Site Loader

Содержание

Управление тиристором ку202

В различных электронных устройствах в цепях переменного тока в качестве силовых ключей широко применяют тринисторы и симисторы. Данная статья призвана помочь в выборе схемы управления подобными приборами. Самый простой способ управления тиристорами — это подача на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения рис. Ключ SA1 на рис. Этот способ прост и удобен, но обладает существенным недостатком — требуется довольно большая мощность управляющего сигнала.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Мощный тиристорный коммутатор — это очень просто.
  • Схемы на тиристорах
  • Тиристор КУ202
  • Характеристики и схема включения тиристора КУ202Н
  • Тиристоры и схемы коммутации мощной нагрузки
  • Три схемы управления тиристором
  • Тиристор для чайников: схема включения и способы управления
  • Как проверить тиристор
  • Тиристоры. Виды и устройство. Работа и применение. Особенности

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: о ТИРИСТОРе

Мощный тиристорный коммутатор — это очень просто.


Форма переменного электрического тока частотой 50 герц, представлена на рис 1 а. Если представить себе простейший генератор переменного тока рис 1 б с одной парой полюсов, где получение синусоидального переменного тока определяет поворот рамки ротора за один оборот, то каждое положение ротора в определенное время периода соответствует определенной величине выходного напряжения.

Он имеет два устойчивых состояния. В определенных условиях может иметь проводящее состояние открыт и непроводящее состояние закрыт. С помощью управляющего электрода можно изменять электрическое состояние тиристора, то есть изменять электрические параметры вентиля. Тиристор может пропускать электрический ток только в одном направлении — от анода к катоду симистор пропускает ток в обоих направлениях.

Поэтому, для работы тиристора, переменный ток необходимо преобразовать выпрямить с помощью диодного мостика в пульсирующее напряжение положительной полярности с переходом напряжения через ноль, как на Рис 2.

С этого момента через тиристор идет основной ток катод — анод, до следующего перехода полупериода через ноль, когда тиристор закроется.

Ток включения Iвкл тиристора можно получить разными способами. От отдельного узла формирования управляющих импульсов и подаче их между управляющим электродом и катодом.

Тиристор откроется. Такой способ управления тиристором называется импульсно — фазовым методом. В обоих случаях ток, управляющий включением тиристора, должен быть синхронизирован с началом перехода сетевого напряжения Uс через ноль. Действие управляющего электрода сводится к управлению моментом включения тиристора. С ростом напряжения Uс растет и ток управления Iуп управляющий электрод — катод.

Падение напряжения на открытом тиристоре анод — катод составляет 1,5 — 2,0 вольта. Ток управляющего электрода упадет почти до нуля, а тиристор останется в проводящем состоянии до момента, когда напряжение Uс сети не упадет до нуля. С действием нового полупериода напряжения сети, все повторится сначала. Лампочка будет загораться с каждым полупериодом сетевого напряжения и тухнуть при переходе напряжения через ноль.

Проведем небольшие вычисления для примера рис. Используем данные элементов как на схеме. В реальности же он намного меньше и составляет 10 — 20 мА, в зависимости от экземпляра. Управление моментом включения регулировка яркости происходит путем изменения величины переменного сопротивления резистора R1. Для разных значений резистора R1, будут разные напряжения пробоя тиристора. При этом момент включения тиристора будет меняться в пределах:.

Примерный результат этих вычислений приведен на рис. Все эти условия выполнимы в случае, если в схеме нет конденсатора С.

Если поставить конденсатор С в схеме рис 2 , диапазон регулирования напряжения фазового угла сместится вправо как на рис. Как только конденсатор зарядится, ток пойдет через управляющий электрод — катод, тиристор включится.

Все выше приведенные эпюры напряжений, в разные временные значения, хорошо просматривались на экране осциллографа.

Регулирование угла открытия вентилей угла альфа Тиристорный выпрямитель. В результате изменения угла открытия на нагрузку подаются неполные полуволны синусоиды обычно с отрезанной начальной частью полупериода , в результате такого регулирования снижается действующее напряжение. Применяется для плавного пуска двигателей постоянного тока, управления током зарядки аккумуляторных батарей, регулирования яркости электрических источников света и других целей.

Достоинство фазового регулирования — относительная дешевизна в качестве силовых ключей обычно используются наиболее распространённые и дешёвые управляемые элементы — незапираемые тиристоры или симисторы , простота цепей управления. Основные недостатки — искажение формы напряжения в питающей сети, большой коэффициент пульсаций выходного напряжения, низкий коэффициент мощности.

Искажение формы напряжения в питающей сети происходит из-за того, что в течение полупериода сопротивление нагрузки меняется резко падает при открытии вентилей , в результате чего возрастает ток и увеличивается падение напряжения на сопротивлениях источника и сети. Форма напряжения становится несинусоидальной, что особенно неблагоприятно для асинхронных двигателей. Применение современной схемотехники с использованием простых оригинальных решений на традиционной элементной базе и на новых малогабаритных микросхемах позволяет изготовить компактные и удобные в эксплуатации регуляторы большой мощности.

В данной статье описано несколько простых конструкций регуляторов мощности нагрузки до 5 кВт, которые легко изготовить из доступных деталей. Электронные регуляторы мощности нагрузки в настоящее время широко используются в промышленности и быту для плавного регулирования скорости вращения электродвигателей, температуры нагревательных приборов, интенсивности освещения помещений электрическими лампами, установки необходимого сварочного тока, регулировки зарядного тока аккумуляторных батарей и т.

Раньше для этого использовались громоздкие трансформаторы и автотрансформаторы со ступенчатым или плавным переключением витков их обмоток, работающих на нагрузку. Электронные регуляторы более компактны, удобны в эксплуатации и имеют малый вес при значительно большей мощности.

В основном, исполнительными элементами электронных регуляторов мощности переменного тока являются: тиристор, симистор и оптотиристор, управление последним осуществляется через встроенную в него оптопару, устраняющую гальваническую связь между схемой управления и питающей электросетью. Регулирование мощности этими элементами основано на изменении фазы включения симистора в каждой полуволне синусоидального напряжения схемой управления. При этом форма напряжения на самом регуляторе мощности имеет вид, показанный на рис.

Такая форма сигнала имеет широкий спектр гармоник, которые, распространяясь по электропроводке, могут создавать помехи электронным устройствам: телевизорам, компьютерам, звуковоспроизводящей аппаратуре и т. На практике все выпускаемые сейчас электронные бытовые устройства и компьютеры имеют свои встроенные сетевые фильтры, благодаря которым помехи регуляторов мощности могут не влиять на работу указанных электронных устройств.

Автором проверялись различные регуляторы мощности без собственных сетевых фильтров в комнатах, где установлены телевизор, ком-. Эти регуляторы мощности могут создавать помехи электронной аппаратуре соседей по подъезду. Практические исследования распространения помех по электропроводке в соседних комнатах с помощью осциллографа показали, что при регулировании мощности нагрузки до 2 кВт достаточно RC-фильтра, что подтверждается схемами промышленных изделий.

Для регуляторов большей мощности необходимо после RC-фильтра подключить LC-фильтр,. Каждая катушка содержит 90 витков провода ПЭВ-2 диаметром 1,5 мм, намотанного в два слоя на каркасе, внутри которого размещен ферритовый сердечник с проницаемостью Ф диаметром 8 мм. Индуктивность катушки равна 0,25 мГн. Регуляторы мощности без фильтров могут использоваться в гаражах, индивидуальных подсобных помещениях, дачах и т. Если регулятор мощности является отдельным изделием и предназначен для подключения нагрузок разной мощности, пользователям важно знать, что при одном и том же положении ручки регулятора на разных нагрузках будет разное напряжение.

По этой причине перед подключением нагрузки регулятор мощности необходимо устанавливать в нулевое положение. При необходимости контролировать напряжение на нагрузке можно отдельным или встроенным вольтметром. В Интернете и электротехнических журналах приведено множество различных схем электронных регуляторов мощности нагрузки с практически одинаковыми функциями, но есть и другие схемные решения, например регуляторы, не создающие помех.

Эти регуляторы выдают пачки синусоидальных токов, длительностью которых регулируется мощность в нагрузке. Схемы таких регуляторов относительно сложны и могут применяться в каких-то особых случаях. Применение подобных регуляторов в промышленности не встречалось. Подавляющее большинство регуляторов мощности построены по принципу фазового регулирования тока в нагрузке. Основное различие — схемы управления тиристорами и симисторами. Силовая часть представляет собой практически три варианта: тиристор в диагонали диодного моста, два встречно-параллельных тиристора и симистор.

Схемы управления представляют собой различные варианты на транзисторах, микросхемах, динисторах, газоразрядных приборах, однопереходных транзисторах и т. Такие схемы содержат много деталей, относительно сложны в изготовлении и наладке. Самым простым и широко используемым регулятором мощности был регулятор на тиристоре, включенном в диагональ диодного моста и с простой схемой управления рис.

Принцип работы этого регулятора очень простой пока конденсатор С2 заряжается через R2 и R4, тиристор заперт, при достижении на С2 напряжения отпирания тиристор открывается и пропускает ток в нагрузку, а С2 быстро разряжается через низкое. При переходе синусоидального напряжения сети через ноль тиристор запирается и ждет нового повышения напряжения на С2 Чем больше времени заряжается С2, тем меньше времени тиристор находится в открытом состоянии и меньше ток в нагрузке. Чем меньше величина R4, тем быстрее заряжается С2 и больше ток пропускается в нагрузку.

Достоинством этой схемы является то, что независимо от параметров исправного тиристора положительные и отрицательные импульсы тока в нагрузке всегда симметричны, а также наличие только одного тиристора, которые при их появлении были дефицитом. Недостатком является наличие четырех мощных диодов, что вместе с тиристором и охладителями существенно увеличивает габариты регулятора. Более компактными и в два раза более мощными являются регуляторы мощности на включенных встречно-параллельно тиристорах.

На двух тиристорах КУН с простой схемой управления получается регулятор мощности нагрузки до 4 кВт, которая длительно используется автором в калорифере повышенной мощности. Принципиальная схема такого регулятора с сетевым фильтром показана на рис.

Недостатком таких схем является асимметрия положительных и отрицательных импульсов тока в нагрузке при разбросе параметров тиристоров. Асимметрия проявляется в начальной стадии открывания тиристоров. Для нагревательных приборов и электроинструмента с коллекторными двигателями эта асимметрия практической роли не играет, а осветительные приборы при уменьшении их яркости начинают мигать, так как импульсы какой-то полярности при этом вообще исчезают.

Для устранения этого недостатка необходимо подбирать тиристоры с идентичными параметрами по току открывания и току удержания тиристоров от технологического источника постоянного тока на соответствующей нагрузке или путем подбора второго тиристора по отсутствию мигания лампы при минимальном накале спирали. Одной из разновидностей тиристоров являются оптотиристоры, для управления которыми при встречнопараллельном включении может быть применен принцип управления схемы рис.

Практическая принципиальная схема такого регулятора мощности нагрузки до 5 кВт показана на рис. Этот регулятор используется автором для регулировки сварочного тока и режимов работы других мощных электроустройств. Регулятор мощности снабжен стрелочным индикатором напряжения на нагрузке, что повышает удобство при его эксплуатации. На рис. Регулятор не имеет сетевого фильтра, так как применяется либо на даче, либо в гараже.

При необходимости в нем можно применить фильтр, схема которого показана на рис. Особый интерес представляют современные схемы регуляторов мощности на симисторах. Традиционные схемы управления симисторами содержат относительно много деталей, что наглядно видно на монтажной плате промышленного регулятора, показанной на рис. Например, микросхема КРКП1Б выдает на управляющий электрод симистора управляющие импульсы, показанные на осциллограмме рис.

Принципиальная схема регулятора мощности с применением данной микросхемы, распространенная среди запорожских электриков, показана на рис. Этот регулятор мощности без теплоотвода для VS1 может работать на нагрузку до Вт.

Оказалось, что эту схему без потери качества можно еще упростить. Упрощенная схема регулятора с этой микросхемой показана на рис. При использовании исправных деталей эти схемы не требуют наладки. При изготовлении регуляторов для прикроватных светильников оказалось, что некоторые симисторы и микросхемы имеют дефекты, влияющие на симметричность импульсов и, соответственно, на равномерность регулировки свечения ламп, и даже приводящие к их.

Перепайка деталей на печатной плате является неприятной процедурой и приводит к ее порче. В связи с этим была изготовлена проверочная плата по схеме рис. К контактам 1 -2 печатной платы подпаивают регу-. В качестве нагрузки подключают лампу накаливания.


Схемы на тиристорах

Тиристор КУН принадлежит к группе триодных устройств со структурой p — n — p — n. Переходы созданы путем планарной-диффузии кремния. Тиристор предназначен для осуществления коммутации больших напряжений при помощи небольших уровней посредством дополнительного вывода. В зависимости от схемы включения он может открываться или закрываться, обеспечивая требуемые режимы работы устройства. Он применяется в системах блокировки, защиты, следящих приводах, дистанционно управляемых коммутационных системах, зарядных устройствах в качестве коммутатора или регулятора тока заряда.

управления (тиристор КУ ). Я так понимаю, что это ток утечки от анода на УЭ? А если я поставлю тиристор MCR и ему.

Тиристор КУ202

Как проверить тиристор, если вы полный чайник? Итак, обо всем по порядку. Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле — это электромеханическое изделие, а тиристор — чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-. В этом примере и основан принцип работы тиристора. Управляя маленьким напряжением кнопочки мы управляем большим напряжением… разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле.

Характеристики и схема включения тиристора КУ202Н

Тиристор — это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА. Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование — протекающий через них ток должен превышать определенное значение, который называется током удержания.

Питание этой части схемы осуществляется от входного тока..

Тиристоры и схемы коммутации мощной нагрузки

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой.

Три схемы управления тиристором

Поиск новых сообщений в разделах Все новые сообщения Компьютерный форум Электроника и самоделки Софт и программы Общетематический. Ток управления тиристором КУН. Мое скромное мнение: переменным резистором замерь минимальный ток открытия и умножь на 2, ты удивившийся на сколько ток меньше чем рекомендуют по схеме. Я так делал на своих схемах, все работало как часы. Сообщение от Динамо. Сообщение от кочевник. Ответ: Из практики: достаточно 15 — 20 мА, для гарантии возьмите 50 мА.

[СКАЧАТЬ] Схема управления насосом с тиристором PDF бесплатно или читать онлайн на . управление тиристором ку — edetugixakedefipuce’s.

Тиристор для чайников: схема включения и способы управления

Электрика и электрооборудование, электротехника и электроника — информация! Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов.

Как проверить тиристор

Думаю, что изменением R1 можно пропорционально изменить U упр, при котором достигается максимальная яркость уменьшить этот порог меньше R2 стоит на всякий случай, чтобы уменьшить рассеиваемую на транзисторе мощность где-то видел и решил что надо. От транзистора требуется выдержать максимальное приложенное к нему напряжение, в моём случае более V. От диода тоже, а нужен он в случае, если на аноде тиристора возможно отрицательное напряжение. Если управляющее напряжение менее 1V — всё закрыто. Лампа не горит.

Добавить в избранное.

Тиристоры. Виды и устройство. Работа и применение. Особенности

Войдите , пожалуйста. Хабр Geektimes Тостер Мой круг Фрилансим. Войти Регистрация. Тиристоры для чайников Электроника для начинающих Из песочницы Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам.

Тиристоры выступают твердотельными электронными устройствами, обладающими высокой скоростью коммутации. Эти приборы допустимо использовать для управления всевозможными маломощными электронными компонентами. Однако наряду с маломощной электроникой, посредством тиристоров успешно управляется силовое оборудование. Рассмотрим классические схемы включения тиристора под управление достаточно высокими нагрузками, например, электролампами, электромоторами, электрическими нагревателями и т.


Схема включения тиристора ку202н

Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля если быть точнее, то ниже тока удержания. Из этого тиристор в основном применяются для коммутирования переменного тока. Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды или периоды переменного напряжения. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход. Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Тиристоры. Виды и устройство. Работа и применение. Особенности
  • Проверка тиристоров всех видов мультиметром
  • Тиристор КУ202Н
  • Тиристорный регулятор напряжения простая схема, принцип работы
  • Три схемы управления тиристором
  • Простой тиристорный регулятор напряжения своими руками
  • Как работают мощные силовые тиристоры

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Проверка советского тиристора КУ202Н