Site Loader

Содержание

Не очень удачное USB зарядное устройство (блок питания). . Обзоры электроники.

Написать про это зарядное устройство хотел давно, но все не доходили руки, хотя даже у него есть на что посмотреть.
Получил я его от одного довольно известного магазина, который после моего отчета изъял его из продажи и на мой взгляд сделал правильно. Собственно потому я и не даю ссылку на товар. Возможно он вам попадется в других магазинах, потому считаю, что данный обзор все равно будет полезен.

Получил я данное зарядное устройство (хотя конечно корректнее — блок питания) в обычном пакете с защелкой, никаких блистеров и коробок.

Размер не назвал бы совсем маленьким, мне попадались куда более габаритные варианты при не слишком меньшем заявленном токе.

Заявлен выходной ток в 3000мА, что довольно неплохо для большинства применений, например можно заряжать планшет + смартфон.
Зарядное имеет два выходных порта, промаркированных как iPad и Galaxy, ну или как устройства от Эппл и Самсунг.


Сверху расположен светодиод индикации работы, светит всегда независимо от режима работы.

Но так как снаружи для меня обычно нет ничего интересного, то я конечно же решил его вскрыть. Делается это относительно просто, выковыриваем небольшую щелку между половинками корпуса, а затем при помощи отвертки разделяем половинки. БП заклеен, но открылся довольно легко.

На первый взгляд довольно аккуратно, по крайней мере не вызвало нехороших чувств.

Плата изготовлена аккуратно, правда светодиод лежит прямо на разъемах USB, но в качестве защиты на них наклеили изолирующую пленку.

Плата спаяна также вполне нормально, есть небольшие грехи, но в целом на твердую четверку. Минус один балл снял за местами грубоватую пайку и отсутствие защитных разрезов в текстолите.

Вот что меня немного удивило и даже заставило сделать отдельный снимок, так это то, что провода к плате имеют силиконовую изоляцию и без проблем держат температуру жала паяльника. А кроме того они весьма гибкие, купить бы такого провода себе отдельно от блока питания.

Рассмотрим плату более детально.
1. Входных конденсаторов два, соединены параллельно, суммарная емкость около 10мкФ, для 15 Ватт мало. Входной фильтр отсутствует, зато есть предохранитель 🙂
2. Микросхема в DIP корпусе. Даташит на нее я не искал, но помню что где то уже попадалась и даже соответствовала мощности блока питания. Зато увидел весьма диодный мост в весьма оригинальном исполнении, до этого такие как-то не попадались.

3. Трансформатор не очень большой, заявленные 15 Ватт для него действительно максимальны, запаса нет 🙁
4. Но при всем этом межобмоточный конденсатор стоит правильного типа, кроме того есть обратная связь через оптрон, иногда даже на этом экономят.
5. Выходных диодов два, включены параллельно, емкость выходного конденсатора всего 1000мкФ, для тока в 3 Ампера этого маловато. Кроме того отсутствует выходной фильтр.
6. А вот обратная связь реализована не очень хорошо, явно видна экономия. Вместо нормальной схемы с TL431 применили просто стабилитрон.

Кстати, входной конденсатор разделен на два более мелких не зря, между ними спрятался небольшой дроссель для уменьшения помех.

Микросхема имеет внешний шунт для измерения тока, что говорит о как минимум наличии защиты от короткого замыкания выхода, и защита действительно работает.
Около выходных разъемов установлены делители напряжения. Они используются для того, чтобы заряжаемое устройство знало, какой ток оно может взять от зарядного устройства.

На всякий случай, да и просто для общей информации, начертил принципиальную схему данного блока питания. Ничего нового, что отличало бы данный блок питания от других я не увидел, ну разве что уже давно не попадались блоки питания со стабилитроном вместо специальной микросхемы для стабилизации выходного напряжения.

Проверка по большому счету более чем стандартна для моих обзоров. В ходе теста были использованы:
Электронная нагрузка
Осциллограф
Мультиметр
Термометр
Бумажка и ручка.

1. Первый тест без нагрузки, выходное напряжение немного завышено, норма до 5.25 Вольта. Хотя такое встречается довольно часто.
2. Второй тест — ток нагрузки 1 Ампер, уровень пульсаций заметно вырос, выходное напряжение вполне в норме.

1. Ток нагрузки 2 Ампера. уровень пульсаций около 0.7 Вольта, это очень много. Осциллограф даже пришлось переключить на режим 0.2В на клетку, а не 0.1, как это было в предыдущем тесте.

2. Ток нагрузки 2.5 Ампера, уровень пульсаций как в предыдущем тесте, выходное напряжение в норме.

Дальше было в планах выставить 3 Ампера, но температура выходных диодов перевалила за 100 градусов и я остановил тест.
На основании теста была составлена табличка. Интервал между тестовыми измерениями составлял 20 минут, весь тест занял 1 час.
Как можно видеть из таблицы, температура выходных диодов и конденсатора достигла довольно высоких значений, эксплуатировать долго в таком режиме не рекомендуется, потому тест был остановлен.

Иногда спрашивают, а от чего вообще выходят из строя блоки питания. Ниже фото двух блоков питания 5 Вольт 2 Ампера. Они вышли из строя с интервалом примерно в пол часа. Средний от планшета Текласт, до этого нормально работал несколько месяцев, а потом внезапно выгорел с небольшими спецэффектами, планшет в это время заряжался и был включен. Но так как планшет был нужен, достал с полки еще одно зарядное устройство, которое также без проблем прошло тесты и работало нормально (справа), через пол часа ситуация повторилась, пришлось заряжать планшет от лабораторного блока питания.

Очень часто блоки питания выходят из строя из-за:
1. Перегрев силового трансформатора, падает магнитная проницаемость сердечника выше критической температуры.
2. Некорректная работа самого ШИМ контроллера, особенно в режиме перегрузки или КЗ.

3. Падение емкости конденсаторов в следствии старения.

Данный блок питания трудится уже более полугода, но пришлось его немного доработать. К ШИМ контроллеру припаял металлическую пластинку, выполняющую роль радиатора, а внизу и вверху корпуса насверлил вентиляционных отверстий. В таком варианте проблем нет, хотя я думаю, что если использовать при токах до 2 Ампер, то работать будет и без доработки.

В общем что можно сказать про данное устройство. ТАкое чувство, что разогнались сделать хорошо, но потому вдруг закончились деньги и решили сделать дешево. Т.е. местами сделано нормально, но видны явные следы экономии. Да и заявленный ток в 3 Ампера несколько оптимистичен, я бы не стал рисковать и нагружал максимум на 2 Ампера.

На этом все, вот такой вышел небольшой, но грустный обзор.

Простое зарядное устройство для сотового телефона.

 

Простое зарядное устройство для сотового телефона.

В данной статье мы рассмотрим 2 варианта схемы зарядного устройства для сотового телефона.

 

Внешний вид устройства:

 

Спецификация:

Описание

Обозначение

Мин.

Норма

Макс.

Ед. изм.

Входные параметры

Напряжение

Частота

Потребление на Х.Х.

 

Vin

fline

 

 

85

47

 

 

 

50/60

 

 

265

64

0.5

 

VAC

Hz

W

Выходные параметры

Выходное напряжение 1

Выходная пульсация 1

Выходной ток 1

Выходная мощность (RMS)

 

Vout1

Vripple1

Iout1

Pout

 

4.75

 

534

 

 

5.0

60

600

3.0

 

5.75

 

666

 

 

V

mV

mA

W

КПД

n

59

%

ЭМИ

Безопасность

Соответствуют: CISPR22B/EN55022B, IEC950, UL1950 класс II

Диапазон рабочих температур

Tamb

0

50

C

 

Преимущества этой конструкции:

— Низкая стоимость CV/CC зарядного устройства.

— Потребление на холостом ходу меньше чем 300mW.

— Соответствует требованиям СЕС по КПД и потреблении на холостом ходу.

 

 

Схемы

1) Схема зарядного устройства с RCD цепочкой гашения выброса.

 

2) Схема зарядного устройства с диодом Зенера в цепочке гашения выброса и вспомогательной обмоткой.

 

Вариант разводки печатной платы.

 

 

Перечень элементов:

N

Кол-во

Номинал

Описание

Обозначение

1

2

4.7 uF

4.7 uF, 400 V, Electrolytic, (8 x 11.5)

C1 C2

2

1

2.2 nF

2.2 nF, 1 kV, Disc Ceramic

C3

3

1

100 nF

100 nF, 50 V, Ceramic, X7R, 0805

C5

4

1

330 uF

330 uF, 10 V, Electrolytic, Low ESR, 180 mOhm

C6

5

1

2.2 nF

2.2 nF, 50 V, Ceramic, X7R, 0805

C9

6

4

1N4005

600 V, 1 A, Rectifier, DO-41

D1 D2 D3 D4

7

1

1N4007G

1000 V, 1 A, Rectifier, Glass Passivated, 2 us, DO-41

D5

8

1

SS14

40 V, 1 A, Schottky, DO-214AC

D7

9

1

1 mH

1 mH, 0.15 A, Ferrite Core

L1

10

1

MMST3906

PNP, Small Signal BJT, 40 V, 0.2 A, SOT-323

Q1

11

2

100 k

100 k, 5%, 1/4 W, Metal Film, 1206

R1 R2

12

1

200

200 R, 5%, 1/8 W, Metal Film, 0805

R3

13

1

68

68 R, 5%, 1/8 W, Metal Film, 0805

R4

14

1

1.2 k

1.0k 5%, 1/8 W, Metal Film, 0805

R6

15

1

820

820 R, 5%, 1/8 W, Metal Film, 0805

R8

16

1

1.7

1.7 R, 5%, 1 W, Metal Oxide

R9

17

1

8.2

8.2 R, 2.5 W, Fusible/Flame Proof Wire Wound

RF1

18

1

4.7

4.7 R, 5% Metal film 0805

R10

19

1

51 k

51 k, 5% Metal film 0805

R11

20

1

EE16

Bobbin, EE16 Horizontal, 10 Pins

T1

21

1

LNK363P

PI’s device

U1

22

1

PC817D

Opto coupler, 35 V, CTR 300-600%, 4-DIP

U2

23

1

BZX79-B5V1

5.1 V, 500 mW, 2%, DO-35

VR1

 

 

Спецификация на трансформатор:

1) Электрическия схема.

 

2) Электрическая спецификация:

Электрическая прочность 60Hz 1 минута, с пинов 1-5 на пины 6-10 3000 VAC
Индуктивность первичной обмотки (пин 3 — пин 5) Все обмотки разомкнуты 1940uH +/- 5% (132kHz)

Резонансная частота (пин 3 — пин 5)

Все обмотки разомкнуты 700 kHz (min)
Индукция рассеяния первичной обмотки Пины 9-8 закорочены 110 uH (max)

 

3) Схема построения

 

 

Рабочие характеристики:

Все измерения проводились при комнатной температуре, при частоте питающей сети 60 Hz. Точка, на которой проводились измерения находилась на конце выходного кабеля длиной 6 футов. Сопротивление кабеля по постоянному току равно 0,2 Ом.

 

1) Зависимость КПД от величины нагрузки.

Примечание: по требованиям СЕС минимальный КПД должен составлять 58,9%. При этом замеры показали:

  • При Uin=115VAC КПДср=62,4%
  • При Uin=230VAC КПДcp=61,2%

а) RCD цепочка гашения выброса. Без подключения дополнительной обмотки трансформатора.

б) Цепочка гашения выброса (диод Зенера), с подключением дополнительной обмотки трансформатора.

2) Зависимость КПД от уровня входного напряжения.

а) RCD цепочка гашения выброса. Без подключения дополнительной обмотки трансформатора.

,

б) Цепочка гашения выброса (диод Зенера), с подключением дополнительной обмотки трансформатора.

3) Потребление источника питания на холостом ходу:

а) RCD цепочка гашения выброса. Без подключения дополнительной обмотки трансформатора.

б) Цепочка гашения выброса (диод Зенера), с подключением дополнительной обмотки трансформатора.

4) Нагрузочная характеристика.

5) Тепловые измерения.

Измерения проводились внутри закрытого короба при полной нагрузке без внешней воздушной конвекции.

Результаты сведены в таблицу:

а) RCD цепочка гашения выброса. Без подключения дополнительной обмотки трансформатора.

85 VAC

265 VAC

Температура окр. среды

50С

50С

LNK363P

108C при Pout=2,82W (5.22V/540mA)

103C при Pout=2,84W (5.23V/542mA)

б) Цепочка гашения выброса (диод Зенера), с подключением дополнительной обмотки тран

85 VAC

265 VAC

Температура окр. среды

50С

50С

LNK363P

96C при Pout=2,82W (5.22V/544mA)

89C при Pout=2,82W (5.22V/544mA)

Более подробную информацию вы сможете получить, ознакомившись с оригиналом документа.

Автор документа: Департамент по применению компании Power Integrations.

Перевел и скорректировал:

Бандура Геннадий.

Инженер по применению микросхем Power Integrations

компании Макро-Петербург.

Bandura (at) macrogroup.ru

Как работает схема китайская зарядка. Как переделать зарядное от сотового телефона на другое напряжение. Лучшие автомобильные зарядки с Алиэкспресс

Представляю очередное устройство из серии «Не Брать!»
В комплект прилагается простенький кабель microUSB, который буду тестировать отдельно с кучей других шнурков.
Заказал эту зарядку ради любопытства, зная, что в таком компактном корпусе крайне сложно сделать надёжное и безопасное устройство сетевого питания 5В 1А. Реальность оказалась суровой…

Пришло в стандартном пакетике с пупыркой.
Корпус глянцевый, обёрнут защитной плёнкой.
Габаритные размеры с вилкой 65х34х14мм


Зарядка сразу оказалась нерабочей — хорошее начало…
Пришлось в начале устройство разбирать и ремонтировать, чтобы иметь возможность тестировать.
Разбирается очень просто — на защёлках самой вилки.
Дефект обнаружился сразу — отвалился один из проводков к вилке, пайка оказалась некачественной.


Вторая пайка не лучше


Сам монтаж платы выполнен нормально (для китайцев), пайка хорошая, плата отмыта.


Реальная схема устройства


Какие проблемы были обнаружены:
— Довольно слабое крепление вилки с корпусом. Не исключена возможность остаться ей оторванной в розетке.
— Отсутствие предохранителя по входу. Видимо те самые проводочки к вилке и являются защитой.
— Однополупериодный входной выпрямитель — неоправданная экономия на диодах.
— Малая ёмкость входного конденсатора (2,2мкФ/400В). Для работы однополупериодного выпрямителя ёмкость явно недостаточна, что приведёт к повышенным пульсациям напряжения на нём на частоте 50Гц и к уменьшению срока его службы.
— Отсутствие фильтров по входу и выходу. Невелика потеря для такого маленького и маломощного устройства.
— Простейшая схема преобразователя на одном слабеньком транзисторе MJE13001.
— Простой керамический конденсатор 1нФ/1кВ в помехоподавляющей цепи (показал отдельно на фото). Это грубое нарушение безопасности устройства. Конденсатор должен быть класса не менее Y2.
— Отсутствует демпферная цепь гашения выбросов обратного хода первичной обмотки трансформатора. Этот импульс частенько пробивает силовой ключевой элемент при его нагреве.
— Отсутствие защит от перегрева, от перегрузки, от короткого замыкания, от повышения выходного напряжения.
— Габаритная мощность трансформатора явно не тянет на 5Вт, а его очень миниатюрный размер ставит под сомнение наличие нормальной изоляции между обмотками.

Теперь тестирование.
Т.к. устройство изначально не является безопасным, подключение производил через дополнительный сетевой предохранитель. Если уж что случится — хотя-бы не обожжёт и не оставит без света.
Проверял без корпуса, чтобы можно было контролировать температуру элементов.
Выходное нгапряжение без нагрузки 5,25В
Потребляемая мощность без нагркзки менее 0,1Вт
Под нагрузкой 0,3А и менее зарядка работает вполне адекватно, напряжение держит нормально 5,25В, пульсации на выходе незначительные, ключевой транзистор греется в пределах нормы.
Под нагрузкой 0.4А напряжение начинает немного гулять в диапазоне 5,18В — 5,29В, пульсации на выходе 50Гц 75мВ, ключевой транзистор греется в пределах нормы.
Под нагрузкой 0,45А напряжение начинает заметно гулять в диапазоне 5,08В — 5,29В, пульсации на выходе 50Гц 85мВ, ключевой транзистор начинает потихоньку перегреваться (обжигает палец), трансформатор тёпленький.
Под нагрузкой 0,50А напряжение начинает сильно гулять в диапазоне 4,65В — 5,25В, пульсации на выходе 50Гц 200мВ, ключевой транзистор перегрет, трансформатор также довольно сильно нагрет.
Под нагрузкой 0,55А напряжение дико прыгает в диапазоне 4,20В — 5,20В, пульсации на выходе 50Гц 420мВ, ключевой транзистор перегрет, трансформатор также довольно сильно нагрет.
При ещё большем увеличении нагрузки, напряжение резко проседает до неприличных величин.

Выходит, данная зарядка реально может выдавать максимум 0,45А вместо заявленных 1А.

Далее, зарядка была собрана в корпус (вместе с предохранителем) и оставлена в работе на пару часов.
Как ни странно, зарядка не вышла из строя. Но это вовсе не означает, что она является надёжной — имея такую схемотехнику долго ей не протянуть…
В режиме короткого замыкания зарядка тихо умерла через 20 секунд после включения — произошёл обрыв ключевого транзистора Q1, резистора R2 и оптрона U1. Даже дополнительно установленный предохранитель не успел сгореть.

Для сравнения, покажу как выглядит внутри простейшая китайская зарядка 5В 2А от планшета, изготовленная с соблюдением минимально-допустимых норм безопасности.

Пользуясь случаем, сообщаю, что драйвер светильника из предыдущего обзора был успешно доработан, статья дополнена.

Количество мобильных средств связи, находящихся в активном пользовании, постоянно растет. К каждому из них идет зарядное устройство, поставляемое в комплекте. Однако далеко не все изделия выдерживают сроки, установленные производителями. Основные причины заключаются в низком качестве электрических сетей и самих устройств. Они часто ломаются и не всегда возможно быстро приобрести замену. В таких случаях требуется схема зарядного устройства для телефона, используя которую вполне возможно отремонтировать неисправный прибор или изготовить новый своими руками.

Основные неисправности зарядных устройств

Зарядное устройство считается наиболее слабым звеном, которым укомплектованы мобильные телефоны. Они часто выходят из строя из-за некачественных деталей, нестабильного сетевого напряжения или в результате обычных механических повреждений.

Наиболее простым и оптимальным вариантом считается приобретение нового прибора. Несмотря на различие производителей, общие схемы очень похожи друг на друга. По своей сути, это стандартный блокинг-генератор, выпрямляющий ток с помощью трансформатора. Зарядники могут отличаться конфигурацией разъема, у них могут быть разные схемы входных сетевых выпрямителей, выполненные в мостовом или однополупериодном варианте. Существуют различия в мелочах, не имеющих решающего значения.

Как показывает практика, основными неисправностями ЗУ являются следующие:

  • Пробой конденсатора, установленного за сетевым выпрямителем. В результате пробоя повреждается не только сам выпрямитель, но и постоянный резистор с низким сопротивлением, который просто сгорает. В подобных ситуациях резистор практически выполняет функции предохранителя.
  • Выход из строя транзистора. Как правило, многие схемы используют высоковольтные элементы повышенной мощности с маркировкой 13001 или 13003. Для ремонта можно воспользоваться изделием КТ940А отечественного производства.
  • Не запускается генерация из-за пробоя конденсатора. Выходное напряжение становится нестабильным, когда поврежденным оказывается стабилитрон.

Практически все корпуса зарядных устройств являются неразборными. Поэтому во многих случаях ремонт становится нецелесообразным и неэффективным. Гораздо проще воспользоваться готовым источником постоянного тока, подключив его к нужному кабелю и дополнив недостающими элементами.

Простая электронная схема

Основой многих современных зарядных устройств служат наиболее простые импульсные схемы блокинг-генераторов, содержащие всего лишь один высоковольтный транзистор. Они отличаются компактными размерами и способны выдавать требуемую мощность. Эти устройства совершенно безопасны в эксплуатации, поскольку любая неисправность ведет к полному отсутствию напряжения на выходе. Таким образом, исключается попадание в нагрузку высокого нестабилизированного напряжения.

Выпрямление переменного напряжения сети осуществляется диодом VD1. Некоторые схемы включают в себя целый диодный мост из 4-х элементов. Ограничение импульса тока в момент включения производится резистором R1, мощностью 0,25 Вт. В случае перегрузки он просто сгорает, предохраняя всю схему от выхода из строя.

Для сборки преобразователя используется обычная обратноходовая схема на основе транзистора VT1. Более стабильная работа обеспечивается резистором R2, запускающим генерацию в момент подачи питания. Дополнительная поддержка генерации происходит за счет конденсатора С1. Резистор R3 ограничивает базовый ток во время перегрузок и перепадов в сети.

Схема повышенной надежности

В данном случае входное напряжение выпрямляется за счет использования диодного моста VD1, конденсатора С1 и резистора, мощностью не ниже 0,5 Вт. В противном случае во время зарядки конденсатора при включении устройства, он может сгореть.

Конденсатор С1 должен обладать емкостью в микрофарадах, равной показателю мощности всего зарядника в ваттах. Основная схема преобразователя такая же, как и в предыдущем варианте, с транзистором VT1. Для ограничения тока используется эмиттер с датчиком тока на основе резистора R4, диода VD3 и транзистора VT2.

Данная схема зарядного устройства телефона ненамного сложнее предыдущей, но значительно эффективнее. Преобразователь может стабильно работать без каких-либо ограничений, несмотря на короткие замыкания и нагрузки. Транзистор VT1 защищен от выбросов ЭДС самоиндукции специальной цепочкой, состоящей из элементов VD4, C5, R6.

Необходимо ставить только высокочастотный диод, иначе схема вообще не будет работать. Данная цепочка может устанавливаться в любых аналогичных схемах. За счет нее корпус ключевого транзистора нагревается гораздо меньше, а срок службы всего преобразователя существенно увеличивается.

Выходное напряжение стабилизируется специальным элементом — стабилитроном DA1, установленным на выходе зарядки. Для задействован оптрон V01.

Ремонт зарядника своими руками

Обладая некоторыми знаниями электротехники и практическими навыками работы с инструментом, можно попытаться отремонтировать зарядное устройство для сотовых телефонов собственными силами.

В первую очередь нужно вскрыть корпус зарядника. Если он разборный, потребуется соответствующая отвертка. При неразборном варианте придется действовать острыми предметами, разделяя зарядку по линии стыка половинок. Как правило, неразборная конструкция свидетельствует о низком качестве зарядников.

После разборки осуществляется визуальный осмотр платы с целью обнаружения дефектов. Чаще всего неисправные места отмечены следами от сгорания резисторов, а сама плата в этих точках будет более темной. На механические повреждения указывают трещины на корпусе и даже на самой плате, а также отогнутые контакты. Вполне достаточно загнуть их на свое место в сторону платы, чтобы возобновить поступление сетевого напряжения.

Нередко шнур на выходе устройства оказывается оборванным. Разрывы возникают чаще всего возле основания или непосредственно у штекера. Дефект выявляется путем и замеров сопротивления.

Если видимые повреждения отсутствуют, транзистор выпаивается и прозванивается. Вместо неисправного элемента подойдут детали от сгоревших энергосберегающих ламп. Все остальные делали — резисторы, диоды и конденсаторы — проверяются таким же образом и при необходимости меняются на исправные.


Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1) по схеме блокинг-генератора.

В отличие от более простых схем на понижающем 50 Гц трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны — если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности «импульсника» (кроме выхода из строя оптрона обратной связи — но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.

Рис. 1
Простая импульсная схема блокинг-генератора


Подробнейшее описание принципа действия (с картинками) и расчета элементов схемы высоковольтного импульсного преобразователя (трансформатор, конденсаторы и пр.) можно прочитать, например, в «ТЕА152х Efficient Low Power Voltage supply» по ссылке http://www. nxp.com/acrobat/applicationnotes/AN00055.pdf (на английском).

Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых четыре диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт — тогда при перегрузке он сгорит, выполнив функцию предохранителя.

Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильней. Генерации поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке частота генерации зависит от его емкости и параметров трансформатора. При отпирании транзистора напряжение на нижних по схеме выводах обмоток / и II отрицательное, на верхних — положительное, положительная полуволна через конденсатор С1 еще сильней открывает транзистор, амплитуда напряжения в обмотках возрастает… То есть транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильней уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.

В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ — поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора — то есть он может сгореть от перенапряжения. Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II — генератор просто не запустится, так как конденсатор С1 будет наоборот, срывать генерацию и стабилизировать схему).

Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока — выходное напряжение гуляет в пределах 15…25% в зависимости от тока нагрузки и качества стабилитрона VD3.
Схема более качественного (и более сложного) преобразователя показана на рис. 2

Рис. 2
Электрическая схема более сложного
преобразователя


Для выпрямления входного напряжения используется диодный мостик VD1 и конденсатор, резистор должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1 в микрофарадах должна равняться мощности устройства в ваттах.

Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 — как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении — 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.

Для защиты транзистора VT1 от выбросов ЭДС самоиндукции, в схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным — идеально BYV26C, чуть хуже — UF4004-UF4007 или 1 N4936, 1 N4937. Если нет таких диодов, цепочку вообще лучше не ставить!

Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250…350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1 — она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.

Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном V01. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона V01)’, для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10…20%, также, благодаря конденсатору С1, на выходе преобразователя практически отсутствует фон 50 Гц.

Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому — для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II — 30 витков тем же проводом, обмотка III — 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник — стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае, можно использовать кольцо внешним диаметром примерно 20 мм.

Короче заебала меня родная зарядка к телефону нокиа с отэм, сука, милипиздрическим разъемом:

Вечно отходит, вываливается. Говно короче.

Благо у телефона есть, уже ставший стандартом, разъем микроЮСБ. Ну у моего, по крайней мере, есть. Да, и за нокию не пинать, телефон у меня для связи. Для развлечений планшет. (типа выебнулся). Так вот через этот разъем телефон отлично заряжается, если есть зарядка.

А тут еще на днях принесли очередную, отжившую свой короткий век, «оригинальную» китайскую зарядку нокиа. Мне их сносят время от времени сотрудники. Не знаю нахуя, я их не чиню никому, ну окромя этого случая, и то поскольку для себя Видать из за паяльника на столе и особой репутации в нашей конторе. Ну не суть. Была она с именно вот тем правильным микроЮСБ разъемом:

Сразу скажу самое простое было бы перепаять шнурок к родной зарядке, но я не искал простых путей. Ибо приобретенный опыт, хоть и мал, но весьма полезен. Кстати еще можно купить новую зарядку, но это затраты, время на поездку. Я то забываю, то лень.

Делюсь впечатлениями, опытом, ну и немного юмора не помешает.

Заебашил я себе кофейку, дабы листая гугл на предмет типичных ситуаций с зарядками, советы бывалых, ремонтные случаи, не уснуть. Толку мало дало, ибо тысячи их, если не миллиарды, как китайцев. Хотя дало общее представление схемотехники зарядок и понимание хуйовая, или совсем пиздец.

Застелил я стол черновичком, достал несколько подходящих трупиков, воткнул паяльничек в розетку, раскрутил для дефектовки:

Зарядка с правильным шнурком пошла по миру крепко. Выгорело практически все полупроводниковое содержание:

Вторая из закромов, хз от чего, без шнурка, выглядела живенько, но не работала:

На всякий, у меня был еще рабочий блок питания, хз от чего, но с довольно грамотной схемотехникой, только вздутый кондер поменять:

Но я его пожалел и отложил в сторону. В случае невозможности починить что нить из первых двух, я бы взялся за него.

По пути малого сопротивления дефектовка второй зарядки показала сгоревший диод и резистор, кои хитрые китайцы, из за удешевления, используют как предохранители. Выпаиваю:

Вид с другой стороны. Кстати схемотехника нормального уровня, на порядок лучше первой зарядки:

Первую решено использовать как донора, диод норм, а резистор уже сгоревший:

Нашел в закромах аналог, чем чуть позже поплатился:

ВНИМАНИЕ! АХТУНГ! ВОРНИНГ!

Запаял я диод и резистор, ткнул в розетку, и загоревшийся светодиод весело зазеленел:

Есть контакт.

«Резистор слабоват» сказала зарядка, и грустный сизый дымок подтвердил её слова.

Ладно сказал я, и полез в закрома в поисках аналога. Попутно найдя варистор и дроссель, на которых сэкономили узкоглазые. Перезапаиваю:

Новые тест, все ок (фото не особо получилось).

Пожалуй, самой «больной» частью сотового телефона является его зарядное устройство. Компактный источник постоянного тока нестабильным напряжением 5-6V часто выходит из строя по разным причинам, от собственно неисправности, до механической поломки в результате неосторожного обращения.

Впрочем, замену неисправному зарядному устройству найти весьма легко. Как показал анализ нескольких зарядных устройств различных фирм-производителей, они все построены по весьма схожим схемам. Практически это схема высоковольтного блок-кинг-генератора, напряжение со вторичной обмотки трансформатора которого выпрямляется и служит для зарядки аккумулятора сотового телефона. Различие, обычно заключается только в разъемах, а так же непринципиальные различия в схеме, такие как выполне-нение входного сетевого выпрямителя по однополупе-риодной или мостовой схеме, различие в схеме установки рабочей точки на базе транзистора, наличие или отсутствие индикаторного светодиода, и другие мелочи.

И так, какие же «типовые» неисправности? Прежде всего следует обратить внимание на конденсаторы. Пробой конденсатора, включенного после сетевого выпрямителя весьма вероятен, и приводит как к повреждению выпрямителя, так и к перегоранию низкоомного постоянного резистора, включенного между выпрямителем и отрицательной обкладкой этого конденсатора. Данный резистор, кстати говоря, работает практически как предохранитель.

Зачастую выходит из строя и сам транзистор. Обычно там стоит высоковольтный мощный транзистор, обозначенный «13001» или «13003». Как показывает практика, при отсутствии такового на замену можно использовать отечественный КТ940А, широко использовавшийся в выходных каскадах видеоусилителей старых отечественных телевизоров.

Пробой конденсатора 22 мкФ приводит к отсутствию запуска генерации. А повреждение стабилитрона 6,2V приводит к непредсказуемому выходному напряжению и даже выходу из строя транзистора из-за превышения напряжения на базе.
Повреждение конденсатора на выходе вторичного выпрямителя бывает реже всего.

Конструкция корпуса зарядного устройства неразборная. Нужно пилить, ломать: а потом как-то все это склеивать, заматывать изолентой… Возникает вопрос о целесообразности ремонта. Ведь чтобы зарядить аккумулятор сотового телефона достаточно практически любого источника постоянного тока напряжением 5-6V, с максимальным током не ниже 300mA. Возьмите такой источник питания, и подключите его к кабелю от неисправного зарядного устройства через резистор сопротивлением 10-20 Ом. И все. Главное не перепутать полярность. Если разъем USB или универсальный 4-контактный — между средними контактами включить сопротивление около 10-100 килоом (подобрать, чтобы телефон «признал» зарядное устройство).

Доработка зарядного устройства сотового телефона

Автор предлагает варианты переделки зарядного устройства для сотового телефона в стабилизированный блок питания с регулируемым выходным напряжением или в источник стабильного тока, например, для зарядки аккумуляторов.

Одни из самых многочисленных электронных приборов, которые широко используются в быту, — несомненно, зарядные устройства (ЗУ) для сотовых телефонов. Некоторые из них можно доработать, улучшив параметры или расширив функциональные возможности. Например, превратить ЗУ в стабилизированный блок питания (БП) с регулируемым выходным напряжением или ЗУ со стабильным выходным током.

Это позволит питать от сети различную радиоаппаратуру или заряжать Li-Ion, Ni-Cd, Ni-MH аккумуляторы и батареи.

Значительная часть ЗУ для сотовых телефонов собрана на основе однотранзисторного ав-тогенераторного преобразователя напряжения. Один из вариантов схемы такого ЗУ на примере модели ACH-4E приведён на рис. 1. Там же показано, как превратить его в БП с регулируемым выходным напряжением. Обозначения штатных элементов приведены в соответствии с маркировкой на печатной плате.

Рис. 1. Один из вариантов схемы ЗУ на примере модели ACH-4E

 

Вновь введённые элементы и доработки выделены цветом.

В простых ЗУ, к которым относится дорабатываемое, зачастую применён однополупериодный выпрямитель сетевого напряжения, хотя на плате, в большинстве случаев, есть место для размещения диодного моста. Поэтому на первом этапе доработки установлены недостающие диоды, а резистор R1 с платы удалён (он установлен на месте диода D4) и припаян непосредственно к одному из штырей вилки XP1. Следует отметить, что встречаются ЗУ, в которых отсутствует и сглаживающий конденсатор С1. Если это так, необходимо установить конденсатор ёмкостью 2,2…4,7 мкФ на номинальное напряжение не менее 400 В. Затем конденсатор С5 заменяют другим с большей ёмкостью. В таком варианте доработки ЗУ показаны на рис. 2.

Рис. 2. Доработанное ЗУ

 

В оригинальном ЗУ в выходном выпрямителе применён диод 1N4937, который заменён диодом Шотки 1N5818, что позволило увеличить выходное напряжение. После такой доработки сняты зависимости выходного напряжения от тока нагрузки, которые показаны синим цветом на рис. 3. Амплитуда пульсаций выходного напряжения с ростом тока нагрузки увеличивается с 50 до 300 мВ. При токе нагрузки более 300 мА появляются пульсации частотой 100 Гц.

Рис. 3. Зависимости выходного напряжения от тока нагрузки

 

Зависимости показывают, что стабильность выходного напряжения в ЗУ невысока. Обусловлено это тем, что его стабилизация осуществляется косвенно контролем напряжения на обмотке II, а именно, за счёт выпрямления импульсов на обмотке II и подачи закрывающего напряжения через стабилитрон ZD (напряжение стабилизации 5,6…6,2 В) на базу транзистора Q1.

Для повышения стабильности выходного напряжения и возможности его регулировки на втором этапе доработки введена микросхема DA1 (параллельный стабилизатор напряжения). Управление преобразователем и обеспечение гальванической развязки реализованы с помощью транзисторной оптопары U1. Для подавления импульсных помех с частотой автогенератора дополнительно установлен фильтр L1C6C8. Резистор R9 удалён.

Выходное напряжение устанавливают переменным резистором R12. Когда напряжение на управляющем входе микросхемы DA1 (вывод1) превысит 2,5 В, ток через микросхему и, соответственно, через излучающий диод оптопары U1 резко возрастёт. Фототранзистор оптопары откроется, и на затвор базы транзистора Q1 поступит закрывающее напряжение с конденсатора С4. Это приведёт к тому, что скважность импульсов автогенератора уменьшится (или произойдёт срыв генерации). Выходное напряжение перестанет расти и начнёт плавно уменьшаться вследствие разрядки конденсаторов С5 и С8.

Когда напряжение на управляющем входе микросхемы станет менее 2,5 В ток через неё уменьшится и фототранзистор закроется. Скважность импульсов автогенератора возрастёт (или он начнёт работу), и выходное напряжение станет расти. Интервал выходного напряжения, который можно установить резистором R12, — 3,3…6 В. Напряжения менее 3,3 В с учётом падения на излучающем диоде оптопары оказывается недостаточно для нормальной работы микросхемы. Зависимости выходного напряжения (для разных значений) от тока нагрузки доработанного устройства показаны красным цветом на рис. 3. Амплитуда пульсаций выходного напряжения — 20…40 мВ.

Элементы (кроме переменного резистора) второго этапа доработки размещены на односторонней печатной плате из фольгированного стеклотекстолита толщиной 0,5…1 мм, её чертёж показан на рис. 4. Монтаж — со стороны печатных проводников. Можно при-менить постоянные резисторы МЛТ, С2-23, Р1-4, конденсаторы С6, С7 — керамические, С5 — оксидный импортный, он снят с материнской платы персонального компьютера, С8 — оксидный низкопрофильный импортный. Поскольку выходное напряжение приходится устанавливать нечасто, применён не переменный резистор, а подстроечный PVC6A (POC6AP). Это позволило установить его на задней стенке корпуса ЗУ. Дроссель L1 намотан в один слой проводом ПЭВ-2 0,4 на цилиндрическом ферритовом магнитопроводе диаметром 5 мм и длиной 20 мм (от дросселя ИИП компьютера). Можно применить оптопары серии РС817 и аналогичные. Плату с деталями (рис. 5) вставляют в свободное место ЗУ (частично над конденсатором С1), соединения проводят отрезками изолированного провода. Для подстроечного резистора в задней стенке ЗУ делают отверстие соответствующих размеров, в которое его вклеивают. После проверки устройства резистор R12 снабжают шкалой (рис. 6).

Рис. 4. Печатная плата и элеменеты на ней

 

Рис. 5. Плата с деталями

 

Рис. 6. Шкала на ЗУ

 

Второй вариант доработки ЗУ — введение в него стабилизатора(или ограничителя) тока. Это позволит заряжать Li-Ion или Ni-Cd, Ni-MH аккумуляторы и батареи, содержащие до четырёх аккумуляторов. Схема такой доработки показана на рис. 7. С помощью переключателя можно выбрать режимы работы: блок питания или один из двух режимов «ЗУ» с ограничением тока. Конденсатор 220 мкФ (С5) заменён конденсатором ёмкостью 470 мкФ, но на большее напряжение, поскольку в режимах «ЗУ» без нагрузки выходное напряжение может увеличиться до 6…8 В.

Рис. 7. Схема второго варианта доработки ЗУ 

 

В режиме «БП» устройство работает в штатном режиме. При переходе в один из режимов «ЗУ» выходной ток протекает через резистор R10 (или R11). Когда напряжение на нём достигнет 1 В, часть тока начнёт ответвляться в излучающий диод оптопары U1, что приведёт к открыванию фототранзистора. Это приведёт к уменьшению выходного напряжения и стабилизации (ограничению) выходного тока Iвых. Его значение можно определить по приближённым формулам: Iвых = 1 /R10 или Iвых = 1/R11. Подборкой этих резисторов устанавливают желаемое значение тока. Полевой транзистор VT1 ограничивает ток через излучающий диод оптопары и тем самым защищает его от выхода из строя.

Большинство деталей размещают на односторонней печатной плате (рис. 8 и рис. 9) из фольгированного стеклотекстолита толщиной 0,5…1 мм. Полевой транзистор должен быть с начальным током стока не менее 25 мА. Переключатель — любой малогабаритный движковый на одно или два направления и три положения, например SK23D29G, его размещают на задней стенке ЗУ и снабжают шкалой. Если применить переключатель на большее число положений, можно увеличить число номинальных значений тока и расширить тем самым номенклатуру заряжаемых аккумуляторов.

Рис. 8. Печатная плата и элеменеты на ней

 

Рис. 9. Плата с деталями

 

Поскольку зарядка осуществляется стабильным током, её следует проводить определённое время, которое зависит от типа и ёмкости заряжаемого аккумулятора или батареи.

Автор: И. Ннчаев, г. Москва

[email protected] для ваших вопросов и отзывов.


Переход на мой форум.

Pip-Rst 1.0
Программа содержащая полезную информацию по ремонту сотовых телефонов,постоянно обновляется.
ЖК-Дисплей SH51114A.
Схема жидкокристаллического дисплея от мультиметра DT-838
Дисплей 13-МТ-77GK.
Схема люминисцентного дисплея от музыкального центра LG
Схема батареи сот.телефона LG1600.

Схема батареи сот.телефона Motorola T190-T191.

Схема батареи сот.телефона Motorola T192.

Схема mini-USB кабеля для сот.телефона Motorola.

Схема USB кабеля для сот.телефона Sony Ericsson W700i-Z530i

Чертёж воздушного компрессора из подручных материалов.

Pip-Rst 1.1
Программа содержащая полезную информацию по ремонту сотовых телефонов,(обновлёние).
Схема батареи сот.телефона Fly SL600

Схема шлейфа телефона SE Z520i

Самодельный программатор сот.тел.(схема) 1.0

Схема шлейфа телефона Voxtel VS600 c фото

Схема шлейфа разъёма NEC 412i с обрисовкой платы

Схема подкл. зар. устр. и гарнитуры NEC 412i

Схема шлейфа LG G7000

Схема шлейфа Motorola V180

Схема шлейфа Motorola V3-V3i

Схема шлейфа Samsung SGH-S500
Ручная работа.
Схема шлейфа Samsung SGH-450

Рисунок шлейфа Motorola V3-V3i

Комплект для востановления Siemens C81

Взаимо-заменяемость деталей в сот.тел.

Схема блока подъёма антены,(Volvo 850)

Cхема двух-уровнего датчика StarLine SSA-2B

Схема Пуско-Зарядного устройства,
Электроника ЗП-01 УЗП-П-6/12-6,3-УХЛ 3,1
Ещё один вариант Схемы Пуско-Зарядного устройства,
Электроника ЗП-01 УЗП-П-6/12-6,3-УХЛ 3,1
Схема шлейфа Motorola V180 (в JPG)

Схема USB DKU-2 кабеля для Nokia

Схема переходника для клавиатуры PS/2 в DIN, и наоборот

Test Points (Тест Поинт) LG

Test Points (Тест Поинт) Motorola

Test Points (Тест Поинт) Sony Ericsson

Test Points (Тест Поинт) Siemens

software for cellular telephones

Схема гарнитуры.
Для телефона Sony Ericsson K750 и ему подобных (тоесть с аналогичным разъёмом)
Схема гарнитуры Sony Ericsson HPM-20

Программатор URI-PROG
Моя версия известного программатора Pony Prog,отлично работает с программами
icprog и PONYPROG2000 под XP (Схемы блоков под другие микросхемы
и фото буду выкладывать в дальнейшем,после их изготовления и испытаний).

Схема шлейфа Siemens CF62

Программа RusPlan необходимая для рисования схем и просмотра файлов схем с расширением .spl

Программа Sprint-Layout необходимая для разводки печатных плат и просмотра файлов с расширением .lay

Схема Китайского зарядного устройства для сотовых телефонов,типа HF1920 или Wax008H.

Схема и описание замены дисплея Nokia 3220 на дисплей от Nokia 2600 или аналогичный.

Схема и описание переделки шлейфа Nokia 5200 для Fly SL600.

Схема разводки шлейфа джойстика Nokia N73-1 (RM-133).

Схема батареи китайской Nokia N95.

Схема шлейфа клавиатуры Sony Ericsson W610i

Схема шлейфа BBK LR009

Фото шлейфа LG L342I

Печатная плата спаренного адаптера DIP-28B1/DIP-32A,для программатора EzoFlash.

Award Modular BIOS v4.51PG, An Energy Star Ally Copyright (C) 1984-98,Award Software,Inc. ACHI161 EVALUATION ROM 9-7-1998 INTEL(R) CELERON(TM)-MMX CPU at 333MHz 09/07/1998-i440LX-W977-2A69JAXAC-00 родной BIOS.

Award Modular BIOS v4.51PG, An Energy Star Ally Copyright (C) 1984-98,Award Software,Inc. ACHI161 EVALUATION ROM 9-7-1998 INTEL(R) CELERON(TM)-MMX CPU at 333MHz 09/07/1998-i440LX-W977-2A69JAXAC-00 исправленный средствами с сайта rom.by ,для поддержки винчестеров более 40Гб, BIOS.

Схема ,описание и разводка печатной платы адаптера для PIC контролеров и некоторых микросхем памяти ,для программатора EzoFlash, в архиве.

Разводка печатной платы для экспериментов над дисплеем (от сотового телелефона SIEMENS)LS020 в архиве.

Схема Китайского Универсального Зарядного Устройства.

Схема клавиатуры Радиотелефона Motorola ME4052-1.

Разводка макетной печатной платы, (для самостоятельного изготовления),для компьютера,под ISA слот.

Описание устранения неисправностей узла зарядки в игре Nintendo GameBoy Advance SP AGS-001.

Описание самостоятельного изготовления китайских небесных летающих фанариков.(есть фото и видео)

Замена встроенного УМ в автомагнитоле MYSTERY MCD-794 на более мощный.

Игра «Кольцевые автогонки» типа «вспомни молодость».

Stellarium 0.8.0 Rus
Если вам надоел вид из окна вашего офиса, посмотрите на звезды. Трехмерный планетарий Stellarium отображает звездное небо прямо на экране вашего монитора.
Прошивки Siemens под Joker
Подборка прошивок Siemens под Joker.
Удобная для монтажа разрисовка прямого LAN и кросс кабелей,и схема простого коммутатора между ними.

Схема и подробная разрисовка сборки трансформатора,блока питания рессивера SVEC A8.

Моя библиотека элементов для программы RusPlan.

Схема шлейфа Samsung E770, с разрисовкой по слоям.

Схема пульта дистанционного управления от телевизора, собранного на SAA 1250-1,КР1084ХЛ1,КР1506ХЛ7 или IRT1260ITT и схема блока приёмника сигналов этого ПДУ, собранного на КМ1506ХЛ2,название блока МДУ-15. +Даташит на КР1506ХЛ7.

Схема и прошивка PIC16F84,независимого управления двумя шаговыми двигателями,с помощью сигналов «STEP» и «DIR» в трёх режимах «шаг»,»полушаг»,»микрошаг».

Схема шлейфа Nokia 7070d-2 .

Текст подрограммы+коментарии+две программы расчёта,для реализации паузы (задержки),для микроконтроллеров серии PIC.

Моя библиотека элементов для программы Sprint Layout.

Русское описание PIC16F676 необходимое при программировании.

Зарядное (корректное) для шуруповёрта.

Программатор для AVR микроконтроллеров,STK-200/300,схема+фото+адаптер+разводка печатных плат для технологии ЛУТ.

Схема и Фото платы стиральной машины ARISTON.

Перепайка (перекатка) BGA микросхем.

Полезная информация,при программировании PIC.

Русское описание PIC16F676 необходимое при программировании.(дополненое)

Маркировка SMD транзисторов.

Схема и разводка печ.плат,простого домофона для частного или дачного дома или садового участка (применяется стандартная домофонная трубка).

MPLAB-начало проэкта. (видео иструкция)

MPLAB-перенос программы из ASM файла.. (видео иструкция)

MPLAB-преобразование программы в HEX файл.. (видео иструкция)

Схема АС-10 (ООПЗ-12) оповещателя звукового (сирена).

Информация собранная на просторах интернета,при разработке МВ модулятора.

Энкодер RGB в NTSC/PAL,на микосхеме AD724,даташит+печатная плата.

Кабеле-проводчик (видео).

Фотодатчик для станка с ЧПУ,схема,фото,разводка печатной платы.

Видео первых испытаний +фото узлов,собранного мною станка с ЧПУ,для работы с программами Mach и Kcam .

Доработка siemens a35 для зарядки Lithium Ion батареи.

Программатор Willem собранный на старых компонентах…

Схема перемотки стартера скутера.

Схема джойстика инвалидной коляски.

Описание и cхема, переделки Сanon AC ADAPTER K30270 (24V 1,2A) от струйного принтера ,на другие напряжения.

Автоматическое зарядное устройство для нокиа схема. Основные схемы импульсных сетевых адаптеров для зарядки телефонов. Ремонт и доработка зарядного устройства сотовых телефонов NOKIA

Очень часто сталкиваюсь с ремонтом «не заряжающихся» телефонов Nokia . Хочется сразу отметить, что с увеличением модельного ряда и усовершенствованием схем зарядки, надежность их уменьшилась на порядок. Кто в своей практике не сталкивался с проблемой как понять заряжается телефон или нет?
Конечно это можно проверить по росту напряжения на самой аккумуляторной батарее, но этот способ довольно медленный и не всегда удается добраться до контактов батареи. Можно смотреть на бегающий значек зарядки на телефоне, и ждать когда же появится долгожданное сообщение «Зарядка завершена» или постоянно вынимать батарею и замерять появились ли заветные милливольты в ней…

Лично Я в основном произвожу контроль зарядки, по току потребляемому от зарядного устройства. Для этого у меня есть шнуры от сгоревших «китайских зарядок» , я уверен что у каждого мастера их предостаточно, которые я подключаю к лабораторному блоку питания с регулиремым напряжением и током. Для телефонов Nokia выставляю напряжение зарядки 5,7В а ток зарядки от 600 мА до 1100 мА . Не забывайте, что в современных телефонах этого бренда ограничение тока зарядки контролирует телефон, а вот в предыдущих моделях эту задачу выполнял и телефон и само зарядное устройство. Думаю что вы раньше сталкивались с такой проблемой, когда телефон напрочь отказывался заряжаться от «китайского зарядного» устройства а с оригинальным все было хорошо.

Ведь ни для кого не секрет, что стабильное напряжение и правильный ток зарядки каждого конкретного аккумулятора, это залог длительной и безотказной работы телефона. Но к сожалению не все это понимают, особенно «горе мастера» которые напрочь выкидывают всю цель зарядки и контроля тока, а в обход ставят перемычку с диодом напрямую от зарядного устройства на клемы аккумулятора. ЗАПОМНИТЕ, ТАК ДЕЛАТЬ НЕЛЬЗЯ!

Хотел бы немного облегчить процесс поиска и устранения неисправности, построив небольшой алгоритм работы:

  1. При поступлении к вам незаряжающегося телефона, проверьте целостность контактов зарядного и системного разъемов, в зависимости куда подключается зарядное устройство.
  2. Удостоверьтесь в исправности аккумуляторной батареи, о качественном контакте клемм и их не загрязненности.
  3. Произведите замер напряжения зарядки, применительно к телефонам Nokia это порядком 5,7 вольт.
  4. Проверьте целостность пайки системных и зарядных разъемов, очень часто новые разъемы «отваливаются» в местах их пайки появляются трещины, во первых от применения бессвинцовой пайки , во вторых от недоработанного крепления и в третьих от небрежного отношения к самому телефону, это как правило грубое подключение и отключение разъема зарядного устройства.
  5. Теперь перейдем к сообщениям которые выдает телефон при подключении зарядного устройства:
    • «Не заряжается» — как правило проблема с температурным датчиком, контроллер зарядки не может определить температуру аккумулятора и не допускает его перегрева. Как правило это терморезистор сопротивлением 47 кОм и расположен поблизости с аккумуляторной батареей.
    • «Зарядное устройство не поддерживается» — проблема связана с отклонением величины напряжения поступающего от зарядного устройства, и может быть вызвана «проседанием» напряжения на пассивных элементах — конденсаторах, защитных стабилитронах и варисторах.
  6. Но бывает такое что все проверно а телефон вообще не реагирует на подключение зарядного устройства, самой простой причиной этого может быть перегоревший предохранитель по цепи зарядки, но не стоит забывать что он мог перегореть не только по вине внешнего источника питания а и от внутренней неисправности контроллера зарядки или самого аккумулятора.
  7. Бывают случаи когда вроде все отлично, индикация есть телефон не выдает нестандартных сообщений, но что-то не то, прироста напряжения на батарее не происходит и потребления от источника токане происходит. Это может быть связано с неисправным датчиком тока который в большинстве телефонов установлен на плате а на некоторых моделях выполнен в виде печатных проводников во внутренних слоях платы. Конструктивно — резистор с маленьким переходным сопротивлением в десятки миллиом подключенный к отрицательному (минусовому) выводу аккумуляторной батареи и установлен в максимальной близости к разъему батареи.
  8. Очень часто проблема кроется в неисправном контроллере зарядки , проверить его возможно, только заменив на заведомо исправный.
  9. Еще бывают случаи программных ошибок, когда после разного рода стираний и перезаписей в памяти телефона стирают область PM в которой хранятся калибровки напряжений. Проверить это тоже можно прочитав подробную информацию о подключенном телефоне при помощи старого доброго UFS или любого другого программатора типа MX-key, JAF, Best, Fenix и т.п.

Конечно это далеко не полный перечень, того с чем можно столкнутся при поиске неисправности, но следую этому алгоритму вы сэкономите массу времени при ремонте. Если у Вас есть свои наработки в области поиска и устранения неисправности зарядки в телефонах Nokia я с удовольствием дополню статью и опубликую Ваши методы и приемы, для этого

1. Лирическое отступление

Вероятно, в мире осталось не так много людей, которым не известна финская компания NOKIA. Одним из основных видов деятельности которой является разработка, производство и реализация сотовых телефонов.

Как и любая другая компания с известным именем, она является «лакомым кусочком» для различного рода мелких (в основном китайских) производителей, желающих продавать свою продукцию под чужой маркой. Благодаря чему в новостях достаточно часто мелькают сообщения о попытках реализации (порой более чем успешных) поддельной электронной аппаратуры. Подобная деятельность является незаконной и негативным образом влияет как на имидж оригинального производителя, так и на его финансовое состояние.

Однако в подавляющем большинстве случаев в первую очередь страдают из-за этого рядовые потребители, к которым относится и ваш покорный слуга. Т.к. в истории подобных фальсификаций практически не зафиксировано случаев, когда качество поддельной продукции не уступало оригинальной. При этом результатом использования поддельной продукции может стать не только моральный или финансовый ущерб, но и нанесения вреда здоровью.

Не секрет, что чаще всего производители «подделок» обращают свое внимание на фирменные расходные материалы и аксессуары. Т.к. с одной стороны производство таких товаров не требует больших технических и производственных ресурсов, а с другой – позволяет получать ощутимую прибыль. Как за счет более низкой себестоимости по сравнению с оригинальными товарами (что негативным образом сказывается на качестве), так и за счет подделываемого «бренда», т.к. даже при сравнимом качестве товары известных компаний стоят дороже. На рынке устройств мобильной связи первое место по количеству подделок, пожалуй, занимают аккумуляторные батареи. Долго рассказывать о негативных последствиях такого положения вещей, думаю, не стоит. Воспламенившаяся батарея может привести к чему угодно, от пожара до серьезных травм. Однако сегодня речь пойдет не о них, а о смежной с ними группе товаров – зарядных устройствах.

Когда вы покупаете мобильный телефон, в 99.9% случаев он уже укомплектован сетевым зарядным устройством. И все было бы замечательно, если бы им не надо было пользоваться:). А раз им надо пользоваться, то существует вероятность того, что оно выйдет из строя. Его можно потерять, домашний любимец может перегрызть кабель и т.д.

Кроме того, удобно, когда зарядных устройств имеется несколько. Одно можно использовать дома, другое на работе, третье забросить на дачу. Это позволит зарядить телефон, независимо от того, где вы находитесь. Думаю, всем из собственного опыта известно, что телефон имеет свойство разрядиться в самый неподходящий момент:).

Я обычно использую два зарядных устройства, одно дома и второе на работе. Одно зарядное устройство прилагается к телефону, а второе можно купить. Здесь есть два варианта – купить оригинальное зарядное устройство и не оригинальное (не поддельное, а просто произведенное и продаваемое под маркой другой компании), совместимое с вашей моделью телефона. Оригинальное зарядное устройство гарантирует вам полную совместимость с мобильным телефоном и качество, однако его не всегда можно найти в продаже. А кроме того оно может стоить существенно дороже не оригинального (хотя и не всегда). Если же в продаже имеется как оригинальное, так и не оригинальное зарядное устройство, то выбор за покупателем. Можно сэкономить немного денег, а можно поддержать финансово «любимого» производителя:). Я за редким исключением (к мобильным телефонам это не относится) выберу оригинальное зарядное устройство.

2. Факты

В настоящее время я пользуюсь мобильным телефоном NOKIA E50. Практически сразу после покупки телефона я озаботился вопросом покупки второго зарядного устройства. В комплекте с телефоном прилагалось зарядное устройство модели AC-4E. Воспользовавшись услугами одного из многочисленных интернет-магазинов, реализующих мобильные телефоны и аксессуары, я заказал себе аналогичное зарядное устройство, предварительно уточнив по телефону, что продаваемые зарядные устройства являются оригинальными и продаются в соответствующей упаковке. При покупке я внешне осмотрел устройство, коробка соответствовала изображению на сайте NOKIA, а само зарядное устройство в точности соответствовало уже имеющемуся. Я оставил его на работе и пользовался время от времени для подзарядки телефона. Процесс зарядки происходил медленнее, но т.к. разница была несущественной (~75 минут против 50), то я не стал заострять на этом внимание. В один прекрасный момент (через ~3.5 месяца) это зарядное устройство сгорело (с соответствующими шумовыми и дымовыми эффектами). Раздался резкий щелчок, и запахло жженым пластиком.

Т.к. гарантийный талон я найти не смог, да и времени на реализацию гарантийных обязательств тогда не было, я решил купить новое зарядное устройство, а это из любопытства вскрыл. Кстати, разобрать зарядное устройство NOKIA – задача не из простых, хотя в отличие от подавляющего большинства зарядных устройств других производителей оно предусматривает возможность разборки. Все дело в использовании винтов с оригинальной головкой. Ни обычная отвертка, ни крестовидная, ни звездочка, ни шестигранник вам не помогут.

В продаже мне такие отвертки пока не попадались, возможно, в специализированном магазине, торгующем запчастями для мобильных телефонов, они и есть. В результате, приложив серьезные физические усилия, я выкрутил винты при помощи плоской отвертки подходящего размера, но головки винтов при этом были сильно повреждены. Так что говорить о возможности безболезненно разобрать зарядное устройство не приходится. Что, в общем, хорошо, т.к. с одной стороны позволяет производить оперативный ремонт устройства, а с другой мешает конечному пользователю разобрать его во избежание получения травм. Представившееся мне зрелище неприятно поразило: печатная плата зарядного устройства была частично покрыта копотью от обгоревшего резистора, одна из дорожек на печатной плате перегорела. А больше всего поразило низкое качество схемотехнического решения, оно напоминало самые дешевые китайские зарядные устройства, так называемые «ноу нэйм».

Т.к. время поджимало, я посмотрел список аксессуаров на сайте NOKIA и выбрал новую модель зарядного устройства, AC-5E, совместимую с моим телефоном. Оно привлекло меня исключительной компактностью, что немаловажно, если зарядное устройство нужно взять с собой в командировку или отпуск. Затем я обратился в ближайший ко мне салон связи компании «Евросеть» и приобрел там вышеуказанное зарядное устройство.


Оно продавалось в оригинальной упаковке с логотипом NOKIA и внешне полностью соответствовало изображению на сайте компании. На корпусе также присутствовал логотип сертификации «Ростест». Вечером я вернулся домой с работы и поставил телефон заряжаться, через 20 минут история повторилась. Раздался щелчок, запахло жженым пластиком. Зарядное устройство вышло из строя. Я уже начинал сомневаться, все ли в порядке с мобильным телефоном, возможно, он является причиной этих фейерверков? Но я не стал обращать на это внимание. В конце концов, все устройства делятся на две категории – те, которые уже вышли из строя, и те, с которыми это вот-вот произойдет:). На следующий день я вернулся в салон и заменил вышедшее из строя зарядное устройство на новое. После чего поставил телефон на зарядку со старым (комплектным) зарядным устройством. Зарядка прошла как обычно, никаких аномалий я не заметил. Через несколько дней я поставил телефон заряжаться, воспользовавшись новым зарядным устройством АС-5Е. Батарея телефона была практически полностью разряжена, обычно процесс зарядки в таком случае занимает около 50-ти минут. Через час я проверил телефон, процесс зарядки все еще продолжался. Само зарядное устройство при этом ощутимо нагрелось, чего я не наблюдал в случае использования комплектного АС-4Е.

Т.к. я не собирался никуда выходить, то решил не отключать телефон и подождать, пока он полностью зарядится. Когда процесс зарядки заканчивается, телефон издает короткий гудок, и индикатор батареи останавливается в верхней точке. Гудок этот раздался через 3.5 часа после того, как я подключил телефон к зарядному устройству.

Любопытство победило, и я разобрал новое зарядное устройство. Используемое в нем схемотехническое решение больше всего напоминало мне о канувшем в небытие зарядном устройстве АС-4Е и его предполагаемых дешевых китайских аналогах. Дальше я уже не мог терпеть и разобрал зарядное устройство АС-4Е, которым был укомплектован мой телефон. Должен сказать, увиденное меня с одной стороны обрадовало – качество этого устройства было очень хорошим, а с другой – огорчило, т.к. это означало, что все приобретенные мной зарядные устройства, скорее всего, являются подделками.

Давайте рассмотрим зарядные устройства поближе.

Примечание: в настоящее время функция зарядки аккумуляторной батареи мобильного телефона возложена на сам телефон и частично на батарею. В связи с чем зарядное устройство является обычным блоком питания с необходимыми в каждом конкретном случае входными/выходными характеристиками.

3. Оригинальное зарядное устройство NOKIA AC-4E



Маркировка




Разъем питания

На нижней части корпуса можно увидеть название модели, характеристики, штрих-код и серийный номер устройства. Все надписи нанесены четко, пластик имеет приятную шероховатую на ощупь поверхность. На внутренних поверхностях обеих частей корпуса можно увидеть логотип NOKIA.


Печатная плата, вид сверху


Печатная плата, вид снизу

Односторонняя печатная плата выполнена аккуратно, все детали присутствуют, используется регулятор напряжения (небольшая микросхема на нижней стороне платы). Применяются как обычные, так и SMD-компоненты. На плате присутствует маркировка “Friwo”, это название компании, которая произвела данные зарядные устройства по заказу NOKIA.

Судя по информации на сайте, это достаточно большая компания, специализирующаяся на производстве блоков питания и зарядных устройств. Для того чтобы можно было сравнить две «версии» имеющихся у меня зарядных устройств АС-4Е, я крупным планом сфотографировал корпус зарядного устройства снаружи и внутри, маркировку, присутствующую на корпусе, печатную плату и разъем питания. То же самое я проделаю и для оставшихся двух устройств.

4. Зарядное устройство NOKIA AC-4E


Зарядное устройство NOKIA AC-4E, общий вид


Маркировка


Внутренняя поверхность верхней части


Внутренняя поверхность нижней части


Разъем питания

Как видите, внешне отличить это зарядное устройство от предыдущего нельзя. То же самое покрытие, в точности такой же разъем, та же маркировка на нижней части корпуса, штрих-код и номер. Те же винты с оригинальной головкой. В общем, придраться не к чему. Несколько иное впечатление складывается, если заглянуть внутрь. Нижняя часть корпуса практически аналогична оригинальному зарядному устройству. Верхняя часть не содержит логотипа NOKIA на внутренней стороне.


Печатная плата, вид сверху


Печатная плата, вид снизу

Печатная плата выполнена в целом аккуратно, но схемотехническое решение более примитивное. SMD-элементы не используются, маркировка производителя на плате отсутствует. По сути, это один из простейших вариантов импульсного блока питания.

5. Зарядное устройство NOKIA AC-5E


Зарядное устройство NOKIA AC-5E, общий вид


Маркировка


Верхняя крышка


Разъем питания

Аккуратный и компактный корпус, в точности такой же кабель питания, что и у оригинального АС-4Е, с хомутом-липучкой для фиксации кабеля в сложенном виде. Все надписи нанесены четко – название модели, логотип NOKIA, характеристики и штрих-код с номером. Внутри мы видим плату, очень напоминающую «бюджетный» вариант адаптера АС-4Е. То же отсутствие маркировки производителя, то же примитивное схемотехническое решение (однако в данном случае есть отличия, о чем поговорим ниже).

Что касается отсутствия маркировки производителя, то это крайне странно, т.к. на корпусе устройства можно увидеть небольшую надпись ASTEC. Это название крупной компании, производящей блоки питания по заказу многих производителей мобильных телефонов. Компания ASTEC входит в группу компаний EMERSON.

6. Зарядные устройства других производителей

Для того чтобы можно было сравнить продукцию ASTEC с имеющимся зарядным устройством NOKIA AC-5E, я разобрал еще два имеющихся у меня оригинальных зарядных устройства, одно из них поставлялось в комплекте с телефоном Siemens С65, а второе – в комплекте с телефоном Motorola V3 RAZR.


Печатная плата зарядного устройства Siemens, вид сверху


Печатная плата зарядного устройства Siemens, вид снизу

Характеристики зарядного устройства Siemens – 5 В, 350 мА.


Печатная плата зарядного устройства Motorola, вид сверху


Печатная плата зарядного устройства Motorola, вид снизу

Характеристики зарядного устройства Motorola – 5 В, 550 мА.

Оба эти устройства произведены компанией ASTEC, о чем гласит маркировка как на самих зарядных устройствах, так и на печатных платах устройств. Как видите, платы выполнены очень аккуратно, используются SMD-элементы. Присутствует маркировка производителя.

7. Полевые испытания

Вернемся к зарядному устройству NOKIA AC-5E. Единственная причина, по которой зарядка телефона с его использованием могла длиться так долго, – несоответствие заявленным характеристикам, а именно малый ток. На корпусе устройства обозначено, что оно обеспечивает ток 800 мА при напряжении 5 В. Проверим при помощи мультиметра, какой ток потребляет телефон в процессе зарядки при использовании оригинального зарядного устройства АС-4Е и данного АС-5Е.

Для начала измерим напряжение в сети, как видите, оно соответствует нормам – 225 В.


Замеряем напряжение в сети

Для справки: на сайте ASTEC можно просмотреть спецификации зарядных устройств аналогичной группы, они обеспечивают соответствие заданным характеристикам при напряжении сети в диапазоне от 85 до 265 вольт.

Измерим потребляемый ток при использовании оригинального зарядного устройства NOKIA AC-4E. Как видите, потребляемый ток равен 910 мА.


Характеристики, заявленные для этого устройства, – 890 мА. Зарядное устройство работает стабильно и не греется, а значит некоторый запас по току еще имеется.

А теперь измерим потребляемый ток при использовании «бюджетного» варианта зарядного устройства NOKIA AC-5E. Как видите, потребляемый ток равен 330 мА.


Тестирование поддельного зарядного устройства AC-5E

При этом устройство достаточно сильно нагревается в процессе работы. А значит работает на максимуме своих возможностей. Что не удивительно, учитывая примитивное схемотехническое решение и номиналы используемых деталей. Отсюда и увеличившееся в разы время полной зарядки телефона.

8. Оригинальные зарядные устройства NOKIA AC-4E / AC-5E

Для того чтобы расставить все точки над «i», я решил заказать еще два зарядных устройства NOKIA, модели AC-4E и AC-5E в интернет-магазине компании «ULTRA Electronics». Начнем с зарядного устройства NOKIA AC-5E, ведь оригинальную его версию я еще не видел.

Т.к. отличить оригинал от подделки по внешним признакам не получится, то я сразу разбираю зарядное устройство.


Печатная плата NOKIA AC-5E (ориг.), вид сверху


Печатная плата NOKIA AC-5E (ориг.), вид снизу

Как видите, начинка этого зарядного устройства по качеству очень сильно отличается от «подделки» в лучшую сторону. Элементы схемы занимают практически все свободное пространство внутри корпуса зарядного устройства. Схемотехническое решение достаточно «сложное», используются SMD-элементы. На плате присутствует маркировка производителя «ASTEC». Можно уверенно говорить о том, что это оригинальный продукт.


Оригинальное зарядное устройство NOKIA AC-5E, общий вид


Разъем питания NOKIA AC-5E (ориг.)


Маркировка NOKIA AC-5E (ориг.)

Внешний вид оригинального зарядного устройства, маркировка и разъем питания – все в точности скопировано в его поддельной версии.

Перейдем к оставшемуся зарядному устройству NOKIA AC-4E.


Печатная плата NOKIA AC-4E (ориг.), вид сверху


Печатная плата NOKIA AC-4E (ориг.), вид снизу

На печатной плате зарядного устройства присутствует маркировка производителя «Friwo». Схемотехническое решение отличается от рассмотренного ранее оригинального зарядного устройства, его упростили. Это обычная тенденция практически для всех производителей электроники.


Зарядное устройство NOKIA AC-4E, общий вид


Маркировка


Внутренняя поверхность нижней части


Разъем питания

Внешний вид зарядного устройства не изменился.

Несмотря на то, что данное зарядное устройство Nokia AC-4E несомненно является оригинальным, качество попавшего ко мне экземпляра неприятно огорчило. Однако об этом поговорим во второй части «Полевых испытаний».

Внешний вид оригинальной упаковки зарядных устройств Nokia AC-4E и AC-5E

9. Полевые испытания, часть вторая

Проведем тест двух оставшихся зарядных устройств, «обновленной» версии NOKIA AC-4E и NOKIA AC-5E.

На корпусе AC-5E обозначено, что зарядное устройство обеспечивает ток 800 мА при напряжении 5 В. Измерим потребляемый ток.


Тестирование оригинального зарядного устройства AC-5E

Как видите, он равен 880 мА. В процессе работы устройство незначительно нагревается. В данном случае реальные характеристики устройства даже лучше, чем заявленные. Данное зарядное устройство вполне можно рекомендовать как более компактную замену модели AC-4E.

К сожалению, с тестированием «обновленной» версии зарядного устройства AC-4E не все так гладко. Начнем с того, что при подключении к телефону зарядное устройство начало издавать низкочастотный гул, а сам телефон даже и не думал заряжаться. Я разобрал его и решил проверить выходное напряжение непосредственно на контактах печатной платы. Оно оказалось равным 5.8 В, что вполне нормально для работы без нагрузки. В этот момент я обратил внимание на кабель зарядного устройства, он состоит из двух жил в изоляции черного и белого цвета соответственно. Однако провод черного цвета, вопреки моим ожиданиям, был припаян к контакту «+» печатной платы (о чем можно было судить по показаниям мультиметра). Так и оказалось, провода были припаяны неверно.

В данном случае мы имеем дело с бракованным изделием. Видимо, качество выходного контроля продукции у компании «FRIWO» ухудшилось.

После того как я припаял провода надлежащим образом, телефон начал реагировать на подключение зарядного устройства, и можно было замерить потребляемый ток в процессе зарядки.


Тестирование оригинального зарядного устройства AC-4E

Результат – 400 мА при заявленных 890. Интерпретировать такой результат, в общем, бессмысленно, т.к. устройство заведомо было бракованным и подлежало замене.

10. Выводы

Выводы неутешительные. Даже при покупке «оригинального» зарядного устройства в салоне известной компании вы не застрахованы от подделки. Кроме того, внешний вид устройства скопирован настолько качественно, что, даже зная об этой проблеме, отличить его от оригинала практически невозможно. Разве что приходить в магазин вместе с мультиметром.

И немного позитива: как показал практический опыт, сам телефон, как в случае использования поддельного зарядного устройства, так и в случае использования бракованного экземпляра оригинального зарядного устройства с неверной полярностью, остался жив. Неудобства доставляют: увеличившееся время зарядки, частые случаи выхода поддельных зарядных устройств из строя и тот факт, что за подделку пришлось заплатить как за оригинальное зарядное устройство.

С увеличением парка мобильных телефонов пропорционально растет и количество зарядных устройств, идущих в комплекте с телефонами. Учитывая низкое качество наших электросетей, эти устройства нередко выходят из строя. Особенно это относится к моделям неизвестных производителей, приобретаемым на радиорынках в связи с их невысокой стоимостью.

Как правило, для сохранения рентабельности такие производители применяют в своих устройствах более дешевые комплектующие, что неизбежно влечет за собой снижение их надежности.

После того, как, не проработав и недели, вышло из строя купленное на радиорынке подобное зарядное устройство для телефона NOKIA, было принято решение выяснить причину возникшей неисправности и внести необходимые изменения в схему для повышения надежности устройства в целом.

Нужно отметить, что, сравнивая два зарядных устройства — сертифицированное и «серое», разницу найти не так-то и легко (фото 1). Корпус устройства неизвестного производителя (см. на фото 1, сверху) отличается менее глубоким тиснением надписей логотипа NOKIA и технических характеристик устройства и отсутствием нанесенного шелкогра-фией значка, регламентирующего способ утилизации устройства по окончании срока его эксплуатации. На фото 2 и 3 показаны соответственно устройство в разобранном виде и его монтажная плата.

Принципиальная схема устройства была восстановлена по монтажной плате и как видно представляет собой классический импульсный преобразователь обратного хода (рис. 1). Подобные простые схемы широко применяются в импульсных блоках питания и зарядных устройствах мощностью до 25 Вт с соответствующим использованием более мощных деталей.

Заявленные характеристики устройства — выходное напряжение 5,7 В, ток 800 мА.

А теперь коротко рассмотрим описание работы схемы

Напряжение сети подается через токоограничивающий резистор R1 на вход выпрямителя, выполненного на диодах D1-D4. На транзисторе Q1 собран автогенератор, частота которого в основном определяется характеристиками применяемого здесь импульсного трансформатора TF1. Резистор R3 задает режим работы транзистора Q1. Стабилизация выходного напряжения происходит за счет использования обмотки обратной связи импульсного трансформатора TF1 и цепочки D7, С4, ZD1. Транзистор Q2 и резистор R2 служат для ограничения тока транзистора Q1 в момент запуска автогенератора, а также в случае перегрузки или короткого замыкания на выходе устройства. Схема содержит простейший выпрямитель выходного напряжения на диоде D8 и конденсаторе С5. Резистор R6 служит для разрядки конденсатора С5 после выключения устройства.

В результате проверки был найден неисправный транзистор Q1 с маркировкой 1003 и сгоревший резистор R3. Обгоревшее покрытие резистора не позволило определить его сопротивление. С целью повышения надежности схемы в качестве транзистора Q1 был использован более мощный и широко распространенный отечественный транзистор КТ 940А (фото 4). Сопротивление R3, указанное в схеме, было подобрано применительно к конкретному транзистору для обеспечения устойчивой работы автогенератора и получения необходимого выходного тока. Следует учесть, что в связи с большим разбросом характеристик транзисторов КТ 940А, в некоторых случаях, возможно, потребуется изменить указанное на схеме значение сопротивления R3.

Необходимо заметить, что на плате в предусмотренном для этого месте отсутствует оксидный конденсатор, который должен быть подключен на выходе диодного выпрямителя D1-D4. В этом случае автогенератор устройства фактически работает в режиме модуляции выпрямленным сетевым напряжением. По этой причине во многих случаях подобные устройства могут не обеспечивать заявленный выходной ток, необходимый для зарядки аккумулятора мобильного телефона Следствием этого может быть, например, увеличение общего времени зарядки. В некоторых случаях недостаточный выходной ток может привести к неправильной работе схем зарядки аккумуляторной батареи в мобильном телефоне, что, в конечном счете, может привести к уменьшению срока эксплуатации батареи. При необходимости, можно запаять этот отсутствующий конденсатор — его емкость может составлять не более 10 мкФ на рабочее напряжение не менее 450 В. Советую сразу с установкой конденсатора припаять параллельно его выводам со стороны монтажа резистор сопротивлением около 300 кОм для разрядки этого конденсатора после отключения устройства от сети. Кроме этого, для надежности желательно заменить резистор R1 на резистор с большей рассеивающей мощностью, так как он ограничивает ток зарядки этого конденсатора в момент включения устройства в сеть. На плате предусмотрено место для светодиода, предназначенного для индикации работы устройства, и в случае необходимости его можно установить на плату через токоограничивающий резистор сопротивлением 680 Ом.

После ремонта данное зарядное устройство надежно работает уже больше года без замечаний. Учитывая, что используемая схема преобразователя широко применяется во многих зарядных устройствах, описанный способ ремонта и повышения надежности может быть рекомендован и для других подобных устройств.



  • Михей / 19.04.2017 — 16:31

Может кому пригодится схемы зарядного AVALANCHE ATCH-S NOKIA 6101, 5230 и прочие с тонким штекером. Схему рисовал сам с печатной платы. Вот ссылка

  • александр / 20.12.2014 — 11:40
  • можно ли к такой зарядке вместо вилки подцепить USB?

  • Женя / 27.11.2014 — 20:24
  • Обьясните новичку — что значит резистор 1 ом? тем более при напряжении 220 в? если кинуть туда перемычку разница вообще будет?

  • Анд / 12.07.2014 — 14:02
  • Про помехи в сеть и большой риск пожара согласен. Для того чтобы не ремонтировать зарядные устройства фирменный изготовитель делает их в неразборной конструкции. Дальше читаем для особо одаренных.:) Смотрим на корпус любого зарядного. Там написано: Output:DC5,7V.У всех дома есть куча старых зарядников в том числе Nokia,Samsung. Отрезаем от такого исправного провод и припаиваем + и _ провод с разъёмом от сгоревшего. Изолируем. Ремонт закончен. Люди,зачем вам остальной «геморой». Прошу не обижаться,но даже если дома нет ни одного исправного,на радиорынке «за бутылку»:) можете кучу набрать,и сделать то, что выше написано. Берегите людей окружающих вас. Удачи!

  • Сергей / 22.05.2014 — 02:58
  • Чукча не читатель — чукча писатель.Помните такую, когда то популярную присказку. Сейчас проблемы не с ремонтами зарядок, а с нещадно гадящих эфир помехами простейших зарядок. И прочих поделок шаловливых ручек всех мастей.

  • алекс / 08.12.2012 — 12:28
  • артем / 21.02.2009 17:21 вообще,почитав немного висящие здесь посты и понял,что большенству надо не разбираться в принципиальных схемах,а идти учится в школу синтаксису и орфографии)))))люди неужели так трудно писатьГРАММОТНО! так вот. слова не «большенству» а «большинству» не «учится» а «учиться» ,так как слово отвечает на вопрос что делать. «писатьГРАММОТНО!» нужно писать так «писать ГРАМОТНО» уточнить можно тут — А вам трудно писать грамотно?? Учитель.

  • vgzik / 07.12.2012 — 03:07
  • при сгорании транзистора вместе с диодами и резис-ми в большинстве случаев замыкает транс, так что ещё мотайте,если не можете купить исправное.Больше всех понравился СТАЖ 40 ЛЕТ ПРОЭКТИРОВШИКОМ — давно так не ржал,СТАЖ 40 ЛЕТ ПРОЭКТИРОВШИКОМ пеши есчё!

  • Михаил / 03.11.2012 — 15:04
  • Здравствуйте прочитал статью, Но вот у меня остались небольшие вопросы на которые Вы могли бы дать ответ. Если Вам не сложно — уделите мне немного времени. Я начну с небольшой пред-истории. На данный момент я нахажусь в такой ситуации что магазин сходить не могу, в сервисный центр тоже. радиодетали могу достать только из тех приборов которые уже отработали (а их много и с каждым днем прибывает). У меня только мобильный телефон, зу (очень слабое и невывозит зарядку моего телефона), паяльник, устройство типа контрольки (батарея, диод и два провода). И много сломанных зарядников и немного сломаных телефонов. Так вот суть вопроса: мне хотелось бы отремонтировать хотя бы часть этих зарядников и увеличить мощность хотя бы некоторых. Поломки у зу различные — питание на телефон идет, а не заряжает (самое распространенное), просто не заряжает, сгорела катушка, замкнули что-либо и тд. Если Вас не затруднит напишите мне поподробнее как можно ремонтировать в моих условиях такие вещи, может что то еще нужно достать (скажу сразу мультиметр недостать). Самая больша проблема это маломощные зарядники. У меня есть совсем небольшие познания но они совсем скудны. Если не трудно- опишите как и что. С уважением Михаил

  • Сергей Дякевич / 02.10.2012 — 11:48
  • Здравствуйте. Я, автор этой статьи по ремонту зарядного устройства. Спустя 4 года я с удивлением наткнулся здесь на обсуждение этой темы. С разными блоками питания (и не только) я на «ты» уже больше 25 лет. На основании своего многолетнего опыта могу сказать что, конечно, КТ940А (нужно только с буквой А) здесь не самый удачный выбор и работает этот транзистор на пределе своих возможностей по напряжению. Но. но. тогда задача стояла отремонтировать это дешевое китайское го@но быстро и буквально за копейки (а покупать на рынке еще одно такое же г. не было никакого желания — тогда уже лучше было взять нормальную фирменную зарядку в магазине в два раза дороже). КТ940А у меня валялось много и прикинув его параметры я решил «рискнуть». Таким образом ремонт этого блока обошелся мне фактически бесплатно. На это и был расчет. Если делать более надежно, то, безусловно, лучше ставить более высоковольтные транзисторы — они уже упоминались (13003, 13005 и аналогичные). А повысить надежность работы схемы с КТ940А можно, если дополнительно добавить параллельно первичной обмотке трансформатора RC цепочку для уменьшения выбросов напряжения. RC цепочка — величина расчетная, в зависимости от частоты преобразования и некоторых других параметров. Считать сейчас нет особо времени, да и желания, но, на вскидку, это может быть что-то типа — С 2200пФ(на 300в), а R 100 Ом. Желательно посмотреть напряжение выброса осциллографом с делительной головкой 1:100. Еще вариант — вместо RC цепочки можно поставить цепочку из соединенных последовательно быстрого высоковольтного диода (обратное напряжение не менее 400вольт, например, SF4007) и супрессора 1,5КЕ(специальный ограничительный диод для подавления выбросов с рабочим напряжением где-то на 100 или 120 вольт). Оба диода включаются между собой катодами, а затем — анод супрессора на + питания 300в, а анод второго диода на коллектор КТ940А. Удачи всем в ремонтах.

  • Сергей / 18.04.2012 — 14:45

  • Алекс / 27.03.2012 — 10:36
  • Подскажите как из зарядки моб.тел.,Которая выдает 5В пост.тока сделать выход питания 3.7В пост.тока,что надо туда на выходе впаять-диод,конденсатор или резистор,если да,подскажите параметры детали,принцип подсоединения??

  • enerjik / 20.03.2012 — 23:09
  • спасибо за статью. очень помогла.

  • Саня / 10.03.2012 — 19:44
  • Да я согласен,вот впаял этот кт 940а вместо 13001 врезультате зарядник заработал,но радость была недолгой,нагрузив устройство амперметром кт940 вмиг сгорел, хорошо что через лампу включал кз произошло.Думаю если поставлю 13003 этого не произойдет,но вот у меня возник вопрос обязательно ли ставить другой резистор когда ставишь более мощный транзистор?

  • serg81 / 13.02.2012 — 15:01
  • Отличная статья! Огромное спасибо.

  • Олим / 07.02.2012 — 02:35
  • ремонт Nokia заряд

  • Максим 444734111 / 21.01.2012 — 23:09
  • Незнаю как с надёжностью у КТ940, но я когда чинил зарядки, ставил в них 13003 из энергосберегашек. из пяти починенных зарядок две чинил со звуко-световыми эффектами при подключении к 220. Обычно летят у китаёзных зарядок: 13001, 1N4007, резюк 2,2 ома в цепи 220, резюк 30 ом в цепи базы, и стабилитрон на 6,2- 6,8- 7,5- 10 вольт. В цепи вторички почти всегда всё цело.

  • Bobi61 / 10.11.2011 — 07:58
  • 1. Подскажите, как сделать у зарядника ACP-12E выходное напряжение 5 вольт, вместо 5,7 вольт? 2. Можно таким зарядником питать часы 5в. 400мА?

  • pe[ / 28.06.2011 — 12:30
  • замість транзисторної схеми-тиристорний (ФАЗОВИЙ)РЕГУЛЯТОР!

  • Алексей / 08.11.2010 — 20:32
  • Можно ли както заставить подобную зарядку долговременно выдавать 5В при токе 250мА? Я попытался нагрузить блок резистором 22 ОМ и напряжение упало до 2,8В, пробовал ставить полный мост на выходе из диодов шотки (SK14), напряжение повышается почти в полтора раза. На выход вешал LM7805, но уже при токе 200мА стабилизатор и транзистор начинает сильно греться, а на входе с моста напряжение просаживается аж до 6В. Пробовал ставить стабилитрон на 15В (с одним диодом после транса), напряжение поднимается до 11В но при токе нагрузки в 250мА напряжение просаживается до 3,9В и начинает греться транс и транзистор, хотя вместо 13001 ставил 13009. Что может быть не так с блоком, ведь заявлено что он легко должен держать такую нагрузку? 🙁

  • альберт / 01.11.2010 — 11:06
  • Электропитание

    С увеличением парка мобильных телефонов пропорционально растет и количество зарядных устройств, идущих в комплекте с телефонами. Учитывая низкое качество наших электросетей, эти устройства нередко выходят из строя. Особенно это относится к моделям зарядных устройств неизвестных производителей, приобретаемым на радиорынках в связи с их невысокой стоимостью.

    Как правило, для сохранения рентабельности такие производители применяют в своих устройствах более дешевые комплектующие, что неизбежно влечет за собой снижение их надежности.

    После того как, не проработав и недели, вышло из строя купленное на радиорынке подобное зарядное устройство для телефона NOKIA, было принято решение выяснить причину возникшей неисправности и внести необходимые изменения в схему для повышения надежности устройства в целом.

    Нужно отметить, что, сравнивая два зарядных устройства — сертифицированное и «серое» разницу найти не просто (рис. 1). Корпус устройства неизвестного производителя (сверху на рис. 1) отличается менее глубоким тиснением надписей логотипа NOKIA и технических характеристик устройства, а также отсутствием нанесенного шелкографией значка, регламентирующего способ утилизации устройства по окончании срока его эксплуатации. На рис. 2 показана монтажная плата устройства.

    Принципиальная схема устройства была восстановлена по монтажной плате. Она представляет собой классический импульсный преобразователь обратного хода (рис. 3).

    Подобные простые схемы широко применяются в импульсных блоках питания и зарядных устройствах (мощностью до 25 Вт).

    Заявленные характеристики устройства — выходное напряжение 5,7 В и ток нагрузки 800 мA.

    А теперь коротко рассмотрим принцип работы блока питания на принципиальной схеме (рис. 3).

    Напряжение сети подается через токоограничивающий резистор R1 на вход выпрямителя на диодах D1-D4. На транзисторе Q1 выполнен автогенератор, частота которого в основном определяется характеристиками применяемого здесь импульсного трансформатора TF1. Резистор R3 задает режим работы транзистора Q1. Стабилизация выходного напряжения происходит за счет использования обмотки обратной связи импульсного трансформатора TF1 и цепи D7 C4 ZD1. Транзистор Q2 и резистор R2 служат для ограничения тока транзистора Q1 в момент запуска автогенератора, а также в случае перегрузки или короткого замыкания на выходе устройства. Схема содержит однополупериодный выпрямитель выходного напряжения на диоде D8 и конденсаторе C5. Резистор R6 служит для разрядки конденсатора C5 после выключения устройства.

    В результате проверки описанного выше зарядного устройства был найден неисправный транзистор Q1 с маркировкой 1003 и сгоревший резистор R3. Обгоревшее покрытие резистора не позволило определить его сопротивление. С целью повышения надежности схемы в качестве транзистора Q1 был использован более мощный и широко распространенный отечественный транзистор КТ 940А (рис. 4). Следует учесть, что в связи с большим разбросом характеристик транзисторов КТ 940А в некоторых случаях, возможно, потребуется изменить указанное на схеме значение сопротивления R3.

    Необходимо заметить, что на плате, в предусмотренном для этого месте, отсутствует оксидный конденсатор С, который должен быть подключен на выходе диодного выпрямителя D1-D4. В этом случае автогенератор устройства фактически работает в режиме модуляции выпрямленным сетевым напряжением. По этой причине во многих случаях подобные устройства могут не обеспечивать заявленный выходной ток, необходимый для зарядки аккумулятора мобильного телефона. Следствием этого может быть, например,увеличение общего времени зарядки. При необходимости можно установить этот отсутствующий конденсатор — его емкость может составлять не более 10 мкФ на рабочее напряжение не менее 450 В. Рекомендуется сразу с установкой конденсатора припаять параллельно его ножкам со стороны монтажа резистор сопротивлением около 300 кОм (для разрядки этого конденсатора после отключения устройства от сети). Кроме того, для надежности, желательно использовать резистор R1 с большей рассеивающей мощностью, так как он ограничивает ток зарядки указанного выше конденсатора в момент включения устройства в сеть. На плате предусмотрено место для светодиода, предназначенного для индикации работы устройства и, в случае необходимости, его можно установить на плату через токоограничивающий резистор сопротивлением 680 Ом.

    После ремонта данное зарядное устройство надежно работает уже больше года без замечаний. Учитывая, что используемая схема преобразователя широко применяется во многих зарядных устройствах, описанный способ ремонта и повышения надежности может быть рекомендован и для других подобных устройств.

    Ремонт блока питания зарядки телефона. Зарядное устройство мобильного телефона LG (принципиальная схема и ремонт). Распиновка зарядного гнезда планшета Samsung Galaxy Tab

    Представляю очередное устройство из серии «Не Брать!»
    В комплект прилагается простенький кабель microUSB, который буду тестировать отдельно с кучей других шнурков.
    Заказал эту зарядку ради любопытства, зная, что в таком компактном корпусе крайне сложно сделать надёжное и безопасное устройство сетевого питания 5В 1А. Реальность оказалась суровой…

    Пришло в стандартном пакетике с пупыркой.
    Корпус глянцевый, обёрнут защитной плёнкой.
    Габаритные размеры с вилкой 65х34х14мм


    Зарядка сразу оказалась нерабочей — хорошее начало…
    Пришлось в начале устройство разбирать и ремонтировать, чтобы иметь возможность тестировать.
    Разбирается очень просто — на защёлках самой вилки.
    Дефект обнаружился сразу — отвалился один из проводков к вилке, пайка оказалась некачественной.


    Вторая пайка не лучше


    Сам монтаж платы выполнен нормально (для китайцев), пайка хорошая, плата отмыта.


    Реальная схема устройства


    Какие проблемы были обнаружены:
    — Довольно слабое крепление вилки с корпусом. Не исключена возможность остаться ей оторванной в розетке.
    — Отсутствие предохранителя по входу. Видимо те самые проводочки к вилке и являются защитой.
    — Однополупериодный входной выпрямитель — неоправданная экономия на диодах.
    — Малая ёмкость входного конденсатора (2,2мкФ/400В). Для работы однополупериодного выпрямителя ёмкость явно недостаточна, что приведёт к повышенным пульсациям напряжения на нём на частоте 50Гц и к уменьшению срока его службы.
    — Отсутствие фильтров по входу и выходу. Невелика потеря для такого маленького и маломощного устройства.
    — Простейшая схема преобразователя на одном слабеньком транзисторе MJE13001.
    — Простой керамический конденсатор 1нФ/1кВ в помехоподавляющей цепи (показал отдельно на фото). Это грубое нарушение безопасности устройства. Конденсатор должен быть класса не менее Y2.
    — Отсутствует демпферная цепь гашения выбросов обратного хода первичной обмотки трансформатора. Этот импульс частенько пробивает силовой ключевой элемент при его нагреве.
    — Отсутствие защит от перегрева, от перегрузки, от короткого замыкания, от повышения выходного напряжения.
    — Габаритная мощность трансформатора явно не тянет на 5Вт, а его очень миниатюрный размер ставит под сомнение наличие нормальной изоляции между обмотками.

    Теперь тестирование.
    Т.к. устройство изначально не является безопасным, подключение производил через дополнительный сетевой предохранитель. Если уж что случится — хотя-бы не обожжёт и не оставит без света.
    Проверял без корпуса, чтобы можно было контролировать температуру элементов.
    Выходное нгапряжение без нагрузки 5,25В
    Потребляемая мощность без нагркзки менее 0,1Вт
    Под нагрузкой 0,3А и менее зарядка работает вполне адекватно, напряжение держит нормально 5,25В, пульсации на выходе незначительные, ключевой транзистор греется в пределах нормы.
    Под нагрузкой 0.4А напряжение начинает немного гулять в диапазоне 5,18В — 5,29В, пульсации на выходе 50Гц 75мВ, ключевой транзистор греется в пределах нормы.
    Под нагрузкой 0,45А напряжение начинает заметно гулять в диапазоне 5,08В — 5,29В, пульсации на выходе 50Гц 85мВ, ключевой транзистор начинает потихоньку перегреваться (обжигает палец), трансформатор тёпленький.
    Под нагрузкой 0,50А напряжение начинает сильно гулять в диапазоне 4,65В — 5,25В, пульсации на выходе 50Гц 200мВ, ключевой транзистор перегрет, трансформатор также довольно сильно нагрет.
    Под нагрузкой 0,55А напряжение дико прыгает в диапазоне 4,20В — 5,20В, пульсации на выходе 50Гц 420мВ, ключевой транзистор перегрет, трансформатор также довольно сильно нагрет.
    При ещё большем увеличении нагрузки, напряжение резко проседает до неприличных величин.

    Выходит, данная зарядка реально может выдавать максимум 0,45А вместо заявленных 1А.

    Далее, зарядка была собрана в корпус (вместе с предохранителем) и оставлена в работе на пару часов.
    Как ни странно, зарядка не вышла из строя. Но это вовсе не означает, что она является надёжной — имея такую схемотехнику долго ей не протянуть…
    В режиме короткого замыкания зарядка тихо умерла через 20 секунд после включения — произошёл обрыв ключевого транзистора Q1, резистора R2 и оптрона U1. Даже дополнительно установленный предохранитель не успел сгореть.

    Для сравнения, покажу как выглядит внутри простейшая китайская зарядка 5В 2А от планшета, изготовленная с соблюдением минимально-допустимых норм безопасности.

    Пользуясь случаем, сообщаю, что драйвер светильника из предыдущего обзора был успешно доработан, статья дополнена.

    Интересно, из чего же состоит зарядное устройство (блок питания) Сименса и возможно ли его починить самостоятельно в случае поломки.

    Для начала блок нужно разобрать. Судя по швам на корпусе этот блок не предназначен для разборки, следовательно вещь одноразовая и больших надежд в случае поломки можно не возлагать.

    Мне пришлось в прямом смысле раскурочить корпус зарядного устройства, оно состоит из двух плотно склеенных частей.

    Внутри примитивная плата и несколько деталей. Интересно то, что плата не припаяна к вилке 220в., а крепится к ней при помощи пары контактов. В редких случаях эти контакты могут окислиться и потерять контакт, а вы подумаете, что блок сломался. А вот толщина проводов, идущих к разъему на мобильный телефон, приятно порадовала, не часто встретишь в одноразовых приборах нормальный провод, обычно он такой тонкий, что даже дотрагиваться до него страшно).

    На тыльной стороне платы оказалось несколько деталей, схема оказалась не такой простой, но все равно она не такая и сложная, чтобы не починить ее самостоятельно.

    Ниже на фото контакты внутки корпуса.

    В схеме зарядного устройства нет понижающего трансформатора, его роль играет обычный резистор. Далее как обычно парочка выпрямляющих диодов, пара конденсаторов для выпрямления тока, после идет дроссель и наконец стабилитрон с конденсатором завершают цепочку и выводят пониженное напряжение на провод с разъемом к мобильному телефону.

    В разъеме всего два контакта.

    Мы рассмотрели схему простого автономного зарядного для мобильной техники, работающего по принципу простого стабилизатора с понижением напряжения батарей. На этот раз попробуем собрать чуть более сложное, но более удобное ЗУ. Встроенные в миниатюрные мобильные мультимедийные устройства аккумуляторы обычно имеют небольшую ёмкость, и, как правило, рассчитаны на воспроизведение аудиозаписей в течение не более нескольких десятков часов при выключенном дисплее или на воспроизведение нескольких часов видео или нескольких часов чтения электронных книг. Если сетевая розетка недоступна или из-за непогоды или других причин электроснабжение отключено на длительное время, то различные мобильные аппараты с цветными дисплеями придётся питать от встроенных источников энергии.

    Учитывая, что такие устройства потребляют немалый ток, их аккумуляторы могут оказаться разряжены до того момента, когда станет доступно электричество из сетевой розетки. Если вы не желаете погружаться в первобытную тишину и душевное спокойствие, то для питания карманных устройств можно предусмотреть резервный автономный источник энергии, который выручит как во время долгого путешествия в дикую природу, так и при техногенных или природных катастрофах, когда ваш населённый пункт может оказаться на несколько дней или недель без электроснабжения.


    Схема мобильного зарядного без сети 220В

    Устройство представляет собой линейный стабилизатор напряжения компенсационного типа с малым напряжением насыщения и очень малым собственным током потребления. В качестве источника энергии для этого стабилизатора может быть простая батарейка, аккумуляторная батарея, солнечная или ручной электрогенератор. Потребляемый стабилизатором ток при отключенной нагрузке около 0,2мА при входном напряжении питания 6 В или 0,22мА при напряжении питания 9 В. Минимальная разница между входным и выходным напряжением менее 0,2 В при токе нагрузке 1 А! При изменении входного напряжения питания от 5,5 до 15 В выходное напряжение изменяется не более чем на 10 мВ при токе нагрузки 250 мА. При изменении тока нагрузки от 0 до 1 А выходное напряжение изменяется не более чем на 100 мВ при входном напряжении б В и не более чем на 20 мВ при входном напряжении питания 9 В.

    Самовосстанавливающийся предохранитель защищает стабилизатор и батарею питания от перегрузки. Обратновключенный диод VD1 защищает устройство от переполюсовки напряжения питания. При увеличении напряжения питания, выходное напряжение также стремится увеличиться. Чтобы поддерживать выходное напряжение стабильным, используется регулирующий узел, собранный на VT1, VT4.

    В качестве источника опорного напряжения применён сверхъяркий светодиод синего цвета, который одновременно с выполнением функции микромощного стабилитрона, является индикатором наличия выходного напряжения. Когда выходное напряжение стремится увеличиться, ток через светодиод возрастает, также возрастает ток через эмиттерный переход VT4, и этот транзистор открывается сильнее, также сильнее открывается VT1. который шунтирует затвор-исток мощного полевого транзистора VT3.

    В результате, сопротивление открытого канала полевого транзистора увеличивается и напряжение на нагрузке понижается. Подстроечным резистором R5 можно регулировать выходное напряжение. Конденсатор С2 предназначен для подавления самовозбуждения стабилизатора при росте тока нагрузки. Конденсаторы С1 и СЗ — блокировочные по цепям питания. Транзистор VT2 включен как микромощный стабилитрон с напряжением стабилизации 8..9 В. Он предназначен для защиты от пробоя высоким напряжением изоляции затвора VT3. Опасное для VT3 напряжение затвор-исток может появиться в момент включения питания или из-за прикосновения к выводам этого транзистора.

    Детали . Диод КД243А можно заменить любым из серий КД212, КД243. КД243, КД257, 1N4001..1N4007. Вместо транзисторов КТ3102Г подойдут любые аналогичные с малым обратным током коллектора, например, любые из серий КТ3102, КТ6111, SS9014, ВС547, 2SC1845. Вместо транзистора КТ3107Г подойдёт любой из серий КТ3107, КТ6112, SS9015, ВС556, 2SA992. Мощный п-канальный полевой транзистор типа IRLZ44 в корпусе ТО-220, имеет малое пороговое напряжение открывания затвор-исток, максимальное рабочее напряжение 60 В. Максимальный постоянный ток — до 50 А, сопротивление открытого канала 0,028 Ом. В этой конструкции его можно заменить на IRLZ44S, IRFL405, IRLL2705, IRLR120N, IRL530NC, IRL530N. Полевой транзистор устанавливают на теплоотвод с достаточной для конкретного варианта применения площадью охлаждающей поверхности. При монтаже выводы полевого транзистора закорачивают проволочной перемычкой.


    Устройство автономного заряда может быть смонтировано на небольшой печатной плате . В качестве автономного источника питания можно использовать, например, четыре штуки последовательно соединенных щелочных гальванических элементов ёмкостью от 4 А/Ч (RL14, RL20). Такой вариант предпочтителен, если вы планируете использовать эту конструкцию относительно редко.


    Если же вы планируете применять это устройство относительно часто или ваш плеер потребляет значительно больший ток даже при выключенном дисплее, то будет целесообразным использование аккумуляторной 6 В батареи, например, герметичной мотоциклетной или от крупного ручного фонаря. Можно применить и батарею из 5 или 6 штук последовательно включенных никель-кадмиевых аккумуляторов. В походе, на рыбалке, для подзарядки аккумуляторов и питания карманного устройства может оказаться удобным использование солнечной батареи, способной выдавать ток не менее 0,2 А при выходном напряжении 6 В. При питании плеера от этого стабилизированного источника энергии следует учитывать, что регулирующий транзистор включен в цепь «минус», поэтому, одновременное питание плеера и, например, небольшой активной акустической системы возможно лишь в том случае, если оба устройства подключены к выходу стабилизатора.

    Задача данной схемы — не допустить критического разряда литиевого аккумулятора. Индикатор включает красный светодиод, когда напряжение на аккумуляторе снизится до порогового значения. Напряжение включения светодиода установлено 3,2V.


    Стабилитрон должен иметь напряжение стабилизации ниже желаемого напряжения включения светодиода. Микросхему использовал 74HC04. Настройка блока индикации заключается в подборе порога включения светодиода с помощью R2. Микросхема 74NC04 делает так, что светодиод загорается при разряде до порога, что будет установлен подстроечником. Ток потребления устройством 2 мА, да и сам СД загорится только в момент разряда, что удобно. У себя эти 74NC04 нашёл на старых материнках, потому и использовал.

    Печатная плата:

    Для упрощения конструкции, данный индикатор разряда можно и не ставить, ведь микросхему SMD можно не найти. Поэтому платка специально стоит сбоку и её можно по линии отрезать, а позже, при необходимости, отдельно добавить. В будущем хотел поставить туда индикатор на TL431, как более выгодный вариант по деталям. Полевой транзистор стоит с запасом для разных нагрузок и без радиатора, хотя думаю можно поставить и аналоги послабее, но уже с радиатором.

    Резисторы SMD установлены для устройств SAMSUNG (смартфоны, планшеты, и т.д., у них свой алгоритм заряда, а я всё делаю с запасом на будущее) и их можно не ставить вообще. Отечественные КТ3102 и КТ3107 и их аналоги не ставьте, у меня на этих транзисторах плавало напряжение из-за h31. Берите ВС547-ВС557, самое то. Источник схемы: Бутов A. Радиоконструктор. 2009. Сборка и наладка: Igoran .

    Обсудить статью МОБИЛЬНАЯ ЗАРЯДКА ДЛЯ ТЕЛЕФОНА

    Приветствую радиолюбители!!!
    Перебирая старые платы наткнулся на парочку импульсных блоков питания от мобильных телефонов и захотелось их восстановить и заодно поведать вас о наиболее частых их поломках и устранения недостатков. На фото показаны две универсальные схемы таких зарядок, которые чаще всего встречаются:

    В моем случае плата была подобна первой схеме, но без светодиода на выходе, который играет только роль индикатора присутствия напряжения на выходе блока. Прежде всего нужно разобраться с поломкой, ниже на фото я очертите детали какие чаще всего выходят из строя:

    А проверять все необходимые детали будем с помощью обычного мультиметра DT9208A.
    В нем есть все необходимое для этого. Режим прозвонки диодов и переходов транзисторов, а также омметр и измеритель емкости конденсаторов до 200мкф.Этого набора функций более чем достаточно.

    Во время проверки радиодеталей нужно знать цоколь всех деталей транзисторов и диодов особенно.

    Большинство современных мобильных телефонов, смартфонов, планшетов и других носимых гаджетов, поддерживает зарядку через гнездо USB mini-USB или micro-USB. Правда до единого стандарта пока далеко и каждая фирма старается сделать распиновку по-своему. Наверное чтоб покупали зарядное именно у неё. Хорошо хоть сам ЮСБ штекер и гнездо сделали стандартным, а также напряжение питания 5 вольт. Так что имея любое зарядное-адаптер, можно теоретически зарядить любой смартфон. Как? и читайте далее.

    Распиновка USB разъемов для Nokia, Philips, LG, Samsung, HTC

    Бренды Nokia, Philips, LG, Samsung, HTC и многие другие телефоны распознают зарядное устройство только если контакты Data+ и Data- (2-й и 3-й) будут закорочены. Закоротить их можно в гнезде USB_AF зарядного устройства и спокойно заряжать свой телефон через стандартный дата-кабель.

    Распиновка USB разъемов на штекере

    Если зарядное устройство уже обладает выходным шнуром (вместо выходного гнезда), и вам нужно припаять к нему штекер mini-USB или micro-USB, то не нужно соединить 2 и 3 контакты в самом mini/micro USB. При этом плюс паяете на 1 контакт, а минус — на 5-й (последний).

    Распиновка USB разъемов для Iphone

    У Айфонов контакты Data+ (2) и Data- (3) должны соединяться с контактом GND (4) через резисторы 50 кОм, а с контактом +5V через резисторы 75 кОм.

    Распиновка зарядного разъема Samsung Galaxy

    Для заряда Самсунг Галакси в штекере USB micro-BM должен быть установлен резистор 200 кОм между 4 и 5 контактами и перемычка между 2 и 3 контактами.

    Распиновка USB разъемов для навигатора Garmin

    Для питания или заряда навигатора Garmin требуется особый дата-кабель. Просто для питания навигатора через кабель нужно в штекере mini-USB закоротить 4 и 5 контакты. Для подзаряда нужно соединить 4 и 5 контакты через резистор 18 кОм.

    Схемы цоколёвки для зарядки планшетов

    Практически любому планшетному компьютеру для заряда требуется большой ток — раза в 2 больше чем смартфону, и заряд через гнездо mini/micro-USB во многих планшетах просто не предусмотрен производителем. Ведь даже USB 3.0 не даст более 0,9 ампер. Поэтому ставится отдельное гнездо (часто круглого типа). Но и его можно адаптировать под мощный ЮСБ источник питания, если спаять вот такой переходник.

    Распиновка зарядного гнезда планшета Samsung Galaxy Tab

    Для правильного заряда планшета Samsung Galaxy Tab рекомендуют другую схему: два резистора: 33 кОм между +5 и перемычкой D-D+; 10 кОм между GND и перемычкой D-D+.

    Распиновка разъёмов зарядных портов

    Вот несколько схем напряжений на контактах USB с указанием номинала резисторов, позволяющих эти напряжения получить. Там, где указано сопротивление 200 Ом нужно ставить перемычку, сопротивление которой не должно превышать это значение.

    Классификация портов Charger

    • SDP (Standard Downstream Ports) – обмен данными и зарядка, допускает ток до 0,5 A.
    • CDP (Charging Downstream Ports) – обмен данными и зарядка, допускает ток до 1,5 A; аппаратное опознавание типа порта (enumeration) производится до подключения гаджетом линий данных (D- и D+) к своему USB-приемопередатчику.
    • DCP (Dedicated Charging Ports) – только зарядка, допускает ток до 1,5 A.
    • ACA (Accessory Charger Adapter) – декларируется работа PD-OTG в режиме Host (с подключением к PD периферии – USB-Hub, мышка, клавиатура, HDD и с возможностью дополнительного питания), для некоторых устройств – с возможностью зарядки PD во время OTG-сессии.

    Как переделать штекер своими руками

    Теперь у вас есть схема распиновки всех популярных смартфонов и планшетов, так что если имеете навык работы с паяльником — не будет никаких проблем с переделкой любого стандартного USB-разъема на нужный вашему девайсу тип. Любая стандартная зарядка, которая основывается на использовании USB, предусматривает использование всего лишь двух проводов – это +5В и общий (минусовой) контакт.

    Просто берёте любую зарядку-адаптер 220В/5В, от неё отрезаете ЮСБ коннектор. Отрезанный конец полностью освобождается от экрана, в то время как остальные четыре провода зачищаются и залуживаются. Теперь берем кабель с разъемом USB нужного типа, после чего также отрезаем от него лишнее и проводим ту же самую процедуру. Теперь остается просто спаять между собой провода согласно схемы, после чего соединение изолировать каждое отдельно. Полученное в итоге дело сверху заматывается изолентой или скотчем. Можно залить термоклеем — тоже нормальный вариант.

    Бонус: все остальные разъёмы (гнёзда) для мобильных телефонов и их распиновка доступны в единой большой таблице — .

    Внутри (поддельного) зарядного устройства для iPhone


    Мысли о смерти Ма Айлуна

    Согласно сообщениям, женщина в Китае трагически погибла от удара электрическим током, когда она заряжалась от своего iPhone. Мне это кажется технически правдоподобным, если бы она использовала дешевое или поддельное зарядное устройство, как я описываю ниже. Внутри зарядного устройства 340 вольт постоянного тока, этого достаточно, чтобы убить. В дешевом зарядном устройстве расстояние между выходным напряжением и выходным напряжением может составлять менее миллиметра, что составляет часть рекомендуемого безопасного расстояния.В этих зарядных устройствах иногда происходит короткое замыкание (рисунок), что может привести к подаче смертельного напряжения через USB-кабель. Если пользователь замыкает цепь, стоя на влажном полу или касаясь заземленной металлической поверхности, возможно поражение электрическим током. Если в зарядном устройстве конденсируется влага (например, во влажной ванной), вероятность короткого замыкания возрастает. Подлинные зарядные устройства Apple (и зарядные устройства других брендов) соответствуют строгим правилам безопасности (разборка), поэтому я был бы удивлен, если бы такое поражение электрическим током произошло с зарядным устройством известной марки.Поскольку подделки выглядят так же, как настоящие зарядные устройства, я буду ждать, пока эксперт определит, использовалось ли подлинное зарядное устройство Apple или нет. Я читал предположения, что, возможно, виновата домашняя проводка, но, поскольку зарядные устройства обычно не заземлены, я не понимаю, какую роль может сыграть неисправная домашняя проводка. Я должен отметить, что, поскольку на данный момент мало деталей, это все предположения; возможно, телефон и зарядное устройство вообще не использовались. Недавно я написал популярную статью по истории компьютерных блоков питания, которая привела к предположениям о том, что находится внутри этих удивительно маленьких кубических USB-зарядных устройств размером один дюйм, продаваемых Apple, Samsung, RIM и другими компаниями.В интересах науки я купил дешевое безымянное зарядное устройство для кубов на eBay за 2,79 доллара и разобрал его. Удивительно, что производители могут создать и продать сложное зарядное устройство всего за несколько долларов. Оно очень похоже на настоящее зарядное устройство Apple и стоит намного дешевле. Но заглянув внутрь, я обнаружил, что важные углы безопасности были вырезаны, что могло привести к неожиданности в 340 вольт. Кроме того, помехи от такого дешевого зарядного устройства могут вызвать сбои в работе сенсорного экрана. Таким образом, я рекомендую потратить еще несколько долларов на фирменное зарядное устройство.

    Безымянное зарядное устройство, которое я купил, имеет длину чуть более дюйма, не считая вилки европейского образца. Зарядное устройство имеет маркировку «ДЛЯ iphone4. Вход 110-240 В, 50/60 Гц, Выход 5,2 В, 1000 мА, Сделано в Китае». Никакой другой маркировки (производитель, серийный номер или сертификаты безопасности) нет. Я вскрыл зарядное устройство с помощью Dremel-ing. Один сюрприз — сколько пустого места внутри для такого маленького зарядного устройства. Очевидно, схема зарядного устройства предназначена для вилки меньшего размера в американском стиле, а дополнительное пространство с европейской вилкой не используется.Поскольку зарядное устройство принимает входное напряжение от 110 до 240 В, ту же схему можно использовать во всем мире. [1]

    Сам блок питания немного меньше одного кубического дюйма. На рисунке ниже показаны основные компоненты. Слева — стандартный разъем USB. Обратите внимание, сколько места он занимает — неудивительно, что устройства переходят на разъемы micro-USB. Обратный трансформатор — это черно-желтый компонент; он преобразует вход высокого напряжения в выход 5 В. Перед ним переключающий транзистор.Рядом с транзистором находится компонент, который выглядит как резистор, но представляет собой катушку индуктивности, фильтрующую входной переменный ток. На нижней стороне вы можете увидеть конденсаторы, фильтрующие выход и вход.

    Источник питания представляет собой простой импульсный источник питания с обратным ходом. Входной переменный ток преобразуется в высоковольтный постоянный ток диодом, прерывается в импульсы силовым транзистором и подается в трансформатор. Выход трансформатора преобразуется в постоянный ток низкого напряжения с помощью диода, фильтруется и выводится через порт USB.Схема обратной связи регулирует выходное напряжение на уровне 5 вольт, регулируя частоту прерывания.

    Подробное объяснение

    Более подробно, источник питания представляет собой автоколебательный обратноходовой преобразователь, также известный как преобразователь с вызывным дросселем. [2] В отличие от большинства источников питания с обратным ходом, в которых для управления колебаниями используется ИС, этот источник питания генерирует колебания сам по себе через обмотку обратной связи на трансформаторе. Это уменьшает количество компонентов и минимизирует стоимость. Контроллер IC за 75 центов [3] будет огромными расходами за 2 доллара.79, поэтому они использовали минимальную схему.

    На рисунке выше показаны компоненты схемы; красные рамки и курсив обозначают компоненты на другой стороне. (Щелкните, чтобы увеличить изображение.) Обратите внимание на то, что большинство компонентов представляют собой крошечные устройства поверхностного монтажа (SMD) и их не так много по сравнению с конденсаторами. Зеленые провода подают входной переменный ток, который фильтруется через катушку индуктивности. Высоковольтный входной диод 1N4007 (M7) и входной конденсатор 4,7 мкФ преобразуют входной переменный ток в 340 вольт постоянного тока.[4] Силовой транзистор MJE13003 переключает питание на трансформатор с переменной частотой (вероятно, около 50 кГц). Трансформатор имеет две первичные обмотки (силовую обмотку и обмотку обратной связи) и вторичную обмотку. (Трансформатор и катушка индуктивности также известны как «магнетики».)

    На вторичной (выходной) стороне высокоскоростной диод Шоттки SS14 выпрямляет выходной сигнал трансформатора в постоянный ток, который фильтруется выходным конденсатором 470 мкФ, прежде чем обеспечить желаемое. 5В к USB-порту.Два центральных контакта USB-порта (контакты данных) закорочены вместе с каплей припоя, как будет объяснено ниже.

    Простая цепь обратной связи регулирует напряжение. Выходное напряжение делится пополам резисторным делителем и сравнивается с 2,5 В с помощью общего устройства опорного напряжения 431. Обратная связь передается на первичную обмотку через оптоизолятор 817B. На первичной стороне колебания обратной связи от обмотки трансформатора обратной связи и обратная связь по напряжению от оптоизолятора объединены в управляющем транзисторе 2SC2411.Затем этот транзистор приводит в действие силовой транзистор, замыкая контур. (Очень похожая схема источника питания описана компанией Delta. [5])

    Изоляция и безопасность

    По соображениям безопасности источники питания переменного тока должны поддерживать строгую изоляцию между входом переменного тока и выходом. Схема разделена на первичную сторону, подключенную к переменному току, и вторичную сторону, подключенную к выходу. Между двумя сторонами не может быть прямого электрического соединения, иначе кто-то, прикоснувшись к выходу, может получить электрический ток.Любое соединение между двумя сторонами должно осуществляться через трансформатор или оптоизолятор. В этом источнике питания трансформатор обеспечивает изоляцию основного питания, а оптоизолятор обеспечивает изоляцию обратной связи по вторичному напряжению.

    Если вы посмотрите на рисунок, вы можете увидеть границу изоляции, обозначенную белой линией на печатной плате, пересекающей печатную плату примерно по горизонтали, причем первичная сторона находится вверху, а вторичная сторона — внизу. (Эта линия напечатана на доске; я не добавлял ее к картинке.) Кружки на линии, которые выглядят как дыры, на самом деле дыры. Это обеспечивает дополнительную изоляцию между двумя сторонами.

    UL имеет комплексные требования безопасности относительно того, какое расстояние (известное как «путь утечки» и «зазор») должно быть между первичной и вторичной сторонами, чтобы предотвратить опасность поражения электрическим током. [6] Правила сложные, и я не эксперт, но я думаю, что требуется как минимум 3 или 4 мм. На этом блоке питания среднее расстояние составляет около 1 миллиметра. Зазор ниже R8 справа немного меньше одного миллиметра (обратите внимание, что белая линия пересекает дорожку печатной платы слева от R8).

    Мне было интересно, как этот блок питания мог соответствовать стандартам UL с зазором менее 1 мм. Присмотревшись к корпусу зарядного устройства повнимательнее, я заметил, что в нем нет ни сертификатов безопасности, ни даже производителя. Я внезапно понял, что покупка самого дешевого зарядного устройства на eBay от неизвестного производителя в Китае может быть угрозой безопасности. Обратите внимание, что этот субмиллиметровый зазор — это все, что защищает вас и ваш телефон от потенциально смертельного напряжения в 340 вольт. Я также разобрал трансформатор и обнаружил только одинарные слои изоляционной ленты между обмотками, а не двойные слои, требуемые UL.Заглянув внутрь этого зарядного устройства, я рекомендую потратить немного больше на зарядное устройство и приобрести такое, которое имеет одобрение UL и имя известного производителя.

    Еще одна проблема, связанная с супердешевыми зарядными устройствами, заключается в том, что они производят некачественную электрическую продукцию с большим шумом, который может мешать работе вашего телефона. Известно, что недорогие адаптеры дроссельной заслонки вызывают сбои в работе сенсорного экрана, поскольку экран улавливает электрические помехи. [7] В статье было замечено несколько экономичных дизайнерских решений, которые увеличивают помехи.В зарядном устройстве для выпрямления входа используется один диод, а не четырехдиодный мост, который будет создавать больше помех. Входная и выходная фильтрация минимальны по сравнению с другими проектами. [8] [9] На входе переменного тока также нет предохранителя, что немного беспокоит.

    Протоколы зарядки USB

    Вы можете подумать, что зарядные устройства USB взаимозаменяемы и подключить USB-устройство к зарядному устройству несложно, но оказывается, что это беспорядок из нескольких стандартов зарядки USB, [10] [11] [12] устройств, которые нарушать правила [13] и проприетарные протоколы, используемые Sony и Apple.[14] [15] [16] Основная проблема заключается в том, что стандартный USB-порт может обеспечить до 500 мА, так как же зарядные устройства обеспечивают 1 А или более для более быстрой зарядки? Для упрощения, зарядное устройство указывает, что это зарядное устройство, путем короткого замыкания двух средних контактов USB (D + и D-). Фирменные зарядные устройства вместо этого подключают разные сопротивления к контактам D + и D-, чтобы указать, какой ток они могут обеспечить. Обратите внимание, что есть несколько неиспользуемых точек подключения резистора (R2, R3, R8, R10), подключенных к порту USB на схеме выше; производитель может добавить соответствующие резисторы для имитации зарядных устройств других типов.

    Достижения в адаптерах питания переменного тока

    Ранние адаптеры питания представляли собой просто трансформатор переменного тока, производящий переменный ток низкого напряжения, или добавляемые диоды для производства постоянного тока. В середине 1990-х импульсные источники питания стали более популярными, поскольку они более компактны и более эффективны [17]. Однако растущая популярность адаптеров переменного тока, а также их тенденция к потере нескольких ватт, когда их оставляют подключенными к сети, ежегодно обходятся Соединенным Штатам в миллиарды долларов потраченной впустую электроэнергии [3]. Стандарты New Energy Star [18] поощряют «зеленые» конструкции, которые в простое используют милливатты, а не ватты.Эти эффективные контроллеры могут останавливать переключение, когда они разгружены, с прерывистыми всплесками, чтобы получить достаточно энергии для продолжения работы. [19] Одна конструкция блока питания фактически обеспечивает нулевое энергопотребление в режиме ожидания за счет использования «суперконденсатора» в режиме ожидания. [20]

    Полупроводниковая промышленность продолжает совершенствовать импульсные источники питания за счет усовершенствования микросхем контроллеров и переключающих транзисторов. Для простых источников питания некоторые производители объединяют микросхему контроллера и переключающий транзистор в один компонент, имеющий всего 4 или 5 контактов.Другой технологией управления зарядным устройством является CC / CV, которая обеспечивает постоянный ток до тех пор, пока аккумулятор не зарядится, а затем постоянное напряжение для поддержания его заряда. Чтобы свести к минимуму электромагнитные помехи (EMI), некоторые контроллеры непрерывно изменяют частоту переключения, чтобы распределить помехи по «расширенному спектру» [21]. Контроллеры также могут включать в себя функции безопасности, такие как защита от перегрузки, блокировка при пониженном напряжении и тепловое отключение для защиты от перегрева,

    Выводы

    Держитесь подальше от сверхдешевых адаптеров переменного тока, созданных загадочными производителями.Потратьте лишние несколько долларов на фирменный адаптер переменного тока. Это будет безопаснее, будет меньше помех, а сенсорный экран вашего устройства будет работать лучше.

    Примечания и ссылки

    [1] Импульсные источники питания часто используют «универсальный» вход от 110 В до 240 В при 50/60 Гц, что позволяет одному и тому же источнику удобно работать с мировыми напряжениями. Поскольку импульсный источник питания разбивает входной сигнал на переменные сегменты, выходное напряжение может не зависеть от входного напряжения в широком диапазоне.(Это также делает импульсные источники питания более устойчивыми к отключениям питания.) Конечно, спроектировать схему для работы в широком диапазоне напряжений сложнее, особенно для источников питания, которые должны быть очень эффективными в широком диапазоне напряжений. Чтобы упростить конструкцию первых блоков питания для ПК, они часто использовали переключатель для выбора входа 120 В или 240 В. Благодаря очень умной схеме удвоителя этот переключатель преобразовал входной мост в удвоитель напряжения на входе 120 В, так что остальная часть схемы может быть рассчитана на одно напряжение.Однако современные источники питания обычно рассчитаны на работу во всем диапазоне напряжений, что позволяет избежать затрат на дополнительный переключатель и гарантирует, что пользователи не установят переключатель в неправильное положение и что-то не разрушат.
    [2] Объяснение в стиле комиксов обратноходовых преобразователей и преобразователей с вызывным дросселем можно найти на сайте TDK Power Electronics World.
    [3] Стоимость простаивающих адаптеров переменного тока оценивается от 3,5 до 5,4 млрд долларов на 45 ТВт-часов потраченной впустую электроэнергии в США. В статье обсуждаются решения и упоминается, что эффективная ИС контроллера стоит 75 центов.(Обратите внимание, что это огромная стоимость для адаптера, который продается за 2,79 доллара.) Устранение утечек, EDN , февраль 1999 г., p96-99
    [4] Напряжение постоянного тока примерно в sqrt (2) раз больше переменного напряжения, поскольку диод заряжает конденсатор до пика сигнала переменного тока. Таким образом, входное напряжение 240 В переменного тока приведет к примерно 340 В постоянного тока внутри источника питания. Из-за такого использования пика переменного тока используется только небольшая часть входного переменного тока, что приводит к неэффективности, известной как плохой коэффициент мощности. Для более мощных источников питания используется коррекция коэффициента мощности (PFC) для улучшения коэффициента мощности.
    [5] Схема преобразователя кольцевого дросселя, подобная тому, что я исследовал, содержится в книге «Анализ и проектирование самоколебательного обратного преобразователя», Delta Products Corporation.
    [6] Соображения безопасности при проектировании источников питания, Texas Instruments, предоставляет подробное обсуждение требований безопасности к источникам питания. Также см. «Расчет путей утечки и зазоров на раннем этапе, чтобы избежать проблем проектирования в дальнейшем», «Проектирование соответствия ». Онлайн-калькулятор требований UL 60950-1 для зазоров и путей утечки находится на сайте www.creepage.com.
    [7] Cypress Semiconductor сравнил обратноходовые преобразователи и преобразователи со звенящим дросселем; преобразователи с дросселем и вызывным дросселем значительно дешевле, но очень шумны в электрическом отношении. Причиной плохой работы сенсорного экрана являются шумные недорогие зарядные устройства на вторичном рынке. Noise Wars: Projected Capacitance Strikes Back, Cypress Semiconductor , сентябрь 2011 г.
    [8] Power Integrations имеет несколько конструкций и схем для зарядных устройств и адаптеров сотовых телефонов.
    [9] Power Integrations имеет подробный проект зарядного устройства для куба 5 Вт на базе контроллера LinkSwitch-II.Эта схема позволяет разместить две печатные платы в дюймовом кубе, что весьма впечатляет. Зарядное устройство Cube на 5 Вт с использованием LinkSwitch-II и PR14 Core
    [10] Официальная спецификация зарядки через USB — это Battery Charging v1.2 Spec.
    [11] Обновленные стандарты USB, которые допускают сильноточную зарядку, описаны в конструкции зарядных устройств USB, соответствующих новым отраслевым стандартам, EDN , февраль 2008 г. Таким образом, зарядное устройство закорачивает D + и D-, чтобы указать, что оно может обеспечивают 1 А, по сравнению с обычным USB-портом, обеспечивающим до 500 мА.
    [12] Актуальное обсуждение USB-зарядки приведено в книге «Основы зарядки USB-аккумуляторов: руководство по выживанию», Maxim Application Note 4803, декабрь 2010 г. Здесь обсуждаются спецификации USB-зарядки аккумулятора и то, как USB определяет различную мощность. Источники: SDP (стандартные компьютерные USB-порты), CDP (сильноточные компьютерные USB-порты до 1,5 А) и DCP (адаптеры питания).
    [13] Руководство по питанию USB, в котором обсуждается разница между тем, что говорится в стандарте USB, и тем, что делается на самом деле, — это «То, что ваша мама не говорила вам о USB» в Зарядке батарей с использованием питания USB, Примечания по применению Maxim 3241, июнь 2004 г.В частности, порты USB не ограничивают ток до 500 мА и могут обеспечивать до 2 А. Кроме того, порты USB обычно обеспечивают питание даже без какого-либо перечисления.
    [14] Ладада перепроектировала зарядные устройства Apple, чтобы определить, как напряжение на выводах USB D + и D- управляет зарядным током. Minty Boost: тайны зарядки устройств Apple. Также следует отметить изображение внутреннего устройства официального зарядного устройства Apple iPhone 3Gs, которое несколько сложнее, чем зарядное устройство, которое я разобрал, с использованием двух печатных плат.
    [15] Maxim MAX14578E / MAX14578AE Детекторы зарядного устройства USB. В этом техническом описании содержатся подробные сведения о проприетарных протоколах D + / D-, используемых зарядными устройствами Apple и Sony, а также о стандартных протоколах USB.
    [16] Разработка экономичных зарядных устройств на базе USB для автомобильных приложений, EE Times , февраль 2011 г. В этой статье описаны различные типы USB-портов для зарядки и способы их реализации. В нем упоминается, что Blackberry использует спецификацию USB Battery Charging 1.0, Motoroloa использует спецификацию 1.1, телефоны в Китае используют спецификацию YDT-1591, а Apple использует собственный протокол.
    [17] Технологии электропитания , Journal of Electronic Engineering, 1995, стр. 41 сообщает, что адаптеры переменного тока и зарядные устройства для портативных компьютеров, фотоаппаратов и видеооборудования переходят от «капельных» трансформаторов к импульсным источникам питания.
    [18] Energy Star добавила в 2010 г. звездные рейтинги в отношении энергопотребления без нагрузки: от 0 звезд для зарядных устройств, которые потребляют мощность более 0,5 Вт в режиме ожидания, до 5 звезд для зарядных устройств, потребляющих менее 30 мВт.В статье также обсуждаются зарядные устройства постоянного тока / постоянного напряжения (CC / CV), которые обеспечивают постоянный ток при зарядке аккумулятора, а затем постоянное напряжение для поддержания заряда аккумулятора. Встреча 30 мВт в режиме ожидания в зарядных устройствах для мобильных телефонов.
    [19] Экологичная конструкция адаптера переменного тока, основанная на требованиях к питанию, EDN Power Technology , август 2004 г., стр. 25-26. В этой статье описывается, как создать высокоэффективный адаптер переменного тока, использующий «пакетный режим» при низкой нагрузке и минимизирующий электромагнитные помехи с помощью методов расширения спектра.
    [20] Watt Saver для адаптера переменного тока сотового телефона описывает эталонную конструкцию адаптера переменного тока, в которой используется суперконденсатор емкостью 1 Фарад для питания контроллера без использования переменного тока при отсутствии нагрузки.
    [21] ШИМ-контроллер Fairchild FAN103 разработан для зарядных устройств. Он использует скачкообразную перестройку частоты для расширения спектра электромагнитных помех — частота переключения варьируется от 46 кГц до 54 кГц. Когда нет нагрузки, контроллер переключается в режим «Deep Green», понижая частоту переключения до 370 Гц, получая достаточно энергии для продолжения работы.

    Как сделать быстрое зарядное устройство для телефона | Custom

    Многие производители заявляют, что их зарядные устройства обеспечивают высокую скорость зарядки. Быстрая зарядка или быстрая зарядка — это термин, используемый маркетинговыми компаниями для продвижения своих зарядных устройств и демонстрации их способности заряжаться быстрее, чем обычные зарядные устройства 5 Вт. В этой статье мы в основном поговорим о быстрой зарядке смартфонов.

    Быстрые зарядные устройства также возможны для ноутбуков, но пока давайте разберемся с электроникой, лежащей в основе зарядных устройств для смартфонов и контроллеров заряда.

    Как работает быстрое зарядное устройство?

    Чтобы понять, как работает быстрое зарядное устройство, нам сначала нужно знать, как заряжается литий-ионный аккумулятор. Литий-ионные аккумуляторы используются в наших смартфонах и другом электронном оборудовании, но они не заряжаются линейно. Когда пользователь подключает телефон к зарядному устройству, аккумулятор заряжается от 2 В до пикового напряжения 4,2 В. Зарядка этих аккумуляторов происходит в два этапа.

    Первая фаза зарядки от 0% до 50% заряда.В этой фазе на аккумулятор поступает самый высокий пиковый ток и напряжение, и они остаются постоянными на протяжении всей этой фазы. Таким образом, технологии быстрой зарядки наиболее эффективны, когда аккумулятор заряжен менее чем на 50%. После 50% ток, идущий к батарее, начинает падать. Таким образом, первые 50% вашего телефона заряжаются значительно быстрее.

    Вторая фаза начинается, когда аккумулятор полностью заряжен. Контроллер заряда снижает потребляемое напряжение и ток, что предотвращает перегрев телефона, обеспечивая безопасность смартфона.Вот почему после 80% зарядки нет особого эффекта, потому что она заряжается значительно медленнее, чем в первой фазе. Для величины пропускаемого напряжения и тока внутри телефона используется схема контроллера заряда. Кроме того, внутри батареи есть датчики температуры, вольтметры, которые контролируют работу батареи, обеспечивая их долговременную работоспособность.

    Базовое зарядное устройство USB передает только 5 В, 0,5 А, что составляет всего 2,5 Вт мощности. Быстрые зарядные устройства, такие как SuperCharger от Huawei, обеспечивают мощность 40 Вт, что составляет 10 В, 4 А.Некоторые китайские компании даже достигают 100 Вт. У быстрых зарядных устройств есть общая концепция, которая обеспечивает большую мощность. Но разве повышенное напряжение не вредит нашей батарее?

    Для этого в быстрых зарядных устройствах используется понижающий инвертор, известный как импульсный понижающий источник питания, который снижает напряжение и увеличивает ток. Чем больше ток, тем быстрее будет заряжаться аккумулятор. Мощность останется прежней, если не учитывать КПД понижающего инвертора.

    Еще одно преимущество применения большей мощности — это учет потерь мощности в кабелях передачи.Чем больше длина кабеля, тем больше сопротивление по формуле:

    Схема беспроводного зарядного устройства для мобильного телефона

    — Самодельные проекты схем

    Беспроводное зарядное устройство для мобильного телефона — это устройство, которое заряжает совместимый мобильный телефон или мобильный телефон, расположенный рядом с ним, посредством высокочастотной беспроводной передачи тока без какого-либо физического контакта.

    В этом посте мы узнаем, как создать схему зарядного устройства для беспроводного мобильного телефона, чтобы облегчить зарядку беспроводного мобильного телефона без использования обычного зарядного устройства.

    The Objective

    Здесь требуется, чтобы мобильный телефон был установлен с модулем схемы приемника внутри и подключен к контактам зарядного разъема для реализации процесса беспроводной зарядки. зарядное устройство для инициирования предлагаемой беспроводной зарядки.

    В одном из наших предыдущих постов мы изучили аналогичную концепцию, которая объясняла зарядку литий-ионной батареи в беспроводном режиме. Здесь мы также используем аналогичную технику, но пытаемся реализовать то же самое, не извлекая батарею из мобильного телефона.

    Кроме того, в нашем предыдущем посте мы всесторонне изучили основы беспроводной зарядки, воспользуемся приведенными там инструкциями и попробуем разработать предлагаемую схему зарядного устройства для беспроводного мобильного телефона.

    Мы начнем со схемы передатчика энергии, которая является базовым блоком и должна быть подключена к источнику питания и для передачи энергии на модуль мобильного телефона.

    Характеристики катушки передатчика (Tx):

    Схема передатчика для этого зарядного устройства для беспроводного мобильного телефона является решающим этапом и должна быть построена точно, и она должна быть структурирована в соответствии с популярной схемой катушки-блинчика Теслы, как показано ниже:

    ДИАМЕТР КАТУШКИ ВОКРУГ 18 CMS

    Изготовление печатной платы указанной выше катушки Блинчика.

    Вдохновленный вышеупомянутой теорией, меньшая компоновка той же катушки может быть выгравирована на печатной плате, как показано на следующей схеме, и подключена, как показано:

    Размеры: 10 дюймов на 10 дюймов, больший размер может обеспечить более быструю зарядку и лучший выходной ток

    На рисунке выше показана конструкция эмиттера мощности или радиатора, также вспомните принципиальную схему из нашего предыдущего поста, в приведенной выше конструкции используется точно такая же схема, хотя здесь мы делаем это через печатную плату путем травления обмотки макет над ним.

    Тщательное наблюдение показывает, что вышеупомянутая схема имеет пару параллельных спиральных медных дорожек, идущих по спирали и образующих две половины катушки передатчика, при этом центральный отвод достигается с помощью связанной красной перемычки на концах катушки.

    Компоновка позволяет сделать конструкцию компактной и эффективной для требуемых операций.

    Расположение гусениц может быть квадратным или овальным с одной стороны и квадратным с другой, чтобы сделать устройство еще более гладким.

    Остальная часть довольно проста и соответствует нашей предыдущей схеме, где транзистор 2N2222 включен для создания требуемых высокочастотных колебаний и распространения.

    Схема работает от источника 12 В / 1,5 А, а количество витков (катушек) может быть выбрано приблизительно в соответствии со значением напряжения питания, то есть примерно от 15 до 20 витков на каждую половину катушки передатчика. Более высокие витки приведут к меньшему току и повышенному напряжению излучения и наоборот.

    При включении можно ожидать, что схема будет генерировать сильный магнитный поток вокруг спиральной дорожки, эквивалентный входной мощности.

    Теперь излучаемая мощность должна быть поглощена с помощью идентичной схемы для выполнения беспроводной передачи энергии и предполагаемой зарядки сотового телефона.

    Для этого нам понадобится силовой коллектор или приемник для сбора излучаемой мощности, это может быть разработано, как описано в следующем разделе:

    Размер: 3 дюйма на 3 дюйма или в соответствии с пространством, доступным внутри вашего мобильного телефона

    Как можно увидеть в приведенной выше конструкции приемника, можно увидеть идентичную компоновку катушки, за исключением того, что здесь две концентрические спирали соединены параллельно для добавления тока, в отличие от компоновки передатчика, которая включала последовательное соединение из-за ограничения центрального отвода. для дизайна.

    Конструкция должна быть достаточно маленькой, чтобы поместиться внутри стандартного мобильного телефона, чуть ниже задней крышки, а выход, который заканчивается через диод, может быть подключен либо к батарее напрямую, либо через контакты зарядного гнезда (внутри).

    После того, как вышеупомянутые схемы построены, схему передатчика можно подключить к указанному входу постоянного тока, а модуль приемника разместить прямо над платой передатчика в центре.

    Светодиод с резистором 1 кОм может быть включен на выходе схемы приемника, чтобы получить мгновенную индикацию процесса беспроводной передачи энергии.

    После подтверждения операции выход приемника можно подключить к разъему сотового телефона для проверки реакции эффекта беспроводной зарядки.

    Однако перед этим вы можете подтвердить вывод на мобильный телефон от модуля беспроводного приемника … он должен быть от 5 до 6 В, если больше, черный провод можно просто сдвинуть и припаять несколько катушек вверх пока не будет достигнуто нужное напряжение.

    После того, как все подтверждения будут завершены, модуль можно будет разместить внутри мобильного телефона, и соединения будут выполнены надлежащим образом.

    Наконец, надеюсь, если все будет сделано правильно, сборка может позволить вам держать мобильный телефон непосредственно над настроенным передатчиком и обеспечить успешную зарядку предлагаемого беспроводного мобильного телефона.

    Создание практического прототипа

    Вышеупомянутая концепция беспроводной передачи энергии была успешно опробована и протестирована с некоторыми модификациями г-ном Нароттамом Гуптой, который является ярым последователем этого блога.

    Модифицированная схема зарядного устройства для беспроводного мобильного телефона и изображения прототипа можно увидеть ниже:

    Схема зарядного устройства для беспроводного сотового телефона

    Xiaomi заявляет, что может полностью зарядить телефон за восемь минут

    В насыщенном мире смартфонов скорость зарядки стала другим способом чтобы производители выделялись из общей массы.Рекорды были побиты, а вехи достигнуты компаниями, борющимися за внимание. Сегодня китайская Xiaomi проверила свою новую систему быстрой зарядки и побила мировые рекорды в проводной и беспроводной зарядке, согласно Engadget Chinese . Используя свою новую технологию Hyper Charge на модифицированном M11 Pro с батареей емкостью 4000 мАч, Xiaomi заявляет, что довела телефон до уровня заряда от 0 до 50 процентов за 3 минуты 23 секунды и до полной зарядки всего за 8 минут через проводную сеть мощностью 200 Вт. связь.В демонстрации беспроводной сети мощностью 120 Вт потребовалось 7 минут для достижения половины емкости и 15 минут для достижения 100%.

    Предлагая дополнительное понимание контролируемой демонстрации, китайские блогеры, проинформировавшие о технологии, заявили, что она проводилась с использованием зарядного устройства GaN (изначально поставляемого в комплекте с версией 80 Вт) и нового беспроводного зарядного устройства с двумя катушками. Они добавили, что сам модифицированный телефон использует графеновую батарею 10C. Однако, прежде чем вы будете слишком взволнованы, все еще не известно, когда технология Hyper Charge пойдет в массовое производство.

    Это не первый раз, когда Xiaomi рекламирует свои рекордные скорости зарядки. Примечательно, что последний прорыв знаменует собой серьезное обновление проводной зарядки на 120 Вт на Mi 10 Ultra, которая может полностью зарядить телефон за 23 минуты. Компания также ранее сообщала, что может заряжать модифицированную версию Mi 10 Pro мощностью более 80 Вт по беспроводной сети за 19 минут.

    Чтобы не отставать, конкуренты Xiaomi также продемонстрировали свои возможности для зарядки: Vivo продемонстрировала быстрое зарядное устройство на 120 Вт, которое полностью заряжает игровой телефон с батареей емкостью 4000 мАч за 15 минут.А Oppo, который лицензирует технологию быстрой зарядки для OnePlus, зарядил 4000 мАч за 20 минут с помощью системы 125 Вт и за 30 минут с помощью беспроводной технологии AirVOOC мощностью 65 Вт.

    Все продукты, рекомендованные Engadget, выбираются нашей редакционной группой, независимо от нашей материнской компании. Некоторые из наших историй содержат партнерские ссылки. Если вы покупаете что-то по одной из этих ссылок, мы можем получать партнерскую комиссию.

    Amazon.com: ePartSolution_ 2X N7100 Китай Android-телефон Зарядное устройство USB Зарядный порт Разъем док-станции Запасная часть USB-порта США: сотовые телефоны и аксессуары


    В настоящее время недоступен.
    Мы не знаем, когда и появится ли этот товар в наличии.
    Совместимые модели телефонов N7100
    Тип разъема USB
    Марка Для телефона Android

    • 100% новая запасная часть
    • Порт для зарядки телефона Android N7100 (Китай)
    • Соединитель док-станции для телефона Android N7100 (Китай)
    • Это сообщение создано JM International Inc.
    • Доставка из Чикаго

    Как арендные зарядные устройства для мобильных телефонов захватили города Китая — SupChina

    Как арендные зарядные устройства для мобильных телефонов захватили города Китая — SupChina Перейти к содержанию

    Найдите любую китайскую компанию Поиск любого Китая на основе companyJD TechnologyEvergrande GroupGanfeng LithiumShenghe Ресурсы HoldingChina Северная Редкоземельные GroupBaotou Утюг и SteelGemLens TechnologyKanzhunKuaishouMissFreshXuanji TechVolitationHuimingjieAEEEHangChina Три ущелья CorporationChina OceanwideHoneycombXAGSMDGDUFoiaSky SYSTIMAutel RoboticsAviation промышленности корпорации ChinaChina академии аэрокосмического AerodynamicsGreat Стена MotorsAir DwingSoarabilityHigh GreatDamodaGenki ForestGrepowINNNOAutoFlightYuanmu HoldingGeneinnoBitalltechJincheng AviationDingdong MaicaiAerofugiaWalkeraZingtoMicromulticopter AviationYuanfudaoGSX TecheduZuoyebangZhangmenNew Oriental EducationPinduoduoWaterdropSinopharm GroupByteDanceTencentGeelyChang’an AutomobileGuangzhou AutomobileBYD AutoJD.comHuatai Страхование GroupHuaqin TechnologyChina Life InsuranceBilibiliHuaweiAgricultural Банк ChinaContemporary Amperex TechnologyTsinghua UnigroupXiaomi58.comLenovoFAW GroupBaiduJinko SolarSinoChemChina строительство железных дорог CorporationZTEXpeng MotorsiQiyiJD DigitsT3 Mobile Travel ServicesChina развития BankChina МИИТ CorporationChina строительства BankChina государственного строительного EngineeringTAL Образование GroupRoborockNIOIceKreditSuning.comChina National Petroleum CorporationChina Shenhua EnergyXiaoneiwai (XNW.com) CITIC GroupChina PostLi AutoChina ResourcesPing An InsuranceJD HealthState Grid Corporation of China (SGCC) China UnicomNEOMeituanHuobiManbang GroupBank of ChinaAnt GroupSinopecYatsen Holding Limited (Perfect Diary) Suning FinanceDongfeng Motor GroupCodemao INCAIQihoo 360 Technology Capitaling Inc. MobileChina National Offshore Oil CorporationAlibabaChina Pacific Construction Group (CPCG) MEGVIIBAIC BJEVJD LogisticsIndustrial и коммерческий банк ChinaInceptio TechnologyAdvertisingAppsArtificial IntelligenceAssociationAudioAutomobileAutomotiveAutonomous VehiclesB2BB2CBankingBatteryBig DataBiotechnologyBitcoinBlockchainBlogging PlatformsChemicalClean EnergyCoal MiningCommunication HardwareCommunitiesComputerComputer ElectronicsConglomerateConstructionConsultingConsumer ElectronicsContentCreditCryptocurrencyDeliveryDelivery ServiceDevelopment BankingDronesE-Lea rningEcommerceEdTechEducationElectric VehicleElectronicsEnergyEngineeringEntertainmentFacial RecognitionFinanceFinancial ServicesFintechFreightFreight ServiceHardwareHealth Carehealth insuranceHealthcareImage RecognitionIndustrial EngineeringInformation услугиСведения TechnologyInfrastructureInsuranceInsurTechInternetInternet ServicesKnowledge ManagementLocal BusinessLogisticsMachine LearningMachinery ManufacturingMailManufacturingMarketingMedia и EntertainmentMedicalMobileMobile AppsMobile DevicesNetwork EquipmentNewsOilOil и GasPackagePaymentsPetroleum RefiningPharmaceuticalPodcastPrimary EducationProduct ResearchPublic TransportationRenewable EnergyRetailRide SharingRisk ManagementRoboticsSearch EngineSecondary EducationSecurityShoppingSocial MediaSocial NetworkSoftwareSolarTelecommunicationsTransportationTutoringTVUtilitiesVideoVideo GamesVideo StreamingWealth ManagementWireless

    Закрыть диалоговое окно Диалоговое окно закрытия учетной записи

    Xiaomi дразнит беспроводную зарядку по воздуху, но в этом году она не появится на ее устройствах — TechCrunch

    Xiaomi, третий по величине производитель смартфонов в мире, сегодня представила «Технологию Mi Air Charge», которая, по ее словам, может обеспечивать мощность 5 Вт на несколько устройств «в радиусе нескольких метров», поскольку китайский гигант пригласил клиентов на «настоящую беспроводную зарядку». эпоха.”

    Компания заявила, что самостоятельно разработала изолированную батарею для зарядки, которая имеет пять встроенных антенн с фазовыми помехами, которые могут «точно определять местоположение смартфона».

    Массив управления фазой, состоящий из 144 антенн, передает волны миллиметрового диапазона непосредственно на телефон посредством формирования луча, заявили в компании, добавив, что «в ближайшем будущем» система также сможет работать со смарт-часами, браслетами и другими носимыми устройствами. .

    Представитель компании сказал, что Xiaomi, которая ранее представила технологию беспроводной зарядки мощностью 80 Вт и 120 Вт, не будет развертывать эту новую систему для потребительских товаров в этом году.

    Вот как компания описала механизм своей новой технологии:

    Что касается смартфонов, Xiaomi также разработала миниатюрную антенную решетку со встроенной «антенной маяка» и «приемной антенной решеткой».

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *