Site Loader

Содержание

Схема соединения обмоток трансформатора треугольник звезда 11. Методы определения групп соединения обмоток

Тождественность групп соединения обмоток трансформаторов является одним из условий их параллельной работы. Определить группу соединения трансформаторов можно несколькими методами:

Построением векторной диаграммы напряжений;

Применением «полярометра» и источника постоянного тока;

Использованием двух вольтметров и источника переменного тока;

Измерением угла между векторами напряжений.

Для построения векторной диаграммы сначала вычеркивают схемы соединения обмоток обоих напряжений, проставляя на них начала и концы всех фазных обмоток, а затем, анализируя взаимное положение фазных ЭДС в обмотках, строят соответствующие им треугольники или звезды напряжений.

По взаимному положению векторов одноименных фазных напряжений определяют угол сдвига вектора первичного напряжения относительно вектора вторичного. Сказанное иллюстрируется рис.6.2, выполненным для группы звезда/треугольник-3.

Применение полярометра заключается в фиксации направления ЭДС, наводимых в обмотках низшего напряжения в моменты включения источника постоянного тока, присоединенного к обмотке высшего напряжения. Схема опыта для однофазных трансформаторов приведена на рис.6.3.

В качестве фиксирующего прибора применяется магнитоэлектрический вольтметр с соответствующим пределом измерения. Источник постоянного тока должен иметь напряжение в приделах от 2 до 12 В. Если в момент замыкания ключа стрелка гальванометра отклонится в сторону положительных значений, делается заключение о совпадении полярности выводов а-х с


полярностью выводов А-Х, что соответствует группе соединения обмоток номер 0. Отклонение стрелки прибора в противоположную сторону соответствует группе соединения обмоток номер 6.

Описанный опыт опирается на следующее правило: за начало вторичной обмотки однофазного трансформатора принимается такой ее вывод, из которого ток вытекает, если в этот момент времени он вытекает в первичную обмотку.

В случае трехфазного трансформатора источник постоянного тока последовательно подключается к зажимам АВ, ВС и АС. Для каждого варианта подключения источника фиксируется полярность отклонения стрелки прибора в момент замыкания ключа при поочередном присоединении прибора к выводам ав, вс и ас. В результате опыта получают девять вариантов отклонении стрелки прибора. Используя специальную таблицу, по полученному сочетанию знаков отклонений определяют номер группы соединения обмоток. Для иллюстрации, на рис.6.4 приведена схема опыта и таблица результатов для трансформатора с группой соединения обмоток номер 6.


Несмотря на простоту, рассматриваемый метод является весьма громоздким, поэтому на практике стараются применить его упрощенные варианты. Один из них заключается в следующем. «Плюс» источника постоянного тока присоединяется к зажиму В, а «минус»- к объединенным зажимам двух других фаз А и С трансформатора. Затем фиксируются направления отклонения стрелки прибора при его поочередном подключении к зажимам ав, вс и ас. В результате получают три измерения, достаточные для однозначного определения номера группы соединения обмоток по приведенной ниже табл.6.2.


Данный вариант метода полярометра требует повышенного внимания при фиксации направления отклонения стрелки прибора. Так, в ряде случаев вследствие сильного отброса стрелки от упора не очень четко определяются нулевые значения отклонения, что может привести к ошибочным выводам. В этом случае следует выбрать менее чувствительный прибор или снизить напряжение источника.

Метод двух вольтметров на переменном токе применяется для трехфазных трансформаторов. Он основан на сравнении расчетных данных с результатами замера напряжений между определенными выводами обмоток трансформатора. Для этого соединяют между собой выводы а и А, к обмотке ВН подводят трехфазное напряжение (не более 380 В) и последовательно измеряют напряжения между выводами в и В, в и С, с и В. Полученные значения сравниваются с предварительно рассчитанными для данной группы соединения по формулам специальной табл.6.3. При совпадении значений делается заключение о номере группы соединения обмоток.

В табл.6.3 под понимают значение коэффициента трансформации линейных напряжений.

Измерение угла между векторами напряжения может быть осуществлено фазометром или фазоуказателем. Фазометр измеряет угол между векторами двух напряжений и обычно включается по схеме рис.6.5. Измеренное значение угла между векторами напряжений АВ и ав определяет номер группы соединения обмоток трансформатора.


При использовании фазоуказателя прибор подключается в соответствии с рис.6.6 и указывает угол между векторами фазного напряжения А первичной обмотки и линейного ав вторичной обмотки. Пересчетом определяется угол между одноименными векторами напряжений, однозначно связанный с номером группы соединения обмоток.

Группой соединения обмоток трансформатора называют условное число, характеризующее сдвиг фаз одноименных линейных напряжений обмоток НН, СН и ВН. Это число, умноженное на 30 o , дает угол отставания в градусах векторов линейных напряжений обмоток НН и СН по отношению к векторам соответствующих линейных напряжений обмотки ВН. В обозначении трансформатора номер группы соединения указывается после обозначения схемы соединения обмоток, Y/Y-0, или Y/Δ-11 и др.

Для определения группы соединений используют аналогию со стрелочными часами. Минутная стрелка часов совмещается с напряжением ВН и устанавливается на цифре 0 (12), а часовая совмещается с одноименным напряжением НН и указывает на группу соединения (рисунок 1.9).

Рис. 1.9. Определение группы соединения обмоток трансформаторов.

В однофазных трансформаторах угол между напряжениями ВН и НН может быть равен 0 или 180°, что соответствует группам 0 или 6 и обозначаются I/I-0 или I/I-6. В трехфазных трансформаторах линейные напряжения ВН и НН могут быть сдвинуты на угол, кратный 30°.

Различные группы получают сочетанием схем соединения фаз обмоток с маркировкой зажимов этих фаз по стержням трансформатора.

Четные номера групп образуются при однотипных схемах соединения обмоток ВН и НН (Y/Y, D/D), нечетные – при разнотипных схемах соединения (Y/D, D/Y и др.).

Группы соединения 0, 6, 11, 5 называются основными . У основных групп катушки фаз с одинаковой маркировкой выводных зажимов располагаются на одних и тех же стержнях, у производных – на различных. Производные группы соединения обмоток получаются из основных путем круговой перемаркировки обозначений выводов (например, из ABC в CBA и др.).

Путем круговой перемаркировки обозначений выводов одинаково обозначенные напряжения поворачиваются на угол 120° = 4×30°: номер группы изменяется на 4.

Рис. 3.4. Основные схемы и группы соединений обмоток трехфазных трансформаторов с векторными диаграммами.

Перемена местами обозначения начал и концов фазных обмоток изменяет фазу всех напряжений на 180°: номер группы изменяется на 6.

При замене обмотки НН на обмотку ВН или обмотки ВН на обмотку НН с сохранением их соединений и маркировки номер группы изменяется с на (например, при изменении схемы обмоток с Δ/Y 0 -11 на Y 0 /Δ группа изменяется с 11 на 1).

При соединении обмоток трансформатора в треугольник группа зависит также от способа объединения обмоток в треугольник. Так, при изменении соединения выводов с а–у , b–z , с–х на а–z , b–х , с–у линейные напряжения поворачиваются на 60° = 2×30°: номер группы увеличивается на 2.

Из всех возможных групп соединения трехфазных двухобмоточных трансформаторов используются только группы 0 и 11 с выводом в случае необходимости нулевой точки звезды (Y/Y 0 -0, Y/Δ-11, Y 0 /Δ-11). Стандартом также предусмотрена группа соединения Δ/Y 0 -11 (рисунок 3.7).

Экспериментальное определение группы соединения обмоток . Существует несколько методов определения группы соединения обмоток трансформаторов, среди которых наиболее распространены метод фазометра, метод вольтметра, метод моста, метод постоянного тока.

Метод фазометра (прямой метод) основан на непосредственном измерении угла фазового сдвига между соответствующими линейными напряжениями (ЭДС) обмоток ВН и НН с помощью фазометра , включенного по схеме, показанной на рисунке 1.10. Параллельную обмотку фазометра U-U* подключают к стороне ВН, а последовательную обмотку I-I* к стороне НН. Для ограничения тока в последовательной обмотке ее подключают через добавочное сопротивление . Затем трансформатор включают в сеть с симметричным трехфазным напряжением. Для удобства измерений желательно, чтобы фазометр имел полную (360°) шкалу.

Метод вольтметра – это косвенный метод проверки группы соединений, основанный на измерении вольтметром напряжений (ЭДС) между одноименными выводами обмоток ВН и НН.

Если проверяют группу соединения Y/Y-0, рисунок 1.10, то, соединив проводом выводы А и а , измеряют напряжение (между выводами B и b ) и (между выводами C и c ). Если предполагаемая группа соединения Y/Y-0 соответствует фактической, то

,
где – отношение линейных напряжений (ЭДС) ВН и НН, т.е. коэффициент трансформации линейных напряжений (ЭДС).

Если проверяют группы соединения 6, 11 или 5, то для проверки измеренных значений напряжений пользуются формулами:

группа Y/Y-6 ,

группа Y/Δ-11 ,

группа Y/Δ-5 .

Если условия равенства напряжений по приводимым формулам не соблюдаются, то это свидетельствует о нарушениях в маркировке выводов трансформатора.


Рис. 1.10. Определение групп соединения обмоток трехфазных трансформаторов методами фазометра (слева) и вольтметра (справа).

Метод моста. Применяется при определении группы соединения обмоток трансформатора одновременно с измерением коэффициента трансформации с помощью компенсационного моста.

Метод постоянного тока применяется в однофазных трансформаторах и трехфазных трансформаторах со схемой соединения Y 0 /Y 0 или Δ/Δ, если соединение выполнено вне бака трансформатора. Начала и концы входных обмоток поочередно включают на постоянное напряжение и определяют полярность напряжения на соответствующих выходных зажимах с помощью магнитоэлектрического вольтметра. Полярность проверяют в момент замыкания ключа. При одинаковой полярности трансформатор относится к группе 0, при различной – к группе 6.

Страница 29 из 46

Одной из важнейших проверок у трансформаторов является проверка полярности обмоток и схем их соединения, что при определенном чередовании фаз подаваемого напряжения при включении их в работу определяла группу соединения трехфазных трансформаторов. Из теории известно, что для возможности параллельной работы трансформаторов они должны иметь одну и ту же группу.
Полярность обмоток определяется методом, изложенным в § 3. (Согласно требованиям Норм эта проверка производится в случае отсутствия паспортных или заводских данных при монтаже и после ремонтов со сменой обмоток при эксплуатации.)
Для определения групп трансформаторов и оценки их в плане соответствия заводским данным исходят из следующих основных предпосылок.

  1. Выводы обмоток высшего напряжения (ВН) обозначаются прописными буквами А, В, С, Xf Y, Z, выводы обмоток низшего напряжения (II1I) -а, б, с, х, у, г.

Рис. 118 Изображение однополярных выводов при одинаковом направлении обмоток

  1. У обмоток, имеющих одинаковое направление намотки, все начала (однополярные) при изображении располагаются с одной стороны, а концы — с другой (рис. 118). У обмоток, имеющих разное направление на-


Рис. 119. Изображение однополярных выводов при различных направлениях намотки обмоток
мотки, начала и концы располагаются с разных сторон (рис,119).

  1. Условно считается, что вектор первичного Uax и вторичного Uax напряжений и соответствующим им ЭДС Елх имеют одно и то же направление, если считать, что обе обмотки имеют одно и то же направление намотки, при этом положительному направлению обоих векторов соответствует обход обмоток от концов X, х к началам А, а. Если направление намотки у обмоток разное, то положительному направлению вектора ЭДС соответствует обход обмотки высшего напряжения от конца X к началу А, вектор ЭДС обмотки низшего напряжения изображается противоположным ему на 180°.
  2. Начало обмоток и нулевой вывод располагаются на крышках трансформаторов в последовательности ОАВС, о, а, Ь, с слева направо, если смотреть на них со стороны выводов ВН.


Рис. 120. Векторная диаграмма напряжений

  1. Обмотка ВН считается первичной, НН — вторичной.
  2. Векторная диаграмма линейных и фазных напряжений первичных считается исходной и во всех случаях неизменной независимо от схемы соединения обмоток трансформатора и подключения его к сети. Чередование фаз сети согласно ГОСТ принимается А-В-С (рис.120).
  3. У трехфазных трансформаторов обмотки соединяются в основном в звезду (У) и в треугольник (Д). В зависимости от схемы соединения выводов для образования треугольника и от порядка подключения фаз напряжения сети к выводам возможно получение разных групп соединения. Группа соединения определяется сдвигом по фазе линейного или фазного напряжения обмотки HIT по отношению к одноименному линейному или фазному напряжению обмотки BН. В зависимости от всех перечисленных факторов группы соединений трансформаторов могут отличаться друг от друга на п.30° (п — число в пределах 1 -12). В связи с тем что часовые деления циферблата составляют то же число, а угол между каждой парой часовых делений составляет также 30°, принято группы трансформаторов определять по часовой системе, считая вектор напряжения стороны BН исходным и направленным на цифру 12. Вектор напряжения НИ направляется при изображении группы на ту цифру циферблата часов, которая определяет группу. Первая группа означает, что вектор Uнн опережает одноименный вектор U нн на 30°, вторая — что вектор этот опережает на 60° и т. д.

В СССР выпускаются трансформаторы в основном Двух групп — 12 (У/У) и И (У/Д), но в зависимости от подсоединения их обмоток к фазам системы (сети) встречаются также группы 1, 5, 7. Примеры различных групп соединения и соответствующие им векторные диаграммы показаны на рис. 121.


Рис. 121. Примеры схем соединения обмоток силовых трансформаторов. Точками обозначены согласно ГОСТ однополярные выводы. В случаях 1, 4, 5 направление обмоток одинаковое, а в случаях 2, 3, 6 — разное. Стрелками показано направление ЭДС обмоток

Для определения группы трансформаторов можно пользоваться следующим простым приемом. Например, нужно определить группу трансформатора для случая 6 рис. 121 соединения обмоток. Напряжения (или ЭДС) обмоток ВН и ИМ стержня фазы А (аналогично В и С) могут или совпадать, или быть противоположными по фазе, так как обмотки располагаются на одном стержне магнитопровода. Определив предварительно полярность поляромером как для однофазных трансформаторов, убеждаемся в том, что для случая 6 одноименные по фазам обмотки имеют противоположное направление намотки. В соответствии с этим на векторной диаграмме строим вектор ab, противоположный по фазе вектору А, вектор бс — вектору В и вектор са — вектору С на том основании, что со стороны треугольника линейные напряжения будут соответствовать по фазе фазному на стороне звезды.
Изобразив эти векторы, обозначают вершины треугольника, которые они составляют. Эти вершины должны именоваться общими буквами, участвующими в наименовании двух соседних векторов (вершина сторон, образованных векторами ab и бс, должна называться В и т. д.). Построив в треугольнике звезду фазных напряжений, нетрудно определить фазный вектор напряжения стороны НН и сравнить его с одноименным на циферблате часов. Угол в разбираемом случае составляет 210°. Значит, группа при данном соединении обмоток, данной полярности обмоток и наименовании фаз будет седьмая.
Аналогично можно рассуждать, но только в обратном направлении, если необходимо соединить обмотки так, чтобы получить необходимую (заданную) группу.
Группу трансформатора можно изменять, не делая никаких изменений в схеме соединения самих обмоток, только за счет циклической перестановки фаз напряжения со стороны ВН или НН. Очевидно, что если вместо фазы В на высокую сторону подсоединить фазу At вместо С — фазу Ву а вместо А — фазу С. то группа изменится с седьмой на одиннадцатую. Аналогично группа изменится на третью, если еще раз произвести циклическую перестановку фаз, т, е. на фазу С подсоединить фазу А, на фазу А — фазу В и на фазу В — фазу С
Непосредственная проверка группы соединения обмоток трехфазного трансформатора производится с помощью гальванометра (методом поляромера), фазометра или специального векторметра.



Рис. 122. Проверка группы соединения трансформаторов с помощью гальванометра (методом поляромера)
С помощью гальванометра группа определяется следующим образом. На выводы А и В обмотки ВН поднимается аккумуляторная батарея напряжением 6 В через рубильник (рис. 122). К выводам ab, бс, са поочередно подключается гальванометр с нулем посередине или магнитоэлектрический милливольтметр с полярностью, указанной на рисунке. При подключении гальванометра определяется знак отклонения его в момент замыкания рубильника. Опыт повторяется при подаче питания на выводы ВС и АС.


Рис. 123. Проверка группы соединений обмоток силовых трансформаторов с помощью фазометра
В зависимости от сочетания всех полученных знаков отклонения, записываемых в таблицу, и сравнением их с приведенными в таблицах для определения групп трансформаторов устанавливается проверяемая группа.

Рис. 124 Проверка группы соединения обмоток силовых трансформаторов с помощью фазоуказателя
Метод поляромера прост и удобен, но требует тщательности определения отклонений, так как в некоторых случаях, когда гальванометр слишком чувствителен, нулевое отклонение фиксируется нечетко. В этих случаях следует снизить напряжение батареи или выбрать более грубый гальванометр.
Фазометром или универсальным фазоуказателем типа Э-500/2 можно измерить непосредственно угол между вектором напряжения НИ и ВН, подсоединяемых по схемам рис. 123 и 124. По измеренному углу и по рис. 121 определяется группа.

Группой соединения обмоток трансформатора называется угол сдвига между векторами одноименных линейных ЭДС первичной (ВН) и вторичной (НН) обмоток трансформатора.

1. Для характеристики относительного сдвига фаз линейных ЭДС обмоток ВН и НН вводится понятие группы соединения обмоток трансформатора.

2. Фазовый сдвиг между одноименными линейными ЭДС обмоток ВН и НН зависит от обозначения их выводов (концов), от направления намотки и от схемы соединения. Этот угол, как будет показано далее, кратен 30°.

Группа соединения обозначается целым положительным числом, получающимся от деления на 30° угла сдвига между линейными ЭДС одноименных обмоток ВН и НН трансформатора. Отсчет угла производят от вектора ЭДС ВН по направлению вращения часовой стрелки.

Трансформаторы, имеющие одинаковый сдвиг фаз между линейными ЭДС обмоток ВН и НН, относятся к одной и той же группе соединения.

В трехфазных трансформаторах схемы соединения Y, D, Z («звезда», «треугольник», «зигзаг») могут образовывать 12 различных групп со сдвигом фаз линейных ЭДС через 30°. В связи с этим на практике принято определять группу соединения с помощью стрелок на часовом циферблате (угол между любыми двумя цифрами кратен 30°). Это так называемый «часовой метод» определения группы соединения трансформатора.

Для определения группы соединения трансформатора по «часовому методу» необходимо совместить минутную стрелку вектором линейной ЭДС обмотки ВН, а часовую – с вектором линейной ЭДС обмотки НН. Далее обе стрелки поворачиваются так, чтобы минутная стрелка показывала на цифру 12, тогда часовая стрелка укажет час, соответствующий группе соединения трансформатора.

Рассмотрим определение группы соединения при помощи топографической векторной диаграммы на примере соединения обмоток трансформатора по схеме Y/ Y – 0.

Задавшись произвольной маркировкой выводов обмоток ВН и НН, и соединив электрически два одноименных зажима (например, A и a , рис.7), измеряют ЭДС .


Выбрав масштаб, строят векторную диаграмму линейных ЭДС первичной обмотки (ВН). Так как выводы A и а совпадают, то на диаграмме эти точки должны быть совмещены. Точка b строится следующим образом. Строится окружность радиусом, равным с центром в точке B . Далее строится еще одна окружность радиусом, равным с центром в точке С . Точкой пересечения этих окружностей и является точка b , которая находится на расстоянии от точки a . Аналогичным образом строится точка c , которая находиться на расстоянии от точки а . По углу сдвига между одноименными линейными ЭДС определяется группа соединения (в рассматриваемом случае Y/ Y – 0).

Схемы соединения обмоток трехфазных трансформаторов могут образовывать группы:

· Y/Y, D/D, D/Z образуют четные группы: 0, 2, 4, 6, 8, 10;

· Y/D, D/Y, Y/Z образуют нечетные группы: 1, 3, 5, 7, 9, 11.

При построении векторных диаграмм необходимо руководствоваться следующими правилами. Направление намотки всех обмоток считается одинаковым; векторы ЭДС обмоток ВН и НН, расположенные на одном стержне, совпадают по фазе, если в рассматриваемый момент времени ЭДС этих обмоток направлены к одноименным выводам, а если наоборот, то сдвинуты на 180°.

Трехфазные трансформаторы с соединением обмоток Y/Y, D/D, D/Z образуют группы 0 и 6, с соединением обмоток Y/D, D/Y, Y/Z – группы 11 и 5, если на каждом стержне магнитопровода размещены одноименные фазы.

Если у одной из стороны, например НН, сделать перемаркировку (не изменяя самих соединений) обозначений выводов (без изменения самих соединений): вместо a – b – c сделать с – a – b и затем b– c – a , то можно получить из группы 0 соответственно группы 4 и 8, из группы 6 – группы 10 и 2; из группы 11 – группы 3 и 7, из группы 5 – группы 9 и 1.

В России стандартизованы трехфазные трансформаторы Y/Y н – 0, Y н /D — 11 и Y/Z н – 11; однофазные 1/1 – 0.

Убедившись, что оба трансформатора принадлежат к одной группе, делается заключение о возможности включения их на параллельную работу.

Предположим, что два трансформатора, одинаковые по своим параметрам, но имеющие разные группы соединения обмоток включены на параллельную работу. Пусть первый трансформатор имеет группу соединения Y/Y – 0, а второй Y/D — 11. Тогда векторы линейных ЭДС вторичных обмоток будут сдвинуты на угол 30°, геометрическая сумма линейных ЭДС вторичных обмоток , уравнительный ток будет очень большим:

,

трансформаторы могут выйти из строя.

Параллельная работа трансформаторов

Собирается схема по рис.8. Следует опытным путем проверить соответствие маркировки. Для этого необходимо измерить напряжение между одноименными зажимами вторичных обмоток трансформаторов: . Одну пару одноименных выводов, например a – a 1 соединить перемычкой. Если маркировка определена правильно, то напряжение между одноименными зажимами будет равно нулю, а между разноименными, например между a и b 1 — .После этого рубильник «П» можно замкнуть.

При снятии внешней характеристики следует изменять величину сопротивления нагрузки во вторичной цепи трансформаторов. Измерения производят в 5 – 6 точках, начиная от х.х. до .

Суммарный ток нагрузки

Показания приборов заносятся в табл.8. По полученным данным строится зависимость при .

Таблица 8

В отчете необходимо представить:

1. паспортные данные трансформаторов и электроизмерительных приборов;

2. схемы, по которым проводились лабораторные исследования, таблицы измеряемых величин;

3. коэффициенты трансформации и процентное расхождение между ними;

4. номинальные напряжения к.з. и процентное расхождения между ними;

5. топографические векторные диаграммы для определения группы соединения обмоток трансформаторов (если сначала группы окажутся разными, то следует построить все полученные диаграммы, и указать, что нужно сделать для изменения группы).

6. внешние характеристики трансформаторов при параллельной работе: ;

7. заключение о параллельной работе испытуемых трансформаторов, основывающееся на полученных данных (коэффициенты трансформации, напряжения к.з., значения токов ; если какое-либо условие не выполняется, то следует указать влияние этого обстоятельства на внешние характеристики и распределение нагрузки между трансформаторами).

Вопросы для самоконтроля

1. Что называется группой соединения трансформаторов?

2. С какой целью трансформаторы включают на параллельную работу?

3. От чего зависит группа соединения трансформатора?

4. Сформулировать условия включения трансформаторов на параллельную работу.

5. Как перейти от одной группы соединения к другой?

6. Что произойдет если включить на параллельную работу трансформаторы:

· При разных k ?

· При разных значениях напряжения короткого замыкания?

· При разных группах соединения?

7. Что произойдет при включении трансформаторов на параллельную нагрузку, если параллельно включены не одноименно-полярные зажимы?

8. Как практически определить одноименно-полярные зажимы?

9. Как распределяется нагрузка между трансформаторами различной мощности?

10. Как определить k в трехфазном трансформаторе при соединении обмоток по схеме Y/Y и Y/D?

Лабораторная работа №3

Трансформаторы делят на группы в зависимости от сдвига по фазе между линейными напряжениями, измерен­ ными на одноименных зажимах.

Однофазные трансформаторы. В них напряжения первич­ ной и вторичной обмоток могут совпадать по фазе или быть сдвинутыми на 180°. Это зависит от направления намотки обмоток и обозначения выводов, т. е. от мар­ кировки. Если обмотки трансформатора намотаны в одну сторону и имеют симметричную маркировку выводов (рис. 2.34, а), то индуцированные в них ЭДС имеют одина­ ковое направление. Следовательно, совпадают по фазе и напряжения холостого хода*. При изменении маркировки выводов одной из фаз или направления намотки одной фазы (рис. 2.34, б) получается сдвиг по фазе между век­ торами первичного и вторич­ного напряжения, равный 180°.

Группы соединений обозна­ чают целыми числами от 0 до 11. Номер группы определяют величиной угла, на который вектор линейного напря жения обмотки НН от­ стает от вектора линей­ного напряжения обмот­ ки ВН. Для определения номера группы этот угол следует разделить на 30°.

Для однофазных трансформаторов возмо­ жны только две группы соединений: нулевая (рис. 2.34, а) и шестая (рис. 2.34,6). Однако отечест­ венная промышленность выпускает однофазные трансформаторы только нулевой группы, у кото­ рых напряжения первич­ ной и вторичной обмоток совпадают по фазе.

Рис. 2.35. Группы соединений обмоток трехфазного трансформатора при схеме

У/У

Трехфазные трансформаторы.

В них фазные ЭДС двух обмоток, расположенных на одном и том же стержне, могут, так же как и в однофазных трансформаторах, совпадать или быть противоположными по фазе. В за­ висимости от схемы соединения обмоток (У и Д) и порядка соединения их начал и концов получаются различные углы сдвига фаз между линейными напряжениями. Для примера на рис.


Рис. 2.36. Группы соединений обмоток трехфазного трансформатора при схеме У

2.35 показаны схемы соединения обмоток У/У и соответствующие векторные диаграммы для нулевой (#) и шестой

(б) групп; на рис. 2.36 показаны схемы соединения обмоток У/Д и соответствующие векторные диаграммы для одиннадцатой (а) и пятой (б) групп.

Изменяя маркировку вы­ водов обмоток можно полу­чить и другие группы соеди­ нений: при схеме У/У — четные: вторую, четвертую и т. д., при схеме У/Д — нечетные: первую, третью и др. Согласно ГОСТу оте­чественная промышленность выпускает трехфазные сило­ вые трансформаторы толь­ ко двух групп: нулевой и одиннадцатой (см. табл. 2.1). Это облегчает практи­ ческое включение трансфор­ маторов на параллельную работу.

При соединении обмотки НН по схеме Z н , а обмотки ВН по схеме У (рис. 2.37) фазные напряжения обмотки НН сдвинуты относительно соответствующих фазных на­ пряжений обмотки ВН (например, относительно

) на угол 330°, т. е. при таком соединении имеем один­ надцатую группу. Это объясняется тем, что между векторами линейных напряжений (не показанных на рис. 2.37) имеется такой же угол.

Группы соединения обмоток силовых трансформаторов

  1. Главная
  2. Электрические машины
  3. Группы соединения силовых трансформаторов

Мы уже рассмотрели соединение трансформаторов в треугольник, звезду и зигзаг. Теперь остановимся более подробно на группах соединения трансформаторов. Обмотки низкого, среднего и высокого напряжения трансформаторов могут соединяться по-разному – в треугольник, звезду, реже зигзаг, образуя схему соединения обмоток трансформатора.

Схема соединения – это сочетание схем соединения обмоток высшего и низшего напряжения для двухобмоточного трансформатора или обмоток высшего, среднего и низшего для трехобмоточного трансформатора. Однако, несмотря на различное соединение обмоток, схемы могут давать одинаковый сдвиг между одноименными векторами напряжения. Несколько схем, дающих одинаковый по величине угол сдвига фаз, образуют группу соединения.

Основных групп может быть 12. Для удобства представляют циферблат стрелочных часов. Каждой группе соответствует угол кратный 30 градусам от 0 до 360 градусов. Они отмечаются на циферблате часов, через один час, каждому часу соответствует сдвиг в 30 градусов. 360 градусов – 12 часов.

Групп 12 и имеется следующая закономерность – четные группы (2,4,6,8,10,12) образуются, если с высокой и низкой стороны одинаковое соединение (треугольник-треугольник, звезда-звезда). Нечетные группы (1,3,5,7,9,11) образуются, если с высокой и низкой сторон различное соединение (треугольник-звезда).

В ГОСТ 30830-2002 пишется, что вектор фазы А ВН откладывается параллельно и сонаправленно стрелке на 12 часов. Порядок фаз идет А-В-С, движение векторов на циферблате осуществляется против часовой стрелки.

Чтобы построить треугольник, сначала надо построить звезду, а потом вписать ее в треугольник.

Вот, например, двухобмоточный трехфазный трансформатор со схемой Y/Д-11, для примера. Где Y-значит звезда с высокой стороны, Д-треугольник с низкой стороны, между ними угол 360 градусов.

Если трансформатор трехобмоточный, то может быть (возьмем ради примера) Y0/Y/Д-12-5. Все как и в прошлом примере, только добавилась обмотка среднего напряжения. В этом примере обмотка ВН – звезда с нулем, СН – звезда, НН – треугольник. Сдвиг между обмотками ВН и СН – 12 часов, между ВН и НН – 11 часов (или 0 часов). Между СН и НН – 11 часов, про это писалось выше.

Существуют определенные действия с выводами обмоток, выполнив которые, можно добиться определенного результата группами трансформаторов.

  • если по-порядку циклически перемаркировать фазы А-В-С(а-b-c) на В-С-А(b-c-a), то группа изменится на 4 (как в большую, так и в меньшую сторону)
  • двойная перемаркировка двух фаз, на стороне ВН и НН, изменяют нечетную группу на плюс минус 2
  • если поменять местами две фазы на одной из сторон (ВН или НН), то трансформатор потеряет группу и его запрещено будет включать на параллельную работу с другим трансформатором

Схемы групп соединения обмоток 3ф. 2обм. трансформаторов

Существует огромное множество схем соединения обмоток, некоторые из них образуют группы соединения трансформаторов. Рассмотрим некоторые из них, а именно схемы со звездой и треугольником с группами от 1 до 12.

Также схематично представим обозначения вводов на крышке трансформатора и векторные диаграммы.

12 группа (Y/Y-12, Д/Д-12)

Рисунок 1 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 12

11 группа (Y/Д-11, Д/Y-11)

Рисунок 2 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 11

10 группа (Д/Д-10, Y/Y-10)

Рисунок 3 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 10

9 группа (Y/Д-9, Д/Y-9)

Рисунок 4 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 9

8 группа (Y/Y-8, Д/Д-8)

Рисунок 5 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 8

7 группа (Y/Д-7, Д/Y-7)

Рисунок 6 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 7

6 группа (Y/Y-6, Д/Д-6)

Рисунок 7 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 6

5 группа (Y/Д-5, Д/Y-5)

Рисунок 8 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 5

4 группа (Y/Y-4, Д/Д-4)

Рисунок 9 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 4

3 группа (Y/Д-3, Д/Y-3)

Рисунок 10 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 3

2 группа (Y/Y-2, Д/Д-2)

Рисунок 11 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 2

1 группа (Y/Д-1, Д/Y-1)

Рисунок 12 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 1

Укажем некоторые особенности отдельных схем:

Схема Y0/Y-12 получается из схемы Y/Y-12 соединением нулевого ввода трансформатора с нейтралью звезды;

Схема Д/Д-12 – обе обмотки выполнены левыми, если же одну из обмоток выполнить правой, то выйдет схема Д/Д-6.

Схема Д/Д-10 – обе обмотки левые, если одну из обмоток выполнить правой, то получится схема Д/Д-4;

Схему Д/Д-8 можно получить, если в схеме Д/Д-2 одну из обмоток выполнить правой.

Схему Y/Д-5 можно получить, если в схеме Y/Д-11 одну из обмоток выполнить правой, а вторую левой.

Далеко не все из представленных схем широко распространены, однако, их знание не будет лишним.

Схемы и группы соединения обмоток силовых трансформаторов

Стандартами установлены условное графическое изображение обмоток, схем их соединения между собой и буквенные обозначения (рис. 1, а, б, в).
Начала фазных обмоток ВН трехфазных трансформаторов обозначают прописными латинскими буквами А, В, С, концы — буквами X, Y, Z. Чередование фаз А, В, С принято считать слева направо, если смотреть на трансформатор со стороны отводов ВН. Начала обмоток НН обозначают строчными латинскими буквами. a, b, с, концы — буквами, х, у, z.
Для трехобмоточных трансформаторов начала обмоток среднего напряжения СН обозначают буквами Ат, Вт, Ст, концы — буквами Хт,
Начала и концы обмоток однофазных трансформаторов обозначают так же, как обмотки первых фаз трехфазных трансформаторов: А—X, Ат—Хт, а—х.
Обмотки, размещенные на стержнях двухстержневой магнитной системы однофазного трансформатора, могут быть соединены параллельно или последовательно. Однако при этом учитывают направление намотки витков обмоток и магнитного поля, которое в стержнях возбужденной магнитной системы направлено противоположно. Если, например, первичной обмоткой является обмотка ВН и подведенным к ней напряжением возбуждена магнитная система, то для получения удвоенной эдс (напряжения) на зажимах а—х последовательно соединенных обмоток направление намотки витков в каждой обмотке должно быть одинаковым и они должны быть соединены по схеме, изображенной на рис. 1, а, а при обмотках с разным направлением намотки витков — по схеме рис. 1,6. При параллельном соединении обмоток с разнонаправленными витками для получения на зажимах а—х эдс (напряжения), индуцированной в одной обмотке, соединение должно быть выполнено по схеме рис. 1, в, а с одинаковым направлением намотки — по схеме рис. 2, г.


Рис. 1. Графическое изображение и буквенное обозначение начал и концов фазных обмоток трехфазного трансформатора: а — обмоток ВН, б — обмоток СН, в — обмоток НН

Если при указанных направлениях намотки витков обмоток схемы с последовательным или параллельным соединением (ошибочно) поменять местами, то результирующее напряжение (эдс) на зажимах а—х будет равно нулю. Такой же результат получится, если схемы соединения оставить без изменения, а на одном из стержней в обмотке изменить направление намотки витков на противоположное. Отсюда следует, что при сборке схемы трансформатора следует внимательно проверять правильность намотки витков обмоток и соответствие их стержням.

Рис. 2. Возможные схемы соединения обмоток Рис. 3. Обмотки левой (а) одного из напряжений однофазного трансформатора и правой (б) намоток (а, б, в, г)

Для исключения ошибок обмотки трансформаторов подразделяют по направлению на левые и правые.
Левыми называют обмотки, у которых обход витков от начала обмотки идет против часовой стрелки, если смотреть на нее сверху, правыми — по часовой стрелке (рис. 3).
При сборке схем обмоток трансформатора большое значение придается не только получению результирующего напряжения
на его зажимах, но и направлению векторов напряжений первичной и вторичной обмоток, определяющих группу соединения трансформатора, которая является одним из условий возможности включения трансформатора на параллельную работу с другим трансформатором.
Стандартом предусмотрены группы соединений обмоток трансформаторов: нулевая (0) и 11-я.

Таблица 1 Схема и группа соединения обмоток однофазного двухобмоточного трансформатора

За единицу группы принят угол смещения вектора линейного напряжения обмотки НН относительно соответствующего вектора линейного напряжения обмотки ВН, равный 30°. Смещение отсчитывают от вектора линейного напряжения ВН по часовой стрелке. Группа 0 обозначает совпадение векторов линейных напряжений обмоток НН и ВН, а группа 11 —смещение их на 330° (11X30°). В однофазных трансформаторах группу определяет смещение векторов фазных напряжений.
Получение той или иной группы зависит от направления намотки и схемы соединения обмоток, последовательности соединения фазных обмоток и чередования фаз при сборке схем. При этом большое значение придается направлению намотки обмоток, так как от этого зависит направление эдс, индуцированной в обмотке.
В табл. 1 показано обозначение схемы стандартной — нулевой группы соединения обмоток однофазных двухобмоточных трансформаторов.
Ранее применяемую группу 6 в трансформаторах пересоединяют в нулевую; для этого достаточно обмотки одного из напряжений одного направления заменить на обмотки другого направления, например правые на левые, или перемаркировать их — начало обмотки считать концом, конец — началом.
Фазные обмотки трехфазных трансформаторов (рис. 8) могут быть соединены в звезду — Y , треугольник — А, или зигзаг — эти схемы в тексте обозначают соответственно буквами Y, Д и Z.
Схема соединения в звезду получается, если концы фазных обмоток, например ВН, X, Y, Z трехфазной системы токов, соединить гальванически между собой (рис. 3).
Фазные напряжения Uao, Ubo и UCo обмоток возбужденной магнитной системы (диаграмма справа) определяются разностью
потенциалов между их началами и концами. На векторной диаграмме рисунка они изображены тремя отрезками ЛО, 50 и СО под углом 120° друг к другу, основываясь на том, что в трехфазной симметричной системе токов переменные эдс, токи и напряжения сдвинуты по фазе (времени) на угол 120°. Потенциал точки гальванического соединения концов фазных обмоток равен нулю; ее принято называть нейтралью и обозначать буквой н или 0. Исходящие из нейтрали векторы фазных напряжений (эдс) как бы образуют трехлучевую звезду, отсюда и название схемы — «звезда». Если от нейтрали сделано ответвление проводником, имеющим наружный зажим, то на векторных диаграммах ее обозначают кружком, а на схемах — буквой О (см. рис. 4).


Рис. 3, Соединение фазных обмоток в звезду и векторная диаграмма их напряжений

Рис. 4. Соединение фазных обмоток в треугольник и векторная диаграмма их напряжений: а — а—у, b—2, с—х; b — a—z, b—x, с—у
Линейные (междуфазные) напряжения UA, UB и Uc обмоток (рис. 3) определяются разностью потенциалов между началами соответствующих фазных обмоток или, что то же самое, геометрической разностью векторов фазных напряжений; они в ѵ3 раза больше фазных — это легко доказывается математически и геометрическим построением.
Схему соединения в треугольник можно получить двумя способами: соединением фазных обмоток, например НН, в последовательности а—у, b—z, с—х (рис. 4, а) или а—г9. b—х, с—у (рис. 4,6). Как видно на диаграммах, разница в соединениях приводит к изменению направлений векторов линейных напряжений (в треугольнике они же и фазные) на 180°. Это обстоятельство имеет существенное значение для получения требуемой группы в трехфазных трансформаторах.
Получение нулевой группы при соединении первичных и вторичных обмоток трансформатора в звезду, показано на рис. 4, а, при этом имеется в виду, что обмотки ВН и НН одного направления.
На векторных диаграммах стрелками обозначены векторы фазных и линейных напряжений, обмоток ВН и НН, на третьей диаграмме (рисунок справа)—векторы линейных напряжений, для примера, фаз В и b при условном совмещении точек А и а диаграмм «звезд». Совпадение их направлений указывает на нулевую группу.

Рис. 5. Схемы и группы соединений обмоток трехфазного двухобмоточного трансформатора: а — соединение звезда — звезда в нулевую группу; б — соединение звезда — треугольник в одиннадцатую группу

Получение группы 11 при соединении обмоток ВН в звезду, а НН в треугольник показано на рис. 5, б. На диаграммах видно, что векторы линейных напряжений обмоток ВН и НН сдвинуты друг относительно друга по фазе на 330°, это указывает на то, что трансформатор имеет группу 11. В условном обозначении схемы (рис. 5, а) индекс «Н» указывает на то, что от нейтрали сделано ответвление (отвод проводником) на внешний зажим. Построением векторных диаграмм по аналогии можно показать получение групп и схем при соединении фазных обмоток в зигзаг (табл. 2).
Исходя из приведенных пояснений и рисунков следует, что при одних и тех же схемах соединения обмоток можно получать разные группы: при схеме звезда — звезда с нулевой группой легко образуется группа 6; для этого достаточно у обмоток ВН или НН сделать перемаркировку начал и концов, или скажем для примера, обмотки левого направления поменять на правые; при схеме звезда — треугольник с группой 11 получается группа
5, если соединение фазных обмоток треугольника в последовательности а—у; b—z с—х заменить соединением а—z b—х; с—у, а концы х, yf z перемаркировать в «начала» — а, b, с.

Аналогичным пересоединением обмоток можно перейти с группы 5 на 11. Заметим, что группы 6 и 5 устарели, однако часть трансформаторов с этими группами еще имеется в эксплуатации, и при ремонтах их следует пересоединять в стандартные группы.

Таблица 2. Схемы соединения обмоток, векторные диаграммы напряжений и условные обозначения трехфазных двухобмоточных силовых трансформаторов общего назначения (ГОСТ 11677-85)


Комбинирование направления намотки обмоток, чередования фаз, последовательности соединения начала и концов обмоток при сборке схем позволяет получить двенадцать групп соединения. Чтобы исключить ошибки, соединению обмоток для получения требуемых схем и групп уделяют особое внимание.
Группы соединения обмоток параллельно работающих трансформаторов должны быть одинаковыми. Включение на параллельную работу трансформаторов с разными группами недопустимо, так как это приводит к большим уравнительным токам.
Приведенные выкладки в равной степени относятся к трехобмоточным трансформаторам, автотрансформаторам и трансформаторам специального назначения.

Схемы соединений обмоток трехфазных трансформаторов

Трехфазный трансформатор имеет две трехфазные обмотки – высшего (ВН) и низшего (НН) напряжения, в каждую из которых входят по три фазные обмотки, или фазы. Таким образом, трехфазный трансформатор имеет шесть независимых фазных обмоток и 12 выводов с соответствующими зажимами, причем начальные выводы фаз обмотки высшего напряжения обозначают буквами A , B , С, конечные выводы – X , Y , Z , а для аналогичных выводов фаз обмотки низшего напряжения применяют такие обозначения: a, b, c, x, y, z.

Каждая из обмоток трехфазного трансформатора — первичная и вторичная — может быть соединена тремя различными способами, а именно:

В большинстве случаев обмотки трехфазных трансформаторов соединяют либо в звезду, либо в треугольник (рис. 1).

Осветительные сети выгодно строить на высокое напряжение, но лампы накаливания с большим номинальным напряжением имеют малую световую отдачу. Поэтому их целесообразно питать от пониженного напряжения. В этих случаях обмотки трансформатора также выгодно соединять в звезду (Y), включая лампы на фазное напряжение.

С другой стороны, с точки зрения условий работы самого трансформатора, одну из его обмоток целесообразно включать в треугольник.

Фазный коэффициент трансформации трехфазного трансформатора находят, как соотношение фазных напряжений при холостом ходе:

n ф = U фвнх / U фннх,

а линейный коэффициент трансформации, зависящий от фазного коэффициента трансформации и типа соединения фазных обмоток высшего и низшего напряжений трансформатора, по формуле:

n л = U лвнх / U лннх.

Если соединений фазных обмоток выполнено по схемам «звезда-звезда» или «треугольник-треугольник», то оба коэффициента трансформации одинаковы, т.е. n ф = n л.

При соединении фаз обмоток трансформатора по схеме «звезда – треугольник» – n л = n фV 3 , а по схеме «треугольник-звезда» – n л = n ф / V 3

Группы соединений обмоток трансформатора

Группа соединений обмоток трансформатора характеризует взаимную ориентацию напряжений первичной и вторичной обмоток. Изменение взаимной ориентации этих напряжений осуществляется соответствующей перемаркировкой начал и концов обмоток.

Стандартные обозначения начал и концов обмоток высокого и низкого напряжения показаны на рис.1.

Рассмотрим вначале влияние маркировки на фазу вторичного напряжения по отношению к первичному на примере однофазного трансформатора (рис. 2 а).

Обе обмотки расположены на одном стержне и имеют одинаковое направление намотки. Будем считать верхние клеммы началами, а нижние – концами обмоток. Тогда ЭДС Ё1 и E2 будут совпадать по фазе и соответственно будут совпадать напряжение сети U1 и напряжение на нагрузке U2 (рис. 2 б). Если теперь во вторичной обмотке принять обратную маркировку зажимов (рис. 2 в), то по отношению к нагрузке ЭДС Е2 меняет фазу на 180°. Следовательно, и фаза напряжения U2 меняется на 180°.

Таким образом, в однофазных трансформаторах возможны две группы соединений, соответствующих углам сдвига 0 и 180°. На практике для удобства обозначения групп используют циферблат часов. Напряжение первичной обмотки U1 изображают минутной стрелкой, установленной постоянно на цифре 12, а часовая стрелка занимает различные положения в зависимости от угла сдвига между U1 и U2. Сдвиг 0° соответствует группе 0, а сдвиг 180° – группе 6 (рис. 3).

В трехфазных трансформаторах можно получить 12 различных групп соединений обмоток. Рассмотрим несколько примеров.

Пусть обмотки трансформатора соединены по схеме Y/Y (рис. 4). Обмотки, расположенные на одном стержне, будем располагать одну под другой.

Зажимы А и а соединим для совмещения потенциальных диаграмм. Зададим положение векторов напряжений первичной обмотки треугольником АВС. Положение векторов напряжений вторичной обмотки будет зависеть от маркировки зажимов. Для маркировки на рис. 4а, ЭДС соответствующих фаз первичной и вторичной обмоток совпадают, поэтому будут совпадать линейные и фазные напряжения первичной и вторичной обмоток (рис. 4, б). Схема имеет группу Y/Y – О.

Изменим маркировку зажимов вторичной обмотки на противоположную (рис. 5. а). При перемаркировке концов и начал вторичной обмотки фаза ЭДС меняется на 180°. Следовательно, номер группы меняется на 6. Данная схема имеет группу Y/Y – б.

На рис. 6 представлена схема, в которой по сравнению со схемой рис 4 выполнена круговая перемаркировка зажимов вторичной обмотки. При этом фазы соответствующих ЭДС вторичной обмотки сдвигаются на 120° и, следовательно, номер группы меняется на 4.

Схемы соединений Y/Y позволяют получить четные номера групп, при соединении обмоток по схеме «звезда-треугольник» номера групп получаются нечетными. В качестве примера рассмотрим схему, представленную на рис. 7.

В этой схеме фазные ЭДС вторичной обмотки совпадают с линейными, поэтому треугольник аbс поворачивается на 30° против часовой стрелки по отношению к треугольнику АВС. Но так как угол между линейными напряжениями первичной и вторичной обмоток отсчитывается по часовой стрелке, то группа будет иметь номер 11.

Из двенадцати возможных групп соединений обмоток трехфазных трансформаторов стандартизованы две: «звезда-звезда» – 0 и «звезда-треугольник» – 11. Они, как правило, и применяются на практике.

Схемы «звезда-звезда с нулевой точкой» используют в основном для трансформаторов потребителей напряжением 6 – 10/0,4 кВ. Нулевая точка дает возможность получить напряжение 380/220 или 220/127 В, что удобно для одновременного подключения как трехфазных, так и однофазных приемников электроэнергии (электродвигателей и ламп накаливания).

Схемы «звезда-треугольник» применяют для высоковольтных трансформаторов, соединяя обмотку 35 кВ в звезду, а 6 или 10 кВ в треугольник. Схема «звезда с нулевой точкой» используется в высоковольтных системах, работающих с заземленной нейтралью.

Группы соединения обмоток трехфазных трансформаторов:

Существуют три основных способа соединения фазовых обмоток каждой стороны трёхфазного трансформатора:

  • Δ-соединение, так называемое соединение треугольником, где три фазных обмотки соединены последовательно и образуют кольцо (или треугольник)
  • Y-соединение, так называемой соединение звездой, где все три обмотки соединены вместе одним концом каждой из обмоток в одной точке, называемой нейтральной точкой или звездой
  • Z-соединение, так называемое соединение зигзагом

Естественным выбором для самых высоких напряжений является Y-соединение. В целях защиты от перенапряжения или для прямого заземления имеется нейтральный проходной изолятор.

Соединение треугольником используется на одной стороне трансформатора, другая сторона должна быть соединена звездой, особенно в случаях, если нейтраль соединения звездой планируется для зарядки. Соединение обмотки треугольником обеспечивает баланс ампер-виток для тока нулевой последовательности и каждой фазы соединения звездой, это даёт оптимальный уровень полного сопротивления нулевой последовательности. Без соединения треугольником обмотки ток нулевой последовательности привёл бы к образованию поля токов нулевой последовательности в сердечнике. Если сердечник имеет три стержня, данное поле проникнет сквозь стенки бака и приведёт к выделению тепла. При наличии пяти стержней сердечника или в случае с броневым сердечником, данное поле проникнет между раскрученными боковыми стержнями и полное сопротивление нулевой последовательности повысится. Вследствие этого ток, в случае пробоя на землю может стать настолько слабым, что защитное реле не сработает.

Соединение обмотки треугольником позволяет циркулировать третьей гармонике тока внутри треугольника, образованного тремя последовательно соединёнными фазными обмотками. Третья гармоника тока во всех трёх фазах имеет одинаковое направление. Эти токи не могут циркулировать в обмотке, соединённой звездой, с изолированной нейтралью.

В случаях, если у сердечника 5 стержней, или он исполнен в броневом варианте недостаток троичных синусоидальных токов в намагничивающем токе может привести к значительным искажениям наведённого напряжения. Обмотка трансформатора соединённая треугольником устранит это нарушение, так как обмотка с данным соединением обеспечит затухание гармонических токов.

Так же в трансформаторах предусмотрено наличие третичной Δ-соединённой обмотки, которая применяется не для зарядки, а для предотвращения искажения напряжения и понижения полного сопротивления нулевой последовательности. Такие обмотки называются компенсационными. Распределительные трансформаторы, которые предназначены для зарядки, между фазой и нейтралью на стороне первого контура, снабжены соединённой треугольником обмоткой. Однако ток в таком соединении может быть очень слабым для достижения минимума номинальной мощности. В подобных случаях высоковольтная обмотка может быть соединена звездой, а вторичная обмотка — зигзагообразно. Токи нулевой последовательности, циркулирующие в двух отводах зигзагообразно соединённой обмотки будут балансировать друг друга, полное сопротивление нулевой последовательности вторичной стороны определяется полем рассеяния магнитного поля между двумя разветвлениями обмоток.

При использовании соединения пары обмоток различными способами, есть возможность достигнуть различных степеней напряжения смещения между сторонами трансформатора.

  • Большие буквы Y – звезда; D – треугольник – для первичной обмотки;
  • маленькие буквы y – звезда; d – треугольник; z – зигзаг – для вторичного напряжения;
  • буква N – означает вывод нейтрального зажима первичной обмотки на клеммную колодку;
  • буква n – означает вывод нейтрального зажима вторичной обмотки на клеммную колодку;

Схемы и группы соединений обмоток трансформаторов



Обмотки трансформаторов имеют обычно схемы соединения: звезда Y, звезда с выведенной нейтралью Yn. и треугольник Δ.

Сдвиг фаз между ЭДС первичной и вторичной обмоток (E1 и Е2) принято выражать условно группой соединений.

В трехфазном трансформаторе применением разных способов соединений обмоток можно образовать двенадцать различных групп соединений, причем при схемах соединения обмоток звезда-звезда мы можем получить любую четную группу (2, 4, 6, 8, 10, 0), а при схеме звезда — треугольник или треугольник-звезда любую нечетную группу (1, 3, 5, 7, 9, 11).

Группы соединений указываются справа от знаков схем соединения обмоток. Трансформаторы по рис.1 имеют схемы и группы соединения обмоток: Y/Δ-11; Yn / Yn /Δ-0-11; Y/Δ/Δ-11-11.

Соединение в звезду обмотки ВН позволяет выполнить внутреннюю изоляцию из расчета фазной ЭДС, т.е. в √3 раз меньше линейной. Обмотки НН преимущественно соединяются в треугольник, что позволяет уменьшить сечение обмотки, рассчитав ее на фазный ток I/√3. Кроме того, при соединении обмотки трансформатора в треугольник создается замкнутый контур для токов высших гармоник, кратный трем, которые при этом не выходят во внешнюю сеть, вследствие чего улучшается симметрия напряжения на нагрузке.

Сверхмощные генераторы конструктивно выполняются с двумя трехфазными обмотками статора, ЭДС которых сдвинуты на 30°. Для работы в блоке с такими генераторами изготовляются мощные однофазные трансформаторы с двумя обмотками низшего напряжения и двумя обмотками высшего напряжения. В трехфазной группе для компенсации сдвига ЭДС обмоток статора генератора одна обмотка низшего напряжения соединяется по схеме Δ, а другая — по схеме Y.

Рис.1. Соединение обмоток и векторные диаграммы
напряжений однофазных трансформаторов для
присоединения к шестифазному генератору

На рис.1 показано соединение обмоток группы однофазных трансформаторов ОРЦ-533000/500, предназначенных для энергоблока 1200 МВт. Каждая фаза трансформатора выполнена на двухстержневом магнитопроводе. Соединение обмоток, расположенных на первом стержне, образует схему Δ/Yn-11, а на втором Y/Yn-0 (или 12).

Соединение обмоток в звезду с выведенной нулевой точкой применяется в том случае, когда нейтраль обмотки должна быть заземлена. Эффективное заземление нейтрали обмоток ВН обязательно в трансформаторах 330 кВ и выше и во всех автотрансформаторах. Системы 110, 150 и 220 кВ также работают с эффективно-заземленной нейтралью, однако для уменьшения токов однофазного КЗ нейтрали части трансформаторов могут быть разземлены. Так как изоляция нулевых выводов обычно не рассчитывается на полное напряжение, то в режиме разземления нейтрали необходимо снизить возможные перенапряжения путем присоединения вентильных разрядников к нулевой точке трансформатора (рис.2). Нейтраль заземляется также на вторичных обмотках трансформаторов, питающих четырехпроводные сети 380/220 и 220/127 В. Нейтрали обмоток при напряжении 10-35 кВ не заземляются или заземляются через дугогасящую катушку для компенсации емкостных токов.

Рис.2. Способы заземления нейтралей трансформаторов и автотрансформаторов
а — у трансформаторов 110-220 кВ без РПН,
б — у трансформаторов 330-750 кВ без РПН,
в — у трансформаторов 110 кВ с встроенным РПН,
г — у автотрансформаторов,
д — у трансформаторов 150-220 кВ с РПН,
е — у трансформаторов 330-500 кВ с РПН.



Схемы подключения трансформаторов звезда треугольник. Группы соединений обмоток трансформатора

Трансформаторы делят на группы в зависимости от сдвига по фазе между линейными напряжениями, измеренными на одноименных зажимах. В однофазном трансформаторе напряжения первичной и вторичной обмоток могут совпадать по фазе или быть сдвинутыми на 180°. Это зависит от направления намотки обмоток и обозначения выводов, т. е. от маркировки. Если обмотки трансформатора намотаны в одну сторону и имеют симметричную маркировку выводов (рис. 2.46,a), то индуцированные в них ЭДС имеют одинаковое направление. Следовательно, совпадают по фазе и напряжения холостого хода*. При изменении маркировки выводов одной из фаз или направления намотки одной фазы (рис. 2.46, б) получается сдвиг по фазе между векторами первичного и вторичного напряжения, равный 180°.

Группы соединений обозначают целыми числами от 0 до 11. Номер группы определяют величиной угла, на который векторлинейного напряжения обмотки НН отстает от вектора ли­нейного напряжения обмотки ВН. Для определения номера группы этот угол следует разделить на 30°.

* Для внешней нагрузки (потребителя) ЭДС и напряжения имеют одинаковую фазу.


Рис. 2.46. Группы coeдинений обмоток однофазного трансформатора

Для однофазных трансформаторов возможны только две группы соединений: нулевая (рис. 2.46, а) и шестая (рис. 2.46, б). Однако отечественная промышленность выпускает однофазные трансформаторы только нулевой группы, у которых напряжения первичной и вторичной обмоток совпадают по фазе (см. табл. 2.4).

В трехфазных трансформаторах фазные ЭДС двух обмоток, расположенных на одном и том же стержне, могут, так же как и в однофазных трансформаторах, либо совпадать, либо быть противоположными по фазе. Однако в зависимости от схемы соединения обмоток (У или Д) и порядка соединения их начал и концов получаются различные углы сдвига фаз между линейными напряжениями. Для примера на рис. 2.47 показаны схемы соединения обмоток У/У и соответствующие векторные диа­граммы для нулевой (а) и шестой (б) групп; на рис. 2.48 показаны схемы соединения обмоток У/Д и соответствующие векторные диаграммы для одиннадцатой (а) и пятой (б) групп.

Изменяя маркировку выводов обмоток, можно получить и другие группы соединений: при схеме У/У- четные: вторую, четвертую и т. д.; при схеме У/Д — нечетные: первую, третью и др. Согласно ГОСТу отечественная промышленность выпускает трехфазные силовые трансформаторы только двух групп: нулевой и одиннадцатой (см. табл. 2.3). Это облегчает практическое включение трансформаторов на параллельную работу.

Таблица 2.4


Рис. 2.47. Группы соединений обмоток трехфазного трансформатора при схеме У/У


Рис. 2.48. Группы соединений обмоток трехфазного трансформатора при схеме У/Д

При соединении обмотки НН по схеме Z H , а обмотки ВН по схеме У (рис. 2.49) фазные напряжения обмотки НН сдвинуты относительно соответствующих фазных напряжений обмотки ВН (например, a10 относительно A0 ) на угол 330°, т. е. при таком соединении имеем одиннадцатую группу. Это объясняется тем, что между векторами линейных напряжений (не показанных на рис. 2.49) имеется такой же угол.


Рис. 2.49. Группа соединений обмоток трехфазного трансформатора при схеме Y/Z н

Согласно ГОСТ 11677-75 начала и концы первичных и вторичных обмоток трансформаторов обозначают в определенном порядке. Начала обмоток однофазных трансформаторов обозначают буквами А, а, концы — X, х. Большие буквы относятся к обмоткам высшего, а малые — к обмоткам низшего напряжений. Если в трансформаторе помимо первичной и вторичной есть еще и третья обмотка с промежуточным напряжением, то ее начало обозначают А m , а конец Х m .

В трехфазных трансформаторах начала и концы обмоток обозначают: А, В, С; X, Y, Z — высшее напряжение; А m , В m , С m ; Х m , Y m , Z m — среднее напряжение; а, b, с; х, у, z — низшее напряжение. В трехфазных трансформаторах с соединением фаз в звезду кроме начала обмоток иногда выводят и нейтраль, т. е. общую точку соединения концов всех обмоток. Ее обозначают О, О m и о. На рисунке 1, а, б показаны схемы соединения обмоток в звезду и треугольник так, как их изображают для трехфазных трансформаторов.

а — в звезду; б — в треугольник

Рисунок 1 — Схемы соединения обмоток трансформатора

Схему соединения в звезду принято обозначать знаком Y, а в треугольник — Δ. Если наружу выводят нейтраль обмоток, то такое соединение обозначают знаком Y н. Если у трансформатора обмотка высшего напряжения соединена в звезду, а низшего — в треугольник, то такое сочетание обмоток обозначают Y/Δ или Y н /Δ.

В числителе этой «дроби» всегда ставят обозначение обмотки высшего напряжения, а в знаменателе — низшего. При наличии третьей обмотки, соединенной, например, также в звезду, обозначение будет таким: Y н /Y/Δ. Обозначение третьей обмотки ставят между обозначениями обмоток высшего и низшего напряжений.

Понятия начала и конца обмотки условны, так как при протекании переменного тока любой конец обмотки можно назвать началом. Однако при практическом осуществлении обмоток и, особенно при их взаимных соединениях использовать эти понятия совершенно необходимо.

Допустим, что мы имеем два витка, один из которых (1) принадлежит первичной обмотке, а второй (2)-вторичной (рисунок 2, а). Оба витка сцеплены с одним и тем же магнитным потоком Ф 0 . Направления наводимых в витках эдс (в данный момент времени) показаны стрелками. Условимся называть левые зажимы началами, а правые — концами витков и обозначим их соответственно А и а, X и х. При таком обозначении зажимов мы должны считать, что эдс E 1 и Е 2 в витках совпадают по фазе, так как в любой момент времени они направлены одинаково: или от начала (А и а) к концу (X и х), или от конца (X и х) к началу (А и а).


а — эдс E 1 и Е 2 совпадают по фазе; б — эдс E 1 и Е 2 сдвинуты по фазе на 180°; 1 — виток первичной обмотки; 2 — виток вторичной обмотки

Рисунок 2 — Угловое смещение векторов электродвижущих сил в зависимости от обозначения концов обмотки

Допустим теперь, что мы изменили во вторичной обмотке обозначения начала и конца витка (рисунок 2, б). Никакого изменения физического процесса наведения эдс не произойдет, но по отношению к концам витка направление эдс изменится на противоположное, т. е. она будет направлена не от начала к концу, а наоборот — от конца (х) к началу (а). Поскольку в витке 1 ничего не изменилось, мы должны считать, что эдс E 1 и Е 2 сдвинуты по фазе на 180°. Таким образом, простое изменение обозначений концов равносильно угловому смещению вектора эдс в обмотке на 180°.

Однако направление эдс может измениться и в том случае, когда начала и концы первичной и вторичной обмоток располагаются одинаково. Дело в том, что обмотки трансформатора могут выполняться правыми и левыми. Обмотку называют правой, если ее витки при намотке располагают по часовой стрелке, т. е. укладывают по правой винтовой линии (рисунок 3, верхняя обмотка). Обмотку называют левой, если ее витки при намотке располагают против часовой стрелки, т. е. укладывают по левой винтовой линии (рисунок 3, нижняя обмотка).

Рисунок 3 — Угловое смещение векторов ЭДС в зависимости от направления намотки обмоток

Как видно из рисунка, обе обмотки имеют одинаковое обозначение концов. Благодаря тому, что обмотки пронизываются одним и тем же потоком, в каждом витке направление эдс будет одинаковым. Однако из-за разной намотки направление суммарной эдс всех последовательно соединенных витков в каждой обмотке различно: в первичной эдс направлена от начала А к концу X, а во вторичной — от конца х к началу а. Итак, даже при одинаковом обозначении концов эдс первичной и вторичной обмоток могут быть смещены на угол 180°.

У однофазного трансформатора векторы эдс обмоток могут или совпадать, или быть противоположно направленными (рисунок 4, а, б). Если такой трансформатор работает один, то для потребителей совершенно безразлично, как направлены эдс в его обмотках. Но если три однофазных трансформатора работают вместе на линию трехфазного тока, то для правильной работы необходимо, чтобы в каждом из них векторы эдс были направлены или как показано на рисунке 4, а, или как показано на рисунке 4, б.


а, б — однофазных; в — трехфазных

В такой же степени это относится и к каждому трехфазному трансформатору. Если в первичных обмотках эдс во всех фазах имеют одинаковое направление, то и во вторичных обмотках направление эдс должно быть обязательно одинаковым (рисунок 4, в). Очевидно, что у вторичных обмоток направление намотки и обозначение концов должны быть также одинаковыми.

При ошибочной насадке обмотки с другим направлением намотки или при неправильном соединении концов напряжение, получаемое потребителями, резко уменьшится, а нормальная работа нарушится. Особенно неблагоприятные условия возникают в случае, если от одной сети работают одновременно несколько трансформаторов, у которых сдвиги фаз между линейными эдс различны. Чтобы избежать нарушений в работе потребителей, следует иметь трансформаторы с какими-то определенными угловыми смещениями векторов эдс обмоток.

Направления векторов эдс и угловые смещения между ними принято характеризовать группами соединения обмоток. На практике угловое смещение векторов эдс обмоток НН и СН по отношению к векторам эдс обмотки ВН обозначают числом, которое, будучи умножено на 30°, дает угол отставания векторов. Это число называют группой соединения обмоток трансформатора.

Так, при совпадении векторов эдс обмоток по направлению (угловое смещение 0°) получается группа соединения 0 (рисунок 4, а). Угловое смещение 180° (рисунок 4, б) соответствует группе 6 (30 х 6=180°). Как мы видели, в обмотках однофазных трансформаторов могут быть только такие угловые смещения, поэтому у них возможны только 0-я и 6-я группы соединений. Соединения обмоток однофазных трансформаторов для краткости обозначают I/I — 0 и I/I — 6.

В трехфазных трансформаторах, обмотки которых могут соединяться в звезду или треугольник, возможно образование 12 различных групп со сдвигом фаз векторов линейных эдс от 0 до 360° через 30°. Из двенадцати возможных групп соединений в России стандартизованы две группы: 11-я и 0-я со сдвигом фаз 330 и 0°.

Рассмотрим в качестве примера схемы соединений Y/Y и Y/Δ (рисунок 5, а, б). Обмотки, расположенные на одном стержне, изобразим одну под другой; намотку всех обмоток (первичных и вторичных) примем одинаковой; направления фазных эдс показаны стрелками.

Рисунок 5 — Получение группы соединений в схеме звезда — звезда (а) и звезда — треугольник (б)

Построим векторную диаграмму эдс первичной обмотки (рисунок 5, а) так, чтобы вектор эдс фазы С располагался горизонтально. Соединив концы векоторов А и В, получим вектор линейной эдс Е АВ (АВ). Построим векторную диаграмму эдс вторичной обмотки. Поскольку направления эдс первичной и вторичной обмоток одинаковы, векторы фазных эдс вторичной обмотки строят параллельно соответствующим векторам первичной обмотки. Соединив точки а и b и пристроив вектор Е ab (ab) к точке А, убеждаемся, что угловое смещение между линейными эдс первичной и вторичной обмоток равно 0. Итак, в первом примере группа соединения обмоток 0. Это обозначают так: Y/Y н -0, что читается «звезда с выведенной нейтралью».

При рассмотрении второго примера (рисунок 5, б) видим, что векторная диаграмма эдс первичной обмотки построена так же, как и в предыдущем примере. При построении векторной диаграммы эдс вторичной обмотки следует помнить, что при соединении в треугольник фазные и линейные эдс совпадают как по величине, так и по направлению.

Строим вектор эдс фазы с, направляя его параллельно вектору С первичной обмотки. Конец фазы с (точка z) соединяется с началом фазы b, поэтому от конца вектора с проводим вектор эдс фазы b параллельно вектору В. Конец фазы b соединяется с началом фазы а, поэтому от конца вектора b (точки у) проводим вектор эдс фазы а параллельно вектору А. В получившемся замкнутом треугольнике abc вектор ab — это линейная эдс Е ab . Пристроив вектор Е ab к точке А, убеждаемся, что он сдвинут по отношению к вектору Е АВ на угол 30° в сторону опережения. Следовательно, вектор Е ab отстает на 330° (30° х 11 = 330°) от вектора эдс обмотки ВН. Итак, в этом примере группа соединения обмоток 11. Это обозначается так: Y/Δ -11, что читается: «звезда — треугольник — одиннадцать».

В трехобмоточном трансформаторе группа соединения обмоток определяется аналогично; при этом обмотки рассматриваются попарно: первичная и одна из двух других. Если встречается обозначение Y н /Y/Δ — 0 — 11, то прочитать его надо так: «звезда с выведенной нейтралью — звезда — треугольник — нуль — 11». Это означает, что у рассматриваемого трехобмоточного трансформатора обмотка ВН соединена в звезду с выведенной нулевой точкой, обмотка СН — в звезду, обмотка НН — в треугольник, группа соединения обмоток ВН и СН — нуль, обмоток ВН и НН — 11.

Мы рассмотрели только две группы соединения — 0 и 11. Меняя обозначения концов (путем кругового перемещения обозначений), можно получить другие группы от 1 до 10. Однако эти группы не нашли распространения и встречаются очень редко. В России стандартизованы только три группы: Y/Y — 0, Y/Δ — 11 для трехфазных трансформаторов, I/I — 0 — для однофазных трансформаторов.

Группа соединений обмоток трансформатора характеризует взаимную ориентацию напряжений первичной и вторичной обмоток. Изменение взаимной ориентации этих напряжений осуществляется соответствующей перемаркировкой начал и концов обмоток.

Стандартные обозначения начал и концов обмоток высокого и низкого напряжения показаны на рис.1.

Рассмотрим вначале влияние маркировки на фазу вторичного напряжения по отношению к первичному на примере однофазного трансформатора (рис. 2 а).

Обе обмотки расположены на одном стержне и имеют одинаковое направление намотки. Будем считать верхние клеммы началами, а нижние — концами обмоток. Тогда ЭДС Ё1 и E2 будут совпадать по фазе и соответственно будут совпадать напряжение сети U1 и напряжение на нагрузке U2 (рис. 2 б). Если теперь во вторичной обмотке принять обратную маркировку зажимов (рис. 2 в), то по отношению к нагрузке ЭДС Е2 меняет фазу на 180°. Следовательно, и фаза напряжения U2 меняется на 180°.

Таким образом, в однофазных трансформаторах возможны две группы соединений, соответствующих углам сдвига 0 и 180°. На практике для удобства обозначения групп используют циферблат часов. Напряжение первичной обмотки U1 изображают минутной стрелкой, установленной постоянно на цифре 12, а часовая стрелка занимает различные положения в зависимости от угла сдвига между U1 и U2. Сдвиг 0° соответствует группе 0, а сдвиг 180° — группе 6 (рис. 3).

В трехфазных трансформаторах можно получить 12 различных групп соединений обмоток. Рассмотрим несколько примеров.

Пусть обмотки трансформатора соединены по схеме Y/Y (рис. 4). Обмотки, расположенные на одном стержне, будем располагать одну под другой.

Зажимы А и а соединим для совмещения потенциальных диаграмм. Зададим положение векторов напряжений первичной обмотки треугольником АВС. Положение векторов напряжений вторичной обмотки будет зависеть от маркировки зажимов. Для маркировки на рис. 4а, ЭДС соответствующих фаз первичной и вторичной обмоток совпадают, поэтому будут совпадать линейные и фазные напряжения первичной и вторичной обмоток (рис. 4, б). Схема имеет группу Y/Y — О.

Изменим маркировку зажимов вторичной обмотки на противоположную (рис. 5. а). При перемаркировке концов и начал вторичной обмотки фаза ЭДС меняется на 180°. Следовательно, номер группы меняется на 6. Данная схема имеет группу Y/Y — б.

На рис. 6 представлена схема, в которой по сравнению со схемой рис 4 выполнена круговая перемаркировка зажимов вторичной обмотки (а→b , b→c, с→a). При этом фазы соответствующих ЭДС вторичной обмотки сдвигаются на 120° и, следовательно, номер группы меняется на 4.

Схемы соединений Y/Y позволяют получить четные номера групп, при соединении обмоток по схеме Y/Δ номера групп получаются нечетными. В качестве примера рассмотрим схему, представленную на рис. 7. В этой схеме фазные ЭДС вторичной обмотки совпадают с линейными, поэтому треугольник аbс поворачивается на 30° против часовой стрелки по отношению к треугольнику АВС. Но так как угол между линейными напряжениями первичной и вторичной обмоток отсчитывается по часовой стрелке, то группа будет иметь номер 11.

Из двенадцати возможных групп соединений обмоток трехфазных трансформаторов стандартизованы две: Y/Y — 0 и Y/Δ-11. Они, как правило, и применяются на практике.

При параллельной работе трансформаторов первичные их обмотки присоединяют к общей питающей сети, а вторичные к общей сети, предназначенной для электроснабжения приемников электрической энергии.

Области применения разных схем соединения обмоток

СИЛОВЫЕ ТРАНСФОРМАТОРЫ 10(6)/0,4 КВ

ОБЛАСТИ ПРИМЕНЕНИЯ РАЗНЫХ СХЕМ СОЕДИНЕНИЯ ОБМОТОК

Отсутствие у изготовителей и заказчиков четкого представления о принципиальных отличиях свойств силовых трансформаторов малой мощности с разными схемами соединения обмоток приводит к ошибкам в их применении. Причем неправильный выбор схемы соединения трансформаторных обмоток не только ухудшает технические показатели электроустановок и снижает качество электроэнергии, но и приводит к серьезным авариям.
Об этом напоминают нижегородские проектировщики Алевтина Ивановна Федоровская и Владимир Семенович Фишман, которые в своем материале акцентируют внимание на разнице в реакции трансформаторов на несимметричные токи, содержащие составляющую нулевой последовательности.

СХЕМЫ СОЕДИНЕНИЯ ОБМОТОК И СВОЙСТВА ТРАНСФОРМАТОРОВ

В соответствии с ГОСТ 11677-85 [1] силовые трансформаторы 10(6)/0,4 кВ мощностью от 25 до 250 кВА могут изготавливаться со следующими схемами соединения обмоток:

«звезда/звезда» – Y/Yн;

«треугольник–звезда» – Д/Yн;

«звезда–зигзаг» – Y/Zн.

Принципиальное отличие технических характеристик трансформаторов с различными схемами соединений обмоток заключается в разной реакции на несимметричные токи, содержащие составляющую нулевой последовательности. Это прежде всего однофазные сквозные короткие замыкания, а также рабочие режимы с неравномерной загрузкой фаз. 
Как известно, силовые трансформаторы 6(10)/0,4 кВ имеют трехстержневой стальной сердечник, на каждом стержне которого располагаются первичная и вторичная обмотки соответствующей фазы – А, В и С. Магнитные потоки трех фаз в симметричных режимах работы циркулируют в стальном сердечнике трансформатора и за его пределы не выходят. 
Что происходит при нарушении симметрии с преобладанием нагрузки одной из фаз на стороне 0,4 кВ? Такие режимы работы исследуются с использованием теории симметричных составляющих [2]. Согласно этой теории любой несимметричный режим работы трехфазной сети представляется в виде геометрической суммы трех симметричных составляющих тока и напряжения: это составляющие прямой, обратной и нулевой последовательностей.
Рассмотрим режим максимальной однофазной несимметрии – режим однофазного короткого замыкания (ОКЗ) на стороне 0,4 кВ трансформатора со схемой соединения обмоток Д/Yн. 
Картина токов симметричных составляющих в обмотках в этом режиме представлена на рис. 1. В неповрежденных фазах на стороне 0,4 кВ геометрическая сумма трех симметричных составляющих тока равна нулю (рабочей нагрузкой фаз пренебрегаем), а в поврежденной фазе эта сумма максимальна и равна току ОКЗ. Его величина определяется известной формулой:

 

где Uл – линейное напряжение;
R1, R0, X1, Х0 – соответственно активные и реактивные сопротивления прямой и нулевой последовательности.

СОПРОТИВЛЕНИЯ ПРЯМОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Сопротивления прямой последовательности R1 и X1 трансформаторов с разными схемами соединения обмоток определяются одними и теми же формулами и отличаются незначительно:

Заглянув в каталоги, нетрудно убедиться, что входящие в эти формулы известные величины Ркз и Uк от схем соединения обмоток трансформатора практически не зависят, а следовательно, от них не зависят и сопротивления прямой последовательности. 
В отличие от этих сопротивлений, сопротивления нулевой последовательности трансформаторов с разными схемами соединения обмоток отличаются принципиально.

СОПРОТИВЛЕНИЯ НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Рассмотрим картину векторов токов и магнитных потоков в трансформаторе со схемой соединения обмоток Д/Yн (рис. 2).
В таких трансформаторах токи прямой, обратной и нулевой последовательностей протекают как в первичной, так и во вторичной обмотках. При этом токи нулевой последовательности в первичной обмотке замыкаются внутри нее и в сеть не выходят. Создаваемые токами нулевой последовательности первичных и вторичных обмоток намагничивающие силы (ампер-витки) направлены встречно и почти полностью компенсируют друг друга, что обуславливает небольшую величину реактивных сопротивлений трансформатора. При этом сопротивления прямой и нулевой последовательностей приблизительно равны: R1 = R0; Х1 = Х0.
В трансформаторах со схемой соединения обмоток Y/Zн в аналогичном режиме ОКЗ токи нулевой последовательности протекают лишь по вторичной обмотке трансформатора, однако магнитного потока нулевой последовательности они не создают, что объясняется особенностью схемы Zн – «зигзаг». 
Эта особенность состоит в том, что на каждом стержне трансформатора расположено по одной вторичной полуобмотке двух разных фаз (рис. 3). В режиме ОКЗ намагничивающие силы, создаваемые токами нулевой последовательности в этих полуобмотках, направлены встречно и друг друга взаимно компенсируют. При этом токи нулевой последовательности в первичной обмотке отсутствуют. В таких трансформаторах сопротивления нулевой последовательности оказываются меньше сопротивлений прямой последовательности: R0 < R1; Х0 < Х1.

Рис. 1. Токи симметричных составляющих в обмотках трансформатора в режиме однофазного короткого замыкания

IA21, IA22, IA20, IB21, IB22, IB20, IC21, IC22, IC20 – токи фаз А, В, С прямой, обратной и нулевой последовательностей вторичной обмотки;
IA11, IA12, IA10, IB11, IB12, IB10, IC11, IC12, IC10 – токи фаз А, В, С прямой, обратной и нулевой последовательностей первичной обмотки.

Рис. 2. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Д/Yн

Рис. 3. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Zн 

Как следует из формулы (1), это обеспечивает большую величину тока ОКЗ у трансформаторов со схемами Y/Zн по сравнению с трансформаторами со схемами Д/Yн.
Теперь обратимся к трансформаторам со схемой соединения обмоток Y/Yн. Как известно, в обмотках, соединенных в звезду без выведенной нулевой точки, токи нулевой последовательности протекать не могут. Поэтому в режиме ОКЗ токи этой последовательности протекают только во вторичной обмотке трансформатора.
Совпадающие по фазе магнитные потоки нулевой последовательности, создаваемые токами вторичной обмотки, выходят за пределы магнитного сердечника и замыкаются через металлический кожух трансформатора (рис. 4). Это определяет значительно большую величину сопротивлений нулевой последовательности таких трансформаторов: R0 >> R1; X0 >> X1.

Рис. 4. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Yн

Следует отметить, что в отличие от сопротивлений прямой последовательности трансформаторов, которые можно рассчитать, сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн расчету не поддаются. Их можно определить только экспериментально. Величина этих сопротивлений во многом зависит от конструкции кожуха трансформатора, от величины зазоров между сердечником и кожухом и т.п. 
Схема замера сопротивлений нулевой последовательности приведена в ГОСТ 3484.1-88 [3]. К сожалению, в этом документе указано, что такие замеры предприятия-производители проводят по просьбе заказчиков. Вероятно, в последние годы таких просьб от заказчиков не поступает, а изготовители эти замеры самостоятельно не производят, считая, что в них нет необходимости. В результате проектировщики при выполнении расчетов пользуются старыми справочными данными. Однако использовать устаревшую информацию надо чрезвычайно осторожно, ведь конструкции современных трансформаторов, в частности кожухов, а также материалы, из которых они изготовлены, существенно изменились.
Кроме того, имеющиеся на сегодня данные по сопротивлениям нулевой последовательности трансформаторов крайне скудны и противоречивы. Так, согласно замерам Минского трансформаторного завода, выполненным много лет назад, реактивные сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн превышают сопротивления прямой последовательности в среднем в 10 раз. В то же время в ГОСТ 3484.1-88 имеется фраза о том, что эти сопротивления могут отличаться на два порядка. И этим сегодня противоречия не исчерпываются[4].

ПОЧЕМУ НЕОБХОДИМО ЗНАТЬ РЕАЛЬНЫЕ ЗНАЧЕНИЯ СОПРОТИВЛЕНИЙ

Реальные значения сопротивлений нулевой последовательности знать необходимо, поскольку они определяют величину тока ОКЗ. Чем больше эти сопротивления, тем меньше ток ОКЗ, соответственно труднее осуществить защиту трансформатора. 
В нормальных режимах работы большие сопротивления нулевой последовательности при неравномерной загрузке фаз трансформатора на стороне 0,4 кВ приводят к ухудшению качества электроэнергии у потребителя. 
Так, если принять R1 = R0, X1 = X0, что характерно для трансформаторов со схемами соединения обмоток Д/Yн, то получим:

Таким образом, при этих условиях ток ОКЗ на выводах 0,4 кВ трансформатора будет равен току трехфазного КЗ.
Однако, если R0>>R1 и X0>>X1, что характерно для трансформаторов со схемами соединения обмоток Y/Yн, то величина тока ОКЗ оказывается значительно меньше тока трехфазного КЗ, то есть Iокз << I3фкз. Какие при этом могут возникнуть трудности с защитой, особенно если она выполнена со стороны обмотки ВН предохранителями 6(10) кВ, можно показать на конкретном примере. 
На рис. 5 изображена схема подключения трансформатора 100 кВА, 6/0,4 кВ питания собственных нужд (ТСН) ПС 110/35/6 кВ. На ПС с переменным оперативным током такие трансформаторы устанавливаются на ОРУ и подключаются к воздушному вводу, идущему от силового трансформатора к вводной ячейке ЗРУ-6(10) кВ. Защита трансформатора, включая кабель 0,4 кВ до щита 0,4 кВ, выполняется предохранителями 6 кВ. Токи КЗ в конце защищаемой предохранителями зоны – при вводе на щит 0,4 кВ приведены в табл. 1. Как из нее видно, минимальное значение тока КЗ через предохранители 6 кВ имеет место при однофазном замыкании на стороне 0,4 кВ.

Таблица 1. Токи короткого замыкания в конце защищаемой предохранителями зоны за трансформатором 100 кВА, 6/0,4 кВ, Д/Yн при вводе на щит 0,4 кВ

Рис. 5. Схема подключения трансформатора 100 кВА, 6/0,4 кВ для питания собственных нужд ПС 110/35/6 кВ

Согласно существующим рекомендациям по условиям отстройки от броска тока намагничивания трансформатора мощностью 100 кВА номинальный ток предохранителей принимается равным Iн.пр = (2 ÷ 3) Iн.тр. В данном случае Iн.пр  2 ·10 А  20. Принимаем Iн.пр = 20 А.

Минимальный отключаемый ток предохранителем типа ПКТ-6 кВ, 20 А согласно каталожным данным составляет Iмин.откл.пр = 240 А, что значительно больше токов КЗ, приведенных в табл. 1.
Таким образом, защита предохранителями типа ПКТ 6 кВ оказывается нечувствительной. Более того, при протекании тока КЗ ниже минимально отключаемого, предохранитель не только не защищает оборудование, но и разрушается сам, вызывая аварию. 
В качестве защитного аппарата можно рассмотреть возможность использования предохранителей зарубежных фирм, например марки Merlin Gerin. Номинальный ток предохранителя специалисты компании рекомендуют выбирать из условия Iпр. 0,1с  12 Iном.тр.Пользуясь времятоковой зависимостью, приведенной в [5], определяем, что этому условию удовлетворяет предохранитель Fusarc c номинальным током 20 А, минимальный ток отключения которого равен 55 А. Казалось бы, этот предохранитель надежно защищает электрооборудование, т.к. минимально отключаемый им ток меньше минимального тока КЗ: 62 А  55 А. Однако время отключения данным предохранителем тока КЗ, равного 62 А, составляет 7 с. При таком длительном времени необходимо учитывать эффект спада тока, вызванный увеличением активного сопротивления кабеля вследствие его нагрева [6]. В результате спада тока его значение приближается к минимальному току отключения предохранителя –55 А, что делает защиту ненадежной.
Улучшить надежность защиты можно путем применения силового трансформатора 6/0,4 кВ со схемой соединения обмоток Y/Zн. В этом случае минимальный ток короткого замыкания через предохранители увеличивается до 80 А, а время его отключения предохранителем сокращается до 0,6 с и защита становится достаточно надежной.
Если же в рассмотренном примере будет применен трансформатор со схемой соединения обмоток Y/Yн, то минимальный ток КЗ через предохранители составит лишь 22 А. Очевидно, что защитить электрооборудование предохранителями 6 кВ при таком токе невозможно. Недостатки трансформаторов со схемой соединения обмоток Y/Yн проявляются и в нормальных режимах работы при неравномерной загрузке фаз. Потери напряжения в более загруженной фазе могут резко возрасти по сравнению с менее за-груженными фазами, особенно при большой загрузке трансформатора и низком cos f нагрузки.
Однако означает ли всё вышесказанное, что трансформаторы со схемой соединения обмоток Y/Yн не должны изготавливаться вообще? Представляется, что это не так. Не всегда большая величина сопротивления нулевой последовательности трансформатора является недостатком. Например, при применении трансформаторов более 1000 кВА может возникнуть проблема устойчивости однофазной коммутационной аппаратуры 0,4 кВ к току ОКЗ. В этом случае большая величина сопротивления нулевой последовательности трансформатора со схемой Y/Yн поможет решить эту проблему.
Что же касается защиты таких трансформаторов, то она решается с помощью релейной защиты и выключателя 6(10) кВ, а с низкой стороны – с помощью вводного автомата.

ВЫВОДЫ

Для трансформаторов малой мощности (от 25 до 250 кВА), защищаемых предохранителями со стороны ВН, безусловное преимущество имеет схема соединения обмоток Y/Zн. Несколько меньший эффект дает схема Д/Yн. Схему Y/Yн для таких трансформаторов применять не следует.
Схема соединения обмоток трансформаторов Y/Yн может применяться в сравнительно редких случаях для более мощных трансформаторов при необходимости ограничения тока однофазного КЗ с целью повышения устойчивости коммутационной аппаратуры.
Предприятиям-изготовителям силовых трансформаторов следует в обязательном порядке производить замеры их сопротивлений нулевой последовательности.

ЛИТЕРАТУРА

1. ГОСТ 11677-85. Трансформаторы силовые. Общие технические условия.
2. Ульянов С.А. Короткие замыкания в электрических системах. – М.: Госэнергоиздат, 1952. – 280 с.
3. ГОСТ 3484.1-88 (СТ СЭВ 1070-78). Трансформаторы силовые. Методы электромагнитных испытаний.
4. Справочник по проектированию электроснабжения, линий электропередачи и сетей / Под ред. Большама Я.М., Круповича В.И., Самовера М.Л. и др. – М.: Энергия, 1975. – 696 с.
5. Каталог на предохранители Fusarc Merlin Gerin (стандарт DIN).
6. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.

По данным: http://www.news.elteh.ru/arh/2006/41/09.php

Схемы соединений обмоток треугольник и звезда для чайников.

Наиболее распространенный вопрос у начинающих изучения устройства трансформаторов или иных электротехнических устройств это «Что такое звезда и треугольник?». Чем же они отличаются и как устроены, попробуем разъяснить в нашей статье. 

Рассмотрим схемы соединений обмоток на примере трехфазного трансформатора. В своем строении он имеет магнитопровод, состоящий из трёх стержней. На каждом стержне есть две обмотки – первичная и вторичная. На первичную подается высокое напряжения, а со вторичной снимается низкое напряжение и идет к потребителю. В условном обозначении схема соединений обозначается дробью (например, Y⁄∆ или Y/D или У/Д), значение числителя – соединение обмотки высшего напряжения (ВН), а значение знаменателя – низшего напряжения (НН).

Каждый стержень имеет как первичную обмотку так и вторичную (три первичных и три вторичных обмотки). У каждой обмотки есть начало и конец. Обмотки можно соединить между собой способом звезда или треугольник. Для наглядности обозначим вышеперечисленное схематически (рис. 1)

При соединении звездой, концы обмоток соединяются вместе, а из начал идут три фазы к потребителю. Из вывода соединений концов обмоток, выводят нейтральный провод N (он же нулевой). В итоге получается четырёх — проводная, трёхфазная система, которая часто встречается вдоль линий воздушных электропередач.(рис. 2)

Преимущества такой схемы соединения в том, что мы можем получить 2 вида напряжения: фазное (фаза+нейтраль) и линейное. В таком соединении линейное напряжение больше фазного в √3 раз. Зная, что фазное напряжение дает нам 220В, то умножив его на √3 = 1,73, получим примерно 380В – напряжение линейное. Но что касается электрического тока, то в этом случае фазный ток равен линейному, т.к. что линейный, что фазный токи одинаково выходят из обмотки, и другого пути у него нет. Так же стоит отметить что только в соединении звезда имеется нейтральный провод, который является «уравнителем» нагрузки, чтобы напряжение не менялось и не скакало.

Рассмотрим теперь соединение обмоток треугольником. Если мы конец фазы А, соединим с началом фазы В, конец фазы В соединим с началом фазы С, а конец фазы С соединим с началом фазы А, то получим схему соединения обмотки треугольником. Т.е. в этой схеме обмотки соединены последовательно. (рис. 3)

В основном такая схема соединения применяется для симметричной нагрузки, где по фазам нагрузка не изменяется. В таком соединении фазное напряжение равно линейному, а вот электрический ток, наоборот, в такой схеме разный. Ток линейный больше фазного тока в √3 раз. Соединение обмотки треугольником обеспечивает баланс ампер-виток для тока нулевой 

последовательности. Простыми словами, схема соединения треугольником обеспечивает сбалансированное напряжение.

Подведем итоги. Для базового определения схем соединения обмоток силовых трансформаторов, необходимо понимать, что разница между этими соединениями состоит в том, что в звезде все три обмотки соединены вместе одним концом каждой из обмоток в одной (нейтральной) точке, а в треугольнике обмотки соединены последовательно. Соединение звезда позволяет нам создавать два вида напряжения: линейное (380В) и фазное (220В), а в треугольнике только 380В.

Выбор схемы соединения обмоток зависит от ряда причин:

  • Схемы питания трансформатора
  • Мощности трансформатора
  • Уровня напряжения
  • Асимметрии нагрузки
  • Экономических соображений

Так например, для сетей с напряжением 35 кВ и более выгодно соединить обмотку трансформатора схемой звезда, заземлив нулевую точку. В данном случае получится, что напряжение выводов трансформатора и проводов линии передачи относительно земли будет всегда в √3 раз меньше линейного, что приведёт к снижению стоимости изоляции.

На практике чаще всего встречаются следующие группы соединений: Y/Y, D/Y, Y/D.

Группа соединений обмоток Y/Y (звезда/звезда) чаще всего применяется в трансформаторах небольшой мощности, питающих симметричные трёхфазные электроприборы/электроприемники. Так же иногда применяется в схемах большой мощности, когда требуется заземление нейтральной точки.

Группа соединения обмоток D/Y (треугольник/звезда) применяется, в основном в понижающих трансформаторах больших мощностей. Чаще всего трансформаторы с таким соединением работают в составе систем питания токораспределительных сетей низкого напряжения. Как правило, нейтральная точка звезды заземляется, для использования как линейного, так и фазного напряжений.

Группа соединений обмоток Y/D (звезда/треугольник) используется, в основном, в главных трансформаторах больших силовых станций и подстанций, не служащих для распределения.

Обзор подключения трансформатора треугольником

GE Паспортная табличка трансформатора треугольником

Подключение трансформатора треугольником

В этом типе подключения первичный преобразователь подключен по схеме треугольник , а вторичный ток подключен по схеме звезда .

Соединение трансформатора треугольником

В основном это соединение используется для повышения напряжения, то есть в начале системы передачи высокого напряжения. Можно отметить, что существует сдвиг фазы на 30 ° между напряжением первичной линии и напряжением вторичной линии в качестве опережения.

Фазовый сдвиг на 30 ° между напряжением первичной линии и напряжением вторичной линии

Ключевые моменты

  1. В качестве первичного по схеме треугольника:
  2. Линейное напряжение на первичной стороне = фазное напряжение на первичной стороне.
  3. Коэффициент трансформации сейчас (K) = Напряжение вторичной фазы / Напряжение первичной фазы
  4. Напряжение вторичной фазы = K X Напряжение первичной фазы.
  5. Как вторичный в соединении звездой
  6. Линейное напряжение на вторичной стороне = √3 X Фазное напряжение на вторичной стороне.Итак,
  7. Линейное напряжение на вторичной стороне = √3 X K X Первичное фазное напряжение.
  8. Линейное напряжение на вторичной стороне = √3 X K X Первичное линейное напряжение.
  9. Имеется сдвиг фазы на +30 или -30 градусов между напряжением вторичной фазы и напряжением первичной фазы

Преимущества соединения треугольником

Площадь поперечного сечения обмотки меньше на первичной стороне :
На первичной стороне из-за соединения треугольником требуется меньшее сечение обмотки.

Используется в трехфазной четырехпроводной системе:
На вторичной стороне имеется нейтраль, поэтому ее можно использовать для трехфазной четырехпроводной системы питания.

Нет искажений вторичного напряжения:
Нет искажений из-за составляющих третьей гармоники.

Обработка больших несбалансированных грузов:
Большие несбалансированные грузы могут обрабатываться без каких-либо затруднений.

Изоляция заземления между первичной и вторичной обмотками:
Если предположить, что нейтраль вторичной цепи, подключенной по схеме Y, заземлена, нагрузка, подключенная по схеме «фаза-нейтраль», или замыкание между фазой и землей создает два равных и противоположных тока. в двух фазах первичной цепи без тока заземления нейтрали в первичной цепи.

Следовательно, в отличие от соединения Y-Y, замыкания между фазой и землей или несимметрия тока во вторичной цепи не повлияют на защитное реле заземления, примененное к первичной цепи. Эта функция обеспечивает правильную координацию защитных устройств и является очень важным соображением при проектировании.

Нейтраль заземленной Y-цепи иногда называют заземляющей батареей, поскольку она обеспечивает локальный источник тока заземления во вторичной обмотке, изолированной от первичной цепи.

Подавление гармоник:
Ток намагничивания должен содержать нечетные гармоники, чтобы индуцированные напряжения были синусоидальными, а третья гармоника является доминирующей гармонической составляющей. В трехфазной системе токи третьей гармоники всех трех фаз находятся в фазе друг с другом, поскольку они являются токами нулевой последовательности. При подключении трансформатора Y-Y единственный путь для тока третьей гармоники — через нейтраль.

Однако в соединении ∆-Y токи третьей гармоники, будучи равными по амплитуде и синфазно друг с другом, могут циркулировать по пути, образованному соединенной обмоткой ∆.То же верно и для других гармоник нулевой последовательности.

Банк заземления:
Он обеспечивает локальный источник тока заземления на вторичной обмотке, изолированной от первичной цепи. Предположим, что незаземленный генератор питает простую радиальную систему через трансформатор ∆-Y с заземленной нейтралью на вторичной обмотке, как показано на рисунке. Генератор может питать нагрузку с однофазной нейтралью через заземленный Y-трансформатор.

Давайте называть низковольтную сторону генератора трансформатора вторичной, а сторону высоковольтной нагрузки трансформатора — первичной.Обратите внимание, что каждая первичная обмотка магнитно связана со вторичной обмоткой.

Обмотки с магнитной связью протянуты параллельно друг другу:

Обмотки с магнитной связью

Согласно второму закону трансформатора, ток нагрузки между фазой и землей в первичной цепи отражается как ток во вторичной обмотке переменного тока. Никакие другие токи не должны протекать в обмотках A-C или B-C на стороне генератора трансформатора для уравновешивания ампер-витков.

Простое реле защиты заземления:
Защитное реле НАМНОГО проще на трансформаторе треугольник-звезда, поскольку замыкания на землю на вторичной стороне изолированы от первичной, что значительно упрощает координацию.Если на трансформаторе, соединяющем треугольник и звезду, имеется реле на входе, можно предположить, что любой ток нулевой последовательности возникает от замыкания на землю в первичной обмотке, что обеспечивает очень чувствительную защиту от замыкания на землю.

В схеме «звезда-звезда» короткое замыкание на землю со стороны низкого уровня вызывает ток замыкания на землю в первичной цепи, что затрудняет координацию. Фактически, защита от замыканий на землю является одним из основных преимуществ устройств, соединенных треугольником.


Недостатки соединения «треугольник»

В этом типе соединения вторичное напряжение не совпадает по фазе с первичным.Следовательно, невозможно использовать это соединение параллельно с трансформатором, подключенным по схеме звезда-звезда или треугольник.

Одна проблема, связанная с этим подключением, заключается в том, что вторичное напряжение смещено на 30 0 относительно первичного напряжения. Это может вызвать проблемы при параллельном подключении 3-фазных трансформаторов, поскольку вторичные напряжения трансформаторов должны быть синфазными для параллельного включения. Следовательно, мы должны обращать внимание на эти сдвиги.

Если вторичная обмотка этого трансформатора должна быть соединена параллельно с вторичной обмоткой другого трансформатора без сдвига фаз, возникнет проблема.


Приложения

Обычно используется в повышающем трансформаторе

Как, например, в начале линии передачи HT. В этом случае нейтральная точка стабильна и не будет плавать в случае несбалансированной нагрузки. Нет искажения потока, потому что наличие Δ -связи обеспечивает путь для составляющих третьей гармоники.

Коэффициент линейного напряжения в √3 раза больше коэффициента поворота трансформатора, а вторичное напряжение опережает первичное на 30 °. В последние годы это устройство стало очень популярным для распределительных сетей, поскольку оно обеспечивает 3-х, 4-х проводную систему.


Обычно используется в коммерческих, промышленных и жилых районах с высокой плотностью населения.

Для питания трехфазных распределительных систем.

Примером может служить распределительный трансформатор с треугольником первичной обмотки, работающий от трех фаз 11 кВ без необходимости в нейтрали или заземлении, и вторичной обмоткой звезды (или звезды), обеспечивающей трехфазное питание при 400 В с внутренним напряжением 230 между каждой фазой и заземленной нейтралью.


Используется как трансформатор генератора

Трансформатор ∆-Y используется повсеместно для подключения генераторов к системам передачи по двум очень важным причинам.

Прежде всего, генераторы обычно оснащены чувствительной релейной защитой от замыканий на землю. Трансформатор ∆-Y является источником токов заземления для нагрузок и неисправностей в системе передачи, однако защита генератора от замыканий на землю полностью изолирована от токов заземления на первичной стороне трансформатора.

Во-вторых, вращающиеся машины могут быть буквально.

Подключение трехфазного трансформатора | electricaleasy.com

Подключение трехфазного трансформатора В трехфазной системе три фазы могут быть подключены по схеме звезды или треугольника.Если вы не знакомы с этими конфигурациями, изучите следующее изображение, которое объясняет конфигурацию звезды и треугольника. В любой из этих конфигураций между любыми двумя фазами будет разность фаз 120 °.

Подключение трехфазного трансформатора

Обмотки трехфазного трансформатора могут быть соединены в различных конфигурациях: (i) звезда-звезда, (ii) треугольник-треугольник, (iii) звезда-треугольник, (iv) треугольник-звезда, (v) открытый треугольник и (vi) Связь со Скоттом. Эти конфигурации объясняются ниже.
Звезда-звезда (Y-Y)
  • Соединение звезда-звезда обычно используется для небольших высоковольтных трансформаторов. Из-за соединения звездой количество необходимых витков на фазу уменьшается (поскольку фазное напряжение при соединении звездой составляет только 1 / √3 раз от напряжения сети). Таким образом, уменьшается и количество необходимой изоляции.
  • Отношение линейных напряжений на первичной и вторичной сторонах равно коэффициенту трансформации трансформаторов.
  • Линейные напряжения на обеих сторонах синфазны.
  • Это соединение можно использовать только в том случае, если подключенная нагрузка сбалансирована.
Дельта-дельта (Δ-Δ)
  • Это соединение обычно используется для больших низковольтных трансформаторов. Количество необходимых фаз / витков относительно больше, чем для соединения звезда-звезда.
  • Отношение линейных напряжений на первичной и вторичной стороне равно коэффициенту трансформации трансформаторов.
  • Это соединение можно использовать даже при несимметричной нагрузке.
  • Еще одним преимуществом этого типа подключения является то, что даже если один трансформатор отключен, система может продолжать работать в режиме открытого треугольника, но с уменьшенной доступной мощностью.
Звезда-треугольник ИЛИ звезда-треугольник (Y-Δ)
  • Первичная обмотка соединена звездой звезда (Y) с заземленной нейтралью, а вторичная обмотка соединена треугольником.
  • Это соединение в основном используется в понижающем трансформаторе на стороне подстанции линии передачи.
  • Отношение вторичного напряжения к первичной в 1 / √3 раза больше коэффициента трансформации.
  • Между напряжениями первичной и вторичной сети имеется сдвиг на 30 °.
Дельта-звезда ИЛИ треугольник-звезда (Δ-Y)
  • Первичная обмотка соединена треугольником, а вторичная обмотка соединена звездой с заземленной нейтралью. Таким образом, его можно использовать для обеспечения 3-фазной 4-проводной связи.
  • Этот тип подключения в основном используется в повышающих трансформаторах в начале линии передачи.
  • Отношение вторичного напряжения к первичной линии в √3 раз больше коэффициента трансформации.
  • Между напряжениями первичной и вторичной сети имеется сдвиг на 30 °.
Вышеуказанные конфигурации подключения трансформатора показаны на следующем рисунке.

Открытое соединение треугольником (V-V)

Используются два трансформатора, а первичные и вторичные соединения выполняются, как показано на рисунке ниже. Открытое соединение треугольником может использоваться, когда один из трансформаторов в группе Δ-Δ отключен, и обслуживание должно продолжаться до тех пор, пока неисправный трансформатор не будет отремонтирован или заменен.Его также можно использовать для небольших трехфазных нагрузок, когда нет необходимости в установке полного блока из трех трансформаторов. Общая допустимая нагрузка при подключении по схеме «открытый треугольник» составляет 57,7%, чем при подключении по схеме «треугольник».

Скотт (Т-Т) соединение

В этом типе подключения используются два трансформатора. Один из трансформаторов имеет центральные отводы как на первичной, так и на вторичной обмотке (который называется главным трансформатором). Другой трансформатор называется трансформатором-тизером.Соединение Скотта также можно использовать для преобразования трех фаз в двухфазное. Подключение выполняется, как показано на рисунке ниже.

Трехфазный трансформатор

— основы и методы подключения

Трехфазные трансформаторы используются в трехфазных цепях для повышения и понижения напряжения в соответствии с потребностями энергосистемы.

Вы знаете, что электроэнергия вырабатывается и передается по трехфазной системе. Трехфазная система имеет значительные преимущества перед другими многофазными системами.В трехфазной цепи напряжение повышается или понижается с помощью трехфазных трансформаторов .

Трехфазные трансформаторы работают так же, как три однофазных трансформатора. Но один трехфазный трансформатор занимает меньше места и весит меньше трех однофазных трансформаторов, предназначенных для той же цели.

Это устройство преобразования электромагнитной энергии, которое не имеет движущихся частей и двух (или более) обмоток, закрепленных друг относительно друга, предназначенное для передачи электрической энергии между цепями или системами за счет электромагнитной индукции.

Два способа подключения трехфазного трансформатора

Трехфазный трансформатор на электрической подстанции может быть построен двумя способами

  1. Путем подходящего соединения блока из трех однофазных трансформаторов
  2. Путем построения трехфазного трансформатора фазовый трансформатор на общей магнитной структуре .

В любом случае обмотки могут быть соединены четырьмя различными способами.

  • Соединение звезда — звезда (Y-Y)
  • Соединение звезда — треугольник (Y-Δ)
  • Соединение треугольник — треугольник (Δ-Δ)
  • Соединение треугольник — звезда (Δ-Y)

1.Блок из трех однофазных трансформаторов

Три одинаковых однофазных трансформатора могут быть соединены в трехфазный трансформатор. Первичная и вторичная обмотки могут быть соединены звездой (Y) или треугольником (D).

Трехфазный трансформатор Банк

Например, , на рисунке ниже показано Y-D соединение трехфазного трансформатора. Первичные обмотки соединены звездой, а вторичные обмотки соединены треугольником.

Трехфазный трансформатор, подключенный по схеме «звезда-треугольник»

Более удобный способ показать это подключение показан ниже.

Простая схема подключения трансформатора звезда-треугольник

Первичная и вторичная обмотки, показанные параллельно друг другу, относятся к одному и тому же однофазному трансформатору. Отношение напряжения вторичной фазы к напряжению первичной фазы — это коэффициент преобразования фазы K.

Коэффициент преобразования фазы, K = напряжение вторичной фазы / напряжение первичной фазы

Ссылаясь на приведенный выше рисунок, линейное напряжение первичной обмотки составляет В , а ток первичной линии — I .

Коэффициент фазового преобразования составляет K = (N 2 / N 1 )

Также показаны вторичное линейное напряжение и линейный ток.

Как упоминалось выше, подключение по схеме Y или ∆ возможно для однофазных трансформаторов, подключенных в блоки. Чрезвычайно важно, чтобы однофазные трансформаторы были тщательно согласованы, когда они собираются вместе, особенно когда используется соединение ∆. Использование несовместимых трансформаторов в соединении ∆ приведет к чрезмерным циркуляционным токам, которые значительно снизят номинальные характеристики батареи или вызовут перегрев.

Преимущества

Изготовление или поставка трехфазного трансформатора с чрезвычайно большой мощностью МВА может оказаться невозможным или непрактичным. Тогда решением может быть блок из трех однофазных трансформаторов, хотя общий размер, вес и стоимость трех однофазных блоков, вероятно, превысят размер, вес и стоимость одного трехфазного блока.

Дополнительным преимуществом схемы блока является то, что отказ одного однофазного блока обычно обходится дешевле, чем отказ более крупного трехфазного блока.

Одна интересная конфигурация для трехфазного блока — открытый соединение дельты широко используется в сельских распределительных системах.В схеме открытого треугольника используются два однофазных трансформатора. Для разомкнутого соединения Y-∆ требуется только две фазы плюс нейтраль на первичной стороне батареи, чтобы создать трехфазное напряжение на вторичной стороне. Это очевидная экономия затрат (в дополнение к отсутствию затрат на третий трансформатор), когда установка находится далеко от трехфазной первичной цепи.

2. Трехфазный трансформатор с одним блоком

В предыдущем разделе мы рассмотрели некоторые способы подключения однофазных трансформаторов в трехфазных и двухфазных системах.Иногда бывает выгодно построить один трехфазный трансформатор вместо использования группы однофазных трансформаторов.

Трехфазный трансформатор

Например, трехфазный трансформатор часто может быть более экономичным в строительстве, заключая одну структуру сердечника и катушки внутри одного бака трансформатора вместо создания трех отдельных структур сердечника и катушки и баков.

Трехфазный трансформатор может быть сконструирован с использованием трех первичных и трех вторичных обмоток на общей магнитной цепи.

Принцип 3-фазного трансформатора

Ниже объясняется основной принцип 3-фазного трансформатора .

Три однофазных трансформатора с сердечником, каждый из которых имеет обмотки (первичную и вторичную) только на одном плече, имеют свои размотанные ветви, объединенные, чтобы обеспечить путь для обратного потока. Первичные и вторичные обмотки могут быть соединены звездой или треугольником.

Конструкция трехфазного трансформатора

Если первичная обмотка запитана от трехфазного источника питания, центральная конечность (т.е.е., размотанная ветвь) несет потоки, создаваемые трехфазными первичными обмотками. Поскольку векторная сумма трех первичных токов в любой момент равна нулю, сумма трех потоков, проходящих через центральный край, должна быть равна нулю. Следовательно, в центральном плече нет потока, и поэтому он может быть устранен.

Данная модификация дает трехфазный трансформатор с трехфазным сердечником. В этом случае любые две ветви будут действовать как обратный путь для потока в третьей ветви.

Например, если поток ϕ в одном плече в какой-то момент, то поток равен ϕ / 2 в противоположном направлении через два других плеча в тот же момент.

Все соединения трехфазного трансформатора выполняются внутри корпуса, при этом для обмотки, соединенной треугольником, выведены три вывода, а для обмотки, соединенной звездой, выведены четыре вывода.

Трехфазный трансформатор с обычным магнитным сердечником также может быть сердечником или оболочкой. Поскольку поток третьей гармоники, создаваемый каждой обмоткой, находится в фазе, предпочтительнее использовать трансформатор оболочечного типа, поскольку он обеспечивает внешний путь для этого потока. Другими словами, формы волны напряжения менее искажены для трансформатора кожухового типа, чем у
для трансформатора с сердечником аналогичного номинала.

Преимущества и недостатки одноуровневого трехфазного трансформатора

Для той же мощности трехфазный трансформатор меньше весит, занимает меньше места и стоит примерно на 20% меньше, чем группа из трех однофазных трансформаторов.Из-за этих преимуществ 3-фазные трансформаторы широко используются, особенно для больших преобразований мощности.

A Недостаток одноблочного трехфазного трансформатора заключается в том, что при выходе из строя одной фазы весь трехфазный блок должен быть выведен из эксплуатации. Когда один трансформатор в группе из трех однофазных трансформаторов выходит из строя, он может быть выведен из эксплуатации, а два других трансформатора могут быть повторно включены для подачи электроэнергии в аварийной ситуации до тех пор, пока не будет произведен ремонт.

Подключение трехфазного трансформатора

Трехфазный трансформатор можно построить, соответствующим образом соединив группу из трех однофазных трансформаторов или одного трехфазного трансформатора. Первичная или вторичная обмотки могут быть соединены звездой (Y) или треугольником (D).

Четыре наиболее распространенных соединения:

  1. Соединение звезда — звезда (YY)
  2. Соединение звезда — треугольник (Y-Δ)
  3. Соединение треугольник — треугольник (Δ-Δ)
  4. Дельта — Соединение звездой (Δ-Y)

Эти четыре соединения показаны на рисунке ниже.На этом рисунке обмотки слева являются первичными обмотками, а обмотки справа — вторичными. Также показаны первичные и вторичные напряжения и токи. Напряжение первичной линии составляет В , а ток первичной линии составляет I . Коэффициент фазового превращения K определяется выражением;

K = Напряжение вторичной фазы / Напряжение первичной фазы = Н 2 / N 1

Некоторые преимущества и недостатки каждого соединения описаны ниже.

Соединение звезда-звезда (Y-Y)

При соединении звезда-звезда (Y-Y) 57,7% (или 3/1) линейного напряжения подается на каждую обмотку , но полный линейный ток течет в каждой обмотке.

Силовые цепи, питаемые от Y-Y группы, часто создают серьезные помехи в цепях связи в непосредственной близости от них. Из-за этого и других недостатков соединение Y-Y используется редко .

Соединение трансформатора звезда-звезда Y-Y

Соединение Y / Y для первичной и вторичной обмоток трехфазного трансформатора показано на рисунке.Линейное напряжение на каждой стороне трехфазного трансформатора в √3 раз больше номинального напряжения однофазного трансформатора.

Основное преимущество соединения Y / Y заключается в том, что у нас есть доступ к нейтральному выводу с каждой стороны, и при желании он может быть заземлен. Без заземления клемм нейтрали работа Y / Y удовлетворительна только при сбалансированной трехфазной нагрузке.

Электрическая изоляция подвергается нагрузке только примерно до 57,7% напряжения сети в трансформаторе с соединением по схеме Y.

Поскольку большинство трансформаторов предназначены для работы на уровне или выше изгиба кривой, такая конструкция вызывает искажение наведенных ЭДС и токов .

Причина в следующем: хотя токи возбуждения все еще сдвинуты по фазе на 120 градусов относительно друг друга, их формы сигналов больше не являются синусоидальными. Следовательно, эти токи не равны нулю. Если нейтраль не заземлена, эти токи вынуждены в сумме равняться нулю. Таким образом, они влияют на формы сигналов наведенных ЭДС.

Соединение «треугольник» (Δ-Δ)

Соединение «треугольник» (Δ-Δ) часто используется для средних напряжений.

Линейное напряжение с обеих сторон равно соответствующему фазному напряжению. Поэтому такое расположение полезно при не очень высоких напряжениях.

Соединение трансформатора треугольником

Преимущество этого соединения состоит в том, что даже при несимметричной нагрузке трехфазные напряжения нагрузки остаются практически одинаковыми.

Недостатком подключения Δ-Δ является отсутствие нейтральной клеммы с обеих сторон.Другой недостаток заключается в том, что электрическая изоляция подвергается нагрузке на сетевое напряжение. Следовательно, для обмотки с соединением по схеме Δ требуется более дорогая изоляция, чем для обмотки с соединением по схеме Y при той же номинальной мощности.

Связь Δ-Δ можно проанализировать теоретически, преобразовав ее в смоделированное соединение Y / Y с помощью преобразований Δ-в-Y.

Еще одно преимущество этого подключения состоит в том, что если один трансформатор будет поврежден или выведен из эксплуатации, оставшиеся два могут работать в так называемом соединении разомкнутого треугольника или V-V .

При такой работе банк по-прежнему обеспечивает трехфазные токи и напряжения в их правильном соотношении фаз, но емкость банка снижается до 57,7% от того, что было со всеми тремя трансформаторами в эксплуатации.

Соединение «звезда-треугольник» (Y-Δ)

Это соединение «звезда-треугольник» (Y-Δ) очень хорошо подходит для понижающих приложений. Ток вторичной обмотки составляет 57,7% от тока нагрузки.

Трехфазный трансформатор, подключенный по схеме «звезда-треугольник» (верх — соединение звездой, низ — соединение треугольником)

На первичной стороне напряжения находятся от линии к нейтрали, тогда как напряжения от линии к линии на вторичной стороне.Следовательно, напряжение и ток в первичной обмотке не совпадают по фазе с напряжением и током во вторичной обмотке.

При соединении звезда-треугольник (Y-Δ) искажение формы волны индуцированного напряжения не так сильно, как в трансформаторе с соединением Y / Y, когда нейтраль не соединена с землей. Причина в том, что искаженные токи в первичной обмотке вызывают циркуляцию тока во вторичной обмотке, соединенной по схеме Δ. Циркулирующий ток действует больше как ток намагничивания и имеет тенденцию исправлять искажения.

Соединение «треугольник» (Δ-Y)

Соединение «треугольник» (Δ-Y) обычно используется для повышения напряжения. Однако сейчас это соединение используется для удовлетворения требований как трехфазной, так и однофазной нагрузки.

Подключение трансформатора треугольник-треугольник

В этом случае мы используем четырехпроводную вторичную обмотку. Однофазные нагрузки обслуживаются тремя цепями фаза-нейтраль. Неизменно предпринимаются попытки распределить однофазные нагрузки почти поровну между тремя фазами.

схема трансформатора со звездой-треугольником

Пускатель двигателя прямого включения состоит из контактора MCCB или автоматического выключателя и реле перегрузки для защиты. 68. Это между обмотками ВН и НН. На приведенной выше векторной диаграмме показано соединение треугольником-звездой, обеспечивающее сбалансированную нагрузку при отстающем коэффициенте мощности cos Φ. Схема подключения 302: переключение по схеме треугольника напрямую на главный автотрансформатор. Вторая часть заключается в повторном подключении трансформатора по схеме звезда-звезда, как показано на схеме соединений 2.Описание. 1. Следовательно, невозможно использовать это соединение параллельно с трансформатором, подключенным по схеме звезда-звезда или треугольник. Найдите максимальную трехфазную нагрузку. Недостатки пускателя со звезды на треугольник 1) Пускатель со звезды на треугольник может быть полезен только для двигателей, у которых есть доступ к шести клеммам двигателя. При этом фазы a1, b1 и c1 закорочены на нейтраль. Трехфазный автоматический трансформатор звезда-звезда с третичным. Схема подключения, принцип действия и характеристика двигателя. Давайте посмотрим на более сложные сценарии трехфазных трансформаторов.(4) Соединение звезда-треугольник: при этом типе соединения первичная обмотка подключается звездой, а вторичная подключается треугольником, как показано на Рис. 5 на странице 6, где показана электрическая схема с элементами, соединенными звездой. линейное напряжение. Затем объясняется, что напряжение фазы звезды составляет просто 10 * 240 В = 2400 В, а напряжение линии звезды составляет sqrt (3) * 2400 В = 4157 В. На приведенных ниже диаграммах трехфазный двигатель будет вращаться в двух направлениях, а именно вперед и назад. Обзор подключения трансформатора звезда-треугольник.Соединение треугольником или проводка; При соединении треугольником трехфазной обмотки все катушки соединены спина к спине. Никакого тока не будет. Схема питания, управления и подключения пускателя звезда-треугольник. Вторичная сторона — соединение треугольником, обозначенное буквой d; ЧИСЛО (11) обозначает сдвиг фаз между ЭДС ВН и НН, выраженный в часах. Следовательно, невозможно использовать это соединение параллельно с трансформатором, подключенным по схеме звезда-звезда или треугольник. Соединение 3-фазного трансформатора звезда-треугольник 13:59 Теория силового трансформатора 6 комментариев В этом типе соединения первичная обмотка подключается звездой, а вторичная — треугольником, как показано на рис.Соединение треугольником В случае соединения треугольником концы обмоток соединяются вместе, как показано на схеме. Рисунок 2: Вывод векторной связи Dy11. В последнем случае из-за длительного времени переключения двигатель замедляется и запускается сразу при полном напряжении (соединение звездой), теряя преимущества стартера при пониженном напряжении. Одна проблема, связанная с этим подключением, заключается в том, что вторичное напряжение … Подключение клемм двигателя в случае звезды и треугольника показано на приведенном выше рисунке, где U1 V1 W1 — это начальная клемма каждой обмотки, а U2 V2 W2 — конец каждой обмотка.В случае трансформатора, подключенного по схеме треугольник, звезда в линии передачи, замыкание на землю на стороне звезды (заземленной) рассматривается как замыкание между линией на стороне треугольника. Как показано на рисунке, U1, V1, W1 или U2, V2, W2, начиная с 6 клемм 3-фазной обмотки, все… 3.- Выполните схему подключения трехфазного трансформатора и его часовой индекс Y- d5; Y-y6, D-y11, и трансформаторы с однофазным на трехфазный полюс, по схеме треугольник, звезда-звезда, открытый треугольник. Заземленная первичная звезда и треугольник вторичной или третичной цепи.Трехфазный трансформатор имеет коэффициент трансформации 1: 1. Описание: Двойной пускатель подключает клеммы двигателя непосредственно к источнику питания. Следовательно, двигатель подвергается действию полного напряжения источника питания. Следовательно, через двигатель течет большой пусковой ток. Или, другими словами, сторона звезды будет опережать сторону треугольника на 30 0. Как показано на приведенном ниже рисунке, существует только три возможных напряжения. В случае заземленной звезды треугольником обратный ток будет ограничен в 3 раза импедансом трансформатора.Соглашение об именах аналогично трансформатору звезда-треугольник. В этом стартере, когда двигатель запускается, двигатель работает по схеме звезды, это означает, прежде всего, что главный контактор и соединитель звезды включены. На рисунке 2 выше показано, как происходит фазовый сдвиг со стороны ВН на сторону НН, путем вычислений вручную. Схема подключения пускателя звезда-треугольник 3-фазного двигателя. Мы видим, что оба конца соединены вместе. Нейтральная точка системы, соединенной звездой, может быть соединена с землей, поэтому в системе соединения звездой могут быть предусмотрены реле и защитные устройства для защиты системы от замыканий на землю.Полуавтоматический запуск с прямым подключением. Проверка полярности и фазового соотношения при номинальном напряжении. Если головки или хвосты трех элементов схемы соединены вместе, что обеспечивает общую точку, такое соединение называется соединением звезды (Y). Фазовый сдвиг трехфазного трансформатора. Не для соединения звезда-треугольник, нет, но если вы пытаетесь подключить трехфазный двигатель, который может быть подключен по схеме звезды или треугольника, к одной фазе, вы МОЖЕТЕ сделать это, используя конденсаторы, или однофазный трехфазный переменный частотный привод.Это лучший способ подключения из всех. Во время пуска главный и звездообразный контакторы остаются замкнутыми и замыкают цепь. В этом типе подключения вторичное напряжение не совпадает по фазе с первичным. При получении трансформатора Delta Star проверьте следующее: 1. На рисунке (b) показана векторная диаграмма первичной и вторичной сторон. Электрическая схема для трехфазного трансформатора 480 277 В на 208 120 В … Jefferson Electric 423 7217 000 Схема электрических соединений трансформатора Разработка и испытание трех систем заземления для защиты микросетей в автономном режиме… Обзор подключения трансформатора звезда-треугольник. Между напряжениями первичной и вторичной сети существует сдвиг фазы на 30 °. Эта конфигурация используется в большинстве систем. В книге, которую я читал, приводится пример трансформатора с первичной обмоткой по схеме звезды и вторичной обмоткой по схеме треугольник с соотношением витков 10/1. Трехфазный трансформатор состоит из трех трансформаторов, отдельных или объединенных с одним сердечником. Здесь мы увидим, как сделать схему питания и схему управления. Все стартеры могут быть использованы.Сравнение соединений звезды и треугольника. Это лучший способ подключения из всех. Фазовое соединение трансформатора звезда-треугольник, треугольник-звезда, звезда-звезда, треугольник-треугольник и зиззаг для различных фазовых сдвигов. 2. Последовательно соединяя все… Пускатель звезда-треугольник представляет собой пусковое устройство электродвигателя, которое обычно используется для двигателей большого размера для преодоления некоторых технических ограничений. Для упрощения сложной сети часто требуется преобразование из дельты в звезду или из звезды в дельту. Описание схемы: Силовая цепь асинхронного двигателя физически подключена в обычной конфигурации для соединения звезда-треугольник.Напряжения на первичной и вторичной сторонах могут быть представлены на векторной диаграмме… Звезда и треугольник означают здесь два отдельных состояния работы двигателя, сначала соединение звездой, а затем соединение треугольником. Все стартеры могут быть использованы. Эта сборка не вызывает фазового сдвига между первичным и вторичным током линии, в то время как в сборке треугольник-звезда между этими двумя токами есть фазовый сдвиг 30 °. С фазой, отмеченной как ABC на стороне звезды, есть количество способов маркировки фаз abc на стороне треугольника.СХЕМА УПРАВЛЕНИЯ ЗВЕЗДА-ТРЕУГОЛЬНИК С ПОДКЛЮЧЕНИЕМ МОТОРА, ПРИНЦИП РАБОТЫ, РАБОТА КОНТАКТОРА ЗВЕЗДА-ТРЕУГОЛЬНИК, Пускатели звезда-треугольник имеют три состояния, подключенное состояние. Первичная или вторичная обмотка в треугольнике: как мы знаем, гармонические напряжения оказывают больше мешающего воздействия, чем гармонический ток. б. Трансформатор и нагрузка звезды или треугольника, трехфазное применение. На схеме реле перегрузки смонтировано по схеме треугольник. 3) Поскольку пусковой ток снижается примерно до 1/3 номинального тока, пусковой момент также снижается до 1/3.Существует три возможных варианта подключения 3-фазной трансформаторной батареи. Векторная диаграмма соединения звезды и треугольника Декабрь 29, 2018 admin Качество электроэнергии Соединение по схеме «треугольник», «звезда», «звезда» В этой статье соединение звездой (звездой) и треугольником обсуждается с точки зрения линейного напряжения, напряжения и тока между фазой и нейтралью. Соединение звездой — это обычная и общая система, которая используется при передаче энергии. Проверка соотношения при номинальном напряжении и на всех соединениях ответвлений. Сторона генерации силового трансформатора обычно соединяется треугольником, тогда как соединение звездой выполняется на стороне нагрузки.Автоматическое переключение со звезды на треугольник достигается за счет использования блокирующего соединения в контакторах с контактором пневматического таймера, который переключается на треугольник через фиксированный период времени. Принципиальная схема стартера звезда-треугольник. Это оборудование / устройство снижает пусковой ток и пусковой момент. Простая схема подключения трансформатора звезда-треугольник. Первичная и вторичная обмотки, показанные параллельно друг другу, относятся к одному и тому же однофазному трансформатору. Опубликовано 23 Aralık 2013 Обновлено 23 Aralık 2013.Схема подключения звезда-треугольник — одно из популярных приложений для Android в категории, опубликованной RutoApps в Google Play Store. Сила тока при соединении звездой составляет одну треть от тока при соединении треугольником. Обзор подключения трансформатора звезда-треугольник. Соединение «треугольник-звезда» (треугольник-звезда) Здесь первичные обмотки подключаются по схеме «треугольник», а вторичные обмотки подключаются по схеме «звезда» или «звезда». Проверка соотношения при номинальном напряжении и на всех соединениях ответвлений. Силовая цепь используется для создания контакта между двигателем и трехфазным источником питания.В этом типе подключения трансформатора первичная обмотка подключается звездой, а вторичная подключается треугольником, как показано на рисунке 1 ниже. L1, L2 и L3 — клеммы подключения трехфазной линии. Мы обсуждаем, что такое пуск звезда-треугольник, принцип его работы и смотрим на схему цепи управления. Я пытался найти решения в Google, но не нашел объяснений. Тройной гармонический ток и напряжение в линии подавляются за счет соединения обмотки трансформатора звездой или треугольником.Yd11 — Здесь 11 представляет фазовый сдвиг. В этом случае сторона треугольника будет отставать от стороны звезды на 30 0. На рисунке (а) показан трехфазный трансформатор, имеющий соединение звездой и треугольником на первичной и вторичной обмотках, соответственно. И наоборот, соединение ∆-Y используется для повышения напряжения, как в трансформаторе подстанции. В начале теста убедитесь, что положение водителя автотрансформатора установлено на ноль. Это нормальное соединение для трансформатора звезда-треугольник со звездой на первичной обмотке.Схема цепи управления: — Перед тем, как сделать принципиальную схему, мы знаем, как она работает или принцип работы. 12. Опубликовано 23 Aralık 2013 Обновлено 23 Aralık 2013. Было доказано, что эти топологии обеспечивают меньше гармоник и хорошее регулирование напряжения с надлежащим сравнением их уровни THD. Как работать асинхронный двигатель со звездой-треугольником 22 кВт запускает схему подключения двигателя звезда-треугольник elec eng world Метод запуска трехфазного двигателя звезда-треугольник. Логическая схема с ПЛК (программируемым логическим контроллером). Логическая схема реле для пускателя со звезды на треугольник.В случае пускателя со звездой-треугольником двигатель сначала запускается по схеме «звезда», а когда двигатель набирает скорость примерно (75-80%), он переключается на подключение по схеме «треугольник». Эквивалентный термин — трансформатор треугольником-звезда. Он может быть одним трехфазным трансформатором или собран из трех независимых однофазных блоков. (5) Зигзагообразное соединение: зигзагообразное соединение также называется соединенным звездообразным соединением. 230 В 230 В в трансформаторе с первичной обмоткой, подключенной к треугольнику 480 В, а вторичной обмоткой, подключенной звездой 480 В, напряжение катушки соединено звездой … Соединение звезда — треугольник показано ниже (b) Покажите, как следует изменить подключения, чтобы обеспечить параллельную работу с трансформатор Yd11.Эти конфигурации объясняются ниже. Схема подключения электродвигателя uvw, как подключить 3-фазные двигатели с разницей звезд между ryb и тремя ametek 9-проводная одиночная индукция с использованием обмоток соединения треугольником vfd рабочего частотно-регулируемого привода uvw для вождения на понимании векторных групповых диаграмм установить запуск устройства энергосбережения Intel метод… 1: стандартный трансформатор «треугольник-звезда» ANSI, вращение системы ABC, соединение ABC с h2-h3-h4. Знание типа дельта-соединения очень полезно для понимания векторных групп Dyn1, Dyn11, YNd1 и YNd11.Вот почему распределительные трансформаторы подключаются по схеме Delta-Wye. Описание входных параметров Этот компонент моделирует 3-фазную батарею автотрансформатора, состоящую из 3-х однофазных батарей и третичной обмотки. Схема подключения STAR DELTA и принцип работы. Основное использование этого соединения — повышение напряжения, то есть напряжение линии треугольника составляет 240 В. Вот диаграмма. Когда получен трансформатор Delta Star, проверьте следующее: 1. Приложение «Схема подключения звезда-треугольник» получило более положительный результат от пользователей Android с совокупным рейтингом 4.42 из 165+ пользователей в магазине Google Play и рейтинг содержания «Все». Схема подключения трехфазного двигателя переменного тока в прямом и обратном направлениях. а. Трансформатор, однофазное применение. V V / √ 3 √ 3 ​​a I a I ЗВЕЗДА, подключенная треугольником, подключенная первичная вторичная обмотка I V / (√ 3 a) И трехфазное питание? Соотношение между вторичными напряжениями V LS = V pS, следовательно, отношение линейных напряжений этого соединения равно (b) Рисунок: Соединение трансформатора треугольником — звездой (провод с фазовым сдвигом 30), (b) Векторная диаграмма. Многофазный трансформатор с высоковольтной обмоткой в ​​звезду с нейтралью, низковольтной обмоткой в ​​треугольник и вектором линии низкого напряжения 11 часов i.е. Формула преобразования дельты в звезды. Цепь управления используется для управления цепью стартера, например, включения, выключения и отключения. Звезда-звезда обычно используется в трансформаторах для передачи, поскольку она сохраняет изоляцию нейтрали и исключает заземляющий трансформатор. Недостатки Поскольку вторичное напряжение не совпадает по фазе с первичным, невозможно работать параллельно с трансформатором, подключенным по схеме звезда — звезда или треугольник. В этом руководстве мы покажем метод пуска трехфазного асинхронного двигателя переменного тока звезда-треугольник (Y-Δ) с помощью автоматического пускателя звезда-треугольник с таймером со схемой, схемой питания, управления и проводки, а также как работает пускатель звезда-треугольник. и их приложения с преимуществами и недостатками.Если переключатель находится в положении «0», это означает… соединение трансформатора треугольником. Преобразование звезды в дельту: преобразование, формула, диаграмма. Схема подключения звезда-треугольник в 3-фазном асинхронном двигателе — как следует из названия, схема пускателя звезда-треугольник работает в два этапа, начиная с цепи обмотки двигателя, работающей по схеме звезды (Y). Через некоторое время отключается цепь Белиты. обмотка «звезда» и «треугольник», работающая с. Первая катушка на каждом сердечнике подключается наоборот ко второй катушке… Соединение ЗВЕЗДА ТРЕУГОЛЬНИК Схема и принцип работы Описание: Двойной пускатель подключает клеммы двигателя непосредственно к источнику питания.Пускатель STAR-DELTA без таймера для трехфазного асинхронного двигателя. СХЕМА УПРАВЛЕНИЯ ЗВЕЗДА-ТРЕУГОЛЬНИК С ПОДКЛЮЧЕНИЕМ МОТОРА, ПРИНЦИП РАБОТЫ, РАБОТА КОНТАКТОРА ЗВЕЗДА-ТРЕУГОЛЬНИК, Пускатели звезда-треугольник имеют три состояния, подключенное состояние. Линейный и фазный токи связаны друг с другом следующим образом: I_line = square_root (3) * I_phase Это означает, что какой бы ток питания мы ни имели, нам нужно сечение провода, умноженное только на 1 / square_root (3) линейный ток. Сердечник трансформатора с тремя ножками, образующий фантомный треугольник. Трехфазные цепи «треугольник» и «звезда»… Распространенной схемой подключения трехфазного источника является треугольник с высокой ветвью или четырехпроводной треугольник, где в каждом … случае для катушки переменного тока используется более мощный трансформатор, чем для катушек AB или BC из-за количества 120 вольт нагрузки. Схема соединения звезда-треугольник, чертеж звезды, фазовая диаграмма проводки соединения треугольником Схема трансформатора с тремя звездами, схема подключения трансформатора одиночные трансформаторы, подключенные чертеж, обратный прямой, основной общий анализ, схема управления соединением звезды треугольником, pdf-диаграмма, обратное прямое включение, таймер, телемеханическое руководство контактора, подключение фазы двигателя, фактомарт, провод tempe, Схема подключения треугольник-звезда…
Карта Вселенной Альянса / Союза, Cobank Acb Greenwood Village, ул. Авангард Канадский банк Etf, Введение в ветроэнергетику Ppt, Кальянараман Аппуппан Имя, Casa Mérida Arquitectura, Что на самом деле вызывает смерть матери Виктора, Колорадо Скалистые горы против прогноза метс Нью-Йорка, Выбор Phillies 2020 на драфте, Торонто против Оттавы Рекорд 2021, Фазовый трансформатор

— обзор

Влияние сдвига фаз соединения обмоток на напряжения и токи последовательности

Теперь будет рассмотрено влияние сдвига фаз трехфазного трансформатора на токи и напряжения последовательности.Наличие сдвига фаз между первичным и вторичным напряжениями и токами трансформатора зависит от соединения первичной и вторичной обмоток трансформатора. Для трансформаторов с соединением обмоток звезда-звезда или треугольник-треугольник первичные и вторичные токи и напряжения в каждой из трех фаз совпадают по фазе или не совпадают по фазе, т. Е. Обмотки соединены таким образом, что сдвиги фаз либо 0 °, либо ± 180 °. Первый случай показан на рис. 14.4 (a) и (b). В британской практике и в практике Международной электротехнической комиссии используются номер и символ «векторной группы».В символе Yd1 заглавные и строчные буквы Y и d обозначают соединения звездой обмотки ВН и треугольником обмотки НН соответственно, а цифра 1 указывает сдвиг фазы на -30 ° при использовании опорного тактового сигнала 12 × 30 °. Например, 0 ° означает 12 часов, 180 ° означает 6 часов, -30 ° означает 1 час и + 30 ° означает 11 часов.

На рисунке 4.14 фазовый сдвиг 0 ° достигается за счет того, что параллельные обмотки, то есть одинаковые фазовые обмотки, связаны одним и тем же магнитным потоком. Рисунок 4.14 также показывает, что отсутствие фазовых сдвигов в фазных токах и напряжениях также преобразуется в PPS и NPS, токи и напряжения. Следовательно, наличие таких трансформаторов в трехфазной сети не требует специальной обработки в сформированных сетях PPS и NPS в сбалансированных или несбалансированных условиях. Следует отметить, что для обмотки треугольником, хотя физическая нейтральная точка не существует, напряжение от каждого вывода фазы к нейтрали все еще существует, потому что сеть, к которой подключена обмотка треугольником, на практике будет содержать нейтральную точку.

Рисунок 4.14. Фазовые сдвиги напряжения PPS и NPS для трансформаторов, подключенных к Yy0 и Dd0

В случае трансформаторов с обмотками, соединенными по схеме звезда-треугольник (или треугольник-звезда), напряжения и токи на стороне обмотки звезды будут сдвинуты по фазе на ± 30 °. угол по отношению к тем, что на стороне треугольника (или наоборот, в зависимости от выбранной ссылки). Согласно британской практике, Yd11 приводит к тому, что напряжения PPS между фазой и нейтралью на стороне звезды отстают на 30 ° от соответствующих напряжений на стороне треугольника.Кроме того, Yd1 приводит к тому, что напряжения PPS между фазой и нейтралью на стороне звезды опережают на 30 ° соответствующие напряжения на стороне треугольника. Примеры векторных диаграмм, показанных на рисунке 4.15 для Yd1 и Yd1 1, иллюстрируют этот эффект.

Рисунок 4.15. Фазовые сдвиги напряжения PPS и NPS для трансформаторов Yd1 и Yd11

Для последовательности или чередования фаз RB Y / rby NPS, рисунок 4.15 также показывает влияние Yd1 и Yd11 на фазовые сдвиги NPS и показывает, что теперь они поменялись местами. Эти фазовые сдвиги также применимы к токам PPS и NPS в этих обмотках, потому что фазовые углы токов относительно связанных с ними напряжений определяются только сбалансированным импедансом нагрузки.Таким образом, если напряжения и токи PPS сдвинуты на + 30 °, соответствующие напряжения и токи NPS сдвинуты на -30 ° и наоборот, в зависимости от указанного соединения и фазового сдвига, то есть Yd1 или Yd11. Математически это выводится для трансформатора Yd1, показанного на рис. 4.15, где n — это отношение витков, как показано ниже. Ток красной фазы в амперах, вытекающий из фазы r обмотки d, равен I r = n ( I R I B ).Используя уравнение (2.9a) из главы 2 для фазных токов и отмечая, что IRZ = 0, поскольку синфазные токи ZPS не могут выйти из обмотки d, мы можем записать

Ir = n [(1-h) IRP + (1-h3 ) IRN] = n3IRPe-j30o + n3IRNej30o

или

Ir = IrP + IrN

, где

(4,18a) IrP = n3IRPe-j30oandIrN = n3IRNej30o

или 900b133IrNe = 1,93- IRNe = 1 IrNe = 4,1813 3IrNe = 1 j30o

или в единицах, где n = 13,

(4.18c) IRP = Irpej30o иIRN = IrN = IrNe-j30o

Аналогично, из рисунка 4.15, межфазное напряжение в вольтах на фазе R звездообразной обмотки составляет

VR = n (Vr-Vy)

и, используя уравнение (2.9b) для напряжений фаз r и y, мы имеем

VR = n [(1-h3) VrP + (1-h) VrN] = n3VrPej30o + n3VrNe-j30 °

или

VR = VRp + VRN

, где

(4.19a) VRP = n3Vrpej30o и VRN = n3Vrpej30oandVRNe 9-j3VrNe или

(4.19b) VrP = 1n3VRpe-j30oandVrN = 1n3VRNej30o

или в на единицу, где n = 13,

(4.19c) VRP = Vrpej30o и VRN = VrNe-j30o

Читателю рекомендуется вывести уравнения для трансформатор ярд11.

Американский стандарт для обозначения клемм обмоток трансформаторов звезда-треугольник требует, чтобы напряжения фаза-нейтраль PPS (NPS) на обмотке высокого напряжения опережали (отставали) соответствующие напряжения фаза-нейтраль PPS (NPS). обмотка низкого напряжения. Это так, независимо от того, находится ли обмотка звезды или треугольника на стороне высокого напряжения. С точки зрения анализа последовательности это означает, что при переходе от низкого напряжения к стороне высокого напряжения трансформатора звезда-треугольник или треугольник-звезда, напряжения и токи PPS должны увеличиваться на 30 °, тогда как напряжения и токи NPS должны увеличиваться. отставать на 30 °.Интересно отметить следующее наблюдение относительно британских и американских стандартов. В американской практике, когда звездой в трансформаторе звезда-треугольник является обмотка высокого напряжения, это соответствует, с точки зрения сдвига фаз, Yd1 в британской практике. Однако, когда в американской практике обмотка треугольником в трансформаторе звезда-треугольник является обмоткой высокого напряжения, это будет соответствовать с точки зрения сдвига фаз Yd11 в британской практике.

С точки зрения анализа неисправностей в сетях энергосистем, использующих сети PPS и NPS, обычно изначально «игнорируют» фазовые сдвиги, вносимые всеми трансформаторами звезда-треугольник, принимая их за эквивалентные трансформаторы звезда-звезда, и рассчитывают последовательность напряжений и токов на этой основе.Затем, отметив расположение в сети таких трансформаторов звезда-треугольник, можно легко применить соответствующие фазовые сдвиги, используя приведенные выше уравнения, которые подходят для указанного трансформатора Yd.

векторная группа трансформаторов

Vector Group of Transformer 23 мая 2012 г. 9 КОММЕНТАРИИ

Введение: Трехфазный трансформатор состоит из трех наборов первичных обмоток, по одному на каждую фазу, и трех наборов вторичных обмоток, намотанных на один и тот же железный сердечник. Можно использовать отдельные однофазные трансформаторы и соединять их внешне, чтобы получить те же результаты, что и трехфазный блок.Первичные обмотки подключаются одним из нескольких способов. Две наиболее распространенные конфигурации — это треугольник, в котором конец полярности одной обмотки соединен с концом неполярности другой, и звезда, в которой все три конца неполярности (или полярности) соединены вместе. Аналогично подключаются вторичные обмотки. Это означает, что первичная и вторичная обмотки трехфазного трансформатора могут быть подключены одинаково (треугольник-треугольник или звезда-звезда) или по-разному (треугольник-звезда или звезда-треугольник).Важно помнить, что формы сигналов вторичного напряжения находятся в фазе с формами сигналов первичной обмотки, когда первичная и вторичная обмотки подключены одинаково. Это состояние называется отсутствием фазового сдвига. Но когда первичная и вторичная обмотки подключены по-разному, формы сигналов вторичного напряжения будут отличаться от соответствующих форм сигналов первичного напряжения на 30 электрических градусов. Это называется сдвигом фазы на 30 градусов. Когда два трансформатора соединены параллельно, их фазовые сдвиги должны быть одинаковыми; в противном случае при подаче напряжения на трансформаторы произойдет короткое замыкание.

Основная идея обмотки: переменное напряжение, приложенное к катушке, будет индуцировать напряжение во второй катушке, где две катушки связаны магнитным путем. Фазовое соотношение двух напряжений зависит от того, каким образом соединены катушки. Напряжения будут либо синфазными, либо смещенными на 180 градусов. Когда в обмотке трехфазного трансформатора используются 3 катушки, существует ряд вариантов. Напряжения катушек могут быть синфазными или смещенными, как указано выше, с катушками, соединенными звездой или треугольником, и, в случае обмотки звездой, точка звезды (нейтраль) выведена на внешний вывод или нет.Шесть способов подключения звездообразной обмотки:

Шесть способов подключения дельта-обмотки:

Полярность: переменное напряжение, приложенное к катушке, будет индуцировать напряжение во второй катушке, где они соединены магнитным путем. Фазовое соотношение двух напряжений зависит от того, в каком направлении подключены катушки. Напряжения будут либо синфазными, либо смещенными на 180 градусов. Когда в обмотке трехфазного трансформатора используются 3 катушки, существует ряд вариантов. Напряжения катушек могут быть синфазными или смещенными, как указано выше, с катушками, соединенными звездой или треугольником, и, в случае обмотки звездой, точка звезды (нейтраль) выведена на внешний вывод или нет.

Когда пара катушек трансформатора имеет одинаковое направление, чем напряжение, индуцированное в обеих катушках, находится в одном направлении от одного конца к другому. Когда две катушки имеют противоположное направление обмотки, чем напряжение, индуцированное в обеих катушках, находится в противоположном направлении.

Обозначения соединения обмотки: Первый символ: для высокого напряжения: всегда заглавные буквы. D = треугольник, S = звезда, Z = соединенная звезда, N = нейтраль Второй символ: для низкого напряжения: всегда маленькие буквы. d = треугольник, s = звезда, z = соединенная звезда, n = нейтраль.Третий символ: фазовый сдвиг, выраженный в виде часового числа (1,6,11). Пример Dyn11 Трансформатор имеет соединенную треугольником первичную обмотку (D), вторичную обмотку, соединенную звездой (y), с выведенной нейтралью (n) и фазовый сдвиг. под углом 30 градусов (11). Путаница возникает в обозначениях повышающего трансформатора. Как указано в стандарте IEC60076-1, используются последовательные обозначения HV-LV. Например, повышающий трансформатор с соединенной треугольником первичной обмоткой и вторичной соединенной звездой обозначается не как dY11, а как Yd11.Цифра 11 указывает на то, что обмотка низкого напряжения опережает HV на 30 градусов. Трансформаторы, изготовленные в соответствии со стандартами ANSI, обычно не имеют векторной группы, указанной на паспортной табличке, и вместо этого дается векторная диаграмма, показывающая взаимосвязь между первичной и другими обмотками.

Vector Group of Transformer: Обмотки трехфазного трансформатора можно соединить несколькими способами. На основании соединения обмоток определяется векторная группа трансформатора. Векторная группа трансформатора указывается на заводской табличке трансформатора производителем.Векторная группа указывает разность фаз между первичной и вторичной сторонами, обусловленную конкретной конфигурацией соединения обмоток трансформатора. Определение векторной группы трансформаторов очень важно перед параллельным подключением двух или более трансформаторов. Если два трансформатора с разными векторными группами соединены параллельно, то существует разность фаз между вторичной обмоткой трансформаторов, и между двумя трансформаторами протекает большой циркулирующий ток, что очень вредно.

Сдвиг фаз между обмотками ВН и НН: вектор для обмотки высокого напряжения принимается в качестве опорного вектора. Смещение векторов других обмоток от опорного вектора при вращении против часовой стрелки представлено с помощью циферблата часов. IS: 2026 (Часть 1V) -1977 дает 26 наборов соединений звезда-звезда, звезда-треугольник и звезда зигзаг, дельта-дельта, дельта-звезда, дельта-зигзаг, зигзаг-звезда, зигзаг-дельта. Смещение вектора обмотки низкого напряжения изменяется от нуля до -330 с шагом -30, в зависимости от способа подключения.Вряд ли какая-либо энергосистема предусматривает такое разнообразие соединений. Некоторые из часто используемых соединений с фазовым сдвигом 0, -300, -180 и -330 (установка часов 0, 1, 6 и 11). Сначала идет символ обмотки высокого напряжения, за ним следуют символы обмоток в убывающей последовательности напряжения. Например, трансформатор 220/66/11 кВ, соединенный звездой, звездой и треугольником, и векторы обмоток 66 и 11 кВ, имеющие фазовый сдвиг 0 и -330 с опорным вектором (220 кВ), будут представлены как AsYy0 Yd11.Цифры (0, 1, 11 и т. Д.) Относятся к сдвигу фаз между обмотками ВН и НН с использованием обозначения циферблата. Вектор, представляющий обмотку ВН, взят за эталон и установлен на 12 часов. Чередование фаз всегда против часовой стрелки. (Международный принят). Используйте часовой индикатор в качестве индикатора угла сдвига фаз. Поскольку на часах 12 часов, а круг состоит из 360, каждый час представляет 30. Таким образом, 1 = 30, 2 = 60, 3 = 90, 6 = 180 и 12 = 0 или 360. Минутная стрелка установлена на 12 часов и заменяет линейное напряжение на нейтраль (иногда мнимое) обмотки ВН.Это положение всегда является ориентиром. Пример: Цифра 0 = 0 означает, что вектор LV находится в фазе с вектором HV. Цифра 1 = 30 отстает (LV отстает от HV на 30), потому что вращение происходит против часовой стрелки. Цифра 11 = 330 запаздываний или 30 опережения (LV отстает от HV на 30) Цифра 5 = 150 отстает (LV отстает от HV на 150) Цифра 6 = запаздывание на 180 (LV отстает от HV на 180) Когда трансформаторы работают параллельно, важно, чтобы все фазовый сдвиг одинаков для каждого. Параллельное соединение обычно происходит, когда трансформаторы расположены в одном месте и подключены к общей шине (сгруппированы) или расположены в разных местах с вторичными клеммами, подключенными через распределительные или передающие цепи, состоящие из кабелей и воздушных линий.Фазовый сдвиг (градус) 0 30 отставание 60 отставание 120 отставание 150 отставание 180 отставание 150 опережение 120 опережение 30 опережение Yd11 Yd5 Yy6 Yd7 Yy0 Yd1 Соединение Dd0 Dy1 Dd2 Dd4 Dy5 Dd6 Dy7 Dd8 Dd10 Dy11 Dz0 Yz1 Dz2 Dz6 Yz10 Dz5 Yz11

Фазные вводы на трехфазном трансформаторе имеют маркировку ABC, UVW или 123 (прописные буквы на стороне ВН, маленькие буквы на стороне НН). Двухобмоточные трехфазные трансформаторы можно разделить на четыре основные категории Группа Oclock TC

Группа I

0 часов, 0

дельта / треугольник, звезда / звезда

Группа II

6 часов, 180

дельта / дельта , звезда / звезда

Группа III

1 час, -30

звезда / треугольник, дельта / звезда

Группа IV

11 часов, +30

звезда / треугольник, дельта / звезда

Минус указывает на отставание LV HV, плюс указывает на опережение LV HV

Обозначение часов: 0

Обозначение часов: 1

Обозначение часов: 2

Обозначение часов: 4

Обозначение часов: 5

Обозначение часов: 6

Обозначение часов: 7

Обозначение тактового сигнала: 11 моментов, которые следует учитывать при выборе векторной группы: Векторные группы — это метод МЭК классификации первичной и вторичной обмоток трехфазных трансформаторов.Обмотки могут быть соединены треугольником, звездой или соединены звездой (зигзагом). Полярность обмотки также важна, поскольку изменение полярности соединений в наборе обмоток влияет на фазовый сдвиг между первичной и вторичной обмотками. Векторные группы определяют соединения обмоток и полярность первичной и вторичной обмоток. Из векторной группы можно определить фазовый сдвиг между первичной и вторичной обмотками.

Векторная группа трансформатора зависит от Удаление гармоник: соединение y обмотки Dy обнуляет 3-ю гармонику, предотвращая ее отражение на стороне треугольника.Параллельная работа: все трансформаторы должны иметь одинаковую векторную группу и полярность обмотки. Реле замыкания на землю: трансформатор Dd не имеет нейтрали. чтобы ограничить замыкания на землю в таких системах, мы можем использовать трансформатор с зигзагообразной обмоткой для создания нейтрали вместе с реле замыкания на землю. Тип нелайнерной нагрузки: системы, имеющие разные типы гармоник и нелинейные типы нагрузок, например нагреватели печи, VFDS и т. д., для этого мы можем использовать конфигурацию Dyn11, Dyn21, Dyn31, в которой 30 град.сдвиги напряжений обнуляют 3-ю гармонику до нуля в системе питания. Тип применения трансформатора: Обычно для трансформатора экспорта мощности, т.е. сторона генератора подключается по схеме треугольника, а сторона нагрузки — по схеме звезды. Для экспортных импортных трансформаторов мощности, т.е. для целей передачи трансформатора, соединение звездой может быть предпочтительным для некоторых, поскольку это позволяет избежать заземляющего трансформатора на стороне генератора и, возможно, сэкономить на изоляции нейтрали. В этой конфигурации работает большинство систем.Ma

(PDF) Трехфазный трансформатор: подключение и настройка

Wireless и

Internet of Things для разработки мастерских «. IJCDS 6.4 (2017):

205.

10. Аль-Кадхим, Саиф Алдин Саад Обайес, Сара Кадхим Абуд. «ДАТЧИК СВЕТА

ДЛЯ ВКЛЮЧЕНИЯ СВЕТА

ИЛИ ЛЮБОГО УСТРОЙСТВА LDR.». Отчет Tequneical

.

11. Саиф Алдин Саад Обайес Аль-Кадхим. «Промышленная система мониторинга облаков на основе

Интернет вещей.«Вторая всемирная конференция 2018 года по интеллектуальным тенденциям в системах, безопасности

и устойчивости (WorldS4). IEEE, 2018.

12. SAS Obayes, IRK Al-Saedi и FM Mohammed», «Прототип системы беспроводного контроллера

на базе Raspberry Pi и Arduino для гравировального станка », 2017 UKSim-AMSS 19th

International Conference on Computer Modeling & Simulation (UKSim), Cambridge, 2017, pp. 69-

74. doi: 10.1109 / UKSim.2017.20

ключевые слова: {CAD / CAM; компьютерное зрение; компьютеризированное числовое управление; калькуляция; фрезерование; фрезерные станки

; производственные инженерные вычисления; прибыльность; прототипы; мини-фрезерный станок с ЧПУ

; беспроводная связь; компонент компьютерного зрения; станок с ЧПУ

мониторинг; обрабатывающий стол ; электротехническая промышленность; медицинская промышленность; процедуры самотестирования; гравировальный станок

; системы CAD-CAM; прототип системы беспроводного контроллера; технология Raspberry Pi ue; Arduino

техника; анализ затрат; оценка прибыли; системы управления; программное обеспечение; контакты; беспроводная связь

; компьютерное числовое управление; обработка; двигатели постоянного тока; система беспроводного контроллера

; прототип; Raspberry PI; Arduino; мини-станок с ЧПУ },

URL: http: // ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359046&isnumber=8359024

13. Алькадхим, Саиф Алдин Саад, Обзор электронного скаляра (15 января 2019 г.).

Доступен по номеру

SSRN: https://ssrn.com/abstract=3340333 или http://dx.doi.org/10.2139/ssrn.3340333

14. Alkadhim, Saif Aldeen Saad, Печь горячего воздуха для стерилизации : Определение и принцип работы

(14 декабря 2018 г.). Доступен по номеру

SSRN: https://ssrn.com/abstract=3340325 или http: // dx.doi.org/10.2139/ssrn.3340325

15. Алькадхим, Саиф Алдин Саад, Руководство по процессу стерилизации в автоклаве (1 декабря,

2018). Доступно по адресу:

SSRN: https://ssrn.com/abstract=3340320 или http://dx.doi.org/10.2139/ssrn.3340320

16. Алькадхим, Саиф Альдин Саад, Применение вычислительной машины с числовым программным управлением

на основе системы Интернета вещей (25 мая 2017 г.). Доступен по номеру

SSRN: https://ssrn.com/abstract=3329570

17.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *