электронных, релейных, электромеханических и инверторных
Любое электрооборудование проектируется с расчётом на стабильные параметры сетевого напряжения. Это необходимо по двум причинам:- Подключённое к сети устройство должно обеспечивать стабильные параметры тока на выходе в соответствии со своим целевым предназначением;
- Электрическая схема оборудования нуждается в защите от аномалий входного тока, которые являются основной причиной сбоев в работе и выходе из строя потребителей электроэнергии вследствие перегорания их токопроводящих контактов и элементов.
Чтобы питающее сетевое напряжение оставалось неизменным, используется специальное устройство – стабилизатор напряжения. Он осуществляет выравнивание характеристик входного тока и обеспечивает отключение потребителей в случае возникновения короткого замыкания или других критических сетевых аномалий.
Виды стабилизаторов напряжения
Принципиальная схема стабилизатора напряжения включает 2 основных элемента, функции которых заключаются в сравнении входных параметров тока с требуемыми и регулировкой выходных характеристик. При выборе стабилизатора необходимо учитывать его основные параметры, которые должны соответствовать свойствам электросети и особенностям питающихся от неё потребителей.
В список главных характеристик любого стабилизирующего устройства входят:
- Точность стабилизации;
- Скорость реакции на изменения параметров входного тока;
- Эксплуатационная надёжность;
- Защищённость от помех;
- Срок эксплуатации;
- Стоимость.
Существует несколько технических решений, позволяющих обеспечить стабильные параметры тока в сетях электропитания различного назначения. Наиболее широкое применение получили следующие виды стабилизаторов напряжения:
Сервоприводные. Обеспечивают высокую точность стабилизации и обладают неплохой устойчивостью к сетевым перегрузкам, включая короткое замыкание. Схема стабилизатора напряжения сервоприводного типа имеет существенный недостаток – низкую скорость реакции на изменения характеристик входного тока, вследствие их целесообразно использовать для защиты потребителей, питающихся от сетей, исключающих резкие скачки напряжения на входе.
Электронные. Работают по тому же принципу, что и релейные, но вместо коммутационных реле функцию регулировки выходного напряжения выполняют электронные ключи – симисторы или тиристоры. Устройства этого типа отличаются высокой скоростью стабилизации и надёжной защитой от резких скачков входного напряжения. К недостаткам можно отнести сравнительно большую погрешность при выравнивании выходного тока и высокую стоимость.
Электромеханические. Представляют собой разновидность сервоприводных стабилизаторов. В отличии от последних, в оборудовании этого класса вместо графитовых щёток используются ролики, обеспечивающие защиту от перегрева, высокую перегрузочную способность и продолжительный срок службы системы. Главным минусом электромеханического стабилизатора является сравнительно высокая стоимость.
В продаже встречаются гибридные (с двойной релейной схемой), а также инверторные и широтно-импульсные (ШИМ) стабилизаторы. Они обеспечивают высокую скорость выравнивания выходного тока с небольшой погрешностью и могут работать с широким диапазоном входных параметров напряжения. Стабилизаторы с подмагничиванием и дискретным высокочастотным регулированием являются узкоспециализированными, вследствие чего широкого применения на практике не получили.
Сервоприводные стабилизаторы
Схема стабилизатора напряжения сервоприводного типа включает:
- Блок защиты от перегрузки;
- Автотрансформатор;
- Серводвигатель с редуктором;
- Блок управления
Сервоприводные стабилизаторы напряжения осуществляют выравнивание выходного тока посредством сервопривода, который приводит в движение коммутационные контакты – графитовые щётки. Перемещение последних в нужную позицию обмотки трансформатора осуществляется плавно без прерывания фазы и искажений синусоиды выходного напряжения. При скачках или проседаниях входного тока в пределах 10 В блок управления выдаёт команду серводвигателю, который двигает коммутационные контакты до достижения требуемых на выходе 220 В.
Схема регулируемого стабилизатора напряжения сервоприводного типа включает подвижные элементы, что снижает его надёжность и долговечность. Кроме того, устройства этого класса поддерживают достаточно узкий диапазон входного напряжения (150-260 В) и допустимой нагрузки (в пределах 250-500 Вт). В то же время, работают они практически бесшумно и обеспечивают погрешность выравнивания параметров тока не более 2-3%.
Стабилизаторы релейного типа
Принцип работы устройств стабилизации релейного типа основан на ступенчатом регулировании напряжения. Осуществляется оно посредством силовых реле, которые выполняют коммутацию секций на вторичной обмотке автотрансформатора после вычисления необходимого числа трансформации контролирующим входные и выходные параметры тока процессором.
К основным достоинствам релейных стабилизаторов относят:
- Компактные габариты и небольшой вес;
- Широкий диапазон выравнивания;
- Возможность применения при температурном режиме -20…+40°C;
- Низкую стоимость.
Главные минусы этого оборудования – малая перегрузочная способность и снижение скорости стабилизации при увеличении точности последней.
Электронные стабилизаторы напряжения
Электронные устройства стабилизации работают по принципу ступенчатого регулирования напряжения посредством автоматической коммутации участков вторичной обмотки трансформатора, которая осуществляется силовыми электронными ключами, управляемыми процессорным блоком.
Отсутствие открытой коммутации исключает возникновение искр и окисление токопроводящих контактов схемы стабилизатора при избыточном токе на входе. Кроме того, оборудование этого класса обеспечивает малую инерционность срабатывания, отличается высокой конструктивной надёжностью и полностью бесшумной работой.
Можно собрать электронный стабилизатор напряжения 220В своими руками. Стоимость такое устройство будет иметь гораздо меньшую, чем произведённое на заводе, обеспечивая простоту в обслуживании. Основным недостатком самодельных решений является их низкая надёжность.
Инверторные стабилизирующие устройства
Всё более популярными становятся устройства стабилизации, работающие по принципу двойного преобразования напряжения. Они не имеют подвижных элементов и обеспечивают куда более высокое качество выравнивания тока, чем классические сервоприводные, релейные и электронные.
Схема инверторного стабилизатора напряжения 220В включает:
- Входной частотный фильтр;
- Выпрямитель напряжения;
- Корректор коэффициента мощности;
- Накопительный конденсатор;
- Преобразователь постоянного напряжения в переменное (инвертор) с требуемыми на выходе устройства характеристиками.
- Микроконтроллер.
Входной ток проходит частотную фильтрацию, после чего выпрямитель превращает его в постоянный с правильной синусоидой. В результате значительно возрастает коэффициент мощности. Постоянное напряжение заряжает конденсаторы, с которых ток поступает на инвертор, где выравниваются его частота и напряжение до требуемых 50 Гц и 220 В соответственно.
Инверторные устройства стабилизации обеспечивают КПД выше 90% и практически нулевую инерционность, поддерживая широкий спектр входных параметров тока.
Схема подключения стабилизатора напряжения не представляет особой сложности. Очень важно при этом грамотно выбрать сечение кабеля:
- Чем выше мощность устройства, тем большей должна быть площадь сечения;
- При низком уровне входного напряжения сила тока будет большой, поэтому для сетей с преобладающими проседаниями напряжения следует выбирать сечение кабеля с запасом.
И главное: при подключении стабилизатора любого типа требуется неукоснительно соблюдать правила электробезопасности и рекомендации производителя, указанные в паспорте устройства.
Сетевой стабилизатор напряжения | Микросхема
Поводом для публикации статьи про сетевые стабилизаторы напряжения послужил комментарий одного из наших уважаемых радиолюбителей в заметке про мощные стабилизаторы напряжения, обеспечивающие ток нагрузки до 3 ампер.
Здесь рассмотрим именно сетевые стабилизаторы напряжения бытового назначения, т.е. которые обеспечивают на выходе стандартное для многих стран (хотя далеко не всегда оно таковое – прим. AndReas) потребительское напряжение 220 вольт. Так вот, при девиации сетевого напряжения на входе такого стабилизатора они призваны приводить его к номиналу 220 вольт на выходе. Таким образом, обеспечивается стабильное и бесперебойное питание бытовых приборов или оргтехники, что способствует значительному продлению срока эксплуатации бытовой техники.
Не буду загружать вас, уважаемые радиолюбители, теоретическим материалом, поскольку здесь и так все ясно. Схем различных сетевых стабилизаторов напряжения масса. Большинство из них также уже содержат фильтры от ВЧ помех и прочие «навороты». Но фирмы при покупке у них готового сетевого стабилизатора напряжения всегда «до кучи» пытаются «навалить» «левого», уже ненужного товара, например, сетевые фильтры. А цена на данные устройства порой доходит до абсурда.
Для начала небольшая ремарка. Если вы зашли на эту страничку, чтобы просто найти подходящий стабилизатор для себя, то можете поискать, например, здесь. Некоторые модели вполне заслуживают внимания.
Поскольку речь в комментарии зашла про сетевые стабилизаторы напряжения торговой марки Defender, то остановлюсь на них чуточку подробнее. Если изучить номенклатуру предлагаемых ими стабилизаторов, то в описании практически каждого устройства написано одно и то же назначение, а именно: предназначен для защиты электропитания бытовой аудио- и видеотехники, компьютеров, периферии и другой электронной аппаратуры от длительного повышения или понижения напряжения в сети, импульсных помех, а также для защиты от высокого напряжения.
Лично я для компьютера и другой маломощной цифровой электроники, вместо каких бы то ни было сетевых стабилизаторов, использую источник бесперебойного питания (или инвертор или преобразователь — кому как нравится). Вот это крайне полезное устройство во всех отношениях. Оно и от девиации напряжения спасает (кстати, в некоторые современные модели таких инверторов уже встроены стабилизаторы), и от его совершенного падения до нуля, да и от помех защищает.
А сетевые стабилизаторы напряжения не то чтобы необходимы, но рекомендованы приборам с электродвигателями и низкочастотными трансформаторами. А действительно необходимы они этим самым приборам за городом, на даче, т.е. там, где на выделенной вам электролинии напряжение много меньше даже 180 вольт.
Ну да ладно, лирику в сторону, продолжаем по существу. Как мне стало известно, в сетевых стабилизаторах напряжения Defender AVR применяется автотрансформаторная схема с цифровым управлением, а раньше использовалась схема с аналоговым управлением. Пример схемы с аналоговым управлением:
Более про бытовые стабилизаторы Defender никаких данных, к сожалению, найти не удалось. Вообще подобные фирмы неохотно раскрывают, так сказать, коммерческую тайну. Хотя, было бы что скрывать, если подобных разработок полно в общем доступе (прим. авт. AndReas). Но мы подготовили ещё несколько схем сетевых преобразователей напряжения. Не думаю, что все производители подобных устройств могут предложить что-то кардинально новое. Все их, так называемые, разработки основаны на общедоступных схемотехнических решениях. Вот один из них:
Сетевой стабилизатор напряжения, схема которого представлена чуть выше, включает последовательно с нагрузкой одну, две или три дополнительных обмотки трансформатора при девиации сетевого напряжения. Если сетевое напряжение ниже необходимого, то дополнительные обмотки включаются синфазно с сетью, и напряжение на нагрузке становится больше сетевого. Если напряжение сети становится выше нормы, то обмотки включаются в противофазе с сетевым напряжением, приводя к уменьшению напряжения на нагрузке. Трансформатор на схеме обозначен Т1, а дополнительные обмотки римскими цифрами IV, V, VI. Компараторы DA3…DA8 настроены на срабатывание в зависимости от уровней сетевого напряжения 250 В, 240 В, 230 В, 210 В, 200 В и 190 вольт соответственно. Если напряжение сети превышает указанные уровни, то на выходах (вывод 9) тех компараторов, для которых выполняется указанное условие, действует напряжение высокого логического уровня (логической 1), составляющее около 12 В. Таким образом, разница уровней срабатывания компараторов составляет 10 В, или примерно 5 % сетевого напряжения. Уровни срабатывания компараторов DA5 и DA6 отличаются на 20 вольт. Это соответствует зоне регулирования 220 В ± 5%. Следует заметить, что государственными стандартами установлено допустимое сетевое напряжение от 187 В до 242 В. Данный же стабилизатор, как видно, обеспечивает более высокую точность поддержания величины сетевого напряжения. Это можно отразить так:
Вместо указанных на схеме компараторов можно применить микросхему К1401СА1. В качестве стабилизаторов применены КР142ЕН8Б. Диодные мостики VD1 и VD2 можно заменить на КЦ402…КЦ405, КЦ409, КЦ410, КЦ412. VD4…VD7 – любые с допустимым обратным напряжением более 15 В и прямым током более 100 мА. Оксидные конденсаторы — К50-16, К50-29 или К50-35; остальные— КМ-6, К10-17, К73-17. Реле К1 — К5 — зарубежного производства Bestar BS-902CS. Реле этого типа имеют обмотку сопротивлением 150 Ом, рассчитанную на рабочее напряжение 12 В, и контактную группу переключающего типа, рассчитанную на коммутацию напряжения 240 В при токе 15 А. Трансформатор Т1 выполнен на магнитопроводе ШЛ50х40. Обмотка I намотана проводом ПЭВ-2 0,9 и содержит 300 витков; обмотка II —21 виток провода ПЭВ-2 0,45; обмотка III — 14 витков провода ПЭВ-2 0.45; обмотки IV, V, VI содержат по 14 витков провода ПБД 2.64. Удобно использовать стандартный трансформатор типа ОСМ1-0.63, у которого все обмотки, кроме первичной (она содержит 300 витков), удалены, а вторичные обмотки намотаны в соответствии с приведенными выше данными. При изготовлении трансформатора одноименные выводы обмоток I, IV, V, VI следует пометить (на схеме обозначены точками). Номинальная мощность такого трансформатора составляет 630 Вт. К данному сетевому стабилизатору напряжения можно подключить нагрузку до 3 киловатт. Если точность поддержания выходного напряжения нужна ниже, то число вторичных обмоток трансформатора Т2 можно снизить до двух, а их напряжение увеличить с 10 вольт до 15 вольт. При этом число компараторов также уменьшится, а пороги их срабатывания следует установить соответственно напряжениям вторичных обмоток Т2.
Настройка этого сетевого стабилизатора следующая:
Самыми простыми в схемотехническом отношении являются электромеханические сетевые стабилизаторы напряжения. Основными компонентами такого типа приборов являются автотрансформатор и электродвигатель, например, РД-09 со встроенным редуктором, который вращает движок автотрансформатора.
Все очень просто. Контроль сетевого напряжения осуществляет электронная схема, которая при его девиации подает сигналы электродвигателю на вращение ротора по часовой или против часовой стрелки. Вращаясь, ротор перемещает движок автотрансформатора, обеспечивая тем самым стабильное выходное напряжение. Вот несколько схем электромеханических сетевых стабилизаторов:
Ещё одной разновидностью сетевых стабилизаторов напряжения являются релейные. Они обеспечивают более высокую выходную мощность вплоть до нескольких киловатт. Мощность нагрузки даже может превосходить мощность самого трансформатора. При выборе мощности трансформатора учитывается минимально возможное напряжение в электрической сети. Если, например, минимальное напряжение сети не менее 180 вольт, то от трансформатора требуется вольтодобавка 40 вольт, т.е. в 5,5 раз меньше сетевого напряжения. Во столько же раз выходная мощность всего стабилизатора будет больше мощности силового трансформатора. Количество ступеней регулирования напряжения обычно не превышает 3…6, что обеспечивает достаточную точность поддержания выходного напряжения. Вот некоторые схемы стабилизаторов релейного типа:
Дополнительно можете ознакомиться со следующими схемами, описанием работы и конструкциями сетевых стабилизаторов напряжения:
Скачать схему сетевого стабилизатора на 6 киловатт
Скачать схему сетевого стабилизатора с микроконтроллерным управлением
Обсуждайте в социальных сетях и микроблогах
Метки: полезно собрать
Радиолюбителей интересуют электрические схемы:
Стабилизатор сетевого напряжения
Мощный стабилизатор напряжения
Преимущества релейных стабилизаторов напряжения «Бастион»
Стабилизатор релейного типа. Принцип работы
Принцип работы стабилизаторов напряжения релейного типа основан на методе ступенчатого регулирования выходного напряжения путем подключения необходимого числа обмоток трансформатора с помощью нескольких реле, управляемых электронным процессором или аналоговой схемой управления.
Использование такого принципа работы позволяет полностью исключить подвижные части в конструкции стабилизатора, что делает его работу более надёжной и быстрой.
Последовательность операций релейного стабилизатора следующая: на первом этапе стабилизатор релейного типа определяет уровень напряжения входного сигнала с помощью электронной схемы управления, на втором этапе электронная схема даёт команду на включения необходимых силовых реле для стабилизации напряжения на необходимом уровне.
Так как каждое реле подключает фиксированное количество обмоток трансформатора, то регулирование напряжения на выходе происходит ступенчато. Точность регулирования напряжения определяется числом силовых реле, установленных в стабилизаторе. Чем больше реле, тем выше будет точность регулирования выходного напряжения. Однако увеличение числа реле приводит к более частому срабатыванию реле, что сопровождается более частыми мини скачками напряжения.
Обычно релейные стабилизаторы имеют четыре реле. Что позволяет достичь точности регулирования в 8 процентов. Увеличение числа реле до шести даёт возможность улучшить точность до 5-6%.
Стабилизаторы релейного типа работают в широком диапазоне входного напряжения, имеют достаточную точность стабилизации выходного напряжения, не вносят искажений во внешнюю сеть, эффективно работают при значительных изменениях нагрузки, обеспечивают надежную защиту от перегрузки и короткого замыкания. Стабилизаторы релейного типа не вносят искажений в правильную форму выходного сигнала, не меняют частоту тока.
Стабилизаторы напряжения релейного типа эффективно защищают бытовые и промышленные приборы и оборудование, эффективны для защиты питания компьютерной техники и оборудования связи. Релейные стабилизаторы напряжения надежно работают с котлами отопления, циркуляционными насосами, холодильниками и кондиционерами. Не рекомендуется использовать стабилизаторы напряжения релейного типа для питания осветительных приборов, так как ступенчатый тип стабилизации приводит к заметному мерцанию ламп освещения.
Достоинства релейных стабилизаторов напряжения
Стабилизаторы напряжения релейного типа:
-
имеют сравнительно низкую стоимость и большой срок эксплуатации;
-
эффективно работают в широком диапазоне входного напряжения;
-
обеспечивают достаточную точность стабилизации напряжения для работы приборов и оборудования;
-
имеют высокую скорость срабатывания, примерная скорость стабилизации 100 — 200 Вольт в секунду;
-
обладают большой перегрузочной способностью, возможностью работы с оборудованием, имеющим высокие пусковые токи;
-
не вносят изменений в форму графика напряжения;
-
работоспособны в широком диапазоне температур;
-
имеют небольшие габариты и небольшой вес;
-
могут работать с нулевой нагрузкой.
Недостатки релейных стабилизаторов напряжения
Срок службы релейного стабилизатора существенно зависит от качества используемых реле. Точность стабилизации напряжения релейного стабилизатора не достаточна для использования их в системах освещения. Стабилизаторы напряжения релейного типа издают характерные щелчки при срабатывании реле.
Преимущества релейных стабилизаторов напряжения «Бастион»
Компания «Бастион» производит широкую линейку стабилизаторов напряжения релейного типа под торговыми марками TEPLOCOM и SKAT. Высокое качество стабилизаторов напряжения серии TEPLOCOM и SKAT обеспечивается эффективной системой контроля качества производителя. Стабилизаторы соответствуют всем требованиям ГОСТ РФ, требованиям ТС, европейским требованиям безопасности продукции.
Релейные стабилизаторы напряжения TEPLOCOM и SKAT:
-
эффективно работают в широком диапазоне входного напряжения от 140 до 290 Вольт;
-
имеют микропроцессорное управление, что позволяет эффективно и безопасно выполнять коммутацию обмоток трансформатора. Микропроцессорное управление помогает осуществлять коммутацию обмоток трансформатора в момент перехода графика напряжения через ноль, что позволяет существенно снизить износ силовых реле и исключить искрение на контактах реле;
-
имеют высокую скорость срабатывания за счет использования микропроцессорной платы управления;
-
обладают большой перегрузочной способностью, возможностью работы с оборудованием, имеющим высокие пусковые токи;
-
не вносят изменений в форму графика напряжения;
-
работоспособны в широком диапазоне температур. Выпускаются специальные уличные стабилизаторы напряжения, имеющие герметичное исполнение;
-
имеют маленькие габариты, низкий вес и современный дизайн;
-
могут работать с нулевой нагрузкой;
-
имеют несколько степеней защиты от аварии в сети или аварии по линии нагрузки. Приборы имеют эффективную защиту от высокочастотных электрических помех;
-
Стабилизаторы напряжения TEPLOCOM и SKAT имеют длительный заводской срок гарантии — 5 лет!
Читайте также:
Стабилизатор напряжения бытовой 220 вольт схемы. Релейный стабилизатор напряжения
В сельской местности для безопасного использования бытовой техники, требуется однофазный стабилизатор напряжения 220В, который при сильной просадки напряжения в сети поддерживает на выходе номинальное выходное напряжение в 220 вольт.
В электрической конструкции имеются три пороговых блока, построенные по принципу делителя напряжения, состоящие из и сопротивлений (R2-VD1-R1, VD5-R3-R6, R5-VD6-R6). Кроме того в схеме задействованы два транзисторных ключа VT1 и VT2 управляющие реле К1 и К2.
Диоды VD2 и VD3 вместе с фильтрующей емкостью С2 составляют источник питания для всего устройства. Конденсаторы С1 и С3 используются для гашения небольших просадок напряжения в сети переменного тока. Емкость С4 и резистор R4 являются искрогасительными компонентами. Для снижения выбросов напряжения самоиндукции, в обмотках реле в схему введены два полупроводниковых диода VD4 и VD7.
Если напряжение в сети снижается ниже уровня в 185 вольт, то контакты реле включены как на схеме. Напряжение на нагрузке будет суммой напряжений сети плюс вольтодобавки, получаемых с II и III обмоток трансформатора Т1.
Если напряжение лежит в интервале 185-205 вольт, то стабилитрон VD5 открыт. Ток течет через реле К1, VD5 и резисторы R3 и R6. Но этого тока не достаточно для срабатывания реле К1. Из-за падения напряжения на резисторе R6 открывается VT2. Этот транзистор запускает реле К2 которое своими контактами переключает обмотку II (вольтодобавка).
Если напряжение в сети в норме 205-225 вольт, то открыт стабилитрон VD3. Это приводит к открытию VT1, поэтому отключается второй пороговый блок и VT2 вместе с реле К2. Зато срабатывает К1 и своими контактами отключает обмотки II и III и поэтому на выходе напряжение соответствует входному.
При повышении уровня сетевого напряжения выше 225 но ниже 245 вольт открывается стабилитрон VD6 открывающий открытию оба . Оба реле срабатывают III обмотка Т1, подсоединена в противофазе с сетевым напряжением (т.е вычитается)). На выходе будет нормальное переменное напряжение лежащее в интервале 205-225 вольт.
З адачей стабилизатора напряжения является стабилизация входного напряжения и очистка напряжения от различных высокочастотных колебаний. Тип стабилизатора – это тип механизма благодаря чему он это все выполняет. В статье рассмотрим различные виды стабилизаторов напряжения, их отличия, схемы, преимущества и недостатки.
1. Виды стабилизаторов напряжения
Релейные стабилизаторы напряженияРелейные стабилизаторы получили наиболее широкое распространение из-за оптимального соотношения необходимых параметров и цены. Они имеют быстродействие от 0,2 до 0,5 с в зависимости от применяемых реле и величины скачка входного напряжения.
Из минусов – при переключении реле происходит скачок напряжения (5-15 Вольт в зависимости от количества ступеней переключения). Для техники это не существенно и безопасно, но свет будет моргать.
Поэтому при переключении стабилизатора может наблюдаться небольшое мигание лампочек накаливания. Схема релейного стабилизатора условно представлена ниже.
Релейный стабилизатор напряжения. Схема функциональная
Как и все современные стабилизаторы напряжения его основу составляет силовой трансформатор и электронный блок. Электронный блок релейного стабилизатора напряжения представляет собой микроконтроллер, в котором происходит анализ входного и выходного напряжения и вырабатываются сигналы для управления ключами или силовыми реле стабилизатора.
При формировании управляющего напряжения микроконтроллер учитывает время срабатывания ключей и силовых реле. Это позволяет производить переключения практически без разрывов. В результате форма напряжения на выходе релейного стабилизатора повторяет форму на входе.
Электромеханические стабилизаторы напряженияТо есть, переключение происходит при переходе синусоиды через ноль.
Другое название – стабилизаторы с сервоприводом, или автотрансформаторные.
Принцип их действия следующий: плата управления анализирует входное напряжение, и в зависимости от ситуации передает сигнал на сервомотор, расположенный внутри тороидальной катушки и это мотор передвигает на необходимое количество витков токосъемную щетку.
Электромеханический стабилизатор напряжения. Упрощенная схема
Такой принцип действия обеспечивают более высокую точность стабилизации (2-3%, по сравнению с релейными 5-8%).
Точность зависит от количества витков трансформатора. Шаг изменения таким образом будет равен количеству вольт на один виток.
Но скорость движения щетки ограничена возможностями мотора, чаще всего скорость добавления 10-15 Вольт/сек. При скачках напряжения на 30-40 Вольт, приборы могут оказаться под опасным напряжением на несколько секунд.
И еще стоит обратить внимание, у некоторых производителей, мотор сам питается от входного напряжения и поэтому когда происходит сильная просадка напряжения ему просто не хватает питания и происходит “зависание” стабилизатора. Но для света, это оптимальный выбор, свет хоть и будет “проседать” при скачках напряжения но не так сильно как у релейного и более мягко.
Тиристорные (симисторные) стабилизаторы напряженияПринцип их работы основывается на автоматическом переключении секций (обмоток) автотрансформатора (или трансформатора) с помощью силовых ключей – тиристоров. Чем-то этот тип похож на релейные стабилизаторы, но в отличие от них не имеют контактной группы, имеют намного больше ступеней стабилизации и большую точность – от 2% до 5%.
Симисторный стабилизатор напряжения. Упрощенная схема
На схеме видно, что отводы трансформатора переключаются симисторами, и выходное напряжение меняется практически мгновенно – не более 0,1 с.
Комфорт использования такого стабилизатора виден сразу – тишина в доме гарантирована.
Наибольшим минусом данного типа стабилизаторов напряжения – высокая цена.
Дополнительные функции стабилизаторов напряженияКроме основной функции стабилизаторов напряжения – стабилизации, есть также такой минимальный набор функций и параметров:
Может, это тоже будет интересно?
- Анализ выходного напряжения. Стабилизатор должен быть оснащен информационным (цифровым или стрелочным) табло которое показывает выходное напряжение. Если на стабилизаторе есть функция анализа входного напряжения, это будет дополнительной полезной информацией.
- На больших номиналах (чаще от 3000 ВА) устанавливается функция «Bypass» – функция в электронном устройстве (обработки сигнала, стабилизации напряжения и др.), позволяющая выполнить коммутацию входного сигнала непосредственно на выход, минуя все функциональные блоки. То есть возможность включать сеть в обход стабилизатора напряжения. Если напряжение нормализовалось или Вам не нужен сейчас стабилизатор – нажали рычажок вверх и напряжение пошло минуя блоков стабилизации.
Байпас также нужен, если напряжение опустилось ниже предела работы стабилизатора, и он уже не справляется и может перегреться. Тогда напряжение подается напрямую, через байпас.
- Виды крепления стабилизаторов напряжения
Существуют два типа крепления стабилизаторов напряжения – напольное и настенное исполнение.
Напольное исполнение подразумевает, что стабилизатор находится на полу, полке. Такое расположение не всегда удобно, потому как особенно крупные номиналы не полке не разместишь из-за своего веса, а на полу они занимают достаточно большие площади.
При навесном исполнении стабилизаторы делают более плоскими, для удобства клиентов. В принципе они могут использоваться и в напольном исполнении, только часто информационная часть табло оказывается в таком случае “вверх ногами” к пользователю. - Во многих моделях на рынке стабилизаторов напряжения используется кнопка задержки. Это сделано, для того, чтобы если пропадет напряжение в сети или временно выйдет за рамки рабочего диапазона, то оборудование до следующего включения придет за это время задержки в положение покоя. Во многих стабилизаторах кнопка задержки предлагается в нескольких диапазонах -6, 90, 120 сек. В более современных моделях задержка уже стала автоматическая и когда она включается, то показывает потребителю на табло время включения стабилизатора в в виде обратного отсчета.
Задержка включения нужна прежде всего для компрессорного оборудования – холодильников и т.п.
Книга “Всё о стабилизаторах напряжения”
Cтатья написана на основе книги «Всё о стабилизаторах напряжения». Автор, Александр Румянцев, предоставил свою книгу для свободного скачивания. Книгу можно скачать ниже.
Александр Румянцев – технический специалист компании Suntek , более 10 лет работает в сфере электротехники. Вопросы к нему можно задать в конце статьи.
Скачать бесплатно авторскую книгу:
/ Теоретические основы однофазного и трехфазного электропитания. Виды стабилизаторов напряжения, подключение и выбор., pdf, 1.09 MB, скачан:3043 раз./Скачать инструкции к стабилизаторам напряжения:
/ Паспорт на электромеханические стабилизаторы Suntek СНЭТ-550, 1000, 1500, 2000, 3000, 5000, 8500, 11000 автотрансформаторного типа., pdf, 422.48 kB, скачан:559 раз./
/ Руководство по эксплуатации стабилизаторов напряжения электронного типа (на реле) СНЭТ-550, 1000, 1500, 2000, 3000, 5000, 8500, 11000, pdf, 224.91 kB, скачан:567 раз./
/ Руководство к стабилизаторам напряжения тиристорного типа SUNTEK TT (управление на тиристорных ключах), pdf, 703.21 kB, скачан:470 раз./
Бонусы:
Видео про испытание стабилизатора Suntek
На видео из-за стробоскопического эффекта моргает табло стабилизатора (особенность видеосъемки)
Работа электромеханического стабилизатора Suntek
Для изменения входного напряжения используется автотрансформатор, которым можно менять напряжение в необходимых пределах. При этом на выходе стабилизатора напряжение не выходит за рабочий диапазон.
» расскажет, как сделать выбор релейного стабилизатора напряжения. На сегодняшний день многие люди используют бытовые приборы в доме. Каждый прибор вам необходимо будет защитить от изменений в электрическом токе. Также вам необходимо будет обеспечить стабильное напряжение. Релейный стабилизатор напряжения поможет обеспечить надежную защиту.
Благодаря этому устройству вы сможете обеспечить надежную защиту приборов. Стандартный уровень напряжения должен составлять 220 Вольт. Релейный стабилизатор можно встретить практически везде. Он считается достаточно популярным и распространенным. Его популярность обеспечена простой конструкцией.
Релейный стабилизатор напряжения и его конструкция
Перед тем как использовать этот прибор вам необходимо будет изучить его принцип работы. Релейный стабилизатор напряжения имеет автоматический трансформатор и электронную схему, которая будет управлять его работой. Также он имеет реле, которое защищено надежным корпусом. Этот прибор считается вольтодобавочным. Это означает, что устройство будет только добавлять ток при низком напряжении.
Добавление вольт будет происходить благодаря подключению обмотки. Обычно этот вид трансформатора может иметь 4 обмотки. Если электрическая сеть предоставит слишком сильный ток, тогда автоматический трансформатор сможет вычесть необходимое количество вольт. Схема релейного стабилизатора включает в себя:
- Вольтодобавочный трансформатор.
- Реле.
- Микросхему управления.
Это главные схемы релейного стабилизатора. Кроме этого, конструкция также может в себя включать и дополнительные элементы. Также вы можете встретить устройства, которые имеют дисплей. У нас вы можете прочесть про .
Принцип работы релейного стабилизатора
У многих возникает вопрос, каким образом работает релейный стабилизатор? Измерение тока проводит электронная схема. После получения данных происходит сравнение тока, который должен быть на выходе. В конце будет рассчитываться разница вольт.
После получения данных устройство самостоятельно подбирает необходимую обмотку. После подключения реле напряжение будет достигать необходимого уровня.
Особенности работы
Работа этого устройства считается достаточно простой. Это устройство способно регулировать ток ступенчато. В результате этого при подключении обмотки ток будет увеличиваться или уменьшаться на определенную величину. Иногда их уровень может не соответствовать норме. Подобное последовательное срабатывание может вызывать дополнительные скачки напряжения.
Если детально изучить его работу, тогда можно будет понять, что реле быстро переключает обмотки. В результате этого скачки напряжения считаются незначительными. Их заметность может возникнуть в результате скачков входного тока. Если вы используете высокоточное оборудование, тогда техника может выйти из строя. Постоянная подача тока будет практически невозможной.
Если вы посмотрите напряжение и дисплей будет показывать 220 Вольт, тогда возможно вы попали на плохого производителя. Производители могут специально запрограммировать устройство, чтобы оно постоянно показывало 220 Вольт.
Обычно для стабилизации напряжения прибору необходимо тратить до 0,15 секунд. Релейные стабилизаторы также могут прекращать подачу выходного тока. Это может произойти в том случае, когда на входе появляется минимально допустимый ток. Если напряжение стабилизируется, тогда стабилизатор возобновит свою работу. Восстановление тока происходит в течение 0.6 секунд. У нас вы можете прочесть про .
Преимущества релейного стабилизатора
Теперь вы уже знаете принцип работы этого устройства. Теперь вам необходимо будет узнать о преимуществах этого устройства. К основным преимуществам на сегодняшний день можно отнести:
- Небольшие размеры. Этот процесс обусловлен только тем, что вольтодобавочный трансформатор способен только компенсировать разницу между вольтами.
- Широкий диапазон величин напряжения.
- Достаточно широкий спектр рабочей температуры. Некоторые модели могут работать при температуре от -40 до +40 градусов.
- Низкий уровень шумности.
- Низкий уровень чувствительности.
- Допустимая длительная перегрузка составляет до 110 процентов.
Также многие производители сообщают, что эта продукция может работать на протяжении длительного времени.
Недостатки релейного стабилизатора
Как и любая другая продукция, релейные стабилизаторы тоже имеют определенные недостатки. Недостатки обусловлены принципом работы и схемой построения этого устройства. Его слабым местом работы считается реле. Некачественное реле может стать причиной преждевременного выхода реле из строя. Кроме этого, во время переключения реле вы сможете услышать посторонний шум.
Еще к одному весомому недостатку считается принцип ступенчатого выравнивания тока. Во время переключения обмоток будут происходить значительные скачки напряжения. ВО время переключения реле можно будет увидеть, как .
Важно знать! Если вы желаете приобрести себе дешевую продукцию, тогда вам необходимо выбрать стабилизатор, мощность которого будет превышать на 30 процентов мощность всех приборов в доме.
Правила эксплуатации прибора
Если вы планируете выбрать релейный стабилизатор, тогда вам необходимо будет проводить его регулярное обслуживание. Проводить осмотр устройства необходимо каждый год. Во время проведения осмотра вам следует обратить внимание:
- Уровень надежности всех соединений проводов.
- Уровень циркуляции воздуха в работе системы.
- Наличие всех повреждений.
- Правильность работы измерительных приборов.
Если вы увидите ослабленные соединения или загрязненность, тогда вам необходимо будет отключить стабилизатор и устранить проблемы. Помещение, в котором установлен стабилизатор обязательно должно быть сухим. Влажность воздуха не должна превышать 80 процентов. Во время эксплуатации все вентиляционные отверстия должны быть открыты. Также вам обязательно необходимо выполнить этого устройства.
Ремонт релейного стабилизатора напряжения | Электрик
Во многих квартирах особенно сельской местности в доме обязательно стоит стабилизатор.
Некоторые хозяева используют его для работы особо «чувствительной» техники, газовых котлов, холодильников и другой подобной бытовой техники.
Некоторые более заботливые владельцы, устанавливают стабилизатор «на весь дом», такие стабилизаторы, как правило, обладают не малыми габаритами и весом и мощность их начинается от 7 — 10 кВт и больше.
Именно о таких стабилизаторах мы и поговорим в этой статье, а собственно о их ремонте и поиске неисправности, так как и каждая техника они выходят из строя.
В этой статье мы рассмотрим ремонт релейного стабилизатора известной китайской фирмы «Forte — ACDR — 10000» на 10кВт.
Но прежде чем приступить к ремонту, давайте разберемся в природе его устройства.
Релейный стабилизатор состоит из нескольких частей, собранных в единую систему:
Автоматический трансформатор — самая тяжелая его часть, это большой железный сердечник с несколькими обмотками соединенными по принципу автотрансформатора. Несколько концов толстого медного провода выходящих с трансформатора, коммутируются с помощью реле, количество которых зависит от обмоток и ступеней переключения.
Элементы управления — силовые элементы с помощью которых и осуществляется переключения обмоток и пуск с задержкой. В релейных стабилизаторах роль таких элементов выполняют реле, ну а в «моделях по дороже», в роли таких элементов могут служить полупроводниковые элементы — симисторы которые имеют куда больший ресурс работы на «переключение».
Блок управления — основная плата устройства с установленным на нее микропроцессором, с соответствующей прошивкой который запрограммирован на переключения и управления силовыми элементами (реле). При заранее определенных ступенях напряжения, переключаются соответствующие обмотки автотрансформатора. В случаях когда это не возможно, по причине поломки, выдается «ошибка» и стабилизатор пере запускается или отключается. Там же предусмотрена и схема задержки на включения (например 120 секунд).
Блок индикации и измерения напряжения — плата, как правило, установленная на лицевой панели (крышке) стабилизатора. Там же, на ней установлены «цифровые индикаторы» или дисплей.
Кроме них, могут быть установлены и элементы управления, например включения «задержки».
Стабилизатор постоянно сравнивает входной уровень напряжения с номинальным и «решает» либо добавить, либо уменьшить определенное количество вольт в «домашнюю» электросеть. Осуществляются такие решения подключением либо отключением (переключением) необходимых обмоток, в данном случае с помощью реле.
Во всех стабилизаторах существует система защиты которая проверяет входные и выходные напряжения, ток, температуру на соответствие номинальным значением и условиям эксплуатации. Защитные механизмы у каждого стабилизатора свои, но можно выделить несколько основных:
- Пределы стабилизации (входное и выходное напряжение)
- Отношение выходного напряжения к входному
- Превышение тока нагрузки (перегрузка)
- Перегрев трансформатора, превышение температуры внутри устройства
- Невозможность «переключить» обмотку (при выходе из строя элементов управления)
Выполняем ремонт
Самой частой причиной поломки таких стабилизаторов являются реле, переключающие обмотки трансформатора. В следствие многоразовых переключений контакты реле могут выгорать, заклинивать, а может перегореть и самая катушка.
Если выходное напряжение исчезает или появляется индикация «ошибка» – необходимо проверить все реле. Сначала осмотрев внешне и если никаких видимых повреждений незаметно, то разобрать корпус каждого реле.
Сразу станет заметно какие контакты на сколько изношены, а где и вовсе сгоревшие.
В данном стабилизаторе, неисправность проявлялась в виде отключения стабилизатора по «ошибке» что сопровождалось звуковой индикацией. Отключался он не всегда, а только при сильно пониженном напряжение, но в приделах нормы стабилизации. — где то около 175 вольт. Отключался в независимости от нагрузки на выходе что явно отметало как причину общую перегрузку. Перед выключением слышно как несколько раз пощелкивают реле.
Как позже выяснилось, блок управления давал команду реле переключится на другую обмотку, но так как физически обмотки переключенными не были то и вылетала «ошибка» и стабилизатор попросту выключался.
Разобрав все пластмассовые крышки реле было обнаружено подгорание на двух реле, но в одном из них контактная площадка которая должна подключать обмотки, полностью выгорела и «контакт» был попросту невозможен, хоть реле и щелкало чтобы замкнуть пластины.
Мог еще произойти и такой случай при котором контакты могли б залипнуть друг к другу и в итоге несколько обмоток трансформатора окажутся короткозамкнутыми. Трансформатор начнет перегреваться и если не сработает защита то может и перегореть одна из обмоток автотрансформатора. Кстати говоря, подобная опасность присуща не только релейным стабилизаторам но и симисторным.
Очень часто в релейных стабилизаторах выходят из строя транзисторные ключи, которые в разных моделях стабилизаторов могут собираться на разных типах транзисторов. Когда при прозвоне радиоэлементов схемы были обнаружены неисправные «усилители», их необходимо заменить на такие же по параметрам.
Профилактическая мера по восстановлению слегка подгоревших реле стабилизатора довольно простая и состоит из таких действий:
1. снимаем крышку реле
2. снимаем пружину, чтоб освободить подвижный контакт реле
3. каждый подвижный и неподвижный контакт нужно зачистить с помощью мелкой наждачки
4. промыть контактные площадки спиртом
5. после высыхания спирта, покрыть защитным средством KONTAKT S-61
При более сильном и значительном обгорание контактов реле и если нет возможности его заменить можно поступить следующим образом: по возможности почистить контакты реле (методом описанным выше) и поменять реле местами.
То — есть там где в стабилизатора самая часто используемая обмотка на которой постоянно обгорает реле, поставить «новое» реле, а «подуставшее» реле поставить на место того реле что сохранилось в хорошем состояние, там оно прослужит еще много времени.
В случае полного выгорания контактной площадки реле, его нужно заменить на новое.
Но когда нет времени ждать посылки с новым реле или есть желание попробовать восстановить обгоревшую часть пластины самостоятельно, можно поступить как сделал я.
В таких же соотношениях размеров, был вырезан кусок медной жилы которая была закреплена по всей длине пластины припоем, предварительно залудив жилу и саму пластину. Но так чтоб место контакта припадало все таки на медную часть, а не на припой.
При наличии мощной точечной сварки, все это лучше было сварить для большей надежности на случай возможного нагрева пластины.
Но так как в данном устройстве реле было заменено и поставлено на место где не происходит обгорания, например на понижающую часть обмотки, то и беспокоится не о чем.
Другие неисправности
Кроме явных механических проблем с реле и выхода из строя «усилителей» представленных в виде ключевых транзисторов, могут встречаться и другие поломки уже на плате блока управления: холодная пайка, отслаивающиеся дорожки на плате, заусеницы в местах пайки, шарики от припоя и отхождения контактов в штырьковых соединениях — вот лишь малое что может послужить причиной неисправной работы стабилизатора.
Иногда встречается такая неполадка как хаотическое отображение сегментов на дисплее,в то же время может наблюдаться хаотическое включение реле. Частой причиной такого поведения есть «холодная пайка» кварцевого резонатора который работает на частоте 8 — 16 мегагерц, плохой его пропай ведет к неправильной работе микропроцессора.
По этому всю заднюю часть платы лучше сразу осмотреть по поводу плохой пайки, заусениц или шариков с припоя которые там часто бывают в виду быстрой пайки плат монтажниками которые ее собирают.
Затем можно осмотреть плату на дефекты радиоэлементов. Очень часто со временем электрические конденсаторы вздуваются и выходят из строя, выявить это будет не сложно. Их необходимо заменить на аналогичные.
Кроме того в стабилизаторе был выявлен клеммник с трещиной, который не мог обеспечить надежный контакт мощного силового кабеля. Такой клеммник ввиду невозможности создать достаточную затяжку провода, мог нагреваться и тем самим со временем еще и усугубить надежность контакта.
Диагностика
Но после ремонта стабилизатора или даже на этапе диагностики неисправности, возникает необходимость проверить работу устройства в разном диапазоне напряжений, как повышенных так и пониженных.
В мастерских для этих целей служит ЛАТР или лабораторный автотрансформатор регулируемого типа. Его подключают на вход проверяемого стабилизатора и уже изменяя напряжения на входе, имитируя перепады в сети, смотрят на поведение стабилизатора, справляется ли он с работой в номинальных (паспортных) пределах напряжения.
Но так как у меня нет соответствующего регулируемого автотрансформатора, то мы пошли немного другим путем. Была собрана определенная «схема»:
1. На входе стабилизатора, последовательно фазе была подключена лампочка примерно 60ват, мощность лампочки подбирается экспериментальным путем.
2. На выходе в роли нагрузки был подключен обычный сетевой шуруповерт или дрель (400 — 1000 Ват) с кнопкой плавной регулировки оборотов.
Во время работы шуруповерта на минимальных оборотах, лампочка которая включена на входе последовательно — не светится. Стабилизатор при этом запущен и работает без проблем.
Начинаем плавно увеличивать обороты шуруповерта, лампочка при этом светит все ярче.
Чем интенсивней яркость лампочки, тем больше проседает напряжение на входе стабилизатора, что естественно видно на индикации дисплея. Кроме того, при уменьшению напряжения на входе , слышно как переключаются обмотки трансформатора и щелкают реле.
Таким не хитрым способом можно проследить правильно ли работает стабилизатор, при условие что в вашей домашней же сети будет нормальное напряжение (220 — 240 вольт).
Как видим, отремонтировать стабилизатор напряжения можно и в домашних условиях. Ну или по крайней мере можно разобрать и определить поломанный узел и оценить стоимость работ по его восстановлению или замене. Предполагается что человек который приступит к ремонту стабилизатора, будет обладать базовыми знаниями в электричестве и электронике и будет иметь минимальный набор инструментов, паяльник, мультиметр и мелкий инструмент.
Следует быть осторожным работая с напряжением при диагностике и проверке работы.Все остальные работы по ремонту и замене производятся в обесточенном состояние.
Релейный стабилизатор напряжения 220V без разрыва цепи
В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.
Содержание / Contents
Встретил в интернете рекламу на сайте ООО «Прибор», г. Челябинск:Стабилизаторы напряжения марки Селен, выпускаемые нашим предприятием, основаны на принципе ступенчатого регулирования напряжения путем безразрывного переключения обмоток автотрансформатора (патент на изобретение № 2356082). В качестве ключей используются мощные быстродействующие реле.
Приведены картинки переключений (слева «Селен», справа — с обычными характеристиками)
Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке «Украина» тоже было безразрывное переключение напряжения — там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением № 2356082 я не смог.
Мне удалось найти статью «Типы стабилизаторов напряжения», где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.
Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги — контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.
На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.
Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.
Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16 поступает на вход микроконтроллера через конденсатор C10.
Питание реле и микросхемы осуществляется через диод D3 и микросхему U1. Кнопка SB1 совместно с резистором R1 служат для калибровки стабилизатора. Транзисторы Q1-Q4 — усилители для реле.
Реле Р1 и Р2 — основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422 и обмотки реле шунтированы диодами 1N4007 и диодами Зенера на 150 Вольт, включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный — низкое, зеленый — норма, синий — высокое.Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676.
Блок программы zero ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов
В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on, R2off, R1on и R1off.
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.
Выходной ток в длительном режиме 9 А.При сборке использован трансформатор ТПП 320-220-50 200 Вт. Обмотки его соединены на 240 Вольт, что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1, а вспомогательные LIMING JZC — 22F.
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).
Прибор повешен на стене и закрыт кожухом из жести
Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР’а через лампу накаливания мощностью 100 — 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.
Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки «Стабилизатор напряжения сети на PIC12F675 (релейный) 1,8 кВт». Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.
Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC — 22F).
Довольно сложно было подобрать в программе время задержки реле.Для такого включения желательно применять более быстродействующие реле.a) Безобрывное переключение цепей переменного тока с помощью реле — вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле1. Статья «Типы стабилизаторов напряжения» на сайте «Энергосбережение в Украине»
2. Официальный web-сайт предприятия ООО «Прибор», г. Челябинск
3. Даташиты на деталиСхема, чертеж печатной платы и программа с прошивкой
▼ Shema.zip 211,09 Kb ⇣ 185
▼ Plata.zip 24,09 Kb ⇣ 169
▼ Soft_V4.zip 4,97 Kb ⇣ 181
▼ Схема стабилизатора LOGIC POWER MVR 5K(relay) LPS-1500RV без микроконтроллеров 427,96 Kb ⇣ 26
Иван Внуковский,
Украина, г. Днепропетровск
Камрад, рассмотри датагорские рекомендации
🌼 Полезные и проверенные железяки, можно брать
Куплено и опробовано читателями или в лаборатории редакции.
Ремонт стабилизаторов серии LPS-хххrv — Схемы&Ремонт — Статьи — Каталог статей
Предлагаю для ознакомления схему релейного стабилизатора LPS-800RV (800 Вт), подобная схемотехника и других стабилизаторов
этой серии LPS-1500RV (1500 Вт), LPS-2000RV (2 кВт), LPS-2500RV(2,5 кВт), LPS-4000RV (4 кВт), LPS-6000RV (6 кВт) различаются
мощностью применяемого автотрансформатора типом применяемых реле.
Назначения радиоэлементов и узлов в рассматриваемой ниже схеме.
Схема управления платы стабилизатора, запитана от обмоток автотрансформатора через диод D8 конденсатор C. Напряжение 12В
с конденсатора через резистор R45 подается на обмотки реле и параметрический стабилизатор Q6,D11,R47 с выхода которого
питания 6,3В подается на схему.
В момент включения выход стабилизатора будет отключён это сделано умышленно для того чтобы не появилась неконтролируемые
напряжения до входа схемы управления в штатный режим работы. Чтобы этого избежать первоначально измеряется входное сетевое
напряжение, контактами реле коммутируется обмотки автотрансформатора с целью обеспечения на выходе стабилизатора напряжения
в районе 220 вольт. Узел задержки выполнен на операционном усилителе А5.2 время задержки около 4 секунд, что вполне достаточно
времени для измерения и коммутации обмоток автотрансформатора при необходимости время задержки можно увеличить до 3 минут
нажатием кнопки «DELAY/UNDELAY».
Время задержки индицирует моргание светодиода на передней панели «DEL». Генератор работы светодиода выполнен на операционном
усилителе 5.1. Открывание транзистора Q7 включает реле SC1, контакты которого подключают нагрузку, через диод D15 блокируется работа
генератора светодиода.
Контроль напряжения входного/выходного, возможно, проконтролировать по вольтметрам переменного напряжения PV1,PV2 установленных
на передней панели прибора, там же установлен светодиод c надписью «UNU», включение этого светодиода свидетельства о том, что питания
в сети меньше 120В или больше 230В. Управление индикатором выхода из зоны стабилизация осуществляется операционными
усилителями А5.4, А5.3.
Верхний предел напряжения 230 вольт и выше установит высокий уровень на выходе операционного усилителя А5.4, при низком напряжении
до 140 Вольт высокий уровень будет операционный усилитель А5.3, оба выхода подключены через диоды D7,D6 на базу транзистора Q8,
который является общим драйвером светодиода. Если сетевое напряжения будет в диапазоне от 140 до 230В, подаваемое на стабилизатор
напряжения, светодиод не горит.
Поддерживание на выходе напряжение 220 вольт необходимо измерить входное напряжение и коммутировать обмотки
автотрансформатора относительно входного напряжения. Эту задачу выполняет операционный усилитель А4, включенный по
компараторной схеме. Опорное напряжение для усилителей А4 выставляется построечными резисторами, определяющие порог срабатывания
компаратора. Выход микросхемы, нагруженный драйверами транзисторов которые управляют реле коммутации.
Основные неисправности, выявленные в процессе ремонтов:
1. Высыхание электролитических конденсаторов.
2. Подгорание контактов реле.
3. Повреждения транзистора Q6.
4. Некачественный монтаж некоторых радиоэлементов.
5. Плохой контакт разъемов с винтовым зажимом.
Похожие темы:
Ремонт релейного стабилизатора напряжения Uniel RS-1/500 VILALS RSA 52K схема
Зарядное устройство
При использовании материалов сайта, обязательна ссылка на сайт http://vinratel.at.ua
Цепь релейного переключателяи цепь переключения реле
Преимущество реле в том, что для управления катушкой реле требуется относительно небольшое количество энергии, но само реле может использоваться для управления двигателями, нагревателями, лампами или цепями переменного тока, которые сами могут потреблять намного больше электроэнергии.
Электромеханическое реле — это выходное устройство (исполнительный механизм), которое бывает самых разных форм, размеров и конструкций и имеет множество применений и применений в электронных схемах.Но в то время как электрические реле могут использоваться, чтобы позволить маломощным электронным или компьютерным схемам переключать относительно высокие токи или напряжения как в состояние «ВКЛ», так и «ВЫКЛ», для управления им требуется какая-то схема реле .
Конструкция и типы схем переключения реле огромны, но многие небольшие электронные проекты используют транзисторы и полевые МОП-транзисторы в качестве основного переключающего устройства, поскольку транзистор может обеспечивать быстрое переключение постоянного тока (ВКЛ-ВЫКЛ) для управления катушкой реле от различных источников входного сигнала. Итак, вот небольшая коллекция некоторых наиболее распространенных способов переключения реле.
Цепь релейного переключателя NPN
Типичная схема релейного переключателя имеет катушку, управляемую транзисторным переключателем NPN, TR1, как показано, в зависимости от уровня входного напряжения. Когда базовое напряжение транзистора равно нулю (или отрицательно), транзистор отключен и действует как разомкнутый переключатель. В этом состоянии ток коллектора не течет, и катушка реле обесточена, потому что, будучи устройствами тока, если ток не течет в базу, то ток не будет проходить через катушку реле.
Если теперь в базу подается достаточно большой положительный ток для насыщения NPN-транзистора, ток, протекающий от базы к эмиттеру (от B к E), управляет большим током катушки реле, протекающим через транзистор от коллектора к эмиттеру.
Для большинства биполярных переключающих транзисторов величина тока катушки реле, протекающего в коллектор, будет где-то в 50-800 раз больше, чем ток базы, необходимый для приведения транзистора в состояние насыщения. Текущее усиление или бета-значение (β) показанного BC109 общего назначения обычно составляет около 290 при 2 мА (техническое описание).
Цепь релейного переключателя NPN
Обратите внимание, что катушка реле является не только электромагнитом, но и индуктором.Когда питание подается на катушку из-за переключающего действия транзистора, максимальный ток будет протекать в результате сопротивления катушки постоянному току, как определено законом Ома (I = V / R). Часть этой электроэнергии хранится в магнитном поле катушки реле.
Когда транзистор переключается в положение «ВЫКЛ», ток, протекающий через катушку реле, уменьшается, и магнитное поле исчезает. Однако накопленная энергия в магнитном поле должна куда-то уйти, и на катушке возникает обратное напряжение, которое пытается поддерживать ток в катушке реле.Это действие вызывает всплеск высокого напряжения на катушке реле, который может повредить переключающий NPN-транзистор, если ему позволено накапливаться.
Итак, чтобы предотвратить повреждение полупроводникового транзистора, к катушке реле подключен «диод маховика», также известный как диод свободного хода. Этот диод маховика ограничивает обратное напряжение на катушке примерно до 0,7 В, рассеивая накопленную энергию и защищая переключающий транзистор. Диоды маховика применимы только при питании поляризованным постоянным напряжением.Катушка переменного тока требует другого метода защиты, и для этого используется RC демпферная цепь.
Цепь реле Дарлингтона NPN
Предыдущая схема транзисторного релейного переключателя NPN идеально подходит для переключения небольших нагрузок, таких как светодиоды и миниатюрные реле. Но иногда требуется переключить катушки реле большего размера или токи, выходящие за пределы диапазона транзистора общего назначения BC109, и это может быть достигнуто с помощью транзисторов Дарлингтона.
Чувствительность и коэффициент усиления по току схемы релейного переключателя можно значительно увеличить, используя пару транзисторов Дарлингтона вместо одного переключающего транзистора.Пары транзисторов Дарлингтона могут состоять из двух отдельно соединенных биполярных транзисторов, как показано, или поставляться как одно устройство со стандартными соединительными выводами базы, эмиттера и коллектора.
Два NPN-транзистора соединены, как показано, так что ток коллектора первого транзистора TR1 становится током базы второго транзистора TR2. Приложение положительного базового тока к TR1 автоматически включает переключающий транзистор TR2.
Цепь релейного переключателя Дарлингтона NPN
Если два отдельных транзистора сконфигурированы как переключающая пара Дарлингтона, то между базой и эмиттером основного переключающего транзистора TR2 обычно помещается небольшой резистор (от 100 до 1000 Ом), чтобы гарантировать его полное выключение.Опять же, диод маховика используется для защиты TR2 от обратной ЭДС, генерируемой, когда катушка реле обесточена.
Цепь переключателя реле повторителя эмиттера
Помимо стандартной конфигурации общего эмиттера для схемы релейного переключателя, катушка реле также может быть подключена к выводу эмиттера транзистора для формирования цепи эмиттерного повторителя. Входной сигнал подключается непосредственно к базе, а выходной сигнал берется из нагрузки эмиттера, как показано.
Цепь переключателя реле повторителя эмиттера
Конфигурация с общим коллектором или эмиттерным повторителем очень полезна для приложений согласования импеданса из-за очень высокого входного импеданса, порядка сотен тысяч Ом, при относительно низком выходном сопротивлении для переключения катушки реле.Как и в предыдущей схеме релейного переключателя NPN, переключение происходит путем подачи положительного тока на базу транзистора.
Цепь переключателя реле Дарлингтона эмиттера
Это версия транзистора Дарлингтона предыдущей схемы эмиттерного повторителя. Очень небольшой положительный базовый ток, приложенный к TR1, вызывает гораздо больший ток коллектора, протекающий через TR2 из-за умножения двух значений Beta.
Цепь переключателя реле Дарлингтона эмиттераСхема релейного переключателя Дарлингтона с общим эмиттером полезна для обеспечения усиления по току и мощности с коэффициентом усиления по напряжению, приблизительно равным единице.Другой важной характеристикой схемы эмиттерного повторителя этого типа является то, что она имеет высокий входной импеданс и низкий выходной импеданс, что делает ее идеальной для согласования импеданса с большими катушками реле.
Цепь релейного переключателя PNP
Помимо переключения катушек реле и других подобных нагрузок с помощью биполярных транзисторов NPN, мы также можем переключать их с помощью биполярных транзисторов PNP. Схема переключателя реле PNP не отличается от схемы переключения реле NPN с точки зрения ее способности управлять катушкой реле.Однако для этого требуются разные полярности рабочих напряжений. Например, напряжение коллектор-эмиттер Vce должно быть отрицательным для типа PNP, чтобы ток протекал от эмиттера к коллектору.
Цепь переключателя реле PNP
Схема транзистора PNP работает противоположно схеме переключения реле NPN. Ток нагрузки течет от эмиттера к коллектору, когда база смещена в прямом направлении с напряжением, которое более отрицательно, чем на эмиттере.Чтобы ток нагрузки реле протекал через эмиттер к коллектору, и база, и коллектор должны быть отрицательными по отношению к эмиттеру.
Другими словами, когда Vin имеет высокий уровень, PNP-транзистор выключается, как и катушка реле. Когда Vin имеет значение LOW, базовое напряжение меньше напряжения эмиттера (более отрицательное), и транзистор PNP включается. Значение базового резистора устанавливает базовый ток, который устанавливает ток коллектора, который управляет катушкой реле.
Транзисторные переключателиPNP могут использоваться, когда сигнал переключения является обратным для транзистора NPN, например, на выходе затвора CMOS NAND или другого такого логического устройства.Логический выход CMOS имеет мощность возбуждения, равную логическому 0, чтобы потреблять ток, достаточный для включения транзистора PNP. Тогда приемники тока можно превратить в источники тока с помощью транзисторов PNP и источника питания противоположной полярности.
Цепь переключателя реле коллектора PNP
Работа этой схемы такая же, как и у предыдущей схемы переключения реле. В этой схеме релейного переключателя нагрузка реле была подключена к коллектору транзисторов PNP. Переключение транзистора и катушки в положение ВКЛ-ВЫКЛ происходит, когда Vin имеет низкий уровень, транзистор «включен», а когда Vin имеет высокий уровень, транзистор «выключен».
Цепь переключателя реле коллектора PNP
Мы видели, что либо биполярный транзистор NPN, либо биполярный транзистор PNP могут работать как переключатель для переключения реле или любой другой нагрузки в этом отношении. Но есть два разных состояния, которые нужно понимать, поскольку ток течет в двух разных направлениях.
Итак, в транзисторе NPN к базе подается ВЫСОКОЕ напряжение по отношению к эмиттеру, ток течет от коллектора к эмиттеру, и транзистор NPN переключается в положение «включено».Для транзистора PNP низкое напряжение по отношению к эмиттеру прикладывается к базе, ток течет от эмиттера к коллектору, и транзистор PNP переключается в положение «включено».
Цепь переключателя реле N-канального полевого МОП-транзистора
Операция переключения релеMOSFET очень похожа на операцию переключения биполярного переходного транзистора (BJT), показанную выше, и любая из предыдущих схем может быть реализована с использованием MOSFET. Однако есть некоторые существенные различия в работе схем полевого МОП-транзистора, основные из которых заключаются в том, что полевые МОП-транзисторы являются устройствами, работающими от напряжения, а поскольку затвор электрически изолирован от канала сток-исток, они имеют очень высокие входные импедансы, поэтому ток затвора для полевого МОП-транзистора равен нулю, поэтому в базовом резисторе нет необходимости.
Полевые МОП-транзисторыпроходят через проводящий канал, при этом канал изначально закрыт, а транзистор выключен. Этот канал постепенно увеличивается в проводящей ширине по мере того, как напряжение, подаваемое на вывод затвора, медленно увеличивается. Другими словами, транзистор работает путем расширения канала при увеличении напряжения затвора, и по этой причине этот тип полевого МОП-транзистора называется улучшенным полевым МОП-транзистором или E-MOSFET.
N-канальные полевые МОП-транзисторы (NMOS) являются наиболее часто используемым типом полевых МОП-транзисторов, поскольку положительное напряжение на клемме затвора включает полевой МОП-транзистор, а нулевое или отрицательное напряжение на затворе переключает его в положение «ВЫКЛ», что делает его идеальным в качестве полевого МОП-транзистора. релейный переключатель.Также доступны дополнительные полевые МОП-транзисторы с P-каналом, которые, как и PNP BJT, работают с противоположными напряжениями.
Цепь переключателя реле N-канального полевого МОП-транзистора
Вышеупомянутая схема релейного переключателя MOSFET подключена по схеме с общим источником. При нулевом входном напряжении, состоянии LOW, значении V GS , привода затвора недостаточно для открытия канала, и транзистор находится в состоянии «ВЫКЛ». Но когда V GS увеличивается выше нижнего порогового напряжения MOSFET V T , канал открывается, ток течет и катушка реле срабатывает.
Тогда полевой МОП-транзистор в расширенном режиме работает как нормально разомкнутый переключатель, что делает его идеальным для переключения небольших нагрузок, таких как реле. MOSFET-транзисторы E-типа имеют высокое сопротивление «выключено», но умеренное сопротивление «включено» (нормально для большинства приложений), поэтому при выборе одного из них для конкретного приложения переключения необходимо учитывать его значение R DS .
Цепь переключателя реле P-канального МОП-транзистора
Расширенный МОП-транзистор с P-каналом (PMOS) сконструирован так же, как и расширенный МОП-транзистор с N-каналом, за исключением того, что он работает только с отрицательными напряжениями затвора.Другими словами, полевой МОП-транзистор с P-каналом работает таким же образом, но с противоположной полярностью, поскольку затвор должен быть более отрицательным, чем источник, чтобы включить транзистор с помощью прямого смещения, как показано.
Цепь переключателя реле P-канального МОП-транзистора
В этой конфигурации клемма источника P-каналов подключена к + Vdd, а клемма стока подключена к земле через катушку реле. Когда на затвор подается ВЫСОКИЙ уровень напряжения, P-канальный MOSFET будет выключен.Выключенный E-MOSFET будет иметь очень высокое сопротивление канала и будет действовать почти как разомкнутая цепь.
Когда на затвор подается НИЗКИЙ уровень напряжения, P-канальный полевой МОП-транзистор будет включен. Это вызовет протекание тока через канал с низким сопротивлением канала e-MOSFET, управляющего катушкой реле. Электронные МОП-транзисторы с каналом N и P образуют превосходные схемы переключения реле низкого напряжения и могут быть легко подключены к широкому спектру цифровых логических вентилей и микропроцессорных приложений.
Цепь релейного переключателя с логическим управлением
N-канальный полевой МОП-транзистор улучшенного типа чрезвычайно полезен в качестве транзисторного переключателя, поскольку в состоянии «ВЫКЛ» (с нулевым смещением затвора) его канал имеет очень высокое сопротивление, блокирующее прохождение тока. Однако относительно небольшое положительное напряжение, превышающее пороговое напряжение V T , на его затворе с высоким импедансом заставляет его начать проводить ток от его вывода стока к выводу истока.
В отличие от биполярного переходного транзистора, для включения которого требуется ток базы, e-MOSFET требует только напряжения на затворе, поскольку из-за его изолированной конструкции затвор нулевой ток течет в затвор.Тогда это делает e-MOSFET, N-канальный или P-канальный, идеальным для непосредственного управления типичными логическими вентилями TTL или CMOS, как показано.
Цепь релейного переключателя с логическим управлением
Здесь N-канальный E-MOSFET управляется цифровым логическим вентилем. Выходные контакты большинства логических вентилей могут подавать только ограниченный ток, обычно не более 20 мА. Поскольку электронные МОП-транзисторы представляют собой устройства, работающие от напряжения и не потребляющие тока затвора, мы можем использовать схему релейного переключателя МОП-транзистора для управления мощными нагрузками.
Цепь переключателя реле микроконтроллера
Помимо цифровых логических вентилей, мы также можем использовать выходные контакты и каналы микроконтроллеров, PIC и процессоров для управления внешним миром. Схема ниже показывает, как взаимодействовать с реле с помощью переключателя MOSFET.
Цепь переключателя реле микроконтроллера
Обзор цепи переключения реле
В этом руководстве мы увидели, как мы можем использовать оба биполярных переходных транзистора, NPN или PNP, и полевые МОП-транзисторы расширения, N-канальный или P-канальный, в качестве схемы переключения транзисторов.
Иногда при создании электронных схем или схем микроконтроллера мы хотим использовать транзисторный переключатель для управления мощным устройством, например двигателями, лампами, нагревательными элементами или цепями переменного тока. Обычно эти устройства требуют больших токов или более высоких напряжений, чем может выдержать один силовой транзистор, тогда для этого мы можем использовать схему переключения реле.
Биполярные транзисторы (BJT) составляют очень хорошие и дешевые схемы переключения реле, но BJT — это устройства, работающие по току, поскольку они преобразуют небольшой базовый ток в больший ток нагрузки, чтобы запитать катушку реле.
Однако переключатель MOSFET идеален в качестве электрического переключателя, поскольку для его включения практически не требуется ток затвора, преобразуя напряжение затвора в ток нагрузки. Следовательно, полевой МОП-транзистор может работать как переключатель, управляемый напряжением.
Во многих приложениях биполярные транзисторы могут быть заменены полевыми МОП-транзисторами улучшенного типа, обеспечивающими более быстрое переключение, гораздо более высокий входной импеданс и, возможно, меньшее рассеивание мощности. Комбинация очень высокого импеданса затвора, очень низкого энергопотребления в выключенном состоянии и очень быстрой коммутации делает полевой МОП-транзистор подходящим для многих приложений цифровой коммутации.Также при нулевом токе затвора его переключающее действие не может перегрузить выходную цепь цифрового затвора или микроконтроллера.
Однако, поскольку затвор E-MOSFET изолирован от остальной части компонента, он особенно чувствителен к статическому электричеству, которое может разрушить тонкий оксидный слой на затворе. Затем следует проявлять особую осторожность либо при обращении с компонентом, либо во время его использования, и чтобы любая схема, использующая полевые МОП-транзисторы, имела надлежащую защиту от статического электричества и скачков напряжения.
Также для дополнительной защиты BJT или MOSFET всегда используйте диод маховика поперек и катушку реле для безопасного рассеивания обратной ЭДС, генерируемой переключением транзисторов.
Анализ электрической схемы стабилизатора напряженияСтабилизатор напряжения — это схема источника питания или устройство источника питания, которое может автоматически регулировать выходное напряжение.Его функция заключается в стабилизации напряжения источника питания, которое сильно колеблется и не соответствует требованиям электрического оборудования в пределах установленного диапазона значений. Стабилизатор напряжения предназначен для обеспечения нормальной работы различных цепей или электрического оборудования при номинальном рабочем напряжении.
Крупногабаритные стабилизаторы напряжения в десятки и даже сотни киловатт используются для обеспечения рабочей мощности крупномасштабного экспериментального оборудования. Существуют также небольшие стабилизаторы переменного напряжения мощностью от нескольких ватт до нескольких киловатт, обеспечивающие качественное питание небольших лабораторий или бытовой техники.
В самом начале стабилизатор напряжения стабилизировал напряжение по биению реле. Когда напряжение в сети колеблется, активируется схема автоматической коррекции стабилизатора напряжения, чтобы активировать внутреннее реле и заставить выходное напряжение оставаться близким к установленному значению. Преимущество этой схемы состоит в том, что схема проста, но недостатком является то, что точность регулирования напряжения невысока, и каждое биение и смещение реле вызовут мгновенное прерывание источника питания и искровые помехи.
Это вызовет серьезные помехи при чтении и записи компьютерного оборудования, а также может вызвать неправильные сигналы в компьютере. В тяжелых случаях жесткий диск будет поврежден.
Современные высококачественные малые стабилизаторы напряжения в основном используют метод угольных щеток с приводом от двигателя для стабилизации напряжения. Этот тип стабилизатора напряжения имеет небольшие помехи для электрического оборудования, а точность регулирования напряжения относительно высока. Это продукт без искажения формы волны.
Анализ принципиальной схемы стабилизатора напряжения
Схема стабилизации напряжения источника питания состоит из силового трансформатора T3, выпрямительных диодов VDl-VD4, конденсатора фильтра Cl-C3 и трехконтактных интегральных схем стабилизации напряжения IC1 и IC2.
Схема сравнения входов состоит из резистора Rl, потенциометра RPl-RP9, конденсатора C6-Cl4 и Nl-Ng внутри интегральной схемы операционного усилителя lC3-1C5.
Цепь управления кодом состоит из интегральной схемы без затвора IC6-1C8, интегральной схемы затвора и без затвора IC9, глянцевого диода IC10 VD8-VDl5, резистора R4-R11, конденсатора Cl5-C22.
Выходная цепь компенсации состоит из интегральных схем электронного переключателя ICl (Sl-S4), IC17 (S5-S8), тиристоров VTl-VT8, главного компенсационного трансформатора Tl, вспомогательного компенсационного трансформатора T2, контактора переменного тока KM, вольтметра PV и амперметра. PA.
Схема защиты от перенапряжения / пониженного напряжения состоит из незатворного D9 в IC7, диодов VD5-VD7, резисторов R2, R3, транзистора V и реле K.
Относительно простой стабилизатор напряжения 220 В переменного тока может использовать электронное обнаружение и механическую регулировку.Сравнивая понижающее и выпрямленное напряжение постоянного тока 220 В со стандартным напряжением, полученным интегральной схемой стабилизатора напряжения, можно обнаружить, что при низком напряжении источника питания 220 В выпрямленное выходное напряжение постоянного тока относительно низкое по сравнению со стандартным. Напряжение. Если схема триодного переключателя приводится в действие для срабатывания реле, контакт реле заставляет регулирующий двигатель вращаться вперед. Затем однофазный трансформатор регулирования напряжения, приводимый в действие регулирующим двигателем, повышает напряжение источника питания до тех пор, пока разница между выходным напряжением постоянного тока схемы обнаружения и стандартным напряжением не станет меньше, чем напряжение проводимости схемы переключения.Реле отпускается, и наддув закончен. Если 220 В слишком высокое, должна быть включена соответствующая цепь переключателя, чтобы двигатель регулирования реверсировал и понижал скорость.
Этот метод предназначен в основном для обнаружения цепи управления приводом. Используя различные регуляторы мощности или трансформаторы, можно просто изменить мощность регулятора. Однако точность этого метода стабилизации напряжения невысока и может достигать примерно 5%.
T1 — понижающий трансформатор переменного тока.Если вы хотите снизить напряжение 220 В переменного тока до более низкого напряжения, для этого выходного линейного регулируемого источника питания 12 В достаточно установить вторичное напряжение T1 на 14 В ~ 15 В.
Выпрямительный мост, состоящий из D1, D2, D3 и D4, может преобразовывать выходное переменное напряжение вторичной обмотки T1 в однонаправленное пульсирующее напряжение.
C1 и C2 — конденсаторы входного фильтра, которые могут преобразовывать однонаправленное пульсирующее напряжение в постоянное напряжение с небольшой пульсацией. Помимо пульсаций, это постоянное напряжение также будет изменяться с колебаниями напряжения сети, которое нестабильно.
C3 и C4 являются конденсаторами выходного фильтра, их основная функция — подавлять автоколебания, которые может создавать 7812, чтобы обеспечить его нормальную работу.
Элементы управления генератором (часть вторая)
Элементы управления генератором для генераторов с низкой выходной мощностью
Типичная схема управления генератором для генераторов с низкой выходной мощностью изменяет ток в поле генератора для управления выходной мощностью генератора. При изменении параметров полета и электрических нагрузок блок GCU должен контролировать электрическую систему и вносить соответствующие корректировки для обеспечения надлежащего напряжения и тока системы.Типичное устройство управления генератором называется регулятором напряжения или GCU.
Поскольку большинство генераторов с малой мощностью используется на старых самолетах, системами управления для этих систем являются электромеханические устройства. (Твердотельные блоки можно найти на более современных самолетах, в которых используются генераторы постоянного тока, а не генераторы постоянного тока.) Двумя наиболее распространенными типами регуляторов напряжения являются регулятор с угольным стержнем и трехступенчатый регулятор. Каждый из этих блоков управляет током возбуждения с помощью переменного резистора.Затем управление током возбуждения регулирует мощность генератора. Упрощенная схема управления генератором показана на Рисунке 9-57.
Рисунок 9-57. Регулятор напряжения для маломощного генератора.Регуляторы углеродного сваи
Регулятор углеродного сваи управляет выходной мощностью генератора постоянного тока, направляя ток возбуждения через стопку углеродных дисков (углеродную кучу). Углеродные диски включены последовательно с генератором поля. Если сопротивление дисков увеличивается, ток возбуждения уменьшается и мощность генератора падает.Если сопротивление дисков уменьшается, ток возбуждения увеличивается и выходная мощность генератора возрастает. Как видно на рис. 9-58, катушка напряжения установлена параллельно выходным выводам генератора. Катушка напряжения действует как электромагнит, который увеличивает или уменьшает силу при изменении выходного напряжения генератора. Магнетизм катушки напряжения контролирует давление на угольную стопку. Давление на углеродный пакет контролирует сопротивление углерода; сопротивление углерода контролирует ток возбуждения, а ток возбуждения контролирует выходную мощность генератора.
Рисунок 9-58. Углеродный регулятор ворса.Регуляторы с угольными сваями требуют регулярного технического обслуживания для обеспечения точного регулирования напряжения; поэтому большинство из них было заменено на самолетах более современными системами.
Трехуровневые регуляторы
Трехуровневый регулятор, используемый с системами генераторов постоянного тока, состоит из трех отдельных узлов. Каждый из этих блоков выполняет определенную функцию, жизненно важную для правильной работы электрической системы. Типичный трехкомпонентный регулятор состоит из трех реле, установленных в одном корпусе.Каждое из трех реле контролирует выходы генератора и размыкает или замыкает точки контакта реле в соответствии с потребностями системы. Типичный трехблочный регулятор показан на Рисунке 9-59.
Рисунок 9-59. Три реле этого регулятора используются для регулирования напряжения, ограничения тока и предотвращения обратного тока.Регулятор напряжения
Секция регулятора напряжения трехзвенного регулятора используется для управления выходным напряжением генератора. Регулятор напряжения контролирует выходную мощность генератора и при необходимости регулирует ток возбуждения генератора.Если регулятор определяет, что напряжение в системе слишком высокое, точки реле размыкаются, и ток в цепи возбуждения должен проходить через резистор. Этот резистор снижает ток возбуждения и, следовательно, снижает выходную мощность генератора. Помните, что выходная мощность генератора падает всякий раз, когда падает ток возбуждения генератора.
Как видно на Рисунке 9-60, катушка напряжения подключена параллельно с выходом генератора, и поэтому она измеряет напряжение в системе. Если напряжение выходит за пределы заданного предела, катушка напряжения становится сильным магнитом и размыкает точки контакта.Если точки контакта разомкнуты, ток возбуждения должен проходить через резистор, и, следовательно, ток возбуждения уменьшается. Пунктирная стрелка показывает ток, протекающий через регулятор напряжения, когда точки реле разомкнуты.
Рисунок 9-60. Регулятор напряжения.Поскольку этот регулятор напряжения имеет только два положения (точки разомкнуты и точки замкнуты), устройство должно постоянно регулироваться, чтобы поддерживать точный контроль напряжения. Во время нормальной работы системы точки открываются и закрываются через равные промежутки времени.По сути, точки вибрируют. Этот тип регулятора иногда называют регулятором вибрирующего типа. По мере того, как точки вибрируют, ток возбуждения повышается и понижается, а магнетизм поля в среднем достигает уровня, который поддерживает правильное выходное напряжение генератора. Если системе требуется большая мощность генератора, точки остаются закрытыми дольше и наоборот.
Ограничитель тока
Секция ограничителя тока трехзвенного регулятора предназначена для ограничения выходного тока генератора.Этот блок содержит реле с катушкой, включенной последовательно по отношению к выходу генератора. Как показано на Рисунке 9-61, весь выходной ток генератора должен проходить через токовую катушку реле. Это создает реле, чувствительное к токовому выходу генератора. То есть, если выходной ток генератора увеличивается, точки реле размыкаются, и наоборот. Пунктирная линия показывает ток, протекающий в поле генератора, когда точки ограничителя тока открыты. Следует отметить, что, в отличие от реле регулятора напряжения, ограничитель тока обычно замкнут во время нормального полета.Только при экстремальных токовых нагрузках точки ограничителя тока должны открываться; в это время ток возбуждения снижается, а выходная мощность генератора остается в установленных пределах.
Рисунок 9-61. Ограничитель тока.Реле обратного тока
Третий блок трехзвенного регулятора используется для предотвращения выхода тока из батареи и питания генератора. Этот тип протекания тока приведет к разрядке аккумулятора и противоположен нормальному режиму работы. Это можно рассматривать как ситуацию с обратным током и известно как реле обратного тока.Простое реле обратного тока, показанное на рис. 9-62, содержит как катушку напряжения, так и катушку тока.
Рисунок 9-62. Реле обратного тока.Катушка напряжения подключена параллельно выходу генератора и запитывается каждый раз, когда выход генератора достигает своего рабочего напряжения. Когда катушка напряжения находится под напряжением, точки контакта замыкаются, и ток пропускается к электрическим нагрузкам самолета, как показано пунктирными линиями. На схеме показано реле обратного тока в его нормальном рабочем положении; точки замкнуты, и ток течет от генератора к электрическим нагрузкам самолета.Когда ток течет к нагрузкам, токовая катушка находится под напряжением, а точки остаются закрытыми. Если нет выхода генератора из-за сбоя системы, контактные точки размыкаются из-за потери магнетизма в реле. При разомкнутых точках контакта генератор автоматически отключается от бортовой сети, что предотвращает обратный поток от шины нагрузки к генератору. Типичный трехступенчатый регулятор для авиационных генераторов показан на рис. 9-63.
Рисунок 9-63. Трехступенчатый регулятор для генераторов с регулируемой частотой вращения.[щелкните изображение, чтобы увеличить] Как видно на Рисунке 9-63, все три блока регулятора работают вместе, чтобы управлять выходной мощностью генератора. Регулятор контролирует выходную мощность генератора и регулирует мощность нагрузки самолета по мере необходимости для переменных полета. Обратите внимание, что только что описанный вибрационный регулятор был упрощен для объяснения. Типичный регулятор вибрации, установленный на самолете, вероятно, будет более сложным.Flight Mechanic рекомендует
реле цепи автоматического регулятора напряжения для оптимального использования
Купить большой емкости.Релейная цепь , автоматический регулятор напряжения , который гарантированно поддержит вашу технику в отличном состоянии от Alibaba.com. Эти. Релейная схема , автоматический регулятор напряжения , предлагаемые лучшими и наиболее энергоэффективными брендами, обеспечивают пользователям повышенный опыт. Эти. Релейная схема автоматического регулятора напряжения предназначена для обеспечения безопасности и стабильности и доступна в нескольких вариантах.Схема реле автоматического регулятора напряжения предлагается на Alibaba.com имеет много необходимых и интересных функций, таких как отказоустойчивая защита цепей и точки отключения. Эти. Схема реле автоматического регулятора напряжения имеет большой диапазон и подходит для большинства домашних и коммерческих целей. Эти. Релейная цепь , автоматический регулятор напряжения , имеет тщательно продуманный внешний вид, чтобы исключить риск поражения электрическим током или несчастных случаев. Некоторые из этих предметов даже имеют светодиодные дисплеи для более плавного просмотра и большей прозрачности.
реле цепи автоматического регулятора напряжения подходят для всех видов крупногабаритных бытовых приборов и не могут легко выйти из строя.Они требуют очень ограниченного обслуживания, и на их содержание нужно не так уж много средств. Релейный автоматический регулятор напряжения гарантирует, что ваши дорогие приборы и машины не будут повреждены из-за колебаний и неизбежны для любого домашнего или коммерческого предприятия, которое задействует несколько электронные элементы .. схема реле автоматического регулятора напряжения на сайте предлагают оптимальные характеристики по экономичным ценам.
Выберите. Релейная схема , автоматический регулятор напряжения , который наилучшим образом соответствует вашим потребностям, будь то для дома, офиса или промышленности.. Релейная схема автоматический регулятор напряжения Поставщики обязательно захотят воспользоваться этой привлекательной возможностью купить качественные товары по сниженным ценам. Получите эти потрясающие предложения сегодня.
Генераторы переменного тока (часть три)
Трехступенчатые регуляторы
Многие легкие самолеты используют трехступенчатые регуляторы для своих систем генераторов. [Рисунок 12-329] Этот тип регулятора включает в себя ограничитель тока и выключатель обратного тока в дополнение к регулятору напряжения.
Рисунок 12-329.Трехступенчатый регулятор.Принцип действия блока регулятора напряжения аналогичен описанному ранее регулятору вибрационного типа. Второй из трех блоков — регулятор тока для ограничения выходного тока генератора. Третий блок — это выключатель обратного тока, отключающий аккумулятор от генератора. Если аккумулятор не отсоединен, он разряжается через якорь генератора, когда напряжение генератора падает ниже напряжения аккумулятора, таким образом приводя в действие генератор как двигатель.Это действие называется «приводом в движение» генератора, и, если его не предотвратить, оно разряжает аккумулятор за короткое время.
Работа трехступенчатого регулятора описана в следующих параграфах. [Рисунок 12-330] Рисунок 12-330. Трехступенчатый регулятор для генераторов с регулируемой скоростью.
Действие вибрирующего контакта C1 в блоке регулятора напряжения вызывает периодическое короткое замыкание между точками R1 и L2. Когда генератор не работает, пружина S1 удерживает C1 в замкнутом состоянии; C2 также замыкается S2.Поле шунта подключается непосредственно через якорь.
Когда генератор запускается, его напряжение на клеммах увеличивается по мере того, как генератор набирает обороты, а якорь снабжает поле током через замкнутые контакты C2 и C1.
По мере увеличения напряжения на клеммах ток, протекающий через L1, увеличивается, и железный сердечник намагничивается сильнее. При определенной скорости и напряжении, когда магнитное притяжение на подвижном рычаге становится достаточно сильным, чтобы преодолеть натяжение пружины S1, точки контакта C1 разделяются.Теперь ток возбуждения протекает через R1 и L2. Поскольку к цепи возбуждения добавляется сопротивление, поле на мгновение ослабевает и проверяется рост напряжения на клеммах. Кроме того, поскольку обмотка L2 расположена напротив обмотки L1, магнитное притяжение L1 к S1 частично нейтрализуется, и пружина S1 замыкает контакт C1. Следовательно, R1 и L2 снова закорачиваются из цепи, и ток возбуждения снова увеличивается; выходное напряжение увеличивается, и C1 размыкается из-за действия L1.Цикл быстрый и повторяется много раз в секунду. Напряжение на клеммах генератора изменяется незначительно, но быстро, выше и ниже среднего значения, определяемого натяжением пружины S1, которое можно регулировать.
Назначение ограничителя тока вибрационного типа — автоматическое ограничение выходного тока генератора до максимального номинального значения для защиты генератора. Как показано на Рисунке 12-330, L3 включен последовательно с основной линией и нагрузкой.
Рисунок 12-330. Трехступенчатый регулятор для генераторов с регулируемой скоростью.Таким образом, величина тока, протекающего в линии, определяет, когда C2 открыт, а R2 соединен последовательно с полем генератора. Напротив, регулятор напряжения приводится в действие линейным напряжением, а ограничитель тока — линейным током. Пружина S2 удерживает контакт C2 замкнутым до тех пор, пока ток через главную линию и L3 не превысит определенное значение, определяемое натяжением пружины S2, и заставит C2 размыкаться. Увеличение тока происходит из-за увеличения нагрузки. Это действие вставляет R2 в цепь возбуждения генератора и уменьшает ток возбуждения и генерируемое напряжение.Когда генерируемое напряжение уменьшается, ток генератора уменьшается. Сердечник L3 частично размагничен, и пружина закрывает точки контакта. Это вызывает повышение напряжения и тока генератора до тех пор, пока ток не достигнет значения, достаточного для повторного запуска цикла. Определенное минимальное значение тока нагрузки необходимо, чтобы ограничитель тока вибрировал.
Назначение реле отключения обратного тока — автоматическое отключение аккумулятора от генератора, когда напряжение генератора меньше напряжения аккумулятора.Если бы это устройство не использовалось в цепи генератора, аккумулятор разрядился бы через генератор. Это приведет к тому, что генератор будет работать как двигатель, но поскольку генератор соединен с двигателем, он не может вращать такую тяжелую нагрузку. В этом случае обмотки генератора могут быть серьезно повреждены чрезмерным током.
На сердечнике из мягкого железа расположены две обмотки, L4 и L5. Токовая обмотка L4, состоящая из нескольких витков тяжелого провода, включена последовательно с линией и несет весь линейный ток.Обмотка напряжения L5, состоящая из большого количества витков тонкой проволоки, шунтируется через клеммы генератора.
Когда генератор не работает, контакты C3 удерживаются в открытом положении пружиной S3. По мере роста напряжения генератора L5 намагничивает железный сердечник. Когда ток (в результате генерируемого напряжения) создает достаточный магнетизм в железном сердечнике, контакт C3 замыкается, как показано. Затем аккумулятор получает зарядный ток. Винтовая пружина S3 отрегулирована так, что обмотка напряжения не замыкает точки контакта, пока напряжение генератора не превысит нормальное напряжение батареи.Зарядный ток, проходящий через L4, помогает току в L5 удерживать контакты плотно замкнутыми. В отличие от C1 и C2, контакт C3 не вибрирует. Когда генератор замедляется или, по любой другой причине, напряжение генератора снижается до определенного значения ниже, чем у батареи, ток через L4 меняется на противоположный, а амперные витки L4 противоположны таковым на L5. Таким образом, мгновенный ток разряда от батареи снижает магнетизм сердечника, и C3 размыкается, предотвращая разряд батареи в генератор и привод его в действие.C3 не замыкается снова, пока напряжение на клеммах генератора не превысит напряжение аккумулятора на заданное значение.
Дифференциальный релейный выключатель
В бортовых электрических системах обычно используется какой-либо тип реле обратного тока, который действует не только как выключатель реле обратного тока, но также служит выключателем дистанционного управления, с помощью которого генератор может быть отключен от электрической системы при в любой момент. Один из типов релейного переключателя обратного тока работает на уровне напряжения генератора, но на больших самолетах чаще всего используется дифференциальный релейный переключатель, который управляется разницей в напряжении между шиной аккумуляторной батареи и генератором.
Релейный переключатель дифференциального типа подключает генератор к главной шине в электрической системе, когда выходное напряжение генератора превышает напряжение шины на 0,35–0,65 вольт. Он отключает генератор, когда от шины к генератору течет номинальный обратный ток. Дифференциальные реле на всех генераторах многодвигательного самолета не замыкаются, когда электрическая нагрузка мала. Например, в самолете с нагрузкой 50 ампер могут замкнуться только два или три реле.Если приложена большая нагрузка, уравнительная цепь снижает напряжение генераторов, уже подключенных к шине, и в то же время повышает напряжение остальных генераторов, позволяя их реле замкнуться. Если генераторы были подключены параллельно, все реле остаются закрытыми до тех пор, пока не будет выключен переключатель управления генератором или пока частота вращения двигателя не упадет ниже минимума, необходимого для поддержания выходного напряжения генератора.
Дифференциальное реле управления генератором, показанное на Рисунке 12-331, состоит из двух реле и катушечного контактора.
Рисунок 12-331. Реле управления дифференциальным генератором.Одно реле — реле напряжения, другое — дифференциальное реле. Оба реле содержат постоянные магниты, которые вращаются между полюсными наконечниками временных магнитов, намотанных с катушками реле. Напряжения одной полярности создают поля вокруг временных магнитов с полярностями, которые заставляют постоянный магнит двигаться в направлении, необходимом для замыкания контактов реле; напряжения противоположной полярности создают поля, вызывающие размыкание контактов реле.Дифференциальное реле имеет две катушки, намотанные на один сердечник. Катушечный контактор, называемый главным контактором, состоит из подвижных контактов, которые приводятся в действие катушкой с подвижным железным сердечником.
Замыкание переключателя генератора на панели управления подключает выход генератора к катушке реле напряжения. Когда напряжение генератора достигает 22 вольт, ток проходит через катушку и замыкает контакты реле напряжения. Это действие замыкает цепь от генератора к батарее через дифференциальную катушку.
Когда напряжение генератора превышает напряжение на шине на 0,35 В, ток течет через дифференциальную катушку, контакт дифференциального реле замыкается и, таким образом, замыкает цепь катушки главного контактора. Контакты главного контактора замыкаются и подключают генератор к шине.
Когда напряжение генератора падает ниже напряжения шины (или аккумулятора), обратный ток ослабляет магнитное поле вокруг временного магнита дифференциального реле. Ослабленное поле позволяет пружине размыкать контакты дифференциального реле, размыкая цепь катушки реле главного контактора, размыкая его контакты и отключая генератор от шины.Цепь аккумуляторной батареи генератора также может быть разорвана путем размыкания переключателя управления кабиной экипажа, который размыкает контакты реле напряжения, вызывая обесточивание катушки дифференциального реле.
Реле перенапряжения и управления полем
Два других элемента, используемых в цепях управления генератором, — это реле перенапряжения и реле управления полем. Как следует из названия, контроль перенапряжения защищает систему при наличии чрезмерного напряжения. Реле перенапряжения замыкается, когда выходное напряжение генератора достигает 32 В, и замыкает цепь на катушку отключения реле управления возбуждением.Замыкание цепи отключения реле управления полем размыкает цепь шунтирующего поля и замыкает его через резистор, вызывая падение напряжения генератора; Кроме того, размыкаются цепь переключателя генератора и схема эквалайзера (многодвигательный самолет). Замыкнута цепь светового индикатора, предупреждающего о наличии состояния перенапряжения. Положение «сброса» переключателя кабины пилота используется для завершения цепи катушки сброса в реле управления полем, возвращая реле в его нормальное положение.
Бортовой механик рекомендует
Схема автоматического стабилизатора напряжения — Инженерные проекты
Представленный здесь проект представляет собой схему так называемого автоматического стабилизатора напряжения, которая эффективно решает почти все проблемы, возникающие в обычном доступном стабилизаторе.С помощью схемы автоматического стабилизатора напряжения мы можем поддерживать постоянное напряжение на уровне 230 В, когда напряжение автоматически понижается до 170 В и повышается до 250 В.
Стратегия работы цепи автоматического стабилизатора напряженияПринцип работы схемы очень прост: эта схема активировала одно реле за раз от 170 В переменного тока и выше, и все реле и включала питание при достижении входного напряжения 230 В переменного тока. Точно так же, если входное напряжение питания постепенно уменьшается с 230 В, реле автоматически отключаются одно за другим, так что выходное напряжение остается постоянным на уровне 230 В переменного тока.
Различные другие стабилизаторы напряжения и устройства автоматического отключения, размещенные на сайте bestengineeringprojects.com, вам могут понравиться
- Цепь стабилизатора переменного напряжения с использованием 556 IC
- Универсальный автомат автоматического отключения
- Блок питания с автоматическим отключением
Питание схемы осуществляется от вторичной обмотки трансформатора X 2 . Поскольку напряжение между двумя ответвлениями составляет 20 В, оно напрямую выпрямляется с помощью мостового выпрямителя с диодами от D 1 до D 4 .Выпрямленный выходной сигнал дополнительно фильтруется с помощью электролитического конденсатора C 1 .
Входное напряжение источника воспринимается трансформатором X 1 и выпрямляется с помощью мостового выпрямителя из диода D 5 через D 8 . Выпрямленный выход дополнительно фильтруется конденсатором C 2 и подается на базу транзистора T 1 — T 4 через переменный резистор VR 1 — VR 4 .В качестве опорного напряжения используются стабилитроны ZD 1 — ZD 4 .
ПЕРЕЧЕНЬ ДЕТАЛЕЙ ЦЕПИ АВТОМАТИЧЕСКОГО СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ
Резистор (полностью ¼-ватт, ± 5% углерода) |
R 1 = 4,7 Ом, 3 Вт R 2 , R 3 = 100 Ом, 0,5 Вт R 4 , R 5 = 56 Ом, 0,5 Вт R 6 — R 9 = 1 кОм R 10 = 1 кОм, 0.5 Вт VR 1 — VR 4 = 20 кОм Линейный |
Конденсаторы |
C 1 = 470 мкФ / 40 В (электролитический конденсатор) C 2 = 100 мкФ / 40 В (электролитический конденсатор) C 3 — C 6 = 10 мкФ / 50 В (электролитический конденсатор) |
Полупроводники |
T 1 — T 5 = SL100 (NPN-транзистор общего назначения средней мощности) D 1 — D 12 = 1N4007 (выпрямительный диод) ZD 1 — ZD 4 = 2 В, 1 ампер.Стабилитрон Светодиод 1 = Светодиод любого цвета |
Разное |
X 1 = 230 В перем. Тока первичный на 0-12 В, 300 мА вторичный X 2 = 230 В переменного тока первичной обмотки на 0-170 В, 190 В, 210 В, 230 В, 250 В вторичной обмотки RL 1 — RL 4 = реле с двойным контактом 12 В, 300 Ом SW 1 = выключатель |
Нравится:
Нравится Загрузка…
Органы управления генератором — бортовая электрическая система
Теория управления генератором
Все самолеты предназначены для работы в определенном диапазоне напряжений (например, 13,5–14,5 вольт). А поскольку самолет работает с разными частотами вращения двигателя (помните, двигатель приводит в действие генератор) и с различными электрическими требованиями, все генераторы должны регулироваться какой-либо системой управления. Система управления генератором предназначена для поддержания выходной мощности генератора в пределах всех параметров полета.Системы управления генератором часто называют регуляторами напряжения или блоками управления генератором (GCU).Выходную мощность авиационного генератора можно легко отрегулировать, контролируя напряженность магнитного поля генератора. Помните, что сила магнитного поля напрямую влияет на мощность генератора. Больший ток возбуждения означает большую мощность генератора и наоборот. На рисунке 1 показано простое управление генератором, используемое для регулировки тока возбуждения. Когда ток возбуждения регулируется, регулируется выход генератора.Имейте в виду, что эта система настраивается вручную и не подходит для самолетов. Системы самолета должны быть автоматическими, и поэтому они немного сложнее.
Рисунок 1. Регулировка напряжения генератора полевым реостатом |
Существует два основных типа управления генератором: электромеханический и твердотельный (транзисторный). Органы управления электромеханического типа используются на старых самолетах и, как правило, требуют регулярного осмотра и обслуживания.Твердотельные системы более современны и обычно считаются более надежными и более точными для управления мощностью генератора.
Функции систем управления генератором
Большинство систем управления генераторами выполняют ряд функций, связанных с регулированием, измерением и защитой системы генерации постоянного тока. Для легких самолетов обычно требуется менее сложная система управления генератором, чем для более крупных многодвигательных самолетов. Некоторые из перечисленных ниже функций отсутствуют на легких самолетах.Регулирование напряжения
Самая основная из функций GCU — регулировка напряжения. Регулирование любого вида требует, чтобы блок регулирования взял образец выходного сигнала генератора и сравнил этот образец с известным эталоном. Если выходное напряжение генератора выходит за установленные пределы, то блок регулирования должен обеспечивать регулировку тока возбуждения генератора. Регулировка тока возбуждения контролирует выход генератора.
Защита от перенапряжения
Система защиты от перенапряжения сравнивает измеренное напряжение с опорным напряжением.Схема защиты от перенапряжения используется для размыкания реле, контролирующего ток возбуждения поля. Обычно он встречается в более сложных системах управления генераторами.
Параллельные операции генератора
На многодвигательных самолетах необходимо использовать функцию параллельного подключения, чтобы все генераторы работали в установленных пределах. Как правило, параллельные системы сравнивают напряжения между двумя или более генераторами и соответствующим образом регулируют схему регулирования напряжения.
Защита от перевозбуждения
Когда один генератор в параллельной системе выходит из строя, один из генераторов может перевозбудиться и, как правило, нести большую часть нагрузки, чем его доля, если не все нагрузки.По сути, это условие заставляет генератор вырабатывать слишком большой ток. Если это состояние обнаружено, перевозбужденный генератор должен быть возвращен в допустимые пределы, иначе произойдет повреждение. Схема перевозбуждения часто работает вместе со схемой перенапряжения для управления генератором.
Дифференциальное напряжение
Эта функция системы управления предназначена для обеспечения того, чтобы все значения напряжения генератора находились в пределах жестких допусков перед подключением к шине нагрузки. Если выходной сигнал находится за пределами указанного допуска, то контактор генератора не может подключать генератор к шине нагрузки.
Измерение обратного тока
Если генератор не может поддерживать требуемый уровень напряжения, он в конечном итоге начинает потреблять ток, а не обеспечивать его. Такая ситуация возникает, например, при выходе из строя генератора. Когда генератор выходит из строя, он становится нагрузкой для других работающих генераторов или батареи. Неисправный генератор необходимо снять с автобуса. Функция измерения обратного тока контролирует систему на наличие обратного тока. Обратный ток указывает на то, что ток течет к генератору, а не от генератора.В этом случае система размыкает реле генератора и отключает генератор от шины.Органы управления для генераторов с высокой выходной мощностью
Большинство современных генераторов большой мощности можно найти на самолетах корпоративного типа с турбинными двигателями. В этих небольших бизнес-джетах и турбовинтовых самолетах используются генератор и стартер, объединенные в один блок. Этот агрегат называется стартер-генератором. Преимущество стартер-генератора состоит в том, что он объединяет два блока в один корпус, экономя место и вес.Поскольку стартер-генератор выполняет две задачи: запуск двигателя и выработку электроэнергии, система управления этим агрегатом относительно сложна. Простое объяснение стартер-генератора показывает, что блок содержит два набора обмоток возбуждения. Одно поле используется для запуска двигателя, а другое используется для выработки электроэнергии. [Рисунок 2]
Рисунок 2. Стартер-генератор |
Во время функции запуска блок GCU должен активировать последовательное поле, и якорь заставляет блок работать как двигатель.В режиме генерации блок GCU должен отключать последовательное поле, возбуждать параллельное поле и контролировать ток, производимый якорем. В это время стартер-генератор действует как обычный генератор. Конечно, GCU должен выполнять все функции, описанные ранее, для управления напряжением и защиты системы. Эти функции включают регулирование напряжения, измерение обратного тока, дифференциальное напряжение, защиту от перевозбуждения, защиту от перенапряжения и параллельную работу генератора.Типичный ГПА показан на Рисунке 3.
Рисунок 3. Блок управления генератором (GCU) |
Как правило, современные ГПА для генераторов с высокой выходной мощностью используют твердотельные электронные схемы для определения работы генератора или стартера-генератора. Затем схема управляет серией реле и / или соленоидов для подключения и отключения устройства к различным распределительным шинам. Практически во всех схемах стабилизации напряжения есть стабилитрон.Стабилитрон — это чувствительное к напряжению устройство, которое используется для контроля напряжения в системе. Стабилитрон, подключенный к схеме GCU, затем регулирует ток возбуждения, который, в свою очередь, регулирует выход генератора.
Органы управления генераторами для маломощных генераторов
Типичная схема управления генератором для генераторов с малой выходной мощностью изменяет ток, протекающий в поле генератора, для управления выходной мощностью генератора. При изменении параметров полета и электрических нагрузок блок GCU должен контролировать электрическую систему и вносить соответствующие корректировки для обеспечения надлежащего напряжения и тока системы.Типичное устройство управления генератором называется регулятором напряжения или GCU.
Поскольку большинство генераторов с малой мощностью используются на старых самолетах, системами управления для этих систем являются электромеханические устройства. (Твердотельные блоки можно найти на более современных самолетах, в которых используются генераторы постоянного тока, а не генераторы постоянного тока.) Двумя наиболее распространенными типами регуляторов напряжения являются регулятор с угольным стержнем и трехступенчатый регулятор. Каждый из этих блоков управляет током возбуждения с помощью переменного резистора.Затем управление током возбуждения регулирует мощность генератора. Упрощенная схема управления генератором показана на рисунке 4.
Рисунок 4. Регулятор напряжения для генератора малой мощности |
Регуляторы сваи углерода
Регулятор углеродной кучи управляет выходной мощностью генератора постоянного тока, посылая ток возбуждения через стопку углеродных дисков (углеродную кучу). Углеродные диски включены последовательно с генератором поля.Если сопротивление дисков увеличивается, ток возбуждения уменьшается и мощность генератора падает. Если сопротивление дисков уменьшается, ток возбуждения увеличивается и выходная мощность генератора возрастает. Как видно на рисунке 5, катушка напряжения установлена параллельно выходным выводам генератора. Катушка напряжения действует как электромагнит, который увеличивает или уменьшает силу при изменении выходного напряжения генератора. Магнетизм катушки напряжения контролирует давление на угольную стопку. Давление на углеродный пакет контролирует сопротивление углерода; сопротивление углерода контролирует ток возбуждения, а ток возбуждения контролирует выходную мощность генератора.
Рис. 5. Регулятор сваи угольного типа |
Регуляторы с угольными сваями требуют регулярного технического обслуживания для обеспечения точного регулирования напряжения; поэтому большинство из них было заменено на самолетах более современными системами.
Трехступенчатые регуляторы
Трехуровневый регулятор, используемый с системами генератора постоянного тока, состоит из трех отдельных блоков. Каждый из этих блоков выполняет определенную функцию, жизненно важную для правильной работы электрической системы.Типичный трехкомпонентный регулятор состоит из трех реле, установленных в одном корпусе. Каждое из трех реле контролирует выходы генератора и размыкает или замыкает точки контакта реле в соответствии с потребностями системы. Типичный трехблочный регулятор показан на рисунке 6.
Рисунок 6. Три реле этого регулятора используются для регулирования напряжения, ограничения тока и предотвращения обратного тока |
Регулятор напряжения
Секция регулятора напряжения трехзвенного регулятора используется для управления выходным напряжением генератора.Регулятор напряжения контролирует выходную мощность генератора и при необходимости регулирует ток возбуждения генератора. Если регулятор определяет, что напряжение в системе слишком высокое, точки реле размыкаются, и ток в цепи возбуждения должен проходить через резистор. Этот резистор снижает ток возбуждения и, следовательно, снижает выходную мощность генератора. Помните, что выходная мощность генератора падает всякий раз, когда падает ток возбуждения генератора.Рисунок 7.Регулятор напряжения |
Как видно на рисунке 7, катушка напряжения подключена параллельно выходу генератора, и поэтому она измеряет напряжение в системе. Если напряжение выходит за пределы заданного предела, катушка напряжения становится сильным магнитом и размыкает точки контакта. Если точки контакта разомкнуты, ток возбуждения должен проходить через резистор, и, следовательно, ток возбуждения уменьшается. Пунктирная стрелка показывает ток, протекающий через регулятор напряжения, когда точки реле разомкнуты.
Поскольку этот регулятор напряжения имеет только два положения (точки открыты и точки закрыты), устройство должно постоянно регулироваться, чтобы поддерживать точный контроль напряжения. Во время нормальной работы системы точки открываются и закрываются через равные промежутки времени. По сути, точки вибрируют. Этот тип регулятора иногда называют регулятором вибрационного типа. По мере того, как точки вибрируют, ток возбуждения повышается и понижается, а магнетизм поля в среднем достигает уровня, который поддерживает правильное выходное напряжение генератора.Если системе требуется большая мощность генератора, точки остаются закрытыми дольше и наоборот.Ограничитель тока
Секция ограничителя тока трехзвенного регулятора предназначена для ограничения выходного тока генератора. Этот блок содержит реле с катушкой, включенной последовательно по отношению к выходу генератора. Как видно на рисунке 8, весь выходной ток генератора должен проходить через токовую катушку реле. Это создает реле, чувствительное к токовому выходу генератора.То есть, если выходной ток генератора увеличивается, точки реле размыкаются, и наоборот. Пунктирная линия показывает ток, протекающий в поле генератора, когда точки ограничителя тока открыты. Следует отметить, что, в отличие от реле регулятора напряжения, ограничитель тока обычно замкнут во время нормального полета. Только при экстремальных токовых нагрузках точки ограничителя тока должны открываться; в это время ток возбуждения снижается, а выходная мощность генератора остается в установленных пределах.
Рисунок 8.Ограничитель тока |
Реле обратного тока
Третий блок трехзвенного регулятора используется для предотвращения выхода тока из батареи и питания генератора. Этот тип протекания тока приведет к разрядке аккумулятора и противоположен нормальному режиму работы. Это можно рассматривать как ситуацию с обратным током и известно как реле обратного тока. Простое реле обратного тока, показанное на рисунке 9, содержит как катушку напряжения, так и катушку тока.
Рисунок 9.Реле обратного тока |
Катушка напряжения подключена параллельно выходу генератора и запитывается каждый раз, когда выход генератора достигает своего рабочего напряжения. Когда катушка напряжения находится под напряжением, точки контакта замыкаются, и ток пропускается к электрическим нагрузкам самолета, как показано пунктирными линиями. На схеме показано реле обратного тока в его нормальном рабочем положении; точки замкнуты, и ток течет от генератора к электрическим нагрузкам самолета.Когда ток течет к нагрузкам, токовая катушка находится под напряжением, а точки остаются закрытыми. Если нет выхода генератора из-за сбоя системы, контактные точки размыкаются из-за потери магнетизма в реле. При разомкнутых точках контакта генератор автоматически отключается от бортовой сети, что предотвращает обратный поток от шины нагрузки к генератору. Типичный трехступенчатый регулятор для авиационных генераторов показан на рисунке 10.
Рисунок 10.Трехступенчатый регулятор для генераторов с регулируемой частотой вращения |
Как видно на рисунке 10, все три блока регулятора работают вместе для управления мощностью генератора.