Site Loader

Содержание

Датчики с транзисторным выходом PNP/NPN, схема подключения, разница и отличия

    Среди всех используемых в промышленности датчиков до сих пор превалируют дискретные, т. е. имеющие два состояния выходного сигнала – включен/выключен (иначе – 0 либо 1). В основном подобные датчики используются для определения некоторых конечных положений, и принцип действия может быть любым – индуктивным, оптическим, емкостным и так далее.

    Все подобные датчики объединяет одна характеристика – схемотехника выхода. Основных вариантов здесь два:

— релейный выход основывается, очевидно, на использовании реле. Схема питания датчика при этом гальванически развязана с выходом, что даёт возможность использовать такие датчики для коммутации высокого напряжения.

— транзисторный выход использует PNP либо NPN транзистор на выходе и подключает соответственно плюсовой либо минусовой провод.

     Немного теории. Транзисторы PNP и NPN относятся к категории биполярных и имеют три вывода: коллектор, база и эмиттер. Сам транзистор состоит из трёх частей, называемых областями, разделенных двумя p-n переходами. Соответственно, транзистор PNP имеет две области P и одну область N, а NPN, соответственно, две N и одну P. Направление протекания тока также разное:

— для PNP при подаче напряжения на эмиттер ток протекает от эмиттера к коллектору;

— для NPN подача напряжения на коллектор вызывает протекание тока от коллектора к эмиттеру.

    Это обуславливает необходимость подключения питания с прямой полярностью относительно общих клемм для транзисторов NPN, и обратной – для PNP.

    Любой биполярный транзистор работает по принципу управления током базы для регулирования тока между эмиттером и коллектором. Единственное различие в принципе работы транзисторов PNP и NPN заключается в полярности напряжений, подаваемых на эмиттер, базу и коллектор. В зависимости от реализации смещений p-n переходов возможны различные режимы работы транзисторов, но в общем случае в датчиках используются два:

— насыщение: прямое прохождение тока между эмиттером и коллектором (замкнутый контакт)

— отсечка: отсутствие тока между эмиттером и коллектором (разомкнутый контакт)

   Рассмотрим подробнее подключение и особенности применения, например, индуктивных датчиков с транзисторным выходом. Отличием является коммутация разных проводов цепи питания: PNP соединяет плюс источника питания, NPN – минус. Ниже наглядно показаны различия в подключении; справа изображён датчик с выходом PNP, слева – NPN.

Принципиальное отличие логики PNP от NPN


   Чаще применяется вариант с выходом на основе транзистора PNP, поскольку большее распространение получила схемотехника с общим минусовым проводом источника питания. Выходное напряжение зависит от напряжения питания датчика и обычно находится в узком диапазоне, например, 20…28 В.

    Выбор датчика по типу используемого транзистора обуславливается в первую очередь схемотехникой используемого контроллера или иного оборудования, к которому предполагается подключать датчик. Обычно в документации на контроллеры и устройства коммутации указывается, какой транзисторный выход они позволяют использовать.

Теперь о совместимости. Вообще, существует четыре основных разновидности выхода датчиков:

— PNP NO (НО)

— PNP NC (НЗ)

— NPN NO (НО)

— NPN NC (НЗ)

    Помимо типа используемого транзистора, различие также заключается в исходном состоянии выхода – он может быть в нормальном (если датчик не активирован) состоянии либо разомкнутым (открытым), либо замкнутым (закрытым). Отсюда обозначения NO (НО) – normally open (нормально открытый) и normally closed (нормально закрытый).

    Что делать, если требуется заменить один датчик на другой, но нет возможности установить аналог с идентичной логикой и схемотехникой выхода? В случае, если меняется только исходное состояние выхода (НО на НЗ и наоборот), путей решения может быть несколько:

— внесение изменений в конструкцию, инициирующую датчик

— внесение изменений в программу (смена алгоритма)

— переключение выходной функции датчика (при наличии такой возможности)

   Замена же оптического датчика с изменением типа используемого транзистора представляет собой проблему большую, нежели просто поменять алгоритм или сместить какой-то элемент конструкции. Изменение схемотехники датчика влечет за собой также необходимость внесения существенных изменений в схему его подключения. Конечно, это не всегда допустимо, однако в ряде случаев это единственный выход.

Замена датчика PNP на NPN


  Рассмотрим схему, представленную выше слева (для примера взят датчик с транзистором PNP). В случае неактивного датчика с нормально открытым выходом ток не протекает через его выходные контакты; для нормально закрытого, соответственно, ситуация обратная. Благодаря протекающему току на нагрузке создаётся падение напряжения.

   Наряду с основной (внешней) нагрузкой датчика, которой может являться вход контроллера, в нём может присутствовать также внутренняя нагрузка, однако она не гарантирует, что датчик будет работать стабильно. Если внутреннего сопротивления нагрузки у датчика нет, такая схема называется схемой с открытым коллектором – она может функционировать исключительно при наличии внешней нагрузки.

    Вернемся к схеме. Активация датчика с выходом PNP обеспечивает подачу напряжения +V через транзистор на вход контроллера. Реализация этой схемы с датчиком, имеющим выход NPN, требует добавления в схему дополнительного резистора (номинал которого обычно подбирается в диапазоне 4.9-10 кОм) для обеспечения функционирования транзистора. В этом случае при неактивном датчике напряжение поступает через добавленный резистор на вход контроллера, что делает схему, по сути, нормально закрытой. Активация датчика обеспечивает отсутствие сигнала на входе контроллера, поскольку транзистор NPN, через который проходит почти весь ток дополнительного резистора, шунтирует вход контроллера.

   Таким образом, подобный подход обеспечивает возможность замены датчика PNP на NPN при условии, что перефазировка датчика не является проблемой. Это допустимо, когда датчик исполняет роль счетчика импульсов – контроль числа оборотов, количества деталей и т. д.

    Если подобное изменение не является приемлемым, и требуется сохранить в том числе логику работы системы, можно пойти по более сложному пути. 

Схемы подключения датчиков  PNP к устройству со входом NPN и наоборот

    Суть заключается в добавлении в схему подключения дополнительного биполярного транзистора, тип которого выбирается исходя из типа входа прибора, к которому подключается датчик, а также двух дополнительных сопротивлений нагрузки. Если используется прибор с входом NPN, то и дополнительный транзистор требуется такой же. Активация датчика инициирует переключение внешнего транзистора, который уже подаёт напряжение на вход прибора. Данная схема, в отличие от рассмотренной ранее, сохраняет логику работы системы, однако более сложна в сборке.

Как подключить pnp транзистор — Инженер ПТО

Arduino, DIY и немного этих ваших линуксов.

Транзистор — полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.

Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:

Биполярный транзистор

Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:

Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как

hfe (в английской литературе называется gain).

Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор->эмиттер. Превышение этих значений ведёт к перегреву и выходу из строя транзистора.

Работа биполярного транзистора

NPN и PNP биполярные транзисторы

Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.

От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P:

Обозначение NPN (слева) и PNP (справа) транзисторов на схеме

NPN транзисторы более распространены в электронике, потому что являются более эффективными.

Полевый транзистор

Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название — полевой.

Полевые транзисторы имеют как минимум 3 вывода:

Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.

N канальные и P канальные полевые транзисторы

Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме

Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.

Транзистор Дарлингтона

Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.

Схема составного транзистора дарлингтона

Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:

Подключение мощного мотора с помощью транзистора

На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (hfe).

ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.

При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.

Arduino, DIY и немного этих ваших линуксов.

Транзистор — полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.

Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:

Биполярный транзистор

Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:

Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как hfe (в английской литературе называется gain).

Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор->эмиттер. Превышение этих значений ведёт к перегреву и выходу из строя транзистора.

Работа биполярного транзистора

NPN и PNP биполярные транзисторы

Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.

От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P:

Обозначение NPN (слева) и PNP (справа) транзисторов на схеме

NPN транзисторы более распространены в электронике, потому что являются более эффективными.

Полевый транзистор

Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название — полевой.

Полевые транзисторы имеют как минимум 3 вывода:

Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.

N канальные и P канальные полевые транзисторы

Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме

Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.

Транзистор Дарлингтона

Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.

Схема составного транзистора дарлингтона

Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:

Подключение мощного мотора с помощью транзистора

На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (hfe).

ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.

При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.

PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.

Конструкция прибора

Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.

Стрелка определяет эмиттер и общепринятое направление его тока («внутрь» для транзистора PNP).

PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.

Основные отличия двух типов биполярных транзисторов

Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.

Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.

Рассмотрим отличия PNP-типа на схеме включения с общей базой

Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.

По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.

Отличия PNP-типа на примере схемы включения с общим эмиттером

В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.

Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.

В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.

В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.

PNP-транзистор: подключение источников напряжения

Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.

Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.

Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.

Работа PNP-транзисторного каскада

Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.

Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.

Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.

Характеристики транзистора

Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.

Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.

Транзисторные пары в усилительных каскадах

Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.

Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.

Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.

Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.

Транзисторные пары в схемах управления электродвигателями

Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.

H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.

Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.

Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.

Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.

Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.

Определение типа транзисторов

Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.

Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:

1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.

2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.

3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.

Значения сопротивлений переходов транзисторов обоих типов

Пара выводов транзистора PNP NPN
Коллектор Эмиттер RВЫСОКОЕ RВЫСОКОЕ
Коллектор База RНИЗКОЕ RВЫСОКОЕ
Эмиттер Коллектор RВЫСОКОЕ RВЫСОКОЕ
Эмиттер База RНИЗКОЕ RВЫСОКОЕ
База Коллектор RВЫСОКОЕ RНИЗКОЕ
База Эмиттер RВЫСОКОЕ RНИЗКОЕ

Тогда мы можем определить PNP-транзистор как исправный и закрытый. Небольшой выходной ток и отрицательное напряжение на его базе (B) по отношению к его эмиттеру (E) будет его открывать и позволит протекать значительно большему эмиттер-коллекторному току. Транзисторы PNP проводят при положительном потенциале эмиттера. Иными словами, биполярный PNP-транзистор будет проводить только в том случае, если выводы базы и коллектором являются отрицательным по отношению к эмиттеру.

Схема подготовки PnP | Microsoft Docs

  • Чтение занимает 2 мин

В этой статье

Как указано в статье Платформа подготовки PnP и других источниках, формат шаблонов подготовки не привязан к какому-либо постоянному формату, поэтому вы можете использовать любой удобный формат.As you learned in PnP provisioning framework and elsewhere, the format for provisioning templates has been decoupled from the persistence format so that you can use any format you prefer. Тем не менее, поскольку в стандартном сценарии для хранения шаблонов используется схема подготовки в формате XML, вы можете ознакомиться с дополнительными сведениями о том, как использовать эту схему XML для сериализации и сохранения шаблонов подготовки.Nevertheless, because using the XML provisioning schema for persisting templates is such a common scenario, we’re providing some additional information about how to use the XML schema to serialize and save your provisioning templates.

Важно!

Несмотря на то что схема подготовки явно поддерживает XML-сериализацию шаблонов подготовки, она также регламентирует структуру для сериализации в формате JSON.While the provisioning schema obviously supports XML serialization of provisioning templates, it also provides the structure for serialization in JSON format. В более широком смысле схема регламентирует модель для определения структур подготовки.More generally, the schema provides the model for defining provisioning structures.

Ресурсы для схемы подготовкиProvisioning schema resources

Схему подготовки вместе со вспомогательными файлами можно получить из проекта PnP-Provisioning-Schema (Схема подготовки PnP) на портале GitHub.You can get the provisioning schema, along with its supporting files, on GitHub at PnP-Provisioning-Schema.

Просмотрите 20-минутный видеоролик на канале Channel 9, в котором обсуждается схема подготовки: Deep dive to PnP provisioning engine schema (Тщательный анализ схемы модуля подготовки PnP).View the 20-minute Channel 9 video that discusses the provisioning schema: Deep dive to PnP provisioning engine schema.

Примеры схем можно найти на портале GitHub в каталоге PnP-Provisioning-Schema/Samples.Sample schemas are available at GitHub at PnP-Provisioning-Schema/Samples.

В приведенном ниже блоке кода показан корневой элемент схемы и его прямые дочерние элементы.The following code block displays the schema’s root element and direct child elements of the root.

<pnp:ProvisioningTemplate
           xmlns:pnp="http://schemas.dev.office.com/PnP/2015/08/ProvisioningSchema"
          
           Version="xsd:decimal"
           ImagePreviewUrl="xsd:string"
           DisplayName="xsd:string"
           Description="xsd:string">
   <pnp:Properties />
   <pnp:SitePolicy />
   <pnp:RegionalSettings />
   <pnp:SupportedUILanguages />
   <pnp:AuditSettings />
   <pnp:PropertyBagEntries />
   <pnp:Security />
   <pnp:SiteFields />
   <pnp:ContentTypes />
   <pnp:Lists />
   <pnp:Features />
   <pnp:CustomActions />
   <pnp:Files />
   <pnp:Pages />
   <pnp:TermGroups />
   <pnp:ComposedLook />
   <pnp:Workflows />
   <pnp:SearchSettings />
   <pnp:Publishing />
   <pnp:AddIns />
   <pnp:Providers />
</pnp:ProvisioningTemplate>

См. такжеSee also

NPN транзистор. Устройство и принцип работы, схема подключения

Итак, транзистор, в котором один полупроводник p-типа размещен между двумя полупроводниками n-типа, известен как NPN-транзистор.

Транзистор NPN усиливает сигнал, поступающий на базу, и генерирует усиленный сигнал на коллекторе. В NPN-транзисторе направление движения электрона происходит от эмиттера к коллектора, из-за чего ток и протекает через транзистор. Устройства такого типа очень часто используют в электрических схемах, потому что их основными носителями заряда являются электроны, которые имеют высокую подвижность по сравнению с дырками (положительно заряженные носители).

Конструкция NPN транзистора

Транзистор NPN, по сути, это два диода, соединенных друг с другом. Диод на левой стороне называется диод на основе перехода «эмиттер-база», а диоды на правой стороне называют диод на основе коллекторного перехода. Имена были подобраны согласно названию переходов.

Транзистор NPN имеет три клеммы, а именно эмиттер, коллектор и базу. Средняя часть NPN-транзистора слегка легирована, и это является наиболее важным фактором его работы. Эмиттер умеренно легирован, а коллектор сильно легирован.

Схема включения NPN транзистора

Принципиальная схема NPN-транзистора показана на рисунке ниже. Коллектор и база подключены в обратном смещении, а эмиттер и база подключены в прямом смещении. Коллектор и база, через которую ведется управление состоянием транзистора ВКЛ./ВЫКЛ., всегда подключены к положительному полюсу источника питания, а эмиттер подключен к отрицательному полюсу источника питания.

Как работает NPN транзистор

Принципиальная схема NPN-транзистора показана на рисунке ниже. Прямое смещение применяется через соединение эмиттер-база, а обратное смещение применяется через соединение коллектор-база. Напряжение прямого смещения VEB мало по сравнению с напряжением обратного смещения VCB.

Эмиттер NPN-транзистора сильно легирован. Когда прямое смещение прикладывается к эмиттеру, большинство носителей заряда движутся к базе. Это вызывает протекание тока эмиттера IE. Электроны входят в материал P-типа и соединяются с дырками.

База NPN-транзистора слегка легирована. Из-за чего только несколько электронов объединяются, а оставшиеся составляют ток базы IB. Ток базы проникает в область коллектора. Обратный потенциал смещения области коллектора прикладывает высокую силу притяжения к электронам, достигающим коллектора. Таким образом, привлекают или собирают электроны на коллекторе.

Весь ток эмиттера входит в базу. Таким образом, можно сказать, что ток эмиттера является суммой токов коллектора и базы.

Устройство, принцип работы и различие N-P-N и P-N-P транзисторов | Энергофиксик

Существуют два основных вида транзисторов: полевые и биполярные. Биполярные транзисторы, в свою очередь, также разделяются на тип с P-N-P и N-P-N переходом. В этом материале я вам расскажу об устройстве биполярных транзисторов и мы поговорим о принципе работы и в чем их основное различие. Итак, поехали.

Немного истории

Согласно записям официальной истории дату 16.12.1947 года можно считать официальным днем рожденья одного из главных элементов всей электроники современности. Именно в этот день был представлен общественности первый транзистор, который был собран тремя учеными, а именно: Д. Бардин, У. Шокли и У. Браттейн.

yandex.ru

yandex.ru

Появление биполярного транзистора позволило отказаться от использования электронных ламп. Вся современная электроника была бы невозможна без этого изделия. Вот такое важное открытие было совершено в середине 20-го столетия. Теперь от истории перейдем к нашим биполярным транзисторам.

Как устроен биполярный транзистор

Итак, биполярный транзистор схематически можно представить следующим образом:

Посмотрите внимательно на изображение, вам оно ничего не напоминает? Да, вы правы, если присмотреться и мысленно разделить зону N – перехода, то перед нами два соединенных между собой диода (запомните этот момент, в дальнейшем он нам понадобится).

Для определения какой проводимости перед нами диод, достаточно прочитать направление P-N перехода. На рисунке выше у нас проводимость типа P-N-P. Это означает, что перед нами транзистор прямой проводимости (так как принято считать, что ток проходит от плюса к минусу).

А вот у транзистора N-P-N типа проводимость обратная

Вы заметили, что в обоих вариантах исполнения присутствуют три вывода под названием:

Эмиттер (источник, генератор), База (основа) и Коллектор (сборщик, накопитель).

Схематическое обозначение транзисторов

Из всего выше написанного вы уже наверняка поняли, что есть транзисторы обратной и прямой последовательности, а это значит, что и на схемах такие элементы должны иметь различия. Давайте их рассмотрим.

Итак, обозначение транзистора прямой проводимости на схемах будет следующее:

А вот транзистор обратной проводимости обозначается уже так:

В старых советских мануалах транзисторы маркировались буквой «Т», а теперь обозначение сменили на «VT».

Как по схеме определить N-P-N или P-N-P транзистор перед вами

На самом деле определить по схеме тип биполярного транзистора довольно просто, достаточно помнить следующее правило:

Как известно в N – полупроводнике имеется большое количество свободных электронов, а в полупроводнике P–типа расположены «дырки» — положительно заряженные частицы. А по общепринятой теории ток протекает от «плюса» к «минусу».

Если вы посмотрите на схему, то увидите, что эмиттер изображен со стрелкой, которая либо направлена к базе либо от нее. Так вот если транзистор N-P-N типа, то есть база выполнена из P– полупроводника, то ток течет от базы (стрелка эмиттера от базы). Если же база выполнена из N — полупроводника, то ток (стрелка) втекает в базу.

Как работает P-N-P транзистор

С обозначением и устройством вроде все понятно, а вот как он работает давайте разбираться:

Давайте представим биполярный транзистор в виде водяной трубы с задвижкой с пружинным механизмом.

Как видно из рисунка сверху беспрепятственному протеканию воды по трубе мешает задвижка с пружинным механизмом, если мы приложим небольшое усилие (откроем задвижку сжав пружину), то вода беспрепятственно потечет по трубе. Если же мы отпустим пружину, то она распрямится и вернет задвижку на место, тем самым перекрыв трубу и поток воды будет остановлен.

Теперь вообразите, что данная труба — это транзистор P-N-P типа, значит его выводы можно представить следующим образом:

Получается, чтобы ток протекал от эмиттера к коллектору (напоминаю, что направление тока совпадает с направлением стрелки на эмиттере) нужно сделать так, чтобы ток выходил из базы, или говоря по простому: подать на базу минус.

Давайте наглядно проверим работу такого транзистора. Для этого возьмем КТ814Б и соберем простенькую схему с двумя источниками питания.

Для того, чтобы правильно подключить транзистор необходимо знать какой вывод является эмиттером, базой и коллектором. Для этого находим техническую документацию и определяем:

Лампочку я буду использовать самую обычную автомобильную, рассчитанную на 12 Вольт. Собранная схема будет выглядеть так:

Итак, чтобы наша схема заработала выставляем на источнике питания №2 12 Вольт. А на первом источнике питания начинаем очень плавно (с нуля) поднимать напряжение ровно до того момента, пока не загорится наша лампа.

Схема заработала при напряжении 0,66 Вольт на первом источнике.

То есть произошло «открытие» транзистора и через цепь эмиттер-коллектор начал проходить ток.

Иначе говоря, напряжение, которое открыло наш транзистор — это ни что иное как падение напряжения на P-N переходе база-эмиттер, которое как раз и находится в пределах от 0,5 до 0,7 В для кремниевых транзисторов.

А как дела обстоят с транзисторами, где используется N-P-N переход.

Принцип работы N-P-N транзистора

Если внимательно посмотреть на техническую документацию к транзистору КТ814Б, то можно найти запись о том, что комплиментарной парой к этому транзистору является КТ815Б, а он различается лишь тем что здесь используется N-P-N переход.

yandex.ru

yandex.ru

И схема подключения будет выглядеть так:

Посмотрите внимательно на эту схему и схему включения КТ814Б, вы ничего не заметили? Все верно, единственное различие между этими двумя транзисторами заключено в том, что транзистор с P-N-P переходом открывается «минусом» (так как на базу подается отрицательный потенциал), а вот транзистор N-P-N открывается «плюсом».

Заключение

В этом материале мы с вами познакомились с устройством биполярных транзисторов, их устройстве и принципе работы, а также с тем как они обозначаются на схемах. Если статья оказалась вам интересна или полезна, то оцените ее лайком. Спасибо за ваше внимание!

Ключ на биполярном транзисторе. Нагрузочная прямая.

Приветствую всех снова на нашем сайте 🙂 Мы продолжаем активно погружаться в нюансы работы биполярных транзисторов и сегодня мы перейдем к практическому рассмотрению одной из схем использования БТ – схеме ключа на транзисторе!

Суть схемы довольно проста и заключается в том, что как и любой переключатель, транзистор должен находиться в одном из двух состояний – открытом (включенном) и закрытом (выключенном). То есть либо транзистор пропускает ток, либо не пропускает. Давайте разбираться!

И, первым делом, давайте саму схему и рассмотрим:

Здесь у нас используется n-p-n транзистор. А вот вариант для p-n-p:

И по нашей уже устоявшейся традиции будем разбирать все аспекты работы на примере n-p-n транзистора 🙂 Суть и основные принципы остаются неизменными и для p-n-p. Так что работаем с этой схемой (здесь мы добавили протекающие по цепи токи):

Как вы уже заметили, схема очень напоминает включение транзистора с общим эмиттером. И действительно именно схема с ОЭ чаще всего используется при построении ключей. Только здесь у нас добавились два резистора (R_б и R_к). Вот с них и начнем!

Зачем же нужен резистор в цепи базы?

Итак, нам нужно подать на переход база-эмиттер напряжение прямого смещения. Его величина указывается среди параметров конкретного транзистора и обычно составляет в районе 0.6 В. Также мы знаем, какой управляющий сигнал мы будем подавать на вход для того, чтобы открыть транзистор. Например, при использовании микроконтроллера STM32 для управления ключом, на входе цепи у нас будет либо 0 В (транзистор в данном случае закрыт), либо 3.3 В (транзистор открыт). В данной схеме сигнал на вход подается не с контроллера, а напрямую с источника напряжения E_{вх} при замыкании переключателя S_1.

Таким образом, получаем, что при 3.3 В на входе напряжение на резисторе R_б составит:

U_{R_б} = E_{вх} \medspace – \medspace U_{бэ}

А теперь вспоминаем, что управление биполярным транзистором осуществляется изменением тока базы – а как его менять? Верно – изменяя сопротивление этого самого резистора! То есть, варьируя сопротивление резистора, мы меняем ток базы и, соответственно, этим самым вносим изменения в работу выходной цепи нашей схемы. Чуть позже мы рассмотрим практический пример для конкретных номиналов и величин и посмотрим на деле, как это работает.

Мы уже несколько раз использовали термины “транзистор открыт” и “закрыт”. Понятно, что это означает наличие, либо отсутствие коллекторного тока, но давайте рассмотрим эти понятия применительно к режимам работы транзистора. И тут все достаточно просто:

  • для того, чтобы закрыть транзистор, мы стремимся перевести его в режим отсечки
  • а чтобы открыть – в режим насыщения

То есть при проектировании ключа на биполярном транзисторе мы преследуем цель переводить транзистор то в режим отсечки, то в режим насыщения в зависимости от управляющего сигнала на входе!

Переходим к рассмотрению коллекторной цепи разбираемой схемы. В данном резистор R_к выполняет роль нагрузки, а также ограничивает ток в цепи во избежания короткого замыкания источника питания E_{вых}. И вот теперь пришло время вспомнить выходные характеристики, которые мы совсем недавно обсуждали 🙂

Но в данном случае выходные параметры схемы определяются помимо всего прочего еще и нагрузкой (то есть резистором R_к). Для коллекторной цепи мы можем записать:

U_{кэ} + I_к R_к = E_{вых}

Или:

I_к = \frac{E_{вых} \medspace – \medspace U_{кэ}}{R_к}

Этим уравнением задается так называемая нагрузочная характеристика цепи. Поскольку резистор – линейный элемент (U_R = I_R R), то характеристика представляет из себя прямую (которую так и называют – нагрузочная прямая). Наносим ее на выходные характеристики транзистора и получаем следующее:

Рабочая точка в данной схеме будем перемещаться по нагрузочной прямой. То есть величины U_{кэ} и I_к могут принимать только те значения, которые соответствуют точкам пересечения выходной характеристики транзистора и нагрузочной прямой. Иначе быть не может 🙂

И нам нужно обеспечить, чтобы в открытом состоянии рабочая точка оказалась в положении 1. В данном случае падение напряжения U_{кэ} на транзисторе будет минимальным, то есть почти вся полезная мощность от источника окажется на нагрузке. В закрытом же состоянии рабочая точка должна быть в положении 2. Тогда почти все напряжение упадет на транзисторе, а нагрузка будет выключена.

Теперь, когда мы разобрались с теоретическими аспектами работы ключа на транзисторе, давайте рассмотрим как же на практике производятся расчеты и выбор номиналов элементов!

Расчет ключа на биполярном транзисторе.

Добавим в схему полезную нагрузку в виде светодиода. Резистор R_к при этом остается на месте, он будет ограничивать ток через нагрузку и обеспечивать необходимый режим работы:

Пусть для включения светодиода нужно подать на него напряжение 3В (U_д). При этом диод будет потреблять ток равный 50 мА (I_д). Зададим параметры транзистора (в реальных схемах эти значения берутся из документации на используемый транзистор):

  • Коэффициент усиления по току h_{21э} = 100…500 (всегда задан именно диапазон, а не конкретное значение)
  • Падение напряжения на переходе база-эмиттер, необходимое для открытия этого перехода: U_{бэ} = 0.6 \medspace В.
  • Напряжение насыщения: U_{кэ \medspace нас} = 0.1 \medspace В.

Мы берем конкретные значения для расчетов, но на практике все бывает несколько иначе. Как вы помните, параметры транзисторов зависят от многих факторов, в частности, от режима работы, а также от температуры. А температура окружающей среды, естественно, может меняться. Определить четкие значения из характеристик при этом бывает не так просто, поэтому нужно стараться обеспечить небольшой запас. К примеру, коэффициент усиления по току при расчете лучше принять равным минимальному из значений, приведенных в даташите. Ведь если коэффициент в реальности будет больше, то это не нарушит работоспособности схемы, конечно, при этом КПД будет ниже, но тем не менее схема будет работать. А если взять максимальное значение h_{21э}, то при определенных условиях может оказаться, что реальное значение оказалось меньше, и его уже недостаточно для обеспечения требуемого режима работы транзистора.

Итак, возвращаемся к примеру 🙂 Входными данными для расчета кроме прочего являются напряжения источников. В данном случае:

  • E_{вх} = 3.3\medspace В. Я выбрал типичное значение, которое встречается на практике при разработке схем на микроконтроллерах. В этом примере подача и отключение этого напряжения осуществляется переключателем S_1.
  • E_{вых} = 9\medspace В.

Первым делом нам необходимо рассчитать сопротивление резистора в цепи коллектора. Напряжения и ток выходной цепи во включенном состоянии связаны следующим образом:

U_{кэ \medspace нас} + U_{R_к} + U_д = E_{вых}

При этом по закону Ома:

U_{R_к} = I_к R_к

А ток у нас задан, поскольку мы знаем, какой ток потребляет нагрузка (в данном случае диод) во включенном состоянии. Тогда:

U_{R_к} = I_д R_к

U_{кэ \medspace нас} + I_д R_к + U_д = E_{вых}

Итак, в этой формуле нам известно все, кроме сопротивления, которое и требуется определить:

R_к = \frac{E_{вых} \medspace – \medspace U_д \medspace – \medspace U_{кэ \medspace нас}}{I_д} \enspace= \frac{9 \medspace В \medspace – \medspace 3 \medspace В \medspace – \medspace 0.1 \medspace В}{0.05 \medspace А} \medspace\approx 118 \medspace Ом.

Выбираем доступное значение сопротивления из стандартного ряда номиналов и получаем R_{к} = 120\medspace Ом. Причем важно выбирать именно бОльшее значение. Связано это с тем, что если мы берем значение чуть больше рассчитанного, то ток через нагрузку будет немного меньше. Это не приведет ни к каким сбоям в работе. Если же взять мЕньшее значение сопротивления, то это приведет к тому, что ток и напряжение на нагрузке будут превышать заданные, что уже хуже 🙂

Пересчитаем величину коллекторного тока для выбранного значения сопротивления:

I_к = \frac{U_{R_к}}{R_к} \medspace = \frac{9 \medspace В \medspace – \medspace 3 \medspace В \medspace – \medspace 0.1 \medspace В}{120 \medspace Ом} \medspace\approx\medspace 49.17 \medspace мА

Пришло время определить ток базы, для этого используем минимальное значение коэффициента усиления:

I_б = \frac{I_к}{h_{21э}} = \frac{49.17 \medspace мА}{100} = 491.7 \medspace мкА

А падение напряжения на резисторе R_б:

U_{R_б} = E_{вх} \medspace – \medspace 0.6 \medspace В = 3.3 \medspace В \medspace – \medspace 0.6 \medspace В = 2.7 \medspace В

Теперь мы можем легко определить величину сопротивления:

R_б = \frac{U_{R_б}}{I_б}\medspace = \frac{2.7 \medspace В}{491.7 \medspace мкА} \approx 5.49 \medspace КОм

Опять обращаемся к ряду допустимых номиналов. Но теперь нам нужно выбрать значение, мЕньшее рассчитанного. Если сопротивление резистора будет больше расчетного, то ток базы будет, напротив, меньше. А это может привести к тому, что транзистор откроется не до конца, и во включенном состоянии бОльшая часть напряжения упадет на транзисторе (U_{кэ}), что, конечно, нежелательно.

Поэтому выбираем для резистора базы значение 5.1 КОм. И этот этап расчета был последним! Давайте резюмируем, наши рассчитанные номиналы составили:

  • R_{б} = 5.1\medspace КОм
  • R_{к} = 120\medspace Ом

Кстати в схеме ключа на транзисторе обычно добавляют резистор между базой и эмиттером, номиналом, например, 10 КОм. Он нужен для подтяжки базы при отсутствии сигнала на входе. В нашем примере, когда S1 разомкнут, то вход просто висит в воздухе. И под воздействием наводок транзистор будет хаотично открываться и закрываться. Поэтому и добавляется резистор подтяжки, чтобы при отсутствии входного сигнала потенциал базы был равен потенциалу эмиттеру. В этом случае транзистор будет гарантированно закрыт.

Сегодня мы прошлись по классической схеме, которой я стараюсь придерживаться, то есть – от теории к практике 🙂 Надеюсь, что материал будет полезен, а если возникнут какие-либо вопросы, пишите в комментарии, я буду рад помочь!

устройство, принцип действия, схемы включения

Слово “транзистор” составлено из слов TRANSfer и resISTOR – преобразователь сопротивления. Он пришел на смену лампам в начале 1950-х. Это прибор с тремя выводами, используется для усиления и переключения в электронных схемах. Прилагательное “биполярный” (bipolar junction transistor) служит для отличия от полевых транзисторов (FET – field effect transistor). Принцип действия биполярного транзистора состоит в использовании двух p-n переходов, образующих запорный слой, который позволяет малому току управлять большим током. Биполярный транзистор используется и как управляемое сопротивление, и как ключ. Транзисторы бывают двух типов: pnp и npn.

P-N переход

Германий (Ge) и кремний (Si) – это полупроводники. Сейчас главным образом используют кремний. Валентность Si и Ge равна четырем. Поэтому если добавить в кристаллическую решетку кремния пятивалентный мышьяк (As), мы получим “лишний” электрон, а если добавить трехвалентный бор (B) – мы получим вакантное место для электрона. В первом случае говорят о “донорном” материале, дающем электроны, во втором случае – об “акцепторном”, принимающем электроны. Также первый тип материала называют N (negative), а второй – P (positive).

Если привести в контакт материалы P и N типов, то между ними возникнет ток и установится динамическое равновесие с обедненной областью, где концентрация носителей заряда – электронов и вакантных мест (“дырок”) – мала. Этот слой обладает односторонней проводимостью и служит основой прибора, называемого диод. Непосредственный контакт материалов не создаст качественный переход, необходимо сплавление (диффузия) или “забивание” в кристалл ионов легирующих примесей в вакууме.

PNP-транзистор

Впервые биполярный транзистор изготовили, вплавляя в кристалл германия (материал n-типа) капли индия. Индий (In) – трехвалентный металл, материал p-типа. Поэтому такой транзистор назвали диффузным (сплавным), имеющим структуру p-n-p (или pnp). Биполярный транзистор на рисунке ниже изготовлен в 1965 году. Его корпус обрезан для наглядности.

Кристалл германия в центре называется базой, а вплавленные в него капли индия – эмиттером и коллектором. Можно рассматривать переходы ЭБ (эмиттерный) и КБ (коллекторный) как обычные диоды, но переход КЭ (коллектор-эмиттерный) имеет особое свойство. Поэтому невозможно изготовить биполярный транзистор из двух отдельных диодов.

Если в транзисторе типа pnp приложить между коллектором (-) и эмиттером (+) напряжение в несколько вольт, в цепи пойдет очень слабый ток, несколько мкА. Если затем приложить небольшое (открывающее) напряжение между базой (-) и эмиттером (+) – для германия оно составляет около 0,3 В (а для кремния 0,6 В) – то ток некоторой величины потечет из эмиттера в базу. Но так как база сделана очень тонкой, то она быстро насытится дырками (“растеряет” свой избыток электронов, которые уйдут в эмиттер). Поскольку эмиттер сильно легирован дырочной проводимостью, а в слабо легированной базе рекомбинация электронов немного запаздывает, то существенно большая часть тока пойдет из эмиттера в коллектор. Коллектор сделан больше эмиттера и слабо легирован, что позволяет иметь на нем большее пробивное напряжение (Uпроб.КЭ > Uпроб.ЭБ). Также, поскольку основная часть дырок рекомбинирует в коллекторе, то он и греется сильнее остальных электродов прибора.

Между током коллектора и эмиттера имеется соотношение:

Обычно α лежит в пределах 0,85-0,999 и обратно зависит от толщины базы. Эта величина называется коэффициент передачи тока эмиттера. На практике чаще используют обратную величину (также обозначается как h21e):

Это коэффициент передачи тока базы, один из самых важных параметров биполярного транзистора. Он чаще определяет усилительные свойства на практике.

Транзистор pnp называют транзистором прямой проводимости. Но бывает и другой тип транзистора, структура которого отлично дополняет pnp в схемотехнике.

NPN-транзистор

Биполярный транзистор может иметь коллектор с эмиттером из материала N-типа. Тогда база делается из материала P-типа. И в этом случае, транзистор npn работает точно, как pnp, за исключением полярности – это транзистор обратной проводимости.

Транзисторы на основе кремния подавляют своим числом все остальные типы биполярных транзисторов. Донорным материалом для коллектора и эмиттера может служить As, имеющий “лишний” электрон. Также изменилась технология изготовления транзисторов. Сейчас они планарные, что дает возможность использовать литографию и делать интегральные схемы. На картинке ниже изображен планарный биполярный транзистор (в составе интегральной схемы при сильном увеличении). По планарной технологии изготавливаются как pnp, так и npn-транзисторы, в том числе и мощные. Сплавные уже сняты с производства.

Планарный биполярный транзистор в разрезе на следующей картинке (упрощенная схема).

Из картинки видно, насколько удачно устроена конструкция планарного транзистора – коллектор эффективно охлаждается подложкой кристалла. Также изготовлен и планарный pnp транзистор.

Условные графические обозначения биполярного транзистора показаны на следующей картинке.

Эти УГО являются международными, и также действительны по ГОСТ 2.730-73.

Схемы включения транзисторов

Обычно биполярный транзистор всегда используется в прямом включении – обратная полярность на КЭ переходе ничего интересного не дает. Для прямой схемы подключения есть три схемы включения: общий эмиттер (ОЭ), общий коллектор (ОК), и общая база (ОБ). Все три включения показаны ниже. Они поясняют только сам принцип работы – если предположить, что рабочая точка каким-то образом, с помощью дополнительного источника питания или вспомогательной цепи установлена. Для открывания кремниевого транзистора (Si) необходимо иметь потенциал ~0,6 В между эмиттером и базой, а для германиевого хватит ~0,3 В.

Общий эмиттер

Напряжение U1 вызывает ток Iб, ток коллектора Iк равен базовому току, умноженному на β. При этом напряжение +E должно быть достаточно большим: 5 В-15 В. Эта схема хорошо усиливает ток и напряжение, следовательно, и мощность. Выходной сигнал противоположен по фазе входному (инвертируется). Это используется в цифровой технике как функция НЕ.

Если транзистор работает не в ключевом режиме, а как усилитель малых сигналов (активный или линейный режим), то при помощи подбора базового тока устанавливают напряжение U2 равным E/2, чтобы выходной сигнал не искажался. Такое применение используется, например, при усилении аудиосигналов в усилителях высокого класса, с низкими искажениям и, как следствие, низким КПД.

Общий коллектор

По напряжению схема ОК не усиливает, здесь коэффициент усиления равен α ~ 1. Поэтому эта схема называется эмиттерный повторитель. Ток в цепи эмиттера получается в β+1 раз больше, чем в цепи базы. Эта схема хорошо усиливает ток и имеет низкое выходное и очень высокое входное сопротивление. (Тут самое время вспомнить о том, что транзистор называется трансформатором сопротивления.)

Эмиттерный повторитель имеет свойства и рабочие параметры, очень подходящие для пробников осциллографов. Здесь используют его огромное входное сопротивление и низкое выходное, что хорошо для согласования с низкоомным кабелем.

Общая база

Эта схема отличается наиболее низким входным сопротивлением, но усиление по току у нее равно α. Схема с общей базой хорошо усиливает по напряжению, но не по мощности. Ее особенностью является устранение влияния обратной связи по емкости (эфф. Миллера). Каскады с ОБ идеально подходят в качестве входных каскадов усилителей в радиочастотных трактах, согласованных на низких сопротивлениях 50 и 75 Ом.

Каскады с общей базой очень широко используются в технике СВЧ и их применение в радиоэлектронике с каскадом эмиттерного повторителя очень распространено.

Два основных режима работы

Различают режимы работы с использованием “малого” и “большого” сигнала. В первом случае биполярный транзистор работает на маленьком участке своих характеристик и это используется в аналоговой технике. В таких случаях важна линейность усиления сигналов и малые шумы. Это линейный режим.

Во втором случае (ключевой режим), биполярный транзистор работает в полном диапазоне – от насыщения до отсечки, как ключ. Это значит, что если посмотреть на ВАХ p-n перехода – следует для полного запирания транзистора приложить между базой и эмиттером небольшое обратное напряжение, а для полного открывания, когда транзистор переходит в режим насыщения, немного увеличить базовый ток, по сравнению с малосигнальным режимом. Тогда транзистор работает как импульсный ключ. Этот режим используется в импульсных и силовых устройствах, применяется для импульсных источников питания. В таких случаях стараются добиться малого времени переключения транзисторов.

Для цифровой логики характерно промежуточное положение между “большим” и “малым” сигналами. Низкий логический уровень ограничивают 10% от напряжения питания, а высокий 90%. Время задержек и переключения стремятся уменьшить до предела. Такой режим работы является ключевым, но мощность здесь стремятся свести к минимальной. Любой логический элемент – это ключ.

Другие виды транзисторов

Основные, уже описанные виды транзисторов, не ограничивают их устройство. Выпускают составные транзисторы (схема Дарлингтона). Их β очень большой и равен произведению коэффициентов обеих транзисторов, поэтому их называют еще “супербета” транзисторами.

Электротехника уже хорошо освоила IGBT-транзисторы (insulated gate bipolar transistor), с изолированным затвором. Затвор полевого транзистора, действительно, изолирован от его канала. Правда, есть вопрос перезарядки его входной емкости при переключениях, так что, без тока и здесь не обходится.

Такие транзисторы используют в мощных силовых ключах: импульсные преобразователи, инверторы и т.д. По входу IGBT очень чувствительны, за счет высокого сопротивления затворов полевых транзисторов. По выходу – дают возможность получать огромные токи и могут быть изготовлены на высокое напряжение. Например, в США есть новая солнечная электростанция, где такие транзисторы в мостовой схеме нагружены на мощные трансформаторы, отдающие энергию в промышленную сеть.

В заключение отметим, что транзисторы, говоря простыми словами, являются “рабочей лошадкой” всей современной электроники. Их используют везде: от электровозов до мобильников. Любой современный компьютер состоит практически из одних транзисторов. Физические основы работы транзисторов хорошо изучены и обещают еще немало новых достижений.

Материалы по теме:

Учебное пособие по транзистору

PNP — Биполярный транзистор PNP

В основном, в этом типе конструкции транзистора два диода перевернуты по отношению к типу NPN, что дает P ositive- N egative- P ositive тип конфигурации, со стрелкой, которая также определяет вывод эмиттера. время, указывающее внутрь в символе транзистора.

Кроме того, все полярности для транзистора PNP поменяны местами, что означает, что он «втягивает» ток в свою базу, в отличие от транзистора NPN, который «истекает» током через свою базу.Основное различие между двумя типами транзисторов заключается в том, что дырки являются более важными носителями для транзисторов PNP, тогда как электроны являются важными носителями для транзисторов NPN.

Затем транзисторы PNP используют небольшой базовый ток и отрицательное базовое напряжение для управления гораздо большим током эмиттер-коллектор. Другими словами, для транзистора PNP эмиттер более положительный по отношению к базе, а также по отношению к коллектору.

Конструкция «транзистора PNP» состоит из двух полупроводниковых материалов P-типа по обе стороны от материала N-типа, как показано ниже.

Конфигурация транзистора PNP

(Примечание: стрелка определяет эмиттер и условный ток, «вход» для PNP-транзистора.)

Конструкция и напряжение на клеммах NPN-транзистора показаны выше. Транзистор PNP имеет очень похожие характеристики со своими биполярными собратьями NPN, за исключением того, что полярности (или смещение) направлений тока и напряжения меняются местами для любой из трех возможных конфигураций, рассмотренных в первом руководстве, Common Base, Common Эмиттер и общий коллектор.

Подключение транзистора PNP

Напряжение между базой и эмиттером (V BE ) теперь отрицательное на базе и положительное на эмиттере, потому что для транзистора PNP клемма базы всегда смещена отрицательно по отношению к эмиттеру.

Также напряжение питания эмиттера положительно относительно коллектора (V CE ). Таким образом, для транзистора PNP эмиттер всегда более положительный по отношению как к базе, так и к коллектору.

Источники напряжения подключены к транзистору PNP, как показано. На этот раз эмиттер подключен к источнику питания V CC с нагрузочным резистором RL, который ограничивает максимальный ток, протекающий через устройство, подключенное к клемме коллектора. Напряжение базы V B , которое смещено отрицательно по отношению к эмиттеру и подключено к резистору базы R B , который снова используется для ограничения максимального тока базы.

Чтобы базовый ток протекал через PNP-транзистор, база должна быть более отрицательной, чем эмиттер (ток должен выходить из базы) примерно на 0.7 В для кремниевого устройства или 0,3 В для германиевого устройства с формулами, используемыми для расчета базового резистора, базового тока или тока коллектора, те же самые, что и для эквивалентного NPN-транзистора, и представлены как.

Мы можем видеть, что фундаментальные различия между NPN-транзисторами и PNP-транзисторами — это правильное смещение переходов транзисторов, поскольку направления тока и полярности напряжения всегда противоположны друг другу. Итак, для схемы выше: Ic = Ie — Ib, поскольку ток должен покинуть базу.

Как правило, транзисторы PNP могут заменять транзисторы NPN в большинстве электронных схем, единственная разница заключается в полярности напряжений и направлениях тока. Транзисторы PNP также могут использоваться в качестве переключающих устройств, и ниже показан пример транзисторного переключателя PNP.

Схема транзистора PNP

Кривые выходных характеристик для транзистора PNP выглядят очень похоже на кривые для эквивалентного транзистора NPN, за исключением того, что они повернуты на 180 o , чтобы учесть напряжения и токи обратной полярности (то есть для транзистора PNP, электронный ток течет из базы и коллектора в сторону батареи).Та же самая линия динамической нагрузки может быть нанесена на ВАХ, чтобы найти рабочие точки PNP-транзисторов.

Согласование транзисторов

Дополнительные транзисторы

Вы можете подумать, какой смысл иметь транзистор PNP , когда доступно множество транзисторов NPN, которые можно использовать в качестве усилителя или твердотельного переключателя ?. Что ж, наличие двух разных типов транзисторов «PNP» и «NPN» может быть большим преимуществом при разработке схем усилителя мощности, таких как усилитель класса B.

Усилители

класса B используют «комплементарные» или «согласованные пары» (то есть один PNP и один NPN, соединенные вместе) транзисторы в своем выходном каскаде или в реверсивных схемах управления двигателем с Н-мостом, где мы хотим равномерно контролировать поток тока через двигатель в обоих направлениях в разное время для прямого и обратного движения.

Пара соответствующих транзисторов NPN и PNP с почти идентичными характеристиками друг другу называется Комплементарные транзисторы , например, TIP3055 (транзистор NPN) и TIP2955 (транзистор PNP) являются хорошими примерами дополняющих или согласованных пар кремниевых силовых транзисторов.Оба они имеют коэффициент усиления постоянного тока, бета, (Ic / Ib), согласованный с точностью до 10%, и высокий ток коллектора около 15 А, что делает их идеальными для общего управления двигателями или робототехнических приложений.

Кроме того, усилители класса B используют дополнительные NPN и PNP в конструкции выходного каскада мощности. Транзистор NPN проводит только положительную половину сигнала, тогда как транзистор PNP проводит отрицательную половину сигнала.

Это позволяет усилителю передавать требуемую мощность через громкоговоритель нагрузки в обоих направлениях с заявленным номинальным сопротивлением и мощностью, что приводит к выходному току, который, вероятно, будет порядка нескольких ампер, равномерно распределяемых между двумя комплементарными транзисторами.

Идентификация транзистора PNP

В первом уроке этого раздела, посвященном транзисторам, мы видели, что транзисторы в основном состоят из двух диодов, соединенных друг с другом взаимно.

Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN, проверив его сопротивление между тремя разными выводами: эмиттером, базой и коллектором. Тестирование каждой пары выводов транзистора в обоих направлениях с помощью мультиметра приведет в общей сложности к шести тестам с ожидаемыми значениями сопротивления в Ом, указанными ниже.

  • 1. Клеммы эмиттер-база — эмиттер-база должны работать как обычный диод и проводить только в одном направлении.
  • 2. Клеммы коллектор-база — переход коллектор-база должен действовать как обычный диод и проводить только в одном направлении.
  • 3. Клеммы эмиттер-коллектор — эмиттер-коллектор не должен вести ни в одном направлении.

Значения оконечного сопротивления для транзисторов PNP и NPN

Между выводами транзистора PNP НПН
Коллектор Излучатель R ВЫСОКАЯ R ВЫСОКАЯ
Коллектор База R НИЗКИЙ R ВЫСОКАЯ
Излучатель Коллектор R ВЫСОКАЯ R ВЫСОКАЯ
Излучатель База R НИЗКИЙ R ВЫСОКАЯ
База Коллектор R ВЫСОКАЯ R НИЗКАЯ
База Излучатель R ВЫСОКАЯ R НИЗКИЙ

Тогда мы можем определить транзистор PNP как обычно «ВЫКЛ.», Но небольшой выходной ток и отрицательное напряжение на его базе (B) относительно его эмиттера (E) включат его, позволяя использовать очень большой эмиттер-коллектор ток течь.Транзисторы PNP проводят, когда Ve намного больше Vc.

Другими словами, биполярный PNP-транзистор будет проводить ТОЛЬКО, если клеммы базы и коллектора отрицательны по отношению к эмиттеру

.

В следующем руководстве по биполярным транзисторам вместо использования транзистора в качестве усилительного устройства мы рассмотрим работу транзистора в его областях насыщения и отсечки при использовании в качестве твердотельного переключателя. Биполярные транзисторные переключатели используются во многих приложениях для включения или выключения постоянного тока от светодиодов, которым требуется всего несколько миллиампер коммутируемого тока при низких напряжениях постоянного тока, или двигателей и реле, которым могут потребоваться более высокие токи при более высоких напряжениях.

Характеристики схемы транзистора PNP

, работа, применение

В этом руководстве мы попытаемся понять основы Tansistor PNP. Мы плохо изучим его работу, контакты, основную схему, идентификацию клемм, пример и несколько приложений.

Введение

PNP-транзистор — это еще один тип биполярного переходного транзистора (BJT).Структура транзистора PNP полностью отличается от транзистора NPN. Два диода с PN-переходом в структуре транзистора PNP перевернуты по отношению к транзистору NPN, например, два легированных полупроводниковых материала P-типа разделены тонким слоем легированного полупроводникового материала N-типа.

В транзисторе PNP основными носителями тока являются дырки, а неосновными носителями тока являются электроны. Все полярности напряжения питания, приложенного к транзистору PNP, поменяны местами.В PNP ток поступает на базовый терминал. Малый базовый ток в PNP имеет возможность управлять большим током эмиттер-коллектор, потому что это устройство, управляемое током.

Стрелка для BJT-транзисторов всегда находится на выводе эмиттера, а также указывает направление обычного тока. В транзисторе PNP эта стрелка обозначается как «указывающая внутрь», а направление тока в транзисторе PNP полностью противоположно направлению тока транзистора NPN. Структура транзистора PNP полностью противоположна транзистору NPN.Но характеристики и работа транзистора PNP практически такая же, как у транзистора NPN с небольшими отличиями. Символ и структура транзистора PNP показаны ниже.

На рисунке выше показаны структура и обозначение транзистора PNP. Этот транзистор в основном состоит из 3 выводов: эмиттера (E), коллектора (C) и базы (B). Здесь, если вы заметили, ток базы течет из базы, в отличие от транзистора NPN. Напряжение эмиттера положительно относительно базы и коллектора.

ВЕРНУТЬСЯ В НАЧАЛО

Транзистор PNP в рабочем состоянии

Схема подключения транзистора PNP с напряжением питания приведена ниже. Здесь вывод базы имеет отрицательное смещение относительно эмиттера, а вывод эмиттера имеет положительное напряжение смещения относительно как базы, так и коллектора из-за транзистора PNP.

Полярность и направление тока здесь противоположны по сравнению с NPN-транзистором. Если транзистор подключен ко всем источникам напряжения, как показано выше, то базовый ток протекает через транзистор, но здесь базовое напряжение должно быть более отрицательным по отношению к эмиттеру для работы транзистора.Здесь переход база-эмиттер действует как диод. Небольшой ток в базе управляет протеканием большого тока через эмиттер в область коллектора. Базовое напряжение обычно составляет 0,7 В для Si и 0,3 В для германиевых устройств.

Здесь клемма базы действует как вход, а область эмиттер-коллектор действует как выход. Напряжение питания V CC подключено к выводу эмиттера, а нагрузочный резистор (R L ) подключен к выводу коллектора. Этот нагрузочный резистор (R L ) используется для ограничения максимального тока, протекающего через устройство.Еще один резистор (R B ) подключен к клемме базы, которая используется для ограничения максимального тока, протекающего через клемму базы, а также на клемму базы подается отрицательное напряжение. Здесь ток коллектора всегда равен вычитанию тока базы из тока эмиттера. Подобно транзистору NPN, транзистор PNP также имеет значение усиления по току β. Теперь давайте посмотрим, как связаны токи и коэффициент усиления по току β.

Коллекторный ток (I C ) определяется как,

I C = I E — I B

Коэффициент усиления постоянного тока (β) для транзистора PNP такой же, как у транзистора NPN. .

Коэффициент усиления постоянного тока = β = выходной ток / входной ток

Здесь выходной ток — это ток коллектора, а входной ток — базовый ток.

β = I C / I B

Из этого уравнения получаем

I B = I C / β

I C = β I B

А также мы определяем коэффициент усиления по току как,

Коэффициент усиления по току = ток коллектора / ток эмиттера (в транзисторе с общей базой)

α = I C / I E

Соотношение между α и β определяется выражением,

β = α / (1- α) и α = β / (β + 1)

Коллекторный ток в транзисторе PNP определяется выражением,

I C = — α I E + I CBO где I CBO — ток насыщения.

Так как I E = — (I C + I B )

I C = — α (- (I C + I B )) + I CBO

I C — α I C = α I B + I CBO

I C (1- α) = α I B + I CBO

I C = (α / (1- α)) I B + I CBO / (1- α)

Поскольку β = α / (1- α)

Теперь мы получаем уравнение для тока коллектора

I C = β I B + (1+ β) I CBO

Выходные характеристики транзистора PNP такие же, как характеристики транзистора NPN.Небольшая разница в том, что характеристическая кривая PNP-транзистора поворачивается на 180 0 для вычисления значений напряжения и тока обратной полярности. Линия динамической нагрузки также существует на характеристической кривой для расчета значения Q-точки. Транзисторы PNP также используются в схемах переключения и усиления, таких как транзисторы NPN.

ВЕРНУТЬСЯ В НАЧАЛО

Пример транзистора PNP

Рассмотрим транзистор PNP, который включен в цепь с питающими напряжениями V B = 1.5V, V E = 2V, + V CC = 10V и –V CC = -10V. А также эта схема соединена с резисторами R B = 200 кОм и R E = R C (или R L ) = 5 кОм. Теперь рассчитайте текущие значения усиления (α, β) транзистора PNP.

Здесь

В B = 1,5 В

В E = 2 В

+ V CC = 10 В и –V CC = -10 В

R B = 200 кОм

R E = R C (или R L ) = 5 кОм

Базовый ток,

I B = V B / R B = 1.5 / (200 * 10 3 ) = 7,5 мкА.

Ток эмиттера,

I E = В E / R E = (10-2) / (5 * 10 3 ) = 8 / (5 * 10 3 ) = 1,6 мА .

Ток коллектора,

I C = I E — I B = 1,6 * 10 -3 — 7,5 * 10 -6 = 1,59 мА.

Теперь нам нужно вычислить значения α и β,

α = I C / I E = 1,59 * 10 -3 / 1,6 * 10 -3 = 0.995

β = I C / I B = 1,59 * 10 -3 / 7,5 * 10 -6 = 212

Наконец, мы получаем текущие значения усиления рассматриваемого транзистора PNP:

α = 0,995 и β = 212

НАЗАД В начало

Согласование транзисторов BJT

Согласование транзисторов — это не что иное, как соединение транзисторов NPN и PNP в единой конструкции для генерации высокой мощности. Эта структура также называется «согласованной парой».Транзисторы NPN и PNP называются дополнительными транзисторами. В основном эти схемы согласованных пар используются в усилителях мощности, таких как усилители класса B. Если мы подключим дополнительные транзисторы с одинаковыми характеристиками, то будет очень полезно управлять выходными каскадами в двигателях и крупномасштабном оборудовании, непрерывно производя высокую мощность.

Транзистор NPN проводит только в положительном полупериоде сигнала, а транзистор PNP проводит только в отрицательном полупериоде сигнала, поэтому устройство работает непрерывно.Эта непрерывная работа очень полезна в силовых двигателях для выработки постоянной мощности. Дополнительные транзисторы должны иметь одинаковое значение коэффициента усиления по постоянному току (β). Эти согласованные парные схемы используются в системах управления двигателями, робототехнике и усилителях мощности.

НАЗАД В начало

Идентификация транзисторов PNP

Обычно мы идентифицируем транзисторы PNP по их структуре. У нас есть некоторые различия в структурах транзисторов NPN и PNP при сравнении.Еще одна вещь для идентификации транзистора PNP: обычно транзистор PNP находится в состоянии ВЫКЛ для положительного напряжения и во включенном состоянии при небольшом выходном токе и отрицательном напряжении на его базе по отношению к эмиттеру. Но чтобы идентифицировать их наиболее эффективно, мы используем другую технику, вычисляя сопротивление между тремя выводами, такими как база, эмиттер и коллектор.

У нас есть несколько стандартных значений сопротивления для идентификации транзисторов NPN и PNP. Необходимо проверить каждую пару клемм в обоих направлениях на значения сопротивления, поэтому всего требуется шесть тестов.Этот процесс очень полезен для простой идентификации транзистора PNP. Теперь мы видим поведение каждой пары терминалов.

  • Клеммы эмиттер-база: Область эмиттер-база действует как диод, но проводит только в одном направлении.
  • Клеммы коллектор-база: Область коллектор-база также действует как диод, который проводит ток только в одном направлении.
  • Клеммы эмиттер-коллектор: Область эмиттер-коллектор выглядит как диод, но он не будет проводить ни в одном направлении.

Теперь давайте посмотрим на таблицу значений сопротивления, чтобы идентифицировать как NPN-, так и PNP-транзисторы, как показано в следующей таблице.

НАЗАД В начало

Транзистор PNP как переключатель

Схема на приведенном выше рисунке показывает транзистор PNP как переключатель. Работа этой схемы очень проста, если входной контакт транзистора (база) подключен к земле (то есть отрицательное напряжение), тогда транзистор PNP находится в состоянии «ВКЛ», теперь напряжение питания на эмиттере проходит, а выходной контакт подтягивается. к большему напряжению.Если входной контакт подключен к высокому напряжению (то есть положительному напряжению), тогда транзистор находится в состоянии «ВЫКЛ», поэтому выходное напряжение должно быть низким (нулем). Эта операция показывает условия переключения транзистора PNP из-за их состояний ВКЛ и ВЫКЛ.

ВЕРНУТЬСЯ В НАЧАЛО

Приложения
  • PNP-транзисторы используются для источника тока, то есть ток течет из коллектора. В качестве переключателей используются транзисторы
  • PNP.
  • Они используются в схемах усиления.
  • Транзисторы PNP используются, когда нам нужно что-то выключить нажатием кнопки. т.е. аварийное отключение.
  • Используется в парных схемах Дарлингтона.
  • Используется в схемах согласованных пар для обеспечения непрерывной мощности.
  • Используется в тяжелых двигателях для управления током.
  • Используется в роботизированных приложениях.

В начало

Транзистор PNP для многих является загадкой.Но этого не должно быть. Если вы хотите разрабатывать схемы с транзисторами, действительно стоит знать об этом типе транзисторов.

Например: Хотите, чтобы свет автоматически включался, когда стемнеет? Транзистор PNP облегчит вам задачу.

В своей статье, как работают транзисторы, я объяснил, как работает стандартный транзистор NPN . Если вы еще этого не сделали, я действительно настоятельно рекомендую вам сначала прочитать эту статью.

Если вы разбираетесь в транзисторе NPN , вам будет легче понять транзистор PNP .Они работают примерно одинаково, с одним важным отличием: токи в транзисторе PNP протекают в направлении, противоположном токам в транзисторе NPN.

Примечание: эта тема намного проще, если вы понимаете ток и напряжение.

Как работают транзисторы PNP

Транзистор PNP имеет те же названия ножек, что и NPN:

PNP-транзистор «включается», когда у вас есть небольшой ток, идущий от эмиттера к базе транзистора.Когда я говорю «включить», я имею в виду, что транзистор открывает канал между эмиттером и коллектором. И этот канал может нести гораздо больший ток.

Для протекания тока от эмиттера к базе необходима разница напряжений около 0,7 В. Поскольку ток идет от эмиттера к базе, база должна быть на 0,7 В на ниже , чем у эмиттера.

Устанавливая базовое напряжение PNP-транзистора на 0,7 В ниже, чем у эмиттера, вы «включаете транзистор» и позволяете току течь от эмиттера к коллектору.

Я знаю, что это может показаться немного запутанным, поэтому читайте дальше, чтобы узнать, как можно разработать схему с транзистором PNP.

Пример: схема транзистора PNP

Давайте посмотрим, как создать простую схему на транзисторе PNP. С помощью этой схемы вы можете использовать для включения светодиода, когда он темнеет.

Шаг 1. Излучатель

Прежде всего, чтобы включить PNP-транзистор, вам нужно, чтобы напряжение на базе было на меньше, чем на эмиттере, на . Для такой простой схемы обычно подключают эмиттер к плюсу источника питания.Таким образом, вы будете знать, какое напряжение у вас на эмиттере.

Шаг 2. Что вы хотите контролировать

Когда транзистор включается, ток может течь от эмиттера к коллектору. Итак, давайте подключим то, что мы хотим контролировать: светодиод. Поскольку к светодиоду всегда должен быть включен резистор, давайте добавим резистор.

Вы можете заменить светодиод и резистор на все, что хотите.

Шаг 3. Транзисторный вход

Для включения светодиода нужно включить транзистор, чтобы открылся канал от эмиттера к коллектору.Чтобы включить транзистор, вам нужно, чтобы напряжение на базе было на 0,7 В ниже, чем на эмиттере, что составляет 9 В — 0,7 В = 8,3 В.

Например, теперь вы можете включить светодиод, когда он темнеет, используя фоторезистор и стандартный резистор, настроенный как делитель напряжения.

Напряжение на базе не будет вести себя в точности так, как вам говорит формула делителя напряжения. Это связано с тем, что транзистор тоже влияет на напряжение.

Но в целом, когда номинал фоторезистора большой (нет света), напряжение будет близко к 8.3V и транзистор включен (что включает светодиод). Когда номинал фоторезистора низок (присутствует много света), напряжение будет близко к 9 В и отключит транзистор (который отключает светодиод).

Что контролирует базовое напряжение?

Вы можете спросить: «Как фоторезистор и резистор на базе волшебным образом создали правильное напряжение 8,3 В в темноте?»

Отчасти потому, что эмиттер и база составляют диод. И диод всегда пытается накапливать напряжение на своем диоде.Этот конкретный диод имеет диодное напряжение около 0,7 В. А 8,3 В на 0,7 В меньше 9 В.

Но это также отчасти потому, что размер фоторезистора и резистора на базе устанавливает напряжение в правильном диапазоне.

Проверьте мою схему

Вот видео схемы в действии:

В этом видео я использовал транзистор BC557 PNP. Это один из транзисторов, который Джеймс Льюис рекомендует в своей статье о 4 лучших транзисторах, которые следует держать в комплекте деталей.

Фоторезистор, который я использовал, имеет сопротивление около 10 кОм, когда он светлый, и 1 МОм, когда он темный. Резистор на базе транзистора представляет собой резистор 100 кОм. Светодиод является стандартным выходным светодиодом. И резистор, включенный последовательно со светодиодом, составляет 470 Ом.

Если у вас есть какие-либо вопросы или комментарии, дайте мне знать в поле для комментариев ниже!

Транзистор

PNP: как это работает? (Символ и принцип работы)

Что такое транзистор PNP

Транзистор PNP — это транзистор с биполярным переходом, созданный путем размещения полупроводника N-типа между двумя полупроводниками P-типа.Транзистор PNP имеет три вывода — коллектор (C), эмиттер (E) и базу (B). PNP-транзистор ведет себя как два диода с PN-переходом, соединенные спина к спине.

Эти встречные диоды с PN переходом известны как переход коллектор-база и переход база-эмиттер.

Что касается трех выводов транзистора PNP, эмиттер — это область, используемая для подачи носителей заряда в коллектор через базовую область. Область коллектора собирает больше всего носителей заряда, испускаемых эмиттером.Область Base запускает и контролирует количество тока, протекающего через эмиттер к коллектору.

Эквивалентная схема транзистора PNP показана на рисунке ниже.

Эквивалентная схема транзистора PNP

Обозначение и конструкция транзистора PNP

Конструкция транзистора PNP очень похожа на конструкцию транзистора NPN. В транзисторе NPN — один полупроводник P-типа, зажатый между двумя полупроводниками P-типа. А в транзисторе PNP — один полупроводник N-типа, зажатый между двумя полупроводниками P-типа.

Конструкция транзистора PNP показана на рисунке ниже. Принципиальная схема транзистора

PNP Конструкция транзистора PNP

В полупроводниках P-типа основными носителями заряда являются дырки. Следовательно, в транзисторе PNP образование тока происходит из-за движения дырок.

Средний уровень (уровень N-типа) называется базовым терминалом (B). Левый слой P-типа работает как вывод эмиттера (E), а правый слой P-типа работает как вывод коллектора (C).

Слои эмиттера и коллектора (P-типа) сильно легированы по сравнению с базовым слоем (N-типа). Следовательно, область истощения на обоих стыках больше проникает к базовому слою. Площадь слоя Emitter и Collector больше по сравнению с базовым слоем.

В полупроводниках N-типа доступно большое количество свободных электронов. Но ширина среднего слоя очень мала и он слегка легирован. Таким образом, в Базовой области присутствует значительно меньше свободных электронов.

Обозначение транзистора PNP показано на рисунке ниже. Стрелка показывает, что ток будет течь через эмиттер к коллектору.

Символ транзистора PNP

Как работает транзистор PNP

Положительный вывод источника напряжения (V EB ) соединен с эмиттером (P-типа), а отрицательный вывод соединен с базовым выводом (тип N ). Следовательно, переход эмиттер-база подключен с прямым смещением.

И положительный вывод источника напряжения (V CB ) соединен с выводом базы (тип N), а отрицательный вывод соединен с выводом коллектора (тип P).Следовательно, переход коллектор-база подключен с обратным смещением.

Работа транзистора PNP

Из-за этого типа смещения область истощения на переходе эмиттер-база является узкой, поскольку он подключен по прямому смещению. В то время как соединение коллектор-база имеет обратное смещение, и, следовательно, область истощения на соединении коллектор-база широкая.

Переход эмиттер-база в прямом смещении. Следовательно, очень большое количество дырок от эмиттера пересекает область истощения и попадает в Базу.Одновременно очень мало электронов входит в эмиттер из базы и рекомбинирует с дырками.

Потери дырок в эмиттере равны количеству электронов, присутствующих в базовом слое. Но количество электронов в базе очень мало, потому что это очень слаболегированная и тонкая область. Таким образом, почти все отверстия Emitter пересекают область истощения и входят в базовый слой.

Из-за движения отверстий ток будет течь через переход эмиттер-база.Этот ток известен как ток эмиттера (I E ). Отверстия являются основными носителями заряда для протекания тока эмиттера.

Оставшиеся дырки, которые не рекомбинируют с электронами в Базе, эти дырки будут дальше перемещаться к Коллектору. Ток коллектора (I C ) течет через область коллектор-основание из-за отверстий.

Схема транзистора PNP

Схема транзистора PNP показана на рисунке ниже.

Схема транзистора PNP

Если сравнить схему транзистора PNP с NPN транзистор, то здесь полярность и направление тока меняются местами.

Если транзистор PNP подключен к источникам напряжения, как показано на рисунке выше, базовый ток будет протекать через транзистор. Небольшая величина тока базы управляет прохождением большого количества тока через эмиттер к коллектору при условии, что напряжение базы более отрицательное, чем напряжение эмиттера.

Если напряжение базы не более отрицательно, чем напряжение эмиттера, ток не может протекать через устройство. Значит, необходимо подать на источник напряжения обратного смещения более 0.7 В.

Два резистора R L и R B включены в схему для ограничения максимальной величины тока через транзистор.

Если вы примените закон Кирхгофа (KCL), ток эмиттера является суммой тока базы и тока коллектора.

Транзисторный переключатель PNP

Обычно, когда переключатель выключен, ток не может течь и ведет себя как разомкнутая цепь. аналогично, когда переключатель находится в положении ON, ток будет течь по цепи и действовать как замкнутая цепь.

Транзистор представляет собой не что иное, как переключатель силовой электроники, который может работать как обычные переключатели. Теперь вопрос в том, как мы можем использовать транзистор PNP в качестве переключателя?

Как мы видели при работе транзистора PNP, если базовое напряжение не более отрицательное, чем напряжение эмиттера, ток не может протекать через устройство. Таким образом, базовое напряжение составляет минимум 0,7 В при обратном смещении для проведения транзистора.

Это означает, что если базовое напряжение равно нулю или меньше 0,7 В, ток не может течь, и он действует как разомкнутая цепь.

Транзистор PNP как открытый переключатель

Чтобы включить транзистор, базовое напряжение должно быть более 0,7 В. В этом состоянии транзистор действует как закрытый переключатель.

Транзистор PNP как замкнутый переключатель

PNP и транзистор NPN

Основные различия при сравнении транзисторов PNP и NPN суммированы в таблице ниже:

Транзистор PNP Транзистор NPN
Структура Имеет один полупроводник N-типа и два полупроводника P-типа. Он состоит из двух полупроводников N-типа и одного P-типа.
Направление тока Ток будет течь через эмиттер к коллектору. Ток будет течь через коллектор к эмиттеру.
Мажоритарный носитель заряда Отверстия Электрон
Носитель второстепенного заряда Электроны Отверстия
Время переключения Основание Соединение Easter Junction имеет обратное смещение, а переход коллектор-база находится в прямом смещении. Переход эмиттер-база в прямом смещении, а переход коллектор-база в обратном смещении.
Символ
Напряжение коллектор-эмиттер Отрицательное Положительное
Стрелка излучателя Направлен в 9019 Транзистор 900

Эта статья поможет вам понять, что такое транзисторы PNP, как они используются и почему они менее распространены, чем транзисторы NPN.

Связанная информация

Вы, наверное, хорошо знаете, что современная электротехника, а фактически и весь современный мир, неразрывно связаны с устройствами, известными как транзисторы. Эти компоненты работают как переключатели включения / выключения и как усилители. Хотя полевые транзисторы в настоящее время доминируют на сцене электроники, исходный транзистор был биполярным транзистором, и вскоре за этим устройством последовал первый биполярный транзистор с переходом , или BJT.

BJT бывают двух основных видов: NPN и PNP.Эти буквы относятся к расположению положительных и отрицательно легированных полупроводниковых слоев, как показано на следующей диаграмме:

Обратите внимание, что цветные диаграммы PNP и NPN являются упрощениями, которые не отражают фактическую физическую конфигурацию BJT с интегральной схемой.

NPN против PNP: почему транзисторы PNP имеют значение

По моему опыту, NPN-транзисторы проводят гораздо больше времени в центре внимания, чем PNP.На ум приходит несколько причин:

  • Поведение NPN-транзистора по напряжению и току (по крайней мере, на мой взгляд) значительно более интуитивно понятно.
  • Когда требуется переключатель или схема драйвера, NPN обеспечивают более простой интерфейс для цифровых выходных сигналов (таких как управляющий сигнал, генерируемый микроконтроллером).
  • NPN на самом деле лучше, чем PNP во многих отношениях. Это привело к особенно доминирующему положению NPN, потому что BJT должны конкурировать с MOSFET, и команде BJT легче выиграть, если она отправит NPN в матч.Автор этого документа Калифорнийского университета в Беркли, 2009 г., Ченмин Ху, заходит так далеко, что заявляет, что из-за этой ситуации, т. Е. Более высокой производительности NPN и общего предпочтения полевых МОП-транзисторов, BJT «почти исключительно относятся к типу NPN».

Таким образом, мы не можем отрицать, что PNP менее распространены и в целом менее желательны, но это не означает, что мы должны игнорировать их. В оставшейся части статьи мы обсудим характеристики и приложения PNP.

Носители заряда: электрон против дырки

Как показано выше, эмиттер и коллектор PNP-транзистора сформированы за счет легирования p-типа.Это означает, что большинство носителей заряда в PNP — дырки.

Этот факт может показаться несущественным для практической инженерии, поскольку нас действительно не волнует, какой тип носителя заряда используется, пока схема работает. Но оказывается, что мы не можем просто игнорировать проблему дырки и электрона, потому что дырки «медленнее», чем электроны. В частности, они обладают меньшей мобильностью.

Как показано на следующем графике, подвижность электронов всегда выше подвижности дырок, хотя концентрация легирования действительно влияет на разницу между ними.(Обратите внимание, что этот график предназначен специально для кремния.)

Как вы могли догадаться, более высокая подвижность электронов дает транзисторам NPN преимущество в скорости по сравнению с PNP. Указанный выше документ Калифорнийского университета в Беркли указывает на то, что более высокая мобильность также приводит к более высокой крутизне, а более высокая крутизна означает более высокий коэффициент усиления слабого сигнала. Но я не уверен в этом. Насколько я могу судить, мобильность оказывает существенное влияние только на крутизну MOSFET, но не на крутизну BJT.Если я ошибаюсь, дайте мне знать в комментариях.

NPN в сравнении с PNP Производство ИС

Есть еще одна причина, по которой PNP менее популярны, чем NPN, и она связана с тем, о чем многим инженерам-электрикам никогда не нужно беспокоиться: фактическим процессом производства интегральных схем. Я видел различные признаки того, что NPN проще и / или дешевле в производстве, чем PNP, хотя трудно найти подробную (и авторитетную) информацию по этой теме.

Я нашел одно веское объяснение, и оно относится конкретно к технологии BiCMOS. В моем старом учебнике Sedra and Smith («Микроэлектронные схемы») говорится, что «большинство процессов BiCMOS» не могут создавать оптимизированные транзисторы PNP. Разработчикам интегральных схем, которые работали с BiCMOS, по-видимому, пришлось довольствоваться неоптимизированными устройствами — или, может быть, «совершенно посредственно» было бы лучше их описать. В книге указано, что β было около 10, а характеристики на высоких частотах были менее чем впечатляющими; устройства BiCMOS NPN, напротив, имели β от 50 до 100 и могли использоваться с частотами вплоть до гигагерцового диапазона.

Реализация транзисторов PNP

Основная работа PNP такая же, как и у NPN, но полярности меняются, что иногда приводит к неудобным конфигурациям схемы.

  • Ток течет от эмиттера к базе; эмиттер должен быть на ~ 0,6 В выше базы для прямого смещения перехода база-эмиттер.
  • Ток выходит из коллектора, и напряжение коллектора ниже, чем напряжение эмиттера.
  • Конфигурация с общим эмиттером, которая интуитивно понятна и проста с NPN, становится немного странной с PNP, потому что «общий» эмиттер подключен не к земле, а к положительной шине питания.

Применения для схем транзисторов PNP

Моя цель здесь не состоит в том, чтобы перечислить все схемы, которые могут использовать транзистор PNP. На самом деле это было бы невозможно, поскольку PNP можно использовать бесчисленным количеством способов, хотя во многих случаях NPN может быть предпочтительнее. Вместо этого я собираюсь выделить несколько схем или приложений, которые я заметил как обычные места, где можно найти PNP-транзистор в действии.

  • Дополнительные конфигурации драйвера / усилителя, такие как выходные каскады класса B и класса AB.

  • Регуляторы с малым падением напряжения. Использование PNP вместо NPN в качестве проходного элемента дает стабилизатору значительно меньшее падение напряжения, но также увеличивает ток покоя (дополнительную информацию см. В этом примечании к приложению).
  • Драйверные приложения, в которых одна сторона нагрузки заземлена. Эмиттер PNP подключен к напряжению привода, а другая сторона нагрузки подключена к коллектору. Эта конфигурация называется переключателем верхнего плеча; эта ветка форума AAC дает вам пример и может включать некоторые полезные обсуждения.

Заключение

Мы изучили определяющие характеристики транзисторов PNP, а также выяснили, почему часто предпочтительнее использовать NPN. Не стесняйтесь оставлять комментарий, если у вас есть другой пример схемы или приложения, которое обычно использует PNP вместо NPN.

Что такое транзистор PNP? — Определение, символ, конструкция и работа

Определение: Транзистор, в котором один материал n-типа легирован двумя материалами p-типа, такого типа транзистор, известен как транзистор PNP.Это устройство, управляемое током. Небольшая величина базового тока контролировала как эмиттерный, так и коллекторный ток. Транзистор PNP имеет два кристаллических диода, соединенных спиной друг к другу. Левая сторона диода известна как диод эмиттер-база, а правая сторона диода известна как диод коллектор-база.

Отверстие является основным носителем транзисторов PNP, которые составляют в нем ток. Ток внутри транзистора формируется из-за изменения положения отверстий, а в выводах транзистора — из-за потока электронов.Транзистор PNP включается, когда через базу протекает небольшой ток. Направление тока в транзисторе PNP — от эмиттера к коллектору.

Буква PNP-транзистора указывает напряжение, требуемое для эмиттера, коллектора и базы транзистора. База PNP-транзистора всегда была отрицательной по отношению к эмиттеру и коллектору. В транзисторе PNP электроны снимаются с клеммы базы. Ток, который входит в базу, усиливается на концах коллектора.

Обозначение транзистора PNP

Обозначение транзистора PNP показано на рисунке ниже. Стрелка внутрь показывает, что направление тока в транзисторе PNP — от эмиттера к коллектору.

Конструкция транзистора PNP

Конструкция транзистора PNP показана на рисунке ниже. Переход эмиттер-база подключен с прямым смещением, а переход коллектор-база подключен с обратным смещением. Эмиттер, который подключен в прямом смещении, притягивает электроны к батарее и, следовательно, составляет ток, протекающий от эмиттера к коллектору.

База транзистора всегда находится в положительном положении по отношению к коллектору, так что отверстие от коллекторного перехода не может войти в базу. И база-эмиттер удерживается впереди, благодаря чему отверстия из области эмиттера входят в базу, а затем в область коллектора, пересекая область истощения.

Работа транзистора PNP

Переход эмиттер-база соединен с прямым смещением, из-за чего эмиттер проталкивает отверстия в области базы.Эти отверстия составляют эмиттерный ток. Когда эти электроны перемещаются в полупроводниковый материал или основу N-типа, они объединяются с электронами. База транзистора тонкая и очень слабо легированная. Следовательно, только несколько дырок в сочетании с электронами, а остальные перемещаются к слою объемного заряда коллектора. Отсюда развивается базовый ток.

База коллектора подключена с обратным смещением. Отверстия, которые собираются вокруг обедненной области под воздействием отрицательной полярности, собираются или притягиваются коллектором.Это развивает ток коллектора. Полный ток эмиттера протекает через ток коллектора I C .

В чем разница между PNP и NPN?

Существует два основных типа транзисторов: транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET). БЮТ изготавливаются из легированных материалов и могут иметь конфигурацию NPN и PNP. Транзистор — это активное устройство с тремя выводами, и эти три вывода известны как эмиттер (E), база (B) и коллектор (C) ( рис.1 ). База отвечает за управление транзистором, в то время как коллектор является положительным выводом, а эмиттер — отрицательным выводом.

% {[data-embed-type = «image» data-embed-id = «5df275f3f6d5f267ee212b71» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = »Сайты электронного дизайна Electronicdesign com Загрузка файлов 2017 03 0417 Pn Pvs Npn F1 «data-embed-src =» https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2017/04/electronicdesign_com_sites_electronicdesign.com_files_uploads_2017_03_0417_PNPvsNPN_F1.png? auto = format & fit = max & w = 1440 «data-embed-caption =» «]}%

  1. Символ транзистора обозначает три клеммы. (Предоставлено Quora)

Физика полупроводников БЯТ здесь не обсуждается, но стоит упомянуть, что БЯТ изготавливается с тремя отдельно легированными областями с двумя переходами. Транзистор PNP имеет одну область N между двумя областями P ( рис.2, ), а транзистор NPN имеет одну область P между двумя областями N ( рис.3 ). Переходы между областями N и P аналогичны переходам в диодах, и они также могут быть смещенными в прямом или обратном направлении. БЮТ могут работать в разных режимах в зависимости от смещения перехода:

% {[data-embed-type = «image» data-embed-id = «5df275f3f6d5f267ee212b73» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Сайты электронного дизайна Electronicdesign com Загрузка файлов 2017 03 0417 Pn Pvs Npn F2 «data-embed-src =» https: //img.electronicdesign.com / files / base / ebm / electronicdesign / image / 2017/04 / electronicdesign_com_sites_electronicdesign.com_files_uploads_2017_03_0417_PNPvsNPN_F2.png? auto = format & fit = max & w = 1440 «data-embed-caption =» «]}%

2. PNP-транзистор имеет слой полупроводника с примесью азота между двумя слоями материала с примесью фосфора (любезно предоставлено Wikibooks)

% {[data-embed-type = «image» data-embed-id = «5df275f3f6d5f267ee212b75» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = »Сайты электронного дизайна Electronicdesign com Загрузка файлов 2017 03 0417 Pn Pvs Npn F3 «data-embed-src =» https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2017/04/electronicdesign_com_sites_electronicdesign.com_files_uploads_2017_03_0417_PNPvsNPN_F3.png?auto=format&fit=max&w=1440} «data-embed000»

3. NPN-транзистор имеет слой полупроводника с примесью фосфора между двумя слоями с примесью азота (любезно предоставлено Wikibooks)

  • Отсечка: BJT работает в этой зоне при коммутационных операциях. В отсечке транзистор неактивен.
  • Активный: BJT работает в этой зоне для схем усилителя, потому что транзистор может действовать как довольно линейный усилитель.
  • Насыщенность: BJT работает в этой зоне при переключениях. Транзистор выглядит как короткое замыкание между выводами коллектора и эмиттера.
  • Reverse Active: Как и в активном режиме, ток пропорционален базовому току, но течет в обратном направлении. Этот режим используется редко.

В транзисторе NPN положительное напряжение подается на вывод коллектора для создания тока, протекающего от коллектора к эмиттеру. В транзисторе PNP на вывод эмиттера подается положительное напряжение для создания тока, протекающего от эмиттера к коллектору.В транзисторе NPN ток течет от коллектора (C) к эмиттеру (E) (, рис. 4, ). Однако в транзисторе PNP ток течет от эмиттера к коллектору ( рис. 5, ).

% {[data-embed-type = «image» data-embed-id = «5df275f3f6d5f267ee212b77» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Сайты электронного дизайна Electronicdesign com Загрузка файлов 2017 03 0417 Pn Pvs Npn F4 «data-embed-src =» https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2017/04/electronicdesign_com_sites_electronicdesign.com_files_uploads_2017_03_0417_PNPvsNPN_F4.png? auto = format & fit = max & w = 1440 «data-embed-caption =» «]}%

4. Стрелка показывает направление тока и то, как он всегда находится на эмиттере.

% {[data-embed-type = «image» data-embed-id = «5df275f3f6d5f267ee212b79» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Electronicdesign Com Сайты Electronicdesign com Файлы Загрузки 2017 03 0417 Pn Pvs Npn F5 «data-embed-src =» https: //img.electronicdesign.com / files / base / ebm / electronicdesign / image / 2017/04 / electronicdesign_com_sites_electronicdesign.com_files_uploads_2017_03_0417_PNPvsNPN_F5.png? auto = format & fit = max & w = 1440 «data-embed-caption =» «]}% 9

5. На NPN-транзисторе всегда указывается стрелка.

Понятно, что направления тока и полярности напряжения в PNP и NPN всегда противоположны друг другу. Для транзисторов NPN требуется источник питания с положительной полярностью по отношению к общим клеммам, но для транзисторов PNP требуется источник питания с отрицательной полярностью.

PNP и NPN работают примерно одинаково, но их режимы различаются из-за полярности тока. Например, чтобы перевести NPN в режим насыщения, VB должен быть выше, чем VC и VE. Вот краткое описание режимов работы в зависимости от их напряжения:

% {[data-embed-type = «image» data-embed-id = «5df275f3f6d5f267ee212b7b» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Сайты электронного дизайна Electronicdesign com Загрузка файлов 2017 03 0417 Np Nvs Pnp Table1 «data-embed-src =» https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2017/04/electronicdesign_com_sites_electronicdesign.com_files_uploads_2017_03_0417_NPNvsPNP_Table1.png?auto=format&fit=max&w=1440} «data -000»

Вот список некоторых классических универсальных BJT:

% {[data-embed-type = «image» data-embed-id = «5df275f3f6d5f267ee212b7d» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Сайты электронного дизайна Electronicdesign com Загрузка файлов 2017 03 0417 Np Nvs Pnp Table2 «data-embed-src =» https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2017/04/electronicdesign_com_sites_electronicdesign.com_files_uploads_2017_03_0417_NPNvsPNP_Table2.png?auto=format&fit=max&w=1440} «data -000»

Основной принцип любого BJT — управлять током третьей клеммы с помощью напряжения между двумя другими клеммами. Принцип работы NPN и PNP абсолютно одинаков. Единственная разница заключается в их смещении и полярности питания для каждого типа.

% {[data-embed-type = «image» data-embed-id = «5df275f3f6d5f267ee212b7f» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Сайты электронного дизайна Electronicdesign com Загрузка файлов 2017 г. 03 Источник Esb Lookin For Parts Banner 0 «data-embed-src =» https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2017/04/electronicdesign_com_sites_electronicdesign.com_files_uploads_2017_electronicdesign.com_files_uploads_2017_Response_Look_Sook_Support_03_Art_Part ? auto = format & fit = max & w = 1440 «data-embed-caption =» «]}%

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *