Site Loader

Содержание

L7805cv схема подключения

Регистрация Вход. Ответы Mail. Вопросы — лидеры Перестал работать Mi band 4 1 ставка. Роботы уничтожат ваши рабочие места? А разве понятие «эфир» можно всерьёз рассматривать в электронике?


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • 78L05 схема включения и радиолюбительские конструкции
  • Линейный стабилизатор напряжения LM7805. Самодельный блок питания на базе этого модуля
  • Схема подключения стабилизатора L7805CV, описание характеристик
  • Стабилизаторы напряжения 5в.
  • Радиопилюля
  • Интегральный стабилизатор 7805: описание, примеры подключения
  • СТАБИЛИЗАТОРЫ ДЛЯ ПИТАНИЯ МИКРОСХЕМ
  • Стабилизатор напряжения

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения

78L05 схема включения и радиолюбительские конструкции


Трехвыводной стабилизатор напряжения L Схема подключения стабилизатора, распространяется на все микросхемы этой серии: Принципиальная схема стабилизатора: Output voltage — выходное напряжение. Рекомендуемое входное напряжение производители установили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено. Здесь мы видим, что стабилизатор может нам выдать одно из напряжений диапазона 4.

Не стабилизированное постоянное напряжение может варьироваться в диапазоне от 7. В этом то и есть большой плюс стабилизаторов. При большой нагрузке, а эта микросхема способна отдавать мощность порядка 15 Ватт, стабилизатор лучше оснастить радиатором и по возможности с вентилятором. Более полная схема стабилизатора: Для того, чтобы стабилизатор не перегревать, нужно придерживаться нужного минимального напряжения на входе микросхемы, то есть если у нас L, то на вход подаем вольт.

Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность — это нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается.

L трехвыводной стабилизатор напряжения.

Input voltage — входное напряжение.


Линейный стабилизатор напряжения LM7805. Самодельный блок питания на базе этого модуля

Напряжение на выходе — 5 В. Максимальное входное напряжение — до 35 В. Максимальный выходной ток — 1,5 А. Стабилизированный — это значит, что при подключении к нему любой допустимой нагрузки напряжение в цепи питания не должно отклоняться больше, чем на 0,2 В в большую или меньшую сторону.

Самым доступным понижающим стабилизатором напряжения питания является микросхема КРЕН5А или ее аналог LCV. Схема подключения.

Схема подключения стабилизатора L7805CV, описание характеристик

Теперь поговорим о трех выводном стабилизаторе L Микросхема выпускается в двух видах, в пластмассовом корпусе — ТО, например как транзистор КТ и металлическом корпусе — ТО-3, например как всем известный КТ Три вывода, если считать слева на право — то соответственно вход, минус и выход. Последних две цифры в маркировке указывают на стабилизированный выход микросхемы — L — 5 в, — 6 в. Ниже будет описание и схема включения стабилизатора, которая подходит для всех микросхем этой серии. На конденсаторы малой емкости не смотрим, желательно поставить побольше. Output voltage — выходное напряжение. Input voltage — входное напряжение. В нашем примере выдает нам на выходе 5 вольт.

Стабилизаторы напряжения 5в.

В этой статье мы рассмотрим возможности и способы питания цифровых устройств собранных своими руками, в частности на микроконтроллерах. Ни для кого не секрет, что залогом успешной работы любого устройства, является его правильное запитывание. Разумеется, блок питания должен быть способен выдавать требуемую для питания устройства мощность, иметь на выходе электролитический конденсатор большой емкости, для сглаживания пульсаций и желательно быть стабилизированным. Последнее подчеркну особенно, разные нестабилизированные блоки питания типа зарядных устройств от сотовых телефонов, роутеров и подобной техники не подходят для питания микроконтроллеров и других цифровых устройств напрямую.

Схема имеет встроенную защиту от перегрева и встроенную односкатную защиту выходного транзистора от перегрузок.

Радиопилюля

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша схема работает от напряжения питания 5 вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05 Стабилизатор 5V! На микросхеме LCV. В природе существуют две разновидности с током нагрузки до 1А и более маломощный 78L05 с током нагрузки до 0,1А. Кроме того промежуточным вариантом является микросхема 78M05 с током нагрузки до 0,5А. Емкость С1 на входе требуется для срезания высокочастотных помех при подачи входного напряжения.

Интегральный стабилизатор 7805: описание, примеры подключения

В настоящее время тяжело найти какое-либо электронное устройство не использующее стабилизированный источник питания. Данный стабилизатор не дорогой и прост в применении, что позволяет облегчить проектирование радиоэлектронных схем со значительным числом печатных плат, к которым подается нестабилизированное постоянное напряжение, и на каждой плате отдельно монтируется свой стабилизатор. Микросхема — стабилизатор 78L05 имеет тепловую защиту, а также встроенную систему предохраняющую стабилизатор от перегрузки по току. Тем не менее, для более надежной работы желательно применять диод, позволяющий защитить стабилизатор от короткого замыкания во входной цепи. Зарубежным аналогом является ka Конденсатор С1 на входе необходим для ликвидации ВЧ помех при подаче входного напряжения.

На микросхеме LCV. В природе существуют две разновидности с Стандартная схема подключения стабилизатора 78L

СТАБИЛИЗАТОРЫ ДЛЯ ПИТАНИЯ МИКРОСХЕМ

В природе существуют две разновидности с током нагрузки до 1А и более маломощный 78L05 с током нагрузки до 0,1А. Кроме того промежуточным вариантом является микросхема 78M05 с током нагрузки до 0,5А. Емкость С1 на входе требуется для срезания высокочастотных помех при подачи входного напряжения. Емкость С2 но уже на выходе стабилизатора задает стабильность напряжения при резком изменении тока нагрузки, а так же существенно снижает степень пульсаций.

Стабилизатор напряжения

ВИДЕО ПО ТЕМЕ: Стабилизатор 5V! На микросхеме L7805CV.

Стабилизатор напряжения — важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки. Такие стабилизаторы имеют три вывода: вход, земля общий и вывод. Например, стабилизатор на выходе будет выдавать 5 Вольт, соответственно 12 Вольт, а — 15 Вольт. Все очень просто.

Широкое применение в электронике нашли интегральные стабилизаторы напряжения и особенно один их вид — стабилизаторы с фиксированным выходным напряжением в трехвыводных корпусах. Они хороши тем что не требуют внешних элементов кроме конденсаторов фильтров , регулировок и имеют широкий диапазон токов в нагрузках.

Да 0 Нет 0. Добавлять комментарии могут только зарегистрированные пользователи. Обратная связь. Мобильная версия сайта. Автор сайта не гарантирует, что опубликованные материалы не содержат ошибок или ложных сведений, а также не несёт никакой ответственности за прямые или. Ответственность лежит на лице, использующем данные материалы.

Русский: English:. Бесплатный архив статей статей в Архиве. Справочник бесплатно. Параметры радиодеталей бесплатно.


Микроконтроллеры. Энциклопедия электроники L7805CV

Микроконтроллер (microcontroller , microcontroller unit, MCU) – интегральная микросхема, совмещающая в себе процессор, ОЗУ, ПЗУ, АЦП, ЦАП, каналы ввода/вывода, таймеры и прочее.

Классификация

В зависимости от разрядности (как правило, шины данных) микроконтроллеры бывают: 4, 8, 16, 32 битные.

В настоящее время существует большое число архитектур микроконтроллеров. Наиболее распространены МК Гарвардской архитектуры с системой команд RISC.

Ниже перечислены некоторые из них:

  • AVR – семейство 8ми битных МК выпускаемые фирмой Microchip (ранее выпускались фирмой Atmel).
  • PIC – семейство 8, 16 и 32 битных МК выпускаемые фирмой Microchip.
  • SAM – семейство 32 битных МК на базе ядра ARM Cortex выпускаемые фирмой Microchip.
  • STM8 – семейство 8ми битных МК выпускаемых фирмой ST.
  • STM32 – семейство 32 битных МК на базе ядра ARM Cortex выпускаемых фирмой ST.

Семейство восьмибитных микроконтроллеров PIC делится на несколько серий:

  • PIC10 – серия самых простых микроконтроллеров в малом корпусе с сокращенной системой команд;
  • PIC12/PIC16 – наиболее массовая серия микроконтроллеров, содержит разнообразную периферию: SPI, I2C, USART, LCD, АЦП;
  • PIC18 – серия продвинутых восьмибитных микроконтроллеров в больших корпусах (от 28 до 100 выводов), содержит сложную периферию: CAN, USB, Ethernet, LCD, драйвер сенсорных кнопок.

Семейство восьмибитных микроконтроллеров AVR делится на несколько серий:

  • tinyAVR – серия микроконтроллеров в малом корпусе;
  • megaAVR – наиболее массовая серия микроконтроллеров, содержит разнообразную периферию: SPI, USART, ЦАП, PWM и т.д.;
  • XMEGA – серия продвинутых восьмибитных микроконтроллеров в больших корпусах (от 44 до 100 выводов), содержит сложную периферию: USB, DMA.

Структура

Структурная схема микроконтроллера семейства AVR приведена на рисунке.

Память программ (Program memory)

В микроконтроллере программа хранится в отдельной области памяти – память программ. Первые микроконтроллеры выпускались с однократно программируемой памятью программ. У выпускаемых в настоящее время микроконтроллеров программы хранятся в электрически перепрограммируемой памяти типа FLASH. Это позволяет обновлять программу в процессе жизненного цикла изделия. Применяемая в микроконтроллерах FLASH память допускает около 10 000 циклов записи/очистки.

Оперативная память (Data memory, SRAM)

Оперативная память микроконтроллера содержит регистры портов ввода/вывода и пользовательские регистры необходимые для выполнения программ. Например, адресное пространство оперативной памяти микроконтроллера семейства AVR Atmega8A состоит из 32 регистров общего назначения, 64х регистров портов ввода/вывода и 1024 байтов памяти.

Память данных (EEPROM)

Энергонезависимая память данных (EEPROM) предназначена для хранения данных при отсутствии питания, например, коэффициенты настройки устройства, текущий режим и т.д. В МК память данных выделена в отдельное адресное пространство. Для чтения и записи используются специальные команды. Ресурс памяти около 100 000 циклов записи/очистки.

АЛУ и регистры данных

Арифметико-логическое устройства (АЛУ) предназначено для выполнения операций с регистрами и константами. Операции могут быть арифметические, логические, операции, изменяющие счетчик команд.

Особенностью архитектуры AVR является наличие 32 регистров общего назначения: R0…R31. В архитектуре PIC предусмотрен один 8ми битный регистр, под названием W.

После выполнения операции в АЛУ происходит запись регистра статуса (в архитектурах AVR и PIC регистр называется STATUS). В нем содержится информация о выполненной информации. Отдельные биты характеризуют: флаг четности, флаг отрицательного числа, флаг нуля и т.д.

Также после выполнения команды изменяется счетчик программы: адрес в памяти программ выполняемой команды.

Тактовый генератор

Для работы АЛУ, периферии ввода/вывода, оперативной памяти необходим тактовый сигнал. В качестве источника тактового сигнала в большинстве микроконтроллеров могут выступать:

  • встроенный RC генератор;
  • внешний сигнал от генератора прямоугольных импульсов;
  • встроенный генератор от внешнего кварцевого резонатора;
  • встроенный генератор от внешней RC цепочки.

На рисунке ниже показано использование генератора от внешнего кварцевого резонатора.

Встроенный RC генератор может работать на нескольких частотах. Выбор конкретной частоты осуществляется программированием специальной ячейки. Например, у МК ARV частота задается изменением прожигаемых ячеек (fuses) CKSEL.

Недостатком генераторов на RC цепочках является зависимость частоты от температуры. Для применений где требуется временная точность рекомендуется использовать внешний кварцевый резонатор.

Порты ввода/вывода

Выводы микроконтроллера могут быть настроены на прием или на выдачу логического сигнала. Направление работы вывода меняются в пользовательской программе путем изменения регистра порта ввода/вывода. На рисунке вывод PB3 работает как вход, PB0, PB1 – как выход. Применение полевых транзисторов позволяет подключать светодиоды непосредственно к микроконтроллеру.

Некоторые выводы микроконтроллера кроме приема и выдачи логических сигналов могут применяться для других целей, например, вход АЦП, компаратора и т. д.

Интерфейсы связи

Шина SPI (Serial Peripheral Interface) – синхронная полнодуплексная шина. Предназначена для обмена между микроконтроллером и другими устройствами.

Протокол SPI позволяет подключать несколько ведомых устройств к одному ведущему. Для связи используется 4 линии:

  • MOSI (master output, slave input) — передача информации от ведущего устройства ведомому;
  • MISO (master input, slave output) — передача информации от ведомого устройства;
  • SCLK — тактовый сигнал;
  • SS – выбор ведомого устройства.

Обмен данными между микроконтроллером ATMega8A и EEPROM памятью AT25010B по шине SPI

Шина I2C, TWI – последовательная ассиметричная шина, использующая две линии связи:

  • SDA (serial data) – линия данных;
  • SCL (serial clock) – линия тактового сигнала.

АЦП MCP3425 измеряет сопротивление терморезистора, чтение измеренных значений осуществляется по шине I2C/TWI

USART (Universal Synchronous and Asynchronous serial Receiver and Transmitter) – универсальный синхронный/асинхронный последовательный передатчик/приемник. Позволяет принимать/передавать данные по последовательному интерфейсу.

Для связи с персональным компьютером через порт RS-232 используется микросхема MAX232. Обмен информацией осуществляется через порт USART микроконтроллера.

Счетчики/таймеры

Счетчики/таймеры предназначены для предназначены для подсчета импульсов. Источником импульсов может служить внешний сигнал или тактовый сигнал микроконтроллера.

С помощью таймеров можно осуществить задержку по времени в программе.

Блок прерываний

Прерывания необходимы для выполнения определенной программы при возникновении некоторых событий, например, изменения логического входа, переполнение счетчика, завершения передачи данных по USART и т.д.

Сторожевой таймер

Сторожевой таймер (watchdog timer) предназначен для сброса микроконтроллера при его зависаниях. Зависания могут возникнуть из-за ошибок в пользовательской программе, (переход в бесконечный цикл, переход в «пустую» область памяти программ). При переполнении сторожевого таймера осуществляется сброс микроконтроллера.

АЦП

Аналогово-цифровые преобразователи преобразовывают аналоговый сигнал в цифровой. Принцип действия любого АЦП основан на сравнении входного сигнала с опорным напряжением. В качестве источника опорного напряжения может применяться внутренний источник или внешний, подключаемый к определенному выводу микроконтроллера.

Компараторы

Компараторы предназначены для сравнения двух сигналов. Принцип действия следующий: когда на положительном входе напряжение больше чем на отрицательном в специальном регистре устанавливается (логическая единица) определенный бит. При обратной ситуации бит сбрасывается (логический ноль).

Конфигурируемая логика

Блок конфигурируемой логики позволяет реализовать физическую логическую схему внутри МК. Данные блоки являются редкостью для микроконтроллеров.

Входами логической схемы могут являться: выводы МК, тактовый сигнал, биты регистров оперативной памяти. Выходами могут быть выводы МК, биты регистров оперативной памяти. Конфигурируемую логику можно настроить на выполнение простейших логических операций: И, И-НЕ, ИЛИ-НЕ и прочих.

Корпуса

Одна модель микроконтроллера может выпускаться в различных корпусах. Корпус DIP для монтажа в отверстия платы последнее время встречается всё реже. Ниже приведен краткий список наиболее распространенных корпусов микроконтроллеров:

  • DIP – Dual Inline Package;
  • SOIC – Small-Outline Integrated Circuit;
  • SSOP – Shrink Small Outline Package;
  • TQFP – Thin profile plastic flat package;
  • MLF – Micro Lead Frame Package.

Язык

Программирование микроконтроллеров может осуществляться на ассемблере или на языке высокого уровня Си.

Запись программ в МК

Запись программ в память микроконтроллера (программирование) осуществляется с помощью программаторов. Запись можно выполнить двумя способами: вставить микроконтроллер в панель программатора или подключить программатор к конечному устройству (внутрисхемное программирование).

Контроллеры Microchip PIC16 программируются по технологии ICSP (In-Circuit Serial Programming). По данной технологии программирование может осуществляться в готовом устройстве. Программатор имеет пять линий связи с МК:

Микроконтроллеры Microchip AVR можно запрограммировать параллельным и последовательным способами. Для параллельного метода необходимо: 9 (управляющие линии) + 8 (линии данных) +2 (линии питания и земли) линий связи. Параллельное программирование требует подачи напряжения 12 В в микроконтроллер.

Для последовательного метода используется интерфейс SPI: 5 линий связи. Одним из недостатков является медленная скорость по сравнению с параллельным методом и необходимость предварительного запуска МК.

На рисунке ниже представлен внутрисхемный USB программатор микроконтроллеров AVR. Такой программатор продается в известном китайском магазине.

Среда разработки

Разработка программ для микроконтроллеров осуществляется в интегрированной среде разработке (IDE). Для создания проектов на AVR и PIC можно воспользоваться средой: Atmel Studio 7 IDE, MPLAB X IDE, он-лайн MPLAB Xpress.

Онлайн среда разработки MPLAB Xpress

IDE среда разработки содержит редактор проектов, программ, компилятор, отладчик, симулятор и много другое. Также для программирования микроконтроллеров могут использоваться сторонние среды разработки.

Онлайн среда конфигурирования ATmel START

Применение

Микроконтроллеры применяются во многих бытовых и промышленных устройствах, таких как стиральные машины, СВЧ печи, автосигнализации, преобразователи частоты для электродвигателей и многие другие.

7805 Схема ИС регулятора напряжения

Фарва Навази 4086 просмотров

Введение

Мы создали и описали несколько схем регулятора напряжения в наших руководствах и статьях. Мы также попытались объяснить важность того, как он принимает переменное напряжение на входе и генерирует постоянное напряжение на выходе. Более того, мы узнали, что постоянное напряжение защищает устройство от повреждений и спасает его от любых нештатных ситуаций. Но все это делают регуляторы напряжения. таким образом, 7805 является одним из наиболее распространенных стабилизаторов напряжения. Итак, мы решили, что в этом уроке мы обсудим «Схему микросхемы 7805». Но прежде чем знакомиться с принципиальной схемой, давайте сначала изучим IC 7805.

Обзор IC 7805

Во-первых, название 7805 скрывает очень интересную информацию. 78 в 7805 описывает его как регулятор положительного напряжения, а 05 в названии означает, что он дает 5 В на выходе. Следовательно, это означает, что эта ИС генерирует положительные 5 вольт на нагрузке выхода. Для использования этой ИС рекомендуется использовать радиаторы, так как они могут давать ток до 1,5 ампер, и ИС также может страдать от тепловых потерь. Кроме того, микросхема содержит три контакта, контакт 1 для нерегулируемого входа и контакт 2 для земли. И третий контакт для получения регулируемого выхода 5 В.

Buy From Amazon

Hardware Components

The following components are required to make Voltage Regulator Circuit

S.No Components Value Qty
1 Step down transformer 0-9V AC / 1 AMPS 2
2 Диод 1N4007 4
3.0038 7805 2
4 Electrolyte Capacitor 47μF, 10μF, 0. 1μF 1
5 Connector 2 Pin 1

LM7805 Pinout

Для получения подробного описания схемы выводов, размеров и спецификаций загрузите техническое описание схемы регулятора напряжения LM7805

Рабочее объяснение

Чтобы понять принципиальную схему микросхемы 7805, мы создали схему с использованием источника переменного тока. Во-первых, с помощью понижающего трансформатора 230 вольт переменного тока преобразуются в 9.В переменного тока. Для этого мы подключили первичную сторону к источнику переменного тока, а вторичную сторону к цепи. Теперь это переменное напряжение может быть выпрямлено мостовым выпрямителем, подключенным к нашей схеме. Этот мостовой выпрямитель сделан из простых электронных диодов. Следовательно, он преобразует напряжение переменного тока в напряжение постоянного тока. Но тем не менее, он может иметь рябь. Итак, мы подключили конденсаторы для фильтрации поступающего постоянного напряжения.

Выход конденсатора фильтров поступает на ИМС L7805. Так как есть три контакта IC. Контакт 1 принимает отфильтрованный вход, а контакт 2 — землю. Теперь Ic регулирует напряжение и обеспечивает выход на контакте 3. Контакт 3 подключен к конденсатору C3, который предназначен для устранения искажений. Используйте мультиметр, чтобы проверить питание 5 В на конденсаторе.

Применение и использование

  • Во-первых, микросхема 7805 может использоваться в качестве регулируемого выходного регулятора.
  • Кроме того, его можно использовать в любой цепи, требующей регулируемого источника питания 5 В.
  • Кроме того, он может работать как ограничитель тока для некоторых электронных приложений.
  • Кроме того, его можно использовать в качестве регулируемого двойного источника питания.

Похожие сообщения:

транзистор%20l7805cv%206v техническое описание и примечания по применению

Лучшие результаты (6)

Часть Модель ECAD Производитель Описание Техническое описание Скачать Купить Часть
БД9В101МУФ-ЛБ РОМ Полупроводник 16–60 В, 1 А, 1 канал, 2,1 МГц, синхронный понижающий преобразователь со встроенным полевым транзистором (промышленного класса)
БД9Г102Г-ЛБ РОМ Полупроводник 6–42 В, 0,5 А, 1 канал, простой понижающий преобразователь со встроенным полевым транзистором (промышленного класса)
BD9G341AEFJ РОМ Полупроводник 12–76 В, понижающий импульсный стабилизатор со встроенным силовым МОП-транзистором 150 мОм
БД9А600МУВ РОМ Полупроводник Входное напряжение от 2,7 В до 5,5 В, встроенный полевой МОП-транзистор 6 А, одиночный синхронный понижающий преобразователь постоянного тока в постоянный
BD9G341AEFJ-LB РОМ Полупроводник 12–76 В, понижающий импульсный стабилизатор со встроенным силовым полевым МОП-транзистором 150 мОм (промышленного класса)
BD9C601EFJ РОМ Полупроводник Вход от 4,5 В до 18 В, 6,0 А Встроенный MOSFET 1-канальный синхронный понижающий преобразователь постоянного тока в постоянный

транзистор%20l7805cv%206v Листы данных Context Search

Лист данных по каталогу MFG и тип ПДФ Теги документов
хб*9Д5Н20П

Реферат: khb9d0n90n 6v стабилитрон khb * 2D0N60P транзистор KHB7D0N65F BC557 транзистор kia * 278R33PI KHB9D0N90N схема ktd998 транзистор
Текст: Нет доступного текста файла


Оригинал
PDF 2N2904E до н. э.859 КДС135С 2N2906E до н.э.860 KAC3301QN КДС160 2Н3904 BCV71 KDB2151E хб*9Д5Н20П хб9д0н90н 6В стабилитрон хб*2Д0Н60П транзистор КХБ7Д0Н65Ф Транзистор BC557 киа*278R33PI Схема КХБ9Д0Н90Н транзистор ктд998
КИА78*ПИ

Реферат: Транзистор КИА78*р ТРАНЗИСТОР 2Н3904хб*9Д5Н20П хб9д0н90н КИД65004АФ ТРАНЗИСТОР мосфет КИА7812АПИ хб*2Д0Н60П
Текст: Нет доступного текста файла


Оригинал
PDF 2N2904E до н.э.859 КДС135С 2N2906E до н.э.860 KAC3301QN КДС160 2Н3904 BCV71 KDB2151E КИА78*пи транзистор КИА78*р ТРАНЗИСТОР 2N3904 хб*9Д5Н20П хб9д0н90н КИД65004AF ТРАНЗИСТОР MOSFET KIA7812API хб*2Д0Н60П
2SC4793 2sa1837

Реферат: 2sC5200, 2SA1943, 2sc5198 2sC5200, 2SA1943 транзистор 2SA2060 силовой транзистор npn to-220 эквивалент 2sc5198 транзистор 2SC5359 2SC5171 транзистор эквивалент NPN транзистор
Текст: Нет доступного текста файла


Оригинал
PDF 2SA2058 2SA1160 2SC2500 2SA1430 2SC3670 2SA1314 2SC2982 2SC5755 2SA2066 2SC5785 2SC4793 2sa1837 2СК5200, 2СА1943, 2СК5198 2sC5200, 2SA1943 транзистор 2SA2060 силовой транзистор npn к-220 эквивалент 2sc5198 транзистор 2SC5359 эквивалент транзистора 2SC5171 НПН-транзистор
транзистор

Реферат: транзистор ITT BC548 pnp транзистор транзистор pnp BC337 pnp транзистор pnp bc547 транзистор BC327 NPN транзистор MPSA92 168 транзистор 206 2n3904 ТРАНЗИСТОР PNP
Текст: Нет доступного текста файла


OCR-сканирование
PDF 2Н3904 2Н3906 2Н4124 2Н4126 2N7000 2Н7002 до н. э.327 до н.э.328 до н.э.337 до н.э.338 транзистор транзистор ИТТ BC548 п-н-п транзистор транзистор п-н-п BC337 п-н-п транзистор pnp bc547 транзистор BC327 NPN-транзистор MPSA92 168 транзистор 206 2н3904 ТРАНЗИСТОР ПНП
КХ520Г2

Реферат: Ч520Г2-30ПТ транзистор цифровой 47к 22к ПНП НПН ФБПТ-523 Ч521Г2-30ПТ npn переключающий транзистор 60в транзистор Р2-47К транзистор цифровой 47к 22к 500мА 100мА Ч4904T1PT
Текст: Нет доступного текста файла


Оригинал
PDF А1100) QFN200 ЧДТА143ЕТ1ПТ ФБПТ-523 100 мА ЧДТА143ЗТ1ПТ ЧДТА144ТТ1ПТ CH520G2 Ч520Г2-30ПТ транзистор цифровой 47k 22k PNP NPN ФБПТ-523 Ч521Г2-30ПТ npn-переключающий транзистор 60 В транзистор Р2-47К транзистор цифровой 47к 22к 500мА 100мА Ч4904Т1ПТ
транзистор 45 f 122

Реферат: Транзистор AC 51 mos 3021 TRIAC 136 tlp 122 634 транзистор транзистор ac 127 TRANSISTOR транзистор 502 транзистор f 421
Текст: Нет доступного текста файла


OCR-сканирование
PDF TLP120 TLP121 TLP130 TLP131 TLP160J транзистор 45 ф 122 Транзистор переменного тока 51 Моск 3021 СИМИСТОР 136 тлп 122 634 транзистор транзистор переменного тока 127 ТРАНЗИСТОР транзистор 502 транзистор ф 421
СТХ12С

Реферат: SLA4038 fn651 SLA4037 sla1004 CTB-34D SAP17N ​​2SC5586 2SK1343 CTPG2F
Текст: Нет доступного текста файла


Оригинал
PDF 2SA744 2SA745 2SA746 2SA747 2SA764 2SA765 2SA768 2SA769 2SA770 2SA771 CTX12S SLA4038 фн651 SLA4037 sla1004 СТВ-34Д SAP17N 2SC5586 2SK1343 CTPG2F
Варистор RU

Реферат: Транзистор СЭ110Н 2SC5487 2SA2003 Транзистор СЭ090Н высоковольтный Транзистор СЭ090 РБВ-406 2SC5586
Текст: Нет доступного текста файла


Оригинал
PDF 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 Варистор RU SE110N транзистор 2SC5487 2SA2003 SE090N высоковольтный транзистор SE090 РБВ-406 2SC5586
К2Н4401

Резюме: D1N3940 Q2N2907A D1N1190 Q2SC1815 Q2N3055 Q2N1132 D1N750 D02CZ10 D1N751
Текст: Нет доступного текста файла


Оригинал
PDF РД91ЭБ Q2N4401 Д1Н3940 Q2N2907A Д1Н1190 Q2SC1815 Q2N3055 Q2N1132 Д1Н750 D02CZ10 Д1Н751
фн651

Реферат: CTB-34D 2SC5586 hvr-1×7 STR20012 sap17n 2sd2619 RBV-4156B SLA4037 2sk1343
Текст: Нет доступного текста файла


Оригинал
PDF 2SA744 2SA745 2SA746 2SA747 2SA764 2SA765 2SA768 2SA769 2SA770 2SA771 фн651 СТВ-34Д 2SC5586 ХВР-1×7 STR20012 sap17n 2сд2619 РБВ-4156Б SLA4037 2ск1343
2SC5471

Реферат: 2SC5853 2sa1015 транзистор 2sc1815 транзистор 2SA970 транзистор 2SC5854 транзистор 2sc1815 2Sc5720 транзистор 2SC5766 низкочастотный малошумящий транзистор PNP
Текст: Нет доступного текста файла


Оригинал
PDF 2SC1815 2SA1015 2SC2458 2SA1048 2SC2240 2SA970 2SC2459 2SA1049 А1587 2SC4117 2SC5471 2SC5853 транзистор 2са1015 транзистор 2sc1815 Транзистор 2SA970 2SC5854 транзистор 2sc1815 Транзистор 2Sc5720 2SC5766 Низкочастотный малошумящий транзистор PNP
МОП-транзистор FTR 03-E

Резюме: mt 1389 fe 2SD122 dtc144gs малошумящий транзистор Дарлингтона DTC114EVA DTC143EF V/65e9 транзистор транзистор 2SC337
Текст: Нет доступного текста файла


OCR-сканирование
PDF 2SK1976 2SK2095 2SK2176 О-220ФП 2SA785 2SA790 2SA790M 2SA806 Мосфет FTR 03-E мт 1389 фе 2СД122 dtc144gs малошумящий транзистор Дарлингтона DTC114EVA DTC143EF Транзистор V/65e9 транзистор 2SC337
фгт313

Реферат: транзистор fgt313 SLA4052 RG-2A диод SLA5222 fgt412 RBV-3006 FMN-1106S SLA5096 диодов ry2a
Текст: Нет доступного текста файла


Оригинал
PDF 2SA1186 2SC4024 2SA1215 2SC4131 2SA1216 2SC4138 100 В переменного тока 2SA1294 2SC4140 фгт313 транзистор фгт313 SLA4052 Диод РГ-2А SLA5222 фгт412 РБВ-3006 ФМН-1106С SLA5096 диод ry2a
транзистор 91 330

Реферат: tlp 122 ТРАНЗИСТОР TLP635F 388 транзистор R358 395 транзистор транзистор f 421 IC 4N25 симистор 40 RIA 120
Текст: Нет доступного текста файла


OCR-сканирование
PDF 4Н25А 4Н29А 4Н32А 6Н135 6Н136 6Н137 6Н138 6Н139 CNY17-L CNY17-M транзистор 91 330 тлп 122 ТРАНЗИСТОР TLP635F 388 транзистор Р358 395 транзистор транзистор ф 421 IC 4N25 симистор 40 РИА 120
1999 — Системы горизонтального отклонения телевизора

Реферат: РУКОВОДСТВО ПО ЗАМЕНЕ ТРАНЗИСТОРА an363 TV горизонтальные системы отклонения 25 транзистор горизонтальная секция tv Горизонтальное отклонение переключающие транзисторы TV горизонтальные системы отклонения mosfet CRT TV электронная пушка горизонтальная секция в элт-телевидение TV трансформатор обратного хода
Текст: Нет доступного текста файла


Оригинал
PDF 16 кГц 32 кГц, 64 кГц, 100 кГц. Системы горизонтального отклонения телевизора РУКОВОДСТВО ПО ЗАМЕНЕ ТРАНЗИСТОРА Ан363 Системы горизонтального отклонения телевизора 25 транзистор горизонтальной секции телевизор Переключающие транзисторы с горизонтальным отклонением Мосфет системы горизонтального отклонения телевизора ЭЛТ ТВ электронная пушка горизонтальная секция в ЭЛТ-телевизоре Обратный трансформатор для телевизора
транзистор

Аннотация: силовой транзистор npn к-220 PNP СИЛОВОЙ ТРАНЗИСТОР TO220 транзистор PNP демпферный диод транзистор Дарлингтона 2SD2206A силовой транзистор npn транзистор дарлингтона TO220
Текст: Нет доступного текста файла


Оригинал
PDF 2СД1160 2СД1140 2СД1224 2СД1508 2SD1631 2SD1784 2СД2481 2SB907 2СД1222 2СД1412А транзистор силовой транзистор npn к-220 СИЛОВОЙ ТРАНЗИСТОР PNP TO220 транзистор PNP демпферный диод Транзистор Дарлингтона 2СД2206А силовой транзистор нпн дарлингтон транзистор ТО220
1999 — транзистор

Реферат: POWER MOS FET 2sj 2sk транзистор 2sk 2SK тип n-канальный полевой массив Низкочастотный силовой транзистор транзистор mp40 TRANSISTOR P 3 high hfe транзистор список
Текст: Нет доступного текста файла


Оригинал
PDF X13769XJ2V0CD00 О-126) МП-25 О-220) МП-40 МП-45 МП-45Ф О-220 МП-80 МП-10 транзистор МОЩНЫЙ МОП-транзистор FET 2sj 2sk транзистор 2ск тип 2СК n-канальный полевой массив Силовой низкочастотный транзистор транзистор мп40 ТРАНЗИСТОР Р 3 высокочастотный транзистор список
транзистор 835

Реферат: Усилитель на транзисторе BC548 ТРАНЗИСТОРНЫЙ регулятор АУДИО Усилитель на транзисторе BC548 транзистор 81 110 w 85 транзистор 81 110 w 63 транзистор транзистор 438 TRANSISTOR GUIDE транзистор 649
Текст: Нет доступного текста файла


OCR-сканирование
PDF БК327; БК327А; до н.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *