Что такое диодный мост [+ схема подключения], для чего нужен и как работает
Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.
Содержание статьи
Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате. Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах. В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.
Схема диодного моста из 4 диодов
Что такое диодный мост и из каких элементов он состоит
Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом.
Устройство диода
Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.
Как работает диодный мост: для чайников, просто и коротко
На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.
Обозначение диодного моста на схеме
Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.
Работа диодного моста
На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны. Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный. Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.
Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.
На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.
Чем можно заменить диодный мост-сборку
Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:
- меньшей площади, занимаемой сборкой на схеме;
- упрощению работы сборщика схемы;
Различные варианты сборки диодного моста
У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.
Для чего нужен диодный мост в генераторе автотехники
Диодный мост в генераторе
Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:
- маломощные – до 300 мА;
- средней мощности – от 300 мА до 10 А;
- высокомощные – выше 10 А.
Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.
Чем заменить диодный мост в генераторе
В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:
- на плату попала жидкость;
- грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
- изменение положения полюсов контактов на АКБ.
Видео: принцип работы диодного моста
Была ли статья полезна?
Да
Нет
Оцените статью
Что вам не понравилось?
Другие материалы по теме
Анатолий Мельник
Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.
Диодный мост, принцип работы и схема
Диодный мост – это мостовая схема соединения диодов, для выпрямления переменного тока в постоянный.
Диодные мосты являются простейшими и самыми распространенными выпрямителями, их используют в радиотехнике, электронике, автомобилях и в других сферах, там, где требуется получение пульсирующего постоянного напряжения.
Для лучшего понимания принципа работы диодного моста, рассмотрим работу одного диода:
Диод как полупроводниковый элемент, имеет один p-n переход, что дает ему возможность проводить ток только в одном направлении. Ток через диод начинает проходить при подключении анода к положительному, а катода к отрицательному полюсу источника. В обратной ситуации диод запирается, и ток через него не протекает.
Схема и принцип работы диодного моста
На данной схеме 4 диода соединенных по мостовой схеме подключены к источнику переменного напряжения 220В. В качестве нагрузки подключен резистор Rн.
Переменное напряжение на входе меняется не только по мгновенному значению, но и по знаку. При прохождении положительной полуволны (от 0 до π) к анодам диодов VD2 и VD4 приложено положительное напряжение относительно их катодов, что вызывает прохождение тока Iн через диоды и нагрузку Rн. В этот момент диоды VD1 и VD3 заперты и не пропускают ток, так как напряжение положительной полуволны для них является обратным.
В момент, когда входное напряжение пересекает точку π, оно меняет свой знак. В этом случае диоды VD1 и VD3 начинают пропускать ток, так как к их анодам приложено положительное напряжение относительно катодов, а диоды VD2 и VD4 оказываются запертыми. Это продолжается до точки 2π, где переменное входное напряжение снова меняет свой знак и весь процесс повторяется заново.
Важно отметить, что ток Iн протекающий через нагрузку Rн, не изменяется по направлению, т.е. является постоянным.
Но если обратить внимание на график, то можно заметить, что напряжение на выходе является не постоянным, а пульсирующим. Соответственно, выходной ток, появляющийся от такого напряжения и протекающий через активную нагрузку, будет также – пульсирующим. Данную пульсацию можно немного уменьшить с помощью параллельно включенного конденсатора к выходу диодного моста. Напряжение на конденсаторе, согласно закону коммутации, не может измениться мгновенно, а значит в данном случае, выходное напряжение примет более сглаженную форму.
Диодный мост схема, принцип работы
В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.
Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.
Принцип работы диодного моста
Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.
Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.
Трехфазный диодный мост схема
Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.
Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.
Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.
Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.
Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.
⚡ Диодный мост: схема, особенности, назначение
Подавляющее большинство электронной аппаратуры работает на постоянном токе. А источником напряжения может быть как гальванический элемент, так и городская сеть переменного ток 220 В. Вот и приходится переменный ток преобразовывать в постоянный, то есть – «выпрямлять». Для этой цели служит устройство под названием выпрямитель. Это может быть готовый промышленный компонент, а может быть электронная схема, собранная из отдельных, более простых, элементов. Сегодня разберём, что же такое диодный мост, зачем он нужен и как работает.
Содержание статьи
Что такое диодный мост и зачем нужен
Переменный ток в бытовой электросети по синусоидальному закону меняет свою полярность 50 раз в секунду. Диодный мост, собранный из четырёх диодов, 25 раз в секунду пропускает одну положительную полуволну. То есть, превращает ток переменного знака амплитудой, имеющей колебательный характер, в ток одного знака, но с удвоенной частотой колебаний амплитуды. Если потребителя это не устраивает, то после выпрямителя ставится сглаживающий фильтр. Ниже представлена принципиальная электрическая схема диодного моста-выпрямителя.
ФОТО: go-radio.ruСхема диодного мостаДиодный мост можно собрать из отдельных конструктивно законченных диодов, но можно в промышленных условиях сразу изготовить из кристаллов в виде цельного изделия, пригодного к дальнейшей установке в электронную схему. Такая диодная сборка имеет технологические преимущества над предыдущим вариантом. Она компактней, монтаж моста надёжней, стоимость существенно ниже, чем у четырёх диодов.
ФОТО: youtube.comОдин из вариантов исполнения диодаФОТО: youtube.comДиодный мост, собранный из четырёх диодовФОТО: youtube.comДиодный мост в виде одного изделияПринцип работы
Диодный мост представляет собой электрическую схему из четырёх диодов. Схема построена таким образом, что в каждый полупериод переменного тока соответствующая полуволна проходит по одному плечу моста, в другой полупериод другая полуволна проходит по другому плечу. Но в точках моста, где диоды соединены одинаковой полярностью, знак тока всегда один и тот же.
Основные характеристики
И отдельные диоды, и промышленные диодные сборки описываются стандартным набором технических характеристик:
- это напряжение обратной полярности, которое можно, не опасаясь пробоя, приложить к устройству;
- величина тока обратной полярности, который безопасно можно пропустить по устройству;
- длительность протекания тока по устройству без его перегрева;
- максимальная температура устройства, при которой оно сохраняет свою работоспособность;
- максимальная допустимая частота проходящего тока.
Схема диодного моста
И самодельный мост, и промышленная диодная сборка изготавливаются по одной и той же схеме. Два диода последовательно спаиваются разноимёнными полюсами. Потом две пары спаивают одноимёнными полюсами на концах этих пар. К точкам соединения разноимённых полюсов подключается источник переменного напряжения, к точкам соединения одноимённых полюсов подключают нагрузку.
Диодные мосты применяются для выпрямления однофазного и трёхфазного тока.
Однофазный выпрямитель
Этот выпрямитель применяется в бытовой электронной технике чаще всего, так как бытовая электросеть однофазная. Как правило, пульсации выпрямленного тока с частотой 100 Гц не годятся для нормальной работы аппаратуры, появится неприятный звуковой фон – гудение. После выпрямителя следует ставить качественный сглаживающий фильтр из катушки индуктивности (последовательно) и конденсатора достаточной ёмкости (параллельно выходу выпрямителя).
ФОТО: electroinfo.netСхема однофазного мостаТрёхфазный выпрямитель
Трёхфазные выпрямители на выходе дают меньшую частоту пульсаций, чем однофазные. Понижаются требования к сглаживающим фильтрам.
Схемы выпрямителей для трёхфазных цепей бывают однотактные и двухтактные. В однотактной схеме к каждой обмотке трёхфазного трансформатора подключается минус диода. Свободные концы каждой из трёх катушек соединяются в общую точку. Плюсы диодов тоже соединяются в одну точку. Нагрузка подключается между этими двумя общими точками.
ФОТО: electricalschool.infoПринципиальная схема однотактного трёхфазного моста-выпрямителяЕсли требуется выходное напряжение более высокого значения, а пульсации поменьше, то собирается двухтактна схема. Собираются три пары диодов, в каждой паре плюсовой вывод одного подключается к минусу другого. Плюсовые выводы трёх пар тоже собираются в одну точку, так же объединяются минусы диодов, а общие точки в каждой паре диодов подключаются к свободным концам трёх обмоток вторичной обмотки трансформатора. Нагрузка подключается между общим минусом и плюсом сборки. В такой схеме выходное напряжение несколько выше, а пульсации намного меньше. Иногда можно обойтись без сглаживающего фильтра. Такая схема имеет название «Мостовой трёхфазный выпрямитель Ларионова».
ФОТО: electricalschool.infoПринципиальная схема двухтактного трёхфазного моста-выпрямителяФОТО: electricalschool.infoСборка «Трёхфазный диодный мост»Где применяется схема диодного моста
Кстати, автомобильный генератор тоже выдаёт переменный ток, а всё электрооборудование автомобиля работает на постоянном токе. После генератора установлен мощный диодный выпрямитель. Мостовая схема диодного выпрямителя широко применяется в бытовой радиоаппаратуре – радиоприёмниках, телевизорах, всевозможных магнитофонах и проигрывателях. Диодные мосты ставят и в трансформаторных, и в импульсных блоках питания.
Как сделать диодный мост своими руками
При необходимости и при наличии нужных диодов и паяльника нетрудно собрать диодный мост своими руками.
Что нужно для работы
Для работы нужно подготовить рабочее место с розеткой для паяльника, паяльник с подставкой, припой, канифоль, пинцет, маленькие кусачки. Конечно, нужны диоды с нужными характеристиками. При большом желании мост можно собрать на печатной плате с готовыми дорожками.
Инструкция по изготовлению
Иллюстрация | Описание действия |
ФОТО: youtube.com | Подготовка рабочего места |
ФОТО: youtube.com | Пайка схемы |
ФОТО: youtube.com | Приборная проверка собранной схемы |
ФОТО: youtube.com | Проверка схемы под нагрузкой с конденсатором фильтра |
Проверка на работоспособность
Первая проверка всегда визуальная. Проверяется, те ли детали установлены, правильно ли собрана схема, качество пайки. Затем собирается проверочная схема с источником и измерительным прибором. И если этот этап прошёл успешно, то можно подключить нагрузку и провести окончательную проверку результатов своей работы.
Заключение
Работа с электроникой – это очень интересное занятие. И когда результат собственной деятельности начинает успешно функционировать, человек испытывает огромное удовлетворение.
ПредыдущаяОсвещениеПодключение светодиодной ленты: как правильно выполнить, нюансы монтажа
СледующаяОсвещениеСекреты многоуровневого освещения помещений
Понравилась статья? Сохраните, чтобы не потерять!
ТОЖЕ ИНТЕРЕСНО:
ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:
схема подключения, характеристики, принцип работы, для чего нужен
От энергоснабжающей организации до потребителей доставляется переменное напряжение. Это связано с особенностями транспортировки электроэнергии. Но большая часть бытовых (и, частично, производственных) электроприемников требует питания постоянным напряжением. Для его получения требуются преобразователи. Во многих случаях их строят по схеме «понижающий трансформатор – выпрямитель – сглаживающий фильтр» (за исключением импульсных блоков питания). В качестве выпрямителя используются диоды, включенные по мостовой схеме.
Для чего нужен диодный мост и как он работаетДиодный мост используется в качестве схемы выпрямления, преобразующей переменное напряжение в постоянное. Принцип его действия основан на односторонней проводимости — свойстве полупроводникового диода пропускать ток только в одном направлении. Простейшим выпрямителем может служить и одиночный диод.
При подобном включении нижняя (отрицательная) часть синусоиды «срезается». Такой способ имеет недостатки:
- форма выходного напряжения далека от постоянной, требуется большой и громоздкий конденсатор в качестве сглаживающего фильтра;
- мощность источника переменного тока используется максимум наполовину.
Ток через нагрузку повторяет форму выходного напряжения. Поэтому лучше использовать двухполупериодный выпрямитель в виде диодного моста. Если включить четыре диода по указанной схеме и подключить нагрузку, то при подаче на вход переменного напряжения блок будет работать так:
При положительном напряжении (верхняя часть синусоиды, красная стрелка) ток пойдет через диод VD2, нагрузку, VD3. При отрицательном (нижняя часть синусоиды, зеленая стрелка) через диод VD4, нагрузку, VD1. В итоге за один период ток дважды проходит через нагрузку в одном направлении.
Форма выходного напряжения гораздо ближе к прямой, хотя уровень пульсаций довольно высок. Мощность источника используется полностью.
Если имеется источник трехфазного напряжения необходимой амплитуды, можно сделать мост по такой схеме:
В нём на нагрузке будут складываться три тока, повторяющие форму выходного напряжения, со сдвигом фаз в 120 градусов:
Выходное напряжение будет огибать верхушки синусоид. Видно, что напряжение пульсирует гораздо меньше, чем в однофазной схеме, его форма более близка к прямой. В этом случае ёмкость сглаживающего фильтра будет минимальной.
И еще один вариант моста – управляемый. В нём два диода заменены тиристорами – электронными приборами, которые открываются при подаче сигнала на управляющий электрод. В открытом виде тиристоры ведут себя практически как обычные диоды. Схема принимает такой вид:
Сигналы включения подаются от схемы управления в согласованные моменты времени, отключение происходит в момент перехода напряжения через ноль. Потом напряжение усредняется на конденсаторе, и этим средним уровнем можно управлять.
Обозначение диодного моста и схема подключения
Так как мост из диодов может быть построен по различным схемам, а элементов в нём содержится немного, то в большинстве случаев обозначение выпрямительного узла производят, просто рисуя его принципиальную схему. Если это неприемлемо – например, в случае построения блок-схемы – то мост указывается в виде символа, которым указывают любой преобразователь переменного напряжения в постоянное:
Литера «~» означает цепи переменного тока, символ «=» – цепи постоянного тока, а «+» и «-» – выходную полярность.
Если выпрямитель построен по классической мостовой схеме из 4 диодов, то допускается немного упрощенное изображение:
Подключается вход выпрямительного блока к выходным терминалам источника переменного тока (в большинстве случаев им служит понижающий трансформатор) без соблюдения полярности – любой выходной вывод подключается к любому входному. Выход моста подключается к нагрузке. Она может требовать соблюдения полюсности (включая стабилизатор, сглаживающий фильтр), а может и не требовать.
Диодный мост может быть подключен к источнику постоянного напряжения. В этом случае получается схема защиты от непреднамеренной переполюсовки – при любом подключении входов моста к выходу блока питания, полярность напряжения на его выходе не изменится.
Основные технические характеристики
При выборе диодов или готового моста в первую очередь надо смотреть на наибольший рабочий прямой ток. Он должен с запасом превышать ток нагрузки. Если эта величина неизвестна, а известна мощность, её надо пересчитать в ток по формуле Iнагр=Pнагр/Uвых. Для увеличения допустимого тока полупроводниковые приборы можно соединять параллельно – наибольший ток нагрузки делится на количество диодов. Диоды в одной ветви моста в этом случае лучше подобрать по близкому значению падения напряжения в открытом состоянии.
Второй важный параметр – прямое напряжение, на которое рассчитан мост или его элементы. Оно не должно быть ниже выходного напряжения источника переменного тока (амплитудного значения!). Для надежной работы устройства надо взять запас в 20-30%. Для увеличения допустимого напряжения диоды можно включать последовательно – в каждое плечо моста.
Этих двух параметров достаточно для предварительного решения об использовании диодов в выпрямительном устройстве, но надо обратить внимание и на некоторые другие характеристики:
- максимальная рабочая частота – обычно несколько килогерц и для работы на промышленных частотах 50 или 100 Гц значения не имеет, а если диод будет работать в импульсной схеме, этот параметр может стать определяющим;
- падение напряжения в открытом состоянии у кремниевых диодов составляет около 0,6 В, что неважно для выходного напряжения, например, в 36 В, но может быть критичным при работе ниже 5 В – в этом случае надо выбирать диоды Шоттки, которые характеризуются низким значением этого параметра.
Разновидности диодных мостов и их маркировка
Диодный мост можно собрать на дискретных диодах. Чтобы соблюсти полярность, надо обратить внимание на маркировку. В некоторых случаях метка в виде рисунка нанесена прямо на корпус полупроводникового прибора. Это характерно для изделий отечественного производства.
Зарубежные (и многие современные российские) приборы маркируются точкой или кольцом. В большинстве случаев так обозначается анод, но гарантии нет. Лучше посмотреть справочник или воспользоваться тестером.
Можно сделать мост из сборки – четыре диода объединены в одном корпусе, а соединение выводов можно выполнить внешними проводниками (например, на печатной плате). Схемы сборок могут быть разнообразными, поэтому для правильного соединения надо смотреть даташиты.
Например, у диодной сборки BAV99S, содержащей 4 диода, но имеющей только 6 выводов, внутри имеется два полумоста, соединенных следующим образом (на корпусе около вывода 1 имеется точка):
Чтобы получить полноценный мост, надо соединить внешними проводниками соответствующие выводы (красным показана трассировка дорожек в случае использования печатного монтажа):
В этом случае переменное напряжение подводится к выводам 3 и 6. Положительный полюс постоянного снимается с вывода 5 или 2, а отрицательный – 4 или 1.
И самый простой вариант – это сборка с готовым мостом внутри. Из отечественных изделий это могут быть КЦ402, КЦ405, существуют мосты-сборки зарубежного производства. Маркировка выводов во многих случаях нанесена прямо на корпус, и задача сводится только к корректному выбору по характеристикам и к безошибочному подключению. Если наружного обозначения выводов нет, придется обратиться к справочнику.
Преимущества и недостатки
Преимущества диодного моста общеизвестны:
- отработанные десятилетиями схемы;
- простота сборки и подключения;
- несложная диагностика неисправности и простота ремонта.
В качестве недостатков надо упомянуть рост габаритов и веса схемы при увеличении мощности, а также необходимости использования радиаторов для мощных диодов. Но с этим сделать ничего нельзя – физику не обмануть. Когда эти условия станут неприемлемыми, надо решать вопрос о переходе к импульсной схеме источника питания. Кстати, мостовое включение диодов может быть использовано и в ней.
Также надо отметить форму выходного напряжения, далекую от постоянной. Для работы с потребителями, предъявляющими требования к стабильности питающего напряжения, надо использовать мост совместно со сглаживающими фильтрами, а при необходимости и стабилизаторами на выходе.
как собрать своими руками в домашних условиях
В электротехнике существует несостыковка. С одной стороны, передавать энергию на большие расстояния удобнее, если она имеет форму переменного напряжения. С другой, для питания смартфонов, светодиодов в лампочках, плат в телевизорах и подобной бытовой техники требуется постоянный ток. Данную проблему успешно решает такое семейство радиодеталей, как выпрямительные диоды.
Диодный мост схема
Что такое диоды
Диод – это полупроводниковый элемент на основе кристалла кремния. Ранее эти детали также изготавливались из германия, но со временем этот материал был вытеснен из-за своих недостатков. Электрический диод функционирует как клапан, т.е. он пропускает ток в одном направлении и блокирует его в другом. Такие возможности в эту деталь заложены на уровне атомарного строения его полупроводниковых кристаллов.
Один диод не может получить из переменного напряжения полноценное постоянное. Поэтому на практике используют более сложные сочетания этих элементов. Сборка из 4 или 6 деталей, объединённых по специальной схеме, образует диодный мост. Он уже вполне способен справиться с полноценным выпрямлением тока.
Интересно. Диоды обладают паразитной чувствительностью к температуре и свету. Прозрачные выпрямители в стеклянном корпусе могут использоваться как датчики освещённости. Германиевые диоды (прим. Д9Б) подходят в качестве термочувствительного элемента. Собственно из-за сильной зависимости свойств этих элементов от температуры их и перестали производить.
Однофазный и трёхфазный диодный мост
Существует две основные разновидности выпрямляющих сборок:
- Однофазный мост. Чаще используется в бытовых электроприборах. Имеет 4 вывода. На два их них подаётся переменное напряжение, т.е. фаза (L) и ноль (N). С двух оставшихся снимается постоянное, т.е. плюс (+) и минус (-).
- Трёхфазный мост. Встречается в мощных промышленных установках и оборудовании, питающимся от сети 380 вольт. На его вход подаются три фазы (L1, L2, L3). С выхода так же снимается постоянное напряжение. Такие мосты отличаются большими размерами и внушительными токами, которые они способны через себя пропустить.
Трёхфазный выпрямитель
Принцип работы диодного моста
Понять, как мост выполняет свою задачу, можно, разобравшись в том, как ведёт себя отдельный диод. Изначально имеются только два провода с переменным напряжением (L и N). Оно имеет форму синусоиды (рис. а). Если в схему добавить один диод, то он будет пропускать только положительную полуволну (рис. б), если этот компонент развернуть, то отрицательную составляющую (рис. в). Такое напряжение уже не будет переменным. Всё же оно не годится для питания серьёзных электроприборов. В нём наблюдаются моменты, когда ток совсем отсутствует. Применение четырёх диодов позволит получить постоянное напряжение без всяких прерываний (рис. г). Трёхфазные мосты выпрямляют по такому же методу. Однако они делают это одновременно с тремя синусоидами.
Форма напряжения после моста
Выпрямитель
Полученное после диодного моста напряжение имеет форму синусоиды, у которой отрицательная составляющая отражена относительно оси времени. Проще говоря, оно имеет форму холмов и называется пульсирующим. Такое напряжение положительное. Не содержит моментов, когда ток не течёт. Но всё же оно нестабильное. Например, в точке «a» оно рано 0 вольт, а в «b» – имеет максимальное значение. Данный выпрямитель нельзя считать законченным.
Для решения этой проблемы требуется сглаживающий электролитический конденсатор. На плате он обычно располагается там же, где и диодная сборка. Ёмкость накапливает энергию в те моменты, когда она имеет пиковые значения (точка b), и отдаёт её в моменты провалов (a). На выходе получается прямая линия – полноценный постоянный ток, пригодный для питания последующих электронных компонентов, процессоров, микросхем и т.п.
Постоянный ток
Преимущества двухполупериодного диодного моста
Полный мост, также называемый двухполупериодным выпрямителем, по ряду характеристик лучше, чем просто одиночный диод. Объясняется это тем, что он даёт возможность:
- снизить подмагничивание трансформатора, после которого стоит двухполупериодный выпрямитель;
- снять с выхода напряжение с удвоенной частотой, которое в итоге проще сгладить;
- повысить КПД трансформатора, на вторичной обмотке которого установлен полный диодный мост.
Недостатки полного моста
У полноценного двухполупериодного моста имеются недостатки:
- Ток вынужден протекать не по одному диоду, а сразу по двум, включенным последовательно. Поэтому удваивается падение напряжения на выпрямительном элементе. Для маломощных мостов на кремниевых диодах оно может достигать 2 вольт. В мощных выпрямителях – порядка 10 В. Отсюда существенные потери мощности на выпрямляющем элементе и его повышенный нагрев.
- При выходе из строя одного и четырёх диодов мост продолжает работать. Данный дефект может быть незаметен без специальных замеров. Однако он создаёт риск более серьёзной поломки устройства, которое питается через неисправный мостик.
Конструкция
Схема любого выпрямительного моста включает в себя диоды. Они могут быть по отдельности распаяны на печатную плату или находиться в одном корпусе. Касаемо размера выпрямители бывают миниатюрными, например, импортные MB6S или советские КЦ405А. Последние в народе именуют «ка-цэшками» или «шоколадками».
КЦ405А и MB6S
Встречаются образцы с внушительными габаритами. Например, трёхфазный выпрямительный мост китайского производства. Прибор предназначен для токов в сотни ампер, поэтому имеет винтовой крепёж под силовые провода и плоскую металлическую теплопроводящую поверхность с отверстиями для фиксации на радиаторе охлаждения.
Трёхфазный диодный мост
Маркировка выпрямителей
Не существует общепринятых правил, согласно которым производители маркируют свои диодные мосты. Каждый вправе называть своё изделие так, как считает нужным, т.е. по своей собственной номенклатуре.
Однако у большинства из этих деталей есть схожие признаки, помогающие визуально определить назначение их выводов. На фото трёхфазного моста (см. выше) отдельно выделен символ переменного тока – волнистая линия. Он указывает на то, что к этому контакту подключается входное синусоидальное напряжение. Также на некоторых моделях мостиков входные выводы помечаются буквами AC (Alternative Current), указывающими на переменный ток. При этом выходные контакты, с которых снимается постоянный ток, обозначаются символами DC (Direct Current) или традиционными «+» и «-». Дополнительно на некоторых выпрямителях со стороны плюса «подпилен» один из углов. Также на «+» может указывать и удлинённый вывод. Подобная маркировка свойственна многим электронным компонентам и называется ключом.
Маркировка диодных выпрямителей
Диодный мостик своими руками
Чтобы самостоятельно собрать выпрямитель, понадобится 4 однотипных диода. При этом они должны подходить по обратному напряжению, максимальному току и рабочей частоте. Соединения нужно сделать в соответствии со схемой ниже. Между двумя катодами снимается положительное напряжение, между анодами – отрицательное. К точкам, в которых подключены разноимённые выводы диодов, подсоединяется источник переменного напряжения. Всю схему можно за пару минут спаять навесным монтажом или потрудиться и выполнить в виде небольшой печатной платы.
Дополнительная информация. Обратные напряжения диодов, включенных в последовательную цепь, складываются между собой.
Мостик своими руками
Выбор типа сборки
Для каждой задачи существует свой оптимальный вариант выпрямительной диодной сборки. Все их можно условно разделить на 3 вида:
- Выпрямитель на одном диоде. Применяется в самых простых и дешёвых схемах, где нет к.л. требований к качеству выходного напряжения, как, например, в ночниках.
- Сдвоенный диод. Эти детали внешне похожи на транзисторы, ведь они выпускаются в таких же корпусах. Они также имеют 3 вывода. По сути, это два диода, помещённых в один корпус. Один из выводов – средний. Он может быть общим катодом или анодом внутренних диодов.
- Полноценный диодный мост. 4 детали в одном корпусе. Подходит для устройств с большими токами. Применяется в основном на входах и выходах различных блоков питания и зарядных устройств.
Дополнительная информация. Выпрямители используются и в автомобилях. Они нужны для преобразования идущего с генератора переменного напряжения в постоянное. Оно, в свою очередь, необходимо для зарядки аккумулятора. Обычный бензогенератор вырабатывает переменный ток.
Проверка элементов
В большинстве случаев для проверки выпаивать мостик из платы не требуется. Тестировать его следует точно так же, как 4 p-n перехода с подключением по схеме диодного моста. Данное измерение настолько распространено, что его возможность реализована в любом мультиметре. Прибор для теста нужно переключить в режим диодной прозвонки.
Падение напряжения в прямом направлении на исправном выпрямительном диоде составляет 500-700 мВ. В обратном – прибор отобразит «1». Сгоревшая деталь чаще всего показывает в обоих направлениях «0», т.е. короткое замыкание. Реже бывает полный обрыв элемента (также в обе стороны). Все замеры следует повторить для каждого входящего в состав моста диода. Итого 8 измерений, т.е. 4 в прямом направлении и 4 – в обратном. Если тестируется диод Шоттки, то этот параметр составляет 200-400 мВ.
Использование барьера Шоттки
Применение диода Шоттки оправдано в двух случаях. Во-первых, когда нужно выпрямить высокочастотный ток. Барьер Шоттки идеально подходит для подобной задачи, ведь он имеет низкую ёмкость перехода и, соответственно, является быстродействующим. Во-вторых, когда требуется выпрямить большой ток в десятки или сотни ампер. В этом случае деталь отлично себя показывает ввиду низкого падения напряжения и малого тепловыделения.
Диодные мосты в мире электроники играют роль согласующего элемента. С их помощью можно подключать устройства, требующие постоянный ток, к сети удобного для передачи переменного напряжения. Подобных устройств очень много в быту, они крайне важны для комфортной жизни человека.
Видео
Диодный мост и двухполупериодный выпрямитель.
В одной из недавних статей мы разбирались с устройством и принципом работы однополупериодного выпрямителя, так вот, сегодня продолжим эту тему! И перейдем, как и собирались, к более сложной схеме выпрямителя, и в то же время самой популярной. Речь идет, конечно же, о двухполупериодном выпрямителе, сердцем которого является диодный мост.
Диодный мост – это электронное устройство, которое как раз и предназначено для решения задачи выпрямления тока. Изобретателем этой схемы является немецкий физик Лео Гретц, поэтому также можно встретить название мост Гретца, что весьма логично 🙂
Базовый диодный мост состоит из 4-х диодов, соединенных следующим образом:
Но зачастую на принципиальных схемах можно встретить упрощенное обозначение:
Собственно, давайте рассмотрим непосредственно схему двухполупериодного выпрямителя:
Здесь также возможны некоторые вариации, например:
Несмотря на разное изображение, электрическое подключение остается неизменным, и все-таки первый вариант используется значительно чаще, так что и мы будем придерживаться именно его.
Резистор R_н в данном примере играет роль полезной нагрузки. Как и при разборе однополупериодного выпрямителя рассмотрим случай с синусоидальным напряжением на входе:
В случае положительного полупериода сигнала (U_{вх} \gt 0), ток будет протекать через диоды D1 и D3. Давайте рассмотрим путь тока более наглядно:
А на отрицательном полупериоде, напротив, диоды D1 и D3 будут закрыты, а протекание тока обеспечат D2 и D4:
В обоих случаях ток через нагрузку будет течь в одном и том же направлении, от точки, помеченной знаком “+” на схеме, к точке “-“. А именно для этого мы и используем выпрямитель – чтобы ток через нагрузку протекал только в одном направлении! И в результате выходной сигнал имеет такой вид:
Сразу же очевидно отличие от однополупериодной схемы, когда сигнал на выходе был только на протяжении одного полупериода. В данном же случае, ток через нагрузку течет как на положительном, так и на отрицательном полупериоде! Поэтому схема и называется двухполупериодной.
Но! Также как и в случае с однополупериодным выпрямителем на выходе мы получаем пульсирующий ток, а не строго постоянный. Поэтому необходимо использовать сглаживающий фильтр, который в самом простом варианте может состоять из одного конденсатора:
Емкость должна быть такой, чтобы конденсатор не успевал быстро разрядиться. Итак, добавляем конденсатор в схему выпрямителя на диодном мосте и проверяем напряжение на нагрузке:
Совсем другое дело!
Существуют специальные диодные сборки, которые представляют из себя четыре одинаковых по характеристикам диода, соединенные по мостовой схеме, помещенные в один корпус. Соответственно, такая сборка имеет четыре вывода, все в точности как на нашей схеме. Выводы, предназначенные для подключения переменного тока (входного сигнала) могут обозначаться символом “~” или буквами AC, традиционными для переменного тока. Выводы же, к которым подключается нагрузка, обозначаются “+” и “-“. Но все это, конечно, индивидуально и зависит от использующегося устройства.
Несколько примеров диодных мостов в сборке:
И по традиции, в завершение статьи, резюмируем плюсы и минусы двухполупериодного выпрямителя по сравнению с однополупериодным:
- В первую очередь, поскольку здесь используются уже оба полупериода сигнала, то, естественно, КПД схемы больше.
- Кроме того, пульсирующее напряжение на выходе имеет в 2 раза большую частоту, а такие пульсации сгладить проще.
Но, как и всегда, есть и свои недостатки:
- Во-первых, это двойное падение напряжения. Поскольку при прохождении тока через диод на самом диоде падает напряжение, то в данном случае оно удвоено, поскольку ток в итоге проходит через два диода. Именно поэтому в схеме двухполупериодного выпрямителя часто отдают предпочтение диодам Шоттки, имеющим пониженное падение напряжения.
- И второй недостаток, имеющий скорее практический смысл. Если один из диодов диодного моста выйдет из строя, то схема просто превратится в однополупериодный выпрямитель, но работать не перестанет! То есть получается, что возникшую проблему заметить сразу будет довольно проблематично.
И вот на этом точно заканчиваем на сегодня 🙂 Всем спасибо за внимание, любые вопросы можно задавать на нашем форуме, в группе ВКонтакте или в комментариях к статье!
Диодный мост
Диодный мост — это конфигурация из четырех (или более) диодов в конфигурации мостовой схемы, которая обеспечивает одинаковую полярность вывода для любой полярности входа.
В наиболее частом применении для преобразования входа переменного тока (AC) в выход постоянного тока (DC) он известен как мостовой выпрямитель. Мостовой выпрямитель обеспечивает двухполупериодное выпрямление от двухпроводного входа переменного тока, что приводит к снижению стоимости и веса по сравнению с выпрямителем с трехпроводным входом от трансформатора с вторичной обмоткой с центральным отводом.
Существенной особенностью диодного моста является то, что полярность выхода одинакова независимо от полярности на входе. Схема диодного моста была изобретена польским электротехником Каролем Поллаком и запатентована 14 января 1896 года под номером DRP 96564. Позже она была опубликована в Elektronische Zeitung, vol. 25 в 1897 году с пометкой, что немецкий физик Лео Грец в то время тоже занимался этим вопросом. Сегодня трассу по-прежнему часто называют трассой Гретца или мостом Гретца.
Деталь диодного моста на 1000 вольт, 4 ампера
Ручной диодный мост. Широкая серебряная полоса на диодах указывает на катодную сторону диода.
Базовая операция
В соответствии с традиционной моделью протекания тока (первоначально созданной Бенджамином Франклином и до сих пор используемой большинством инженеров), ток определяется как положительный, когда он течет через электрические проводники от положительного полюса к отрицательному.На самом деле свободные электроны в проводнике почти всегда текут от отрицательного полюса к положительному. Однако в подавляющем большинстве приложений фактическое направление тока не имеет значения. Поэтому в нижеследующем обсуждении традиционная модель сохраняется.
На схемах ниже, когда вход, подключенный к левому углу ромба, является положительным, а вход, подключенным к правому углу, является отрицательным, ток течет от верхней клеммы питания вправо по красному (положительному) пути к выход, и возвращается к нижней клемме питания по синему (отрицательному) пути.
Когда вход, подключенный к левому углу, отрицательный, а вход, подключенный к правому углу, положительный, ток течет от нижнего вывода питания вправо по красному (положительному) пути к выходу и возвращается к верхнему источнику питания. терминал через синий (отрицательный) путь.
В каждом случае верхний правый выход остается положительным, а нижний правый выход — отрицательным.Поскольку это верно независимо от того, является ли вход переменным или постоянным током, эта схема не только выдает выход постоянного тока из входа переменного тока, но также может обеспечивать то, что иногда называют «защитой от обратной полярности». То есть, он обеспечивает нормальное функционирование оборудования с питанием от постоянного тока, когда батареи установлены в обратном направлении или когда провода (провода) от источника постоянного тока перевернуты, и защищает оборудование от возможных повреждений, вызванных обратной полярностью.
До появления интегральных схем мостовой выпрямитель строился из «дискретных компонентов», т.е.е., отдельные диоды. Примерно с 1950 года один четырехконтактный компонент, содержащий четыре диода, соединенных в мостовую конфигурацию, стал стандартным коммерческим компонентом и теперь доступен с различными номинальными значениями напряжения и тока.
Сглаживание вывода
Для многих приложений, особенно с однофазным переменным током, где двухполупериодный мост служит для преобразования входа переменного тока в выход постоянного тока, может потребоваться добавление конденсатора, поскольку мост сам по себе обеспечивает выход импульсного постоянного тока (см. Диаграмму ниже). .
Переменный ток, полуволновые и двухполупериодные выпрямленные сигналы.
Функция этого конденсатора, известного как накопительный конденсатор (или сглаживающий конденсатор), заключается в уменьшении вариации (или «сглаживании») формы волны выпрямленного выходного напряжения переменного тока от моста. Есть еще одна вариация, известная как рябь. Одно из объяснений «сглаживания» состоит в том, что конденсатор обеспечивает путь с низким импедансом к компоненту переменного тока на выходе, уменьшая напряжение переменного тока и ток через резистивную нагрузку.Говоря менее техническим языком, любое падение выходного напряжения и тока моста обычно компенсируется потерей заряда в конденсаторе. Этот заряд протекает через нагрузку как дополнительный ток. Таким образом, изменение тока нагрузки и напряжения уменьшается по сравнению с тем, что произошло бы без конденсатора. Повышение напряжения соответственно сохраняет избыточный заряд в конденсаторе, таким образом смягчая изменение выходного напряжения / тока.
Показанная упрощенная схема имеет заслуженную репутацию опасной, потому что в некоторых приложениях конденсатор может сохранять смертельный заряд после отключения источника переменного тока.При подаче опасного напряжения практическая схема должна включать надежный способ безопасной разрядки конденсатора. Если нормальная нагрузка не может гарантировать выполнение этой функции, возможно, потому, что она может быть отключена, в схему следует включить спускной резистор, подключенный как можно ближе к конденсатору. Этот резистор должен потреблять ток, достаточно большой, чтобы разрядить конденсатор за разумное время, но достаточно мал, чтобы свести к минимуму ненужные потери энергии.
Конденсатор и сопротивление нагрузки имеют типичную постоянную времени τ = RC, где C и R — емкость и сопротивление нагрузки соответственно.Пока резистор нагрузки достаточно большой, так что эта постоянная времени намного больше, чем время одного цикла пульсации, вышеуказанная конфигурация будет создавать сглаженное напряжение постоянного тока на нагрузке.
Когда конденсатор подключен непосредственно к мосту, как показано, ток протекает только в небольшой части каждого цикла, что может быть нежелательно. Диоды трансформатора и моста должны иметь такие размеры, чтобы выдерживать скачки тока, возникающие при включении питания на пике переменного напряжения и полной разрядке конденсатора.Иногда для ограничения этого тока перед конденсатором включается небольшой последовательный резистор, хотя в большинстве случаев сопротивления трансформатора источника питания уже достаточно. Добавление резистора или, еще лучше, катушки индуктивности между мостом и конденсатором может гарантировать, что ток будет протекать в течение большей части каждого цикла и не произойдет большого выброса тока.
За конденсатором могут быть установлены дополнительные фильтрующие элементы (конденсаторы плюс резисторы и катушки индуктивности) для дальнейшего уменьшения пульсаций.Когда индуктор используется таким образом, его часто называют дросселем. Дроссель имеет тенденцию поддерживать более постоянным ток (а не напряжение). Хотя катушка индуктивности дает наилучшие характеристики, обычно резистор выбирается из соображений стоимости.
Из-за увеличения доступности микросхем регуляторов напряжения пассивные фильтры используются реже. Микросхемы могут компенсировать изменения входного напряжения и тока нагрузки, чего не делает пассивный фильтр, и в значительной степени устранять пульсации.
Идеализированные формы сигналов, показанные выше, видны как для напряжения, так и для тока, когда нагрузка на мост является резистивной. Когда в нагрузку входит сглаживающий конденсатор, формы волны как напряжения, так и тока сильно изменяются. В то время как напряжение сглаживается, как описано выше, ток будет течь через мост только в то время, когда входное напряжение больше, чем напряжение конденсатора. Например, если нагрузка потребляет средний ток n Ампер, а диоды проводят в течение 10% времени, средний ток диода во время проводимости должен составлять 10 нАмпер.Этот несинусоидальный ток приводит к гармоническим искажениям и низкому коэффициенту мощности в сети переменного тока.
Некоторые ранние консольные радиоприемники создавали постоянное поле громкоговорителя с помощью тока от источника высокого напряжения («B +»), который затем направлялся к потребляющим цепям (постоянные магниты тогда были слишком слабыми для хорошей работы), чтобы создать постоянную громкоговорителя. магнитное поле. Катушка возбуждения динамика, таким образом, выполняла 2 работы в одном: она действовала как дроссель, фильтруя источник питания, и создавала магнитное поле для управления динамиком.
Мосты полифазные диодные
Диодный мост можно использовать для выпрямления многофазных входов переменного тока. Например, для трехфазного входа переменного тока однополупериодный выпрямитель состоит из трех диодов, а двухполупериодный мостовой выпрямитель состоит из шести диодов.
Полупериодный выпрямительможно рассматривать как соединение звездой (соединение звездой), потому что он возвращает ток через центральный (нейтральный) провод. Двухполупериодное соединение больше похоже на соединение треугольником, хотя оно может быть подключено к трехфазному источнику как звезда, так и треугольник, и в нем не используется центральный (нейтральный) провод.
Трехфазный двухполупериодный мостовой выпрямитель
Трехфазный мостовой выпрямитель для ветряной турбины
Трехфазный входной сигнал переменного тока (вверху), полуволновой выпрямленный сигнал (в центре) и двухполупериодный выпрямленный сигнал (внизу)
Источник: en.wikipedia.org
Диодный мост— обзор
5.3.1 Однофазный выпрямительный диодный мост на одной фазе DG-1
Нагрузка выпрямительного диодного моста подключается к одной из фаз системы DG-1.Это создаст ситуацию нелинейности, а также дисбаланса в MG. Токи в соединительных линиях равны
(5.7) ia (t) = μI1cos (ωt − ϕ1) + I3cos (3ωt − ϕ3) + I5cos (5ωt − ϕ5) + ⋯, ib (t) = I1sin (ωt − 2π / 3 − ϕ1), Ic (t) = I1sin (ωt + 2π / 3 − ϕ1).
Где I 1 — пиковое значение тока основной гармоники, когда подключена только линейная сбалансированная нагрузка, а I 3 и I 5 — пиковые значения гармонических токов. Из-за нагрузки однофазного выпрямителя на фазе а основная составляющая будет изменена, и о ней позаботятся с коэффициентом « µ ».Эти линейные токи преобразуются в стационарную систему отсчета с помощью (5.4). В сложной форме записи трехфазные токи можно представить в виде комплексного вектора:
(5.8) I = iα − jiβ.
Обратите внимание, что компонент i γ не рассматривается, поскольку при анализе мгновенного потока мощности нет соответствующей составляющей v γ для оконечных напряжений [23]. Токи в стационарной системе отсчета также могут быть представлены в терминах векторов всех составляющих прямой и обратной последовательности основных и гармонических токов как
(5.9) I = (Iqd1pejωt + Iqd1ne − jωt + Iqd3pej3ωt + Iqd3ne − j3ωt + Iqd5pej5ωt + Iqd5ne − j5ωt).
Коэффициенты для всех компонентов последовательности, таких как Iqd1p, Iqd1n и т. Д., Являются векторами. В общем, они представлены как
fqdk = fqk + jfdk,
, где k обозначает k -ю гармоническую составляющую. Верхний индекс p и n обозначают компоненты положительной и отрицательной последовательности соответственно. Используя (5.6) и (5.9), полный поток мощности в линии рассчитывается как:
(5.10) S = (Vqdpejω1t) (Iqd1pejω1t + Iqd1ne − jω1t + Iqd3pej3ω1t + Iqd3ne − j3ω1t + Iqd5pej5ω1t + Iqd5ne − j5ω1t) *.
Действительная часть (5.10) дает активную мощность, а мнимая часть дает реактивную мощность. Активную мощность можно компактно выразить как
(5.11) P12 (t) = P0 + ∑k = 1,3,5 (Pcnkcos ((k + 1) ω1t) + Psnksin ((k + 1) ω1t)) + ∑k = 3,5 (Pcpkcos ((k − 1) ω1t) + Pspksin ((k − 1) ω1t)).
Коэффициенты мощности Pcn1, Psn1, Qcn1, Qsn1 и т. Д. Определены в Приложении 5.1, Коэффициенты мощности. В (5.11) P 0 обусловлено основными составляющими прямой последовательности напряжений и токов.Его можно заменить выражением (5.12), которое обычно представляет собой поток мощности в условиях сбалансированной нагрузки.
(5.12) P0 (t) = B12sinδ12, при B12 = 3V1V2ω0L12,
, где В 1 и В 2 — напряжения на клеммах инвертора, ω 0 — номинальная частота, а — номинальная частота. L 12 — индуктивность линии между DG-1 и DG-2. Подставляя (5.12) в (5.11), P 12 можно записать как:
(5.13) P12 (t) = B12sinδ12 + ∑k = 1,3,5 (Pcnkcos ((k + 1) ω1t) + Psnksin ((k + 1) ω1t)) + ∑k = 3,5 (Pcpkcos ((k− 1) ω1t) + Пспксин ((k − 1) ω1t)).
Поток мощности в соединительной линии P 12 , таким образом, представляет собой комбинацию мощности из-за напряжений прямой последовательности основной частоты и основной частоты, а также гармонических и несимметричных токов.
Аналогичное выражение получено для потока реактивной мощности в соединительных линиях, который задается как
(5.14) Q12 (t) = Q0 + ∑k = 1,3,5 (Qcnkcos ((k + 1) ω1t) + Qsnksin ( (k + 1) ω1t)) + ∑k = 3,5 (Qcpkcos ((k − 1) ω1t) + Qspksin ((k − 1) ω1t)).
Идеальный диодный мост | Analog Devices
Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности. Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.
Принять и продолжить Принять и продолжитьФайлы cookie, которые мы используем, можно разделить на следующие категории:
- Строго необходимые файлы cookie:
- Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
- Аналитические / рабочие файлы cookie:
- Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
- Функциональные файлы cookie:
- Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
- Целевые / профилирующие файлы cookie:
- Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. Мы также можем передавать эту информацию третьим лицам с этой целью.
Диодный мост — Academic Kids
От академических детей
Диодный мост представляет собой электронную схему, которая обеспечивает одинаковую полярность выходного напряжения и тока для обеих возможных полярностей входной мощности. В наиболее распространенном применении для преобразования входной мощности переменного тока (AC) в выходную мощность постоянного тока (DC) он известен как мостовой выпрямитель.На схеме (с использованием популярной схемы с четырьмя диодами, образующими стороны ромба) описывается конструкция с одним диодным мостом, двухполупериодным выпрямителем или схемой Гретца. Эта конструкция используется для выпрямления однофазного переменного тока, когда отсутствует центральный ответвитель.
Отсутствует изображениеДиод-фото.JPG
Диоды; слева — диодный мост
Отсутствует изображение
Diodebridge1.png
Изображение: Diodebridge1.png
Существенной особенностью этой схемы является то, что для обеих полярностей напряжения между входы моста, полярность выходов такая же.
Например, когда вход, подключенный в левом углу ромба, является положительным по отношению к входу, подключенному в правом, ток течет вправо по верхнему цветному пути и в целом слева по нижнему.
Когда правый вход положителен относительно левого, текущий поток в целом идет по диагонали вверх вправо и по диагонали вверх влево.
Отсутствует изображениеAC, _half-wave_and_full_wave_rectified_signals.PNG
Сигналы переменного тока, полуволновые и двухполупериодные выпрямленные сигналы
В каждом из этих случаев верхний правый вывод остается положительным по отношению к нижнему правому. Поскольку это верно независимо от того, является ли вход переменным или постоянным током, эта схема не только вырабатывает постоянный ток при питании от переменного тока: она также может обеспечивать то, что иногда называют функцией «защиты полярности». То есть, он обеспечивает нормальное функционирование, когда батареи установлены задом наперед или когда проводка входного источника питания постоянного тока «перекрещена» (и защищает цепь, которую он питает, от повреждений, которые могут возникнуть без вмешательства этой цепи).
До появления полупроводниковой электроники такой мостовой выпрямитель всегда строился из дискретных компонентов. (т.е. подключив два провода к каждому из четырех отдельных диодов). Во второй половине 20-го века один четырехконтактный компонент, в котором четыре диода эффективно подключены внутри постоянно герметичного устройства, стал стандартным коммерческим компонентом, доступным с различными номинальными значениями напряжения и тока.
Для многих приложений, особенно с однофазным переменным током, где двухполупериодный мост служит для преобразования переменного тока в постоянный, дополнительный конденсатора может быть важным, потому что только мост подает напряжение и ток фиксированной полярности, но различной величины.
Отсутствует изображение
Diodebridge4.png
Изображение: Diodebridge4.png
Функция этого конденсатора заключается в уменьшении вариаций (обычно в течение периодов в десятки миллисекунд или меньше) на выходе. (Стандартным сокращением этого эффекта в электронике является то, что конденсатор обеспечивает путь с низким сопротивлением к компоненту переменного тока на выходе, ослабляя переменное напряжение на резистивной нагрузке и переменный ток через резистивную нагрузку.) В менее технических терминах, потому что заряд Сохраненное в конденсаторе и напряжение между его выводами имеют фиксированное соотношение, любое падение выходного напряжения и тока моста имеет тенденцию компенсироваться потерей заряда конденсатором, этот заряд вытекает как дополнительный ток через нагрузку.Таким образом, изменение общего тока и напряжения уменьшается по сравнению с тем, что произошло бы без конденсатора; Повышение напряжения соответственно создает ток в конденсаторе , аналогично уменьшая изменение в чистом выходе.
Для трехфазного переменного тока двухполупериодный мостовой выпрямитель состоит из шести диодов.
Трехфазный мостовой выпрямитель для ветряной турбины Lakota (True North Power). Трехфазный мостовой выпрямитель для ветряных турбин.da: Diodebrokoblingde: Gleichrichterbrcke fr: диоды Pont de nl: Bruggelijkrichter pl: Mostek Graetza
Полнопериодный выпрямительи мостовой выпрямитель
Полнополупериодный выпрямитель
Выпрямитель — это электрическая цепь, преобразующая переменный ток в постоянный.Как обсуждалось в предыдущей статье, однополупериодный выпрямитель преобразует только полупериоды переменного тока в положительный или отрицательный, в зависимости от ориентации диода. Также обсуждалось, что эффективность полуволнового выпрямителя меньше, поскольку он использует только полупериоды, а другие половины заблокированы / отсутствуют на выходе. Кроме того, конденсаторный фильтр использовался для устранения пульсаций и сглаживания выходного сигнала. В полуволновом выпрямителе частота пульсаций равна входной частоте.Эти однополупериодные выпрямители используются в схемах маломощных и недорогих источников питания.
КПД выпрямителя можно повысить, используя оба цикла входного переменного тока. Схема, которая использует оба полупериода для преобразования переменного тока в постоянный, называется двухполупериодным выпрямителем . Двухполупериодные выпрямители более эффективны по сравнению с однополупериодными выпрямителями и используют более одного диода в цепи.
Схема полнополупериодного выпрямителя с использованием трансформатора с центральным отводом
Трансформатор с разделенной вторичной обмоткой с центральным отводом, подключенным к резистивной нагрузке через два диода.Трансформатор обычно вырабатывает ток с разностью фаз на 180 градусов и во вторичной обмотке в зависимости от расположения точек на обмотках.
Рисунок 1: Двухполупериодный выпрямительный трансформатор с центральным ответвлениемНа рисунке 1 выше показан двухполупериодный выпрямитель, использующий трансформатор с центральным отводом. Синусоидальная волна, приложенная к первичной обмотке трансформатора с центральным ответвлением, преобразуется во вторичную обмотку, и на вторичной стороне создается потенциал напряжения. Потенциал, развиваемый во вторичной школе, чередуется каждые полцикла.Выход двухполупериодного выпрямителя имеет период времени половину входного или имеет частоту, вдвое превышающую частоту входного сигнала.
Процесс исправления объясняется для каждого полупериода.
В течение первого полупериода развивающийся потенциал смещает прямое смещение D 1 диод и обратное смещение диод D 2 . Положительный полупериод проходит через диод D 1 и создает напряжение на нагрузочном резисторе, как показано на рисунке 2.Направление тока через нагрузочный резистор и полярность напряжения на нем должны соблюдаться и должны оставаться неизменными в течение отрицательного полупериода.
Рисунок 2: Двухполупериодный выпрямитель Трансформатор с центральным ответвлением во время положительных полупериодовВо время второго полупериода полярность напряжения на вторичной обмотке показана на рисунке 3, что связано с изменением полярности на первичной обмотке. При этой полярности диод D 2 смещен в прямом направлении, а диод D 1 — в обратном.Следовательно, диод D 2 позволяет току проходить через нагрузочный резистор, в то время как диод D 1 остается выключенным в течение этого полупериода. Направление тока через нагрузочный резистор и полярность напряжения на нем остаются такими же, как и в течение первого полупериода. Такое расположение диодов с трансформатором с центральным отводом приводит к однонаправленному течению тока через диод. Выпрямление переменного тока происходит в течение обоих полупериодов, то есть в течение всего периода синусоидального сигнала.
Рисунок 3: Двухполупериодный выпрямитель Трансформатор с центральным отводом во время отрицательных полупериодовПроцесс выпрямления продолжается аналогичным образом, чередуя ток через диоды D 1 и D 2 для приближающихся циклов.
Рисунок 4: Полностью выпрямленная синусоидальная волнаСреднее значение полностью выпрямленной синусоидальной волны определяется по формуле:
Средний выход однополупериодного выпрямителя, как было показано в предыдущей статье, равен 0.В 318 раз больше пикового напряжения. Но при двухполупериодном выпрямлении средняя мощность удвоилась, а средняя мощность также увеличилась в четыре раза. Следовательно, это приводит к более эффективному процессу выпрямления по сравнению с полуволновым выпрямлением.
Выпрямитель с диодным мостом
Трансформаторы, имеющие вторичную обмотку с центральным отводом, дороже и больше по размеру из-за наличия двух обмоток на вторичной стороне. Из-за этого в источниках питания в основном используются трансформаторы сигнальных обмоток, а для выполнения двухполупериодного выпрямления используется специальная диодная перемычка.Диодный мост может быть изготовлен с использованием четырех одинаковых диодов или может быть получен полный комплект готовых диодных мостов для выполнения двухполупериодного выпрямления. Диодные мосты доступны в различных номиналах и спецификациях, чтобы соответствовать различным приложениям и схемам.
Рисунок 5: Простой мостовой двухполупериодный выпрямительНа рисунке 5 показан двухполупериодный простой диодный мостовой выпрямитель, и здесь используются четыре силовых диода вместо двух диодов в трансформаторе с центральным отводом. Во время первого полупериода полярность напряжения на диодном мосту показана на рисунке 6, что делает диоды D 1 и D 2 смещенными в прямом направлении.Другая половина моста, то есть диоды D 3 и D 4 , остаются в выключенном состоянии. Такое смещение моста вызывает прохождение тока через нагрузку, и на ней появляется напряжение. Направление тока и полярности напряжения на нагрузке показано на рисунке 6.
Рисунок 6: Мостовой полнополупериодный выпрямитель во время первого полупериодаАналогично, для следующего цикла полярность меняется на противоположную из-за переменного синусоидального источника, и напряжение на диодном мосту показано на рисунке 7.Полярность напряжения вызывает прямое смещение диодов D 3 и D 4 на этот раз, в то время как диоды D 1 и D 2 остаются выключенными. Направление тока через нагрузку и полярность напряжения на ней остаются неизменными, что означает, что даже после изменения полярности входной синусоидальной волны полярность на нагрузке остается неизменной.
Рисунок 7: Мостовой двухполупериодный выпрямитель во время второго полупериодаСхема диодного моста выполняет полное выпрямление последовательных чередующихся циклов.Недостатком мостового выпрямителя по сравнению с трансформатором с центральным отводом является то, что он использует два диода одновременно для выпрямления, что вызывает двойные падения напряжения в прямом направлении.
Пример полноволнового выпрямления
Схема источника питания из предыдущей статьи с использованием однополупериодного выпрямителя используется здесь для сравнения результатов. Источник напряжения 220 В RMS с трансформатором 100: 1 использовался для питания нагрузки 1 кОм. Использование мостового двухполупериодного выпрямителя:
Приблизительно 20 В DC появляется на (прямое падение напряжения на диоде для простоты игнорируется), нагрузка и ток, протекающий через нагрузку 1 кОм, составляет:
Мощность, подаваемая на нагрузку с помощью двухполупериодного мостового выпрямителя:
Двухполупериодный выпрямитель обеспечивает вдвое большее напряжение и четырехкратную мощность на нагрузку по сравнению с однополупериодным выпрямителем.Это делает двухполупериодный выпрямитель более эффективным, и для того же источника питания можно использовать трансформатор меньшего размера по сравнению с полуволновым выпрямителем. Например, при использовании однополупериодного выпрямителя трансформатор с соотношением 10: 1 обеспечивает питание прибл. 10 В DC к нагрузке при входном напряжении 220 В RMS . Однако можно использовать трансформатор с соотношением сторон 5: 1 для обеспечения того же напряжения нагрузки с помощью двухполупериодного мостового выпрямителя.
Пульсации и фильтрующий конденсатор
Однако повышение эффективности происходит за счет пульсации, которая увеличивается вдвое по сравнению с полуволновыми выпрямителями.Увеличение ряби происходит из-за увеличения частоты, которая увеличилась вдвое. Пульсации являются нежелательными элементами любой электронной схемы, и выходной сигнал источников питания можно сгладить с помощью фильтрующего конденсатора. Схема пикового выпрямителя с конденсаторным фильтром показана на рисунке 8.
Рисунок 8: Мостовой полнополупериодный выпрямитель с конденсаторным фильтромКонденсатор действует как накопитель или резервуар и обеспечивает нагрузку в период выключения. Емкость конденсатора должна быть достаточно большой, чтобы его постоянная времени (RC) >> период времени синусоидального сигнала.Конденсатор заряжается, когда напряжение увеличивается до пикового напряжения, а затем начинает разряжаться, подавая ток на нагрузку. Конденсатор продолжает питать нагрузку до следующего цикла, когда напряжение снова начнет расти. Для каждого цикла конденсатор заряжается и разряжается при повышении и понижении напряжения соответственно. В течение периода проводимости (Δt) диоды питают нагрузку и заряжают конденсатор.
Рисунок 9: Выход полнополупериодного выпрямителя с конденсаторным фильтромНапряжение пульсаций для двухполупериодного выпрямителя рассчитывается по следующей формуле, и обратите внимание, что частота пульсаций увеличилась вдвое по сравнению с полуволновым выпрямителем:
Например, если желаемое напряжение пульсации составляет 1 В для вышеприведенного примера, тогда значение конденсаторного фильтра равно:
Итак, конденсатор емкостью 325 мкФ должен иметь пульсирующее напряжение 1 В для источника питания мостового выпрямителя, приведенного в приведенном выше примере.
Период проводимости диода можно приблизительно определить по следующей формуле:
Диоды будут проводить только 4% от общего периода, а остальную часть периода нагрузка будет обеспечиваться конденсатором.
Двухполупериодные выпрямители, использующие мостовые диоды, в основном используются в источниках питания и выпрямителях. К недостаткам можно отнести использование двух диодов и увеличение пульсаций. Оба эти фактора могут привести к искажениям и гармоникам в цепях.
Заключение
- Двухполупериодные выпрямители чаще всего используются в процессе выпрямления, поскольку они более эффективны по сравнению с полуволновыми выпрямителями.
- Двухполупериодные выпрямители могут быть сконструированы с использованием трансформатора с центральным отводом или мостовых диодов. Выпрямитель с центральным отводом использовал один диод для проводимости, тогда как мост-диод — два диода для проводимости.
- Двухполупериодный выпрямитель с центральным отводом использует двухобмоточный трансформатор, что увеличивает его размер и стоимость. В то время как выпрямитель мост-диод использует два диода для выпрямления одновременно, то есть двойное прямое падение напряжения и добавление нелинейного устройства.
- Среднее напряжение или напряжение постоянного тока, выдаваемое двухполупериодным выпрямителем, равно 0.В 636 раз больше пикового напряжения, что в два раза больше напряжения, выдаваемого однополупериодным выпрямителем. В конечном итоге мощность увеличивается в четыре раза.
- Коэффициент пульсаций в двухполупериодном выпрямителе удваивается из-за удвоенной частоты.
- Пульсации можно уменьшить, используя конденсаторный фильтр, а постоянная времени конденсатора фильтра должна быть достаточно большой, чтобы он не разряжен полностью в течение периода питания.
Модулятор типа диодного моста | Трансформаторная муфта
Модулятор типа диодного моста: Модулятор типа диодного моста— Рисунок 14.33 показан кольцевой модулятор с кремниевым диодом и связанный с ним усилитель постоянного тока со связью по переменному току. Сам усилитель имеет коэффициент усиления 65 дБ и ровную характеристику в пределах ± 1 дБ в диапазоне от 8 Гц до 80 кГц. Принимаются меры предосторожности для защиты усилителя от внезапных скачков напряжения, активная величина которых превышает напряжение питания 9 В постоянного тока, за счет использования стабилитрона 10 В в качестве защитного элемента.
Функцию диодного модулятора невесты лучше всего можно понять из Рис. 14.33 (a). Устройство можно рассматривать как переключатель, чувствительный к полярности, в котором циклы переменного тока возбуждения включают или выключают входной постоянный ток.
Сигнал формируется через резистор R 1 и поступает на усилитель через конденсатор C 1 . Каждая пара диодов проводит чередующиеся полупериоды возбуждения переменного тока. В течение одного полупериода эффект заключается в открытии пути между входом сигнала постоянного тока и последующим усилителем переменного тока. Во время интервала другого цикла путь проводимости закрыт. Трансформатор может быть установлен для гальванической развязки и / или повышения напряжения, как показано на рис.14.33 (б).
В схеме модулятора, показанной на рис. 14.33 (b), используется обычный диодный мост, который модулирует сигнал постоянного тока низкого уровня (через R 2 ), усиливает модулированный сигнал, а затем демодулирует его для получения сигнала постоянного тока высокого уровня. Центральные отводы трансформатора имеют решающее значение для успешной работы, а кремниевые диоды, используемые здесь, требуют согласованных прямых характеристик и обратного тока менее 10 -8 А. Форма выходного сигнала в основном представляет собой прямоугольную волну, фильтруемую выходным трансформатором.Амплитуда выходного сигнала, доступного на R 3 , пропорциональна величине входного сигнала постоянного тока. Фаза выходного сигнала относительно сигнала несущей пропорциональна знаку сигнала постоянного тока.
Как сделать мостовой выпрямитель
Мостовой выпрямитель — это электронная сеть, использующая 4 диода, которая используется для преобразования входного переменного тока в выход постоянного тока. Этот процесс называется двухполупериодным выпрямлением.
Здесь мы изучим основной принцип работы выпрямительных диодов, таких как 1N4007 или 1N5408, а также узнаем, как подключить диоды 1N4007 для быстрого построения мостовой выпрямительной схемы .
Введение
Диоды — один из важных электронных компонентов, используемых для преобразования переменного тока в постоянный. Диоды имеют свойство пропускать постоянный ток в указанном направлении и выпрямлять переменный ток через свои выводы. Давайте изучим компоненты более подробно.
Диоды — это крошечные электронные компоненты, которые обычно узнаваемы по цилиндрическому корпусу черного цвета с белой полосой по краю.
Распиновка диодов
У них есть два штифта на двух концах корпуса.
Выводам, также называемым выводами, назначаются соответствующие полярности, называемые катодом и анодом.
Вывод, выходящий со стороны полосы, является катодом, а противоположный вывод — анодом.
Диоды черного цвета обычно рассчитаны на более высокий ток, в то время как меньшие диоды красного цвета имеют гораздо более низкую номинальную мощность.
Номинальная мощность показывает, какой ток можно пропустить через устройство, не нагревая его до опасного уровня.
Диоды выполняют одну важную функцию, которая становится их исключительной собственностью. Когда переменный ток подается через анод и землю диода, выход через катод и землю представляет собой постоянный ток, что означает, что диод может преобразовывать переменный ток в постоянный с помощью процесса, называемого выпрямлением.
Как происходит выпрямление в диодах
Мы знаем, что переменный ток состоит из нестабильного напряжения, то есть напряжение и ток постоянно меняют свою полярность от нуля до заданного максимального пика напряжения, а затем он возвращается к нулю, затем возвращается к отрицательной полярности и направляется к пику отрицательного напряжения и постепенно возвращается к нулевой отметке для повторения еще одного аналогичного цикла.
Это повторяющееся изменение полярности или циклов может иметь определенные периоды времени в зависимости от частоты переменного тока или наоборот.
Когда вышеупомянутый переменный ток подается на анод диода относительно земли, отрицательные циклы блокируются диодом, и разрешается проходить только положительным циклам, которые появляются на катоде диода по отношению к земле.
Теперь, если такой же переменный ток подается на катод диода по отношению к земле, положительные циклы блокируются, и мы можем получать только отрицательные циклы по отношению к земле.
Таким образом, в зависимости от полярности диода, приложенный переменный ток эффективно выпрямляется, так что только заданное напряжение появляется на другом конце или выходе устройства.
В случае, если требуется обработать оба цикла переменного тока для повышения эффективности и для получения полностью выпрямленного переменного тока, используется мостовой выпрямитель.
Конфигурация мостового выпрямителя представляет собой интеллектуальную схему из четырех диодов, при которой приложенный переменный ток в сети приводит к выпрямлению обеих половин цикла переменного тока.
Это означает, что как положительная, так и отрицательная полупериоды преобразуются в положительные потенциалы на выходе конфигурации моста. Такое расположение приводит к лучшему и более эффективному сигналу переменного тока.
Фильтрующий конденсатор обычно используется на выходе моста, так что провалы или мгновенные отключения напряжения могут быть скомпенсированы за счет заряда, хранящегося внутри конденсатора, и для генерации хорошо оптимизированного и более плавного постоянного тока на выходе.
Как сделать схему мостового выпрямителя с использованием диодов 1N4007
Изготовить мостовой выпрямитель с использованием четырех диодов 1N4007 совсем не сложно. Просто скрутив выводы четырех диодов по определенной схеме, мостовой выпрямитель можно сделать за секунды.
Для изготовления мостового выпрямителя можно выполнить следующие шаги:
- Возьмите четыре диода 1N4007.
- Возьмите два из них и совместите их стороны с полосами или катоды вместе так, чтобы они держались в форме стрелки.