходным цепям.

Резервная МТЗ-110 с выдержкой времени большей времени сра­батывания основной МТЗ-110 действует на отдельную катушку включения короткозамыкателя или на отдельную катушку отключения выключателя на стороне 110кВ.

С выдержкой времени большей времени действия защит на включение короткозамыкателя УРОКЗ действует на отключение отделителя.

При этом допускается разрешение отделителя во имя спасения самого трансформатора.

На отпаечных трансформаторах и тупиковых подстанциях 110кВ могут применяться и одноступенчатые токовые защиты нулевой пос­ледовательности, действующие на отключение трансформатора.

На автотрансформаторах транзитных подстанций с высшим напряжением 220-750кВ в качестве резервных защит используются дистанционные защиты (ДЗ) и направленные токовые защиты нулевой последовательности (НТЗНП).

Дистанционные защиты предназначены для отключения междуфаз­ных к.з., а НТЗНП – для отключения одно- и двухфазных  к.з.  на землю.

Как правило, на высшей и средней стороне АТ устанавливаются двухступенчатая ДЗ и 3-х ступенчатая НТЗНП.

Оперативное ускорение (О/У) первых или вторых ступеней ДЗ и НТЗНП стороны высшего или среднего напряжения АТ ( время 0,3-0,6 сек) вводится оперативным персоналом в случае вывода из работы дифференциальной защиты трансформатора, дифзащиты ошиновки выс­шего напряжения АТ, дифзащиты шин среднего напряжения.

Цель О/У резервных защит АТ – ускорить действие резервных защит АТ при близких внешних к.з. или к.з. в самом АТ.

Следует отметить, что на время ввода О/У резервных защит, возможно их неселективное действие при к.з. в прилегающей сети.

Резервные защиты АТ стороны высшего напряжения действуют с первой (меньшей) выдержкой времени на отключение всех выключате­лей высшего напряжения, а со второй (большей) – на отключение АТ со всех сторон.

На ПС, имеющих на стороне 330кВ схему первичных соединений “полуторная”, резервные защиты стороны 330кВ АТ действуют с первой (меньшей) выдержкой времени на деление шин 330кВ (отключение всех выключателей В12), со вто­рой – на отключение выключателей 330кВ своего АТ, и с третьей (наибольшей) – на отключение своего АТ со всех сторон.

Резервные защиты стороны среднего напряжения АТ при схеме первичных соединений этой стороны “секционированная С.Ш.” дейс­твуют с первой выдержкой времени на отключение ШСВ, со второй – на отключение своей стороны и с третьей – на отключение АТ со всех сторон.

Такое ступенчатое действие резервных защит позволяет сохра­нить в работе те АТ, которые отделяются от места к.з. после де­ления систем шин.

Автоматическое ускорение (А/У) резервных защит при включении выключателя стороны высшего напряжения (А/У – 750,

А/У-330) и при включении выключателей стороны среднего напряже­ния ( А/У-220, А/У-110) действует на отключение выключателя, включаемого на к.з. ключом управления или устройством ТАПВ.

При этом на каждой стороне АТ ускоряются до 0,4-0,5 сек I и II ступени ДЗ и II ненаправленная ТЗНП.

Индивидуальная защита от непереключения фаз выключате­лей стороны среднего и высшего напряжения АТ

Защита выполняется только на выключателях с пофазным управ­лением.

Назначение защиты – ликвидация неполнофазного режима, воз­никающего при включении выключателя одной или двумя фазами.

Защита действует на отключение трех фаз включаемого выклю­чателя.

Выдержка времени защиты (0,15 ¶ 0,25 сек) выбрана по усло­вию отстройки от разновременности включения фаз выключателя.

Защита от неполнофазного режима на стороне 330 кВ (750) АТ (ЗНР-330)

Назначение защиты – ликвидация неполнофазного режима, воз­никающего при неполнофазном отключении одного выключателя 330 кВ АТ и трехфазном отключении второго выключателя 330 кВ АТ.

Защита, как правило, действует на отключение АТ со всех сторон.

Выдержка времени ЗНР-330 на 0,3 сек выше выдержки времени индивидуальной защиты от непереключения фаз выключателя.

На АТ-750кВ  для контроля состояния изо­ляции вводов 750кВ АТ применяется устройство КИВ-750.

Принцип действия устройства – измерение геометрической сум­мы токов, протекающих под воздействием рабочего напряжения через изоляцию вводов 750 кВ трех фаз.

При исправной изоляции геометрическая сумма токов, входящих в реле типа КИВ, близка к нулю. В случае частичного повреждения изоляции ввода одной из фаз появляется ток небаланса, который фиксируется защитой.

Устройство типа КИВ имеет измерительный элемент для опера­тивного контроля и отключающий элемент.

Отключающий элемент действует на отключение АТ со всех сто­рон.

Защита от перегрузки

В качестве такой защиты устанавливается токовая защита, действующая с выдержкой времени на сигнал в случае перегрузки по току любой обмотки трансформатора.

Видео: Релейная защита. Вводная лекция

Что такое релейная защита, для чего она нужна. Основные характеристики, которыми должна обладать релейная защита.

Читайте так же:

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *