Site Loader

Содержание

Подключение шагового двигателя: схема подключения

Шаговый двигатель, биполярный или униполярный, представляет собой электрическое устройство постоянного тока, разделяющее оборот на определённое количество шагов. Количество и величина шагов задаётся специальным устройством, именуемым контроллер шагового двигателя. Схема шаговый двигатель + контроллер шагового двигателя широко применяется в самых различных механизмах, от бытовой техники до ЧПУ. ШД обеспечивает стабильную и бесперебойную работу оборудования, частью которого он является, однако прежде чем начать работу, его необходимо правильно подключить.

Подключение шагового двигателя

В общем и целом процесс подключения шагового двигателя не является затруднительным. В первую очередь нужно определить, какой тип ШД используется. Для этого следует обратить внимание на то, сколькими проводами снабжён электропривод.  В зависимости от типа, шаговый двигатель может иметь 4, 5, 6 или 8 проводов.

Шаговый двигатель с 4 проводами может использоваться совместно только с биполярными устройствами. Каждая из двух фазных обмоток такого электродвигателя имеет пару проводов с непрерывной связью. Драйвер ШД в данном случае подключается пошагово.

Шаговый двигатель, оснащённый 6-ю или 8-ю проводами, помимо пары проводов для каждой из обмоток имеет также центр-кран для каждой из них. Такой электродвигатель считается униполярным и может быть подключён как к биполярным, так и к униполярным устройствам. Для разделения провода при подключении униполярного ШД рекомендуется использовать измерительный прибор. Если униполярный шаговый двигатель подключается к однополярному элементу, допускается использование всех проводов. Если же подключение необходимо произвести к биполярному оборудованию, используются один конец провода и один центральный кран для каждой из обмоток.

Шаговый двигатель с 5-ю проводами схож с шестипроводным, однако центральные клеммы такого электродвигателя соединяются внутри сплошным кабелем, после чего выводятся к одному проводу. Разделение проводов в таком механизме – довольно трудоёмкий процесс, который очень сложно произвести без разрывов. Наиболее безопасным и эффективным выходом из ситуации при подключении такого прибора является определение центра провода с последующим соединением его с другими проводниками.

Стандартной схемой, использующейся для подключения 4-выводного биполярного ШД к драйверу или контроллеру является подключение первой обмотки к разъёмам А и А*, а второй – непосредственно к контроллеру через разъёмы B и B*. Разъёмы контроллера Dir и Step при таком методе подключения не используются; программное управление осуществляется при помощи генератора импульсов.


ВНИМАНИЕ – всегда проверяйте цветовую схему выводов, шаговый двигатель от конкретного производителя отличается от абсолютно аналогичного ШД другого производителя, а значит, может иметь другую цветовую схему выводов!

По вопросу подключения шагового двигателя, вы всегда можете обратиться к нашим специалистам по телефону по России (звонок бесплатный) 8 800 5555 068 либо по электронной почте.

Шаговый Двигатель Схема Подключения — tokzamer.ru

Формирование импульсов отводится микроконтроллерам например Arduino.



В одном 8 выводном корпусе SOIC-8 размещены 2 транзистора.

Путь для повышения магнитного поля — это увеличение тока или числа витков обмоток.
Управление биполярным шаговым двигателем

Двигатели с 4 обмотками имеют преимущество в том, что вы можете подключить обмотки любым удобным для вас образом и получить как биполярный, так и униполярный двигатель.

Например, двигатели с дисковым намагниченным ротором. Полушаговое управление интересно тем, что становится возможным более точное позиционирование вала двигателя, благодаря к тому, что к целым шагам добавляются еще и половинки это достигается совмещение предыдущих двух режимов работы, а обмотки чередуются, то включаясь попарно, то по одной.

У его намагниченного центрального вала имеется два набора зубов для двух магнитных полюсов, которые затем выстраиваются в линию с зубами вдоль электромагнитов. Оба сигнала имеют логические уровни и, если для их формирования используются выходы с открытым коллектором, то потребуются соответствующие резисторы подтяжки на Рисунке 10 они не показаны.

Чередующиеся полюса ротора имеют прямолинейную форму и расположены параллельно оси двигателя.

Зависимость момента от скорости, влияние нагрузки Момент, создаваемый шаговым двигателем, зависит от нескольких факторов: скорости. Причиной этого является фильтрующее действие инерции ротора и нагрузки.

Управление шаговым двигателем

Сморите видео

Несмотря на то, что драйвер, обеспечивающий микрошаговый режим, намного сложнее обычного драйвера, всё равно система может оказаться более простой и дешевой, чем шаговый двигатель, плюс редуктор. Конструкция в поперечном разрезе напоминает шестерню с зубцами. Полная схема, приведенная в [ 10 ] и многократно повторенная на интернет-сайтах, пригодна для использования в качестве тестовой платы. С помощью подстроечного резистора видно на правом фото можно задавать выходной ток.


Схема содержит описанный ранее двунаправленный двухфазовый формирователь на D-триггерах Рисунок

Современные микроконтроллеры иногда имеют встроенные ЦАПы, которые можно использовать для реализации микрошагового режима взамен специальных контроллеров.

Увеличение или уменьшение питающего напряжения ни к чему не приведет, так как обороты задаются частотой сети. Направление магнитного поля зависит от того, на какой именно вывод обмотки подан положительный потенциал.

Соответственно, в режиме удержания поскольку используются 8 разрядов ЦАП , максимальный ток составит 1 А. При этом используется номинальное число шагов.

Синусоидальный ток фаз может быть обеспечен применением специальных драйверов.

Это означает, что в таком режиме не может быть получен полный момент. Внутри находятся полюсные наконечники в виде ламелей.
Шаговый двигатель БЕЗ ДРАЙВЕРА!

Еще по теме: Кабельные столбики пуэ

Виды шаговых двигателей по типу ротора:

После этого ротор повернется и будет стараться принять одно из следующих положений равновесия. Для устранения колебаний момента при работе двигателя в полушаговом режиме можно снижать ток в те моменты, когда включены две фазы.

Соответственно, в режиме удержания поскольку используются 8 разрядов ЦАП , максимальный ток составит 1 А.


Упрощенная схема коммутатора шагового двигателя без реверса. Еще раз обращаю внимание: при самостоятельном расчете не забудьте учитывать, что формирователь обеспечивает режим с перекрытием фаз, то есть необходимо закладываться на номинальный ток схемы питания, равный удвоенному максимальному току обмоток при выбранном напряжении питания. Из-за этих ограничений микрошаговый режим используется в основном для обеспечения плавного вращения особенно на очень низких скоростях , для устранения шума и явления резонанса.

Зависимость момента от угла поворота ротора для двух запитанных обмоток. Обычно у них четыре вывода, две обмотки.

В полношаговом режиме с двумя включенными фазами положения точек равновесия ротора смещены на пол-шага. Средние выводы обмоток могут быть объединены внутри двигателя, поэтому такой двигатель может иметь 5 или 6 выводов рис.


Назначение этих диодов — гасить ЭДС самоиндукции, возникающую при выключении управляющих ключей. При включени тока в одной из катушек, ротор стремится занять такое положение, когда разноименные полюса ротора и статора находятся друг напротив друга. Да и в современной бытовой технике, автомобилях, промышленном оборудовании коллекторные двигатели распространены достаточно сильно.

Если хотя бы одна обмотка шагового двигателя запитана, ротор принимает определенное положение. Но такой ток от микросхем серии 74HCхх забрать невозможно, поэтому потребуются дополнительные драйверы.

Обеспечивает паспортное значение электрических характеристик. Драйверы делятся на две категории: Повторяющие форму сигналов. Ротор не имеет постоянных магнитов, он выполнен из магнитомягкого материала в виде многоконечной звезды. Магнитный гистерезис приводит к тому, что магнитный поток зависит не только от тока обмоток, но и от предыдущего его значения. С точки зрения автора статьи, самым оптимальным для управления коммутацией обмоток двигателей небольшой мощности является использование подходящих по току и сопротивлению открытого канала RDC ON MOSFET, но с учетом рекомендаций, описанных выше.
Шаговый двигатель. Micro Step Driver. PLC Omron. Подключение,программирование. (Часть 1)

Технические характеристики A4988

Конструктивно это выглядит как два круглых полюса, на поверхности которых расположены зубцы ротора из магнитомягкого материала. Можно увеличить количество шагов в 16, 32, 64 раза и т.

Поддержка такого режима для указанного драйвера осуществляется микропроцессором, управляющим входами ЦАП. Таким образом, выполняется один шаг.

Шаговые двигатели.

Для изменения направления вращения достаточно изменить очередность подачи импульсов в соответствующие обмотки. Режим управления двигателем задается коммутатором. Шаговые двигатели.

Рекомендуем: Необходимый метериал для проведения электричества

Данный двигатель можно не только использовать как биполярный или униполярный, но и самим определять, как соединить электромагниты обмоток, последовательно или параллельно. Из-за чего обеспечивается максимальный момент, в случае параллельного соединения или последовательного включения обмоток будет создаваться максимальное напряжение или ток. Этот метод использует в два раза больше шагов, чем полный шаг, но он также имеет меньший крутящий момент.

А принцип работы этого всего очень прост: конденсатор формирует сдвиг фаз на одной из обмоток, в результате обмотки работают почти попеременно и шаговый двигатель крутится. В таком двигателе сечение отдельных обмоток вдвое больше, а омическое сопротивление — соответственно вдвое меньше. Так, пожалуй, можно дать строгое определение. Готовые шаговые двигатели с редукторами хотя и существуют, однако являются экзотикой. Иногда двигатели с постоянными магнитами имеют 4 раздельных обмотки.

Общие сведения:

Микрошаговый режим. Режим удержания уменьшает максимальный ток, потребляемый обмотками двигателя, с двух до одного ампера. Диаграммы, диаграммы

В пределе, шаговый двигатель может работать как синхронный электродвигатель в режиме непрерывного вращения. Схема контроллера униполярного шагового двигателя с драйвером на биполярных транзисторах. Описание библиотеки для работы с шаговым двигателем В среде разработки Ардуино IDE существует стандартная библиотека Strepper. Гибридный двигатель.
Обзор копеечной платы управления шаговым двигателем.

Схема управления шагового двигателя. Создаем робота-андроида своими руками [litres]

Читайте также

4.4.2. Электрическая схема таймера

4.4.2. Электрическая схема таймера При подключении ЭМТ к сети 220 В через ограничительный резистор R1 напряжение поступает на катушку К1 (имеющую сопротивление 3,9 кОм). С помощью системы шестеренок и приложенного к этой катушке напряжения (с помощью электромагнитной индукции)

Выхлоп двигателя дымный. В картер двигателя поступает повышенный объем газов

Выхлоп двигателя дымный. В картер двигателя поступает повышенный объем газов Диагностирование двигателя по цвету дыма из выхлопной трубы Сине-белый дым – неустойчивая работа двигателя. Рабочая фаска клапана подгорела. Оценить состояние газораспределительного

2.6. Схема чувствительного видеоусилителя

2.6. Схема чувствительного видеоусилителя Тем, кто занимается применением схем видеоконтроля на ограниченном участке, будет полезен этот материал. Касаясь возможных вариантов обеспечения охраны в замкнутых помещениях, еще раз хочу отметить, что не всегда рентабельно

Мостовая схема управления двигателем постоянного тока

Мостовая схема управления двигателем постоянного тока При конструировании робота желательно наличие простой схемы управления его включением и выключением. Кроме того, необходима схема реверса направления вращения двигателя. Таким требованиям удовлетворяет мостовая

Конструкция и работа шагового двигателя

Конструкция и работа шагового двигателя Шаговые двигатели сконструированы с использованием постоянных магнитов и электромагнитов. Постоянные магниты находятся на вращающемся валу, который называется ротором. Электромагниты или катушки обмоток находятся в

Начальная схема управления

Начальная схема управления На рис. 10.10 показан первый тестовый вариант схемы управления ШД. Для буферизации выходных сигналов с шин PIC 16F84 использованы шестнадцатеричные буферы типа 4050. Сигнал с выхода каждого буфера подается на транзистор NPN типа. В качестве таких

Электрическая схема

Электрическая схема Электрическая схема представляет собой электронный ключ, управляемый интенсивностью светового потока. Когда уровень средней окружающей освещенности мал (возможна подстройка порогового значения), то схема отключает питание двигателя редуктора.

«Фрегат Экоджет»: новая схема самолета и новая бизнес-схема

«Фрегат Экоджет»: новая схема самолета и новая бизнес-схема Авиасалон МАКС традиционно выступает смотровой площадкой новых идей в самолетостроении. ФПГ «Росавиаконсорциум» по собственной инициативе разрабатывает программу создания широкофюзеляжного

2.3. Структурная схема

2.3. Структурная схема Структурная схема импульсного блока питания персонального компьютера конструктива ATX приведена на рис. 2.1. Рис. 2.1. Структурная схема импульсного блока питания фирмы DTK конструктива ATXВходное переменное напряжение 220 В, 50 Гц поступает на входной

2.4. Принципиальная схема

2.4. Принципиальная схема Полная принципиальная схема бестрансформаторного источника питания с максимальной вторичной мощностью 200 Вт фирмы DTK представлена на рис. 2.2. Рис. 2.2. Принципиальная схема бестрансформаторного источника питания на 200 Вт фирмы DTKВсе элементы на

3.3. Структурная схема

3.3. Структурная схема Структурная схема импульсного блока питания для компьютеров типа AT/XT, содержащая типовой набор функциональных узлов, представлена на рис. 3.1. Модификации блоков питания могут иметь различия только в схемотехнической реализации узлов с сохранением

3.4. Принципиальная схема

3.4. Принципиальная схема Импульсные источники питания данного класса имеют несколько различных модификаций схемотехнической реализации отдельных вспомогательных узлов. Принципиальных различий в их рабочих характеристиках нет, а разнообразие объясняется множеством

Общая схема электрооборудования

Общая схема электрооборудования Электрооборудование автомобилей представляет собой сложную систему соединенных между собой электроприборово сигнализации, зажигания, предохранителей, контрольно – измерительных приборов, соединительных проводов. Рис.

5.5.4. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ И КОМПЛЕКСЫ ПРОТИВОАВАРИЙНОГО УПРАВЛЕНИЯ

5.5.4. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ И КОМПЛЕКСЫ ПРОТИВОАВАРИЙНОГО УПРАВЛЕНИЯ Работы по созданию автоматизированных систем управления технологическими процессами (АСУ ТП) электроэнергетических объектов были начаты с появлением

2.1. Реактивная система управления корабля Apollo. Общая характеристика системы управления

2.1. Реактивная система управления корабля Apollo. Общая характеристика системы управления Все 3 отсека корабля Apollo – командный отсек, служебный отсек и лунный корабль – имеют самостоятельные реактивные системы управления (рис. 21.1). Рис. 21.1. Корабль Apollo: 1 – лунный корабль; 2 –

Схема работы шагового двигателя — Клуб строителей

Предшественником шагового двигателя является серводвигатель.

Шаговые (импульсные) двигатели непосредственно преобразуют управляющий сигнал в виде последовательности импульсов в пропорциональный числу импульсов и фиксированный угол поворота вала или линейное перемещение механизма без датчика обратной связи. Это обстоятельство упрощает систему привода и заменяет замкнутую систему следящего привода (сервопривода) разомкнутой, обладающей такими преимуществами, как снижение стоимости устройства (меньше элементов) и увеличение точности в связи с фиксацией ротора шагового двигателя при отсутствии импульсов сигнала.

Очевиден и недостаток привода с шаговым двигателем: при сбое импульса дальнейшее слежение происходит с ошибкой в угле, пропорциональной числу пропущенных импульсов [2].

Поэтому в задачах, где требуются высокие характеристики (точность, быстродействие) используются серводвигатели. В остальных же случаях из-за более низкой стоимости, простого управления и неплохой точности обычно используются шаговые двигатели.

Конструкция шагового электродвигателя

Шаговый двигатель, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор – неподвижная часть, ротор – вращающаяся часть.

Шаговые двигатели надежны и недороги, так как ротор не имеет контактных колец и коллектора. Ротор имеет либо явно выраженные полюса, либо тонкие зубья. Реактивный шаговый двигатель – имеет ротор из магнитомягкого материала с явно выраженными полюсами. Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах. Гибридный шаговый двигатель имеет составной ротор включающий полюсные наконечники (зубья) из магнитомягкого материала и постоянные магниты. Определить имеет ротор постоянные магниты или нет можно посредством вращения обесточенного двигателя, если при вращении имеется фиксирующий момент и/или пульсации значит ротор выполнен на постоянных магнитах.

Статор шагового двигателя имеет сердечник с явно выраженными полюсами, который обычно делается из ламинированных штампованных листов электротехнической стали для уменьшения вихревых токов и уменьшения нагрева. Статор шагового двигателя обычно имеет от двух до пяти фаз.

Характеристики

Так как шаговый двигатель не предназначен для непрерывного вращения в его параметрах не указывают мощность. Шаговый двигатель – маломощный двигатель по сравнению с другими электродвигателями.

Одним из определяющих параметров шагового двигателя является шаг ротора, то есть угол поворота ротора, соответствующий одному импульсу. Шаговый двигатель делает один шаг в единицу времени в момент изменения импульсов управления. Величина шага зависит от конструкции двигателя: количества обмоток, полюсов и зубьев. В зависимости от конструкции двигателя величина шага может меняться в диапазоне от 90 до 0,75 градусов. С помощью системы управления можно еще добиться уменьшения шага пополам используя соответствующий метод управления.

Типы шаговых двигателей

    По конструкции ротора выделяют три типа шаговых двигателей:
  • реактивный;
  • с постоянными магнитами;
  • гибридный.

Реактивный шаговый двигатель

Реактивный шаговый двигатель – синхронный реактивный двигатель. Статор реактивного шагового двигателя обычно имеет шесть явновыраженных полюсов и три фазы (по два полюса на фазу), ротор – четыре явно выраженных полюса, при такой конструкции двигателя шаг равен 30 градусам. В отличии от других шаговых двигателей выключенный реактивный шаговый двигатель не имеет фиксирующего (тормозящего) момента при вращении вала.

Ниже представлены осциллограммы управления для трехфазного шагового двигателя.

Осциллограммы управления для четырехфазного шагового двигателя показаны на рисунке ниже. Последовательное включение фаз статора создает вращающееся магнитное поле за которым следует ротор. Однако из-за того, что ротор имеет меньшее количества полюсов, чем статор, ротор поворачивается за один шаг на угол меньше чем угол статора. Для реактивного двигателя угол шага равен:

,

  • где NR – количество полюсов ротора;
  • NS – количество полюсов статора.

Чтобы изменить направление вращения ротора (реверс) реактивного шагового двигателя, необходимо поменять схему коммутации обмоток статора, так как изменение полярности импульса не изменяет направления сил, действующих на невозбужденный ротор [2].

Реактивные шаговые двигатели применяются только тогда, когда требуется не очень большой момент и достаточно большого шага угла поворота. Такие двигатели сейчас редко применяются.

    Отличительные черты:
  • ротор из магнитомягкого материала с явно выраженными полюсами;
  • наименее сложный и самый дешевый шаговый двигатель;
  • отсутствует фиксирующий момент в обесточенном состоянии;
  • большой угол шага.

Шаговый двигатель с постоянными магнитами

Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах. Статор обычно имеет две фазы.

По сравнению с реактивными, шаговые двигатели с активным ротором создают большие вращающие моменты, обеспечивают фиксацию ротора при снятии управляющего сигнала. Недостаток двигателей с активным ротором — большой угловой шаг (7,5—90°). Это объясняется технологическими трудностями изготовления ротора с постоянными магнитами при большом числе полюсов. Если угол фиксации находится в диапазоне от 7,5 до 90 градусов скорее всего это шаговый двигатель с постоянными магнитами нежели гибридный шаговый двигатель.

Обмотки могут иметь ответвление в центре для работы с однополярной схемой управления. Двухполярное управление требуется для питания обмоток без центрального ответвления.

Униполярный (однополярный) шаговый двигатель

Униполярный шаговый двигатель с постоянными магнитами имеет одну обмотку на фазу с ответвлением в центре. Каждая секция обмотки включается отдельно.

Таким образом расположение магнитных полюсов может быть изменено без изменения направления тока, а схема коммутации может быть выполнена очень просто (например на одном транзисторе) для каждой обмотки. Обычно центральное ответвление каждой фазы делается общим, в результате получается три вывода на фазу и всего шесть для обычного двухфазного двигателя.

Легкое управление однополярными двигателями сделало их популярными для любителей, они возможно являются наиболее дешевым способом чтобы получить точное угловое перемещение.

Биполярный шаговый двигатель

Двухполярные двигатели имеют одну обмотку на фазу. Для того чтобы изменить магнитную полярность полюсов необходимо изменить направление тока в обмотке, для этого схема управления должна быть более сложной, обычно с H-мостом. Биполярный шаговый двигатель имеет два вывода на фазу и не имеет общего вывода. Так как пространство у биполярного двигателя используется лучше, такие двигатели имеют лучший показатель мощность/объем чем униполярные. Униполярный двигатель имеет двойное количество проводников в том же объеме, но только половина из них используется при работе, тем не менее биполярный двигатель сложнее в управление.

Управление шаговым двигателем с постоянными магнитами

Для управления шаговым двигателем на постоянных магнитах к его обмоткам прикладывается сфазированный переменный ток. На практике это почти всегда прямоугольный сигнал сгенерированный от источника постоянного тока. Биполярная система управления генерирует прямоугольный сигнал изменяющийся от плюса к минусу, например от +2,5 В до -2,5 В. Униполярная система управления меняет направление магнитного потока катушки посредством двух сигналов, которые поочереди подаются на противоположные выводы катушки относительно ее центрального ответвления.

Волновое управление

Простейшим способом управления шаговым двигателем является волновое управление. При таком управлении в один момент времени возбуждается только одна обмотка. Но такой способ управления не обеспечивает максимально возможного момента.

Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора.

На рисунке выше представлены схема биполярного шагового двигателя и двухполюсные осциллограммы управления. При таком управлении обе полярности («+» и «-«) подаются на двигатель. Магнитное поле катушки поворачивается за счет того, что полярность токов управления меняется.

На рисунке выше представлены схема униполярного шагового двигателя и однополюсные осциллограммы управления.Так как для управления униполярным шаговым двигателем требуется только одна полярность это существенно упрощает схему системы управления. При этом требуется генерация четырех сигналов так как необходимо два однополярных сигнала для создания переменного магнитного поля катушки.

Необходимое для работы шагового двигателя переменное магнитное поле может быть создано как униполярным так и биполярным способом. Однако для униполярного управления катушки двигателя должны иметь центральное ответвление.

Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора. Схемы соединения шагового двигателя показаны на рисунке ниже.

Шаговый двигатель с 4 выводами может управляться только биполярным способом. 6-выводной двигатель предназначен для управления униполярным способом, несмотря на то, что он также может управляться биполярным способом если игнорировать центральные выводы. 5-выводной двигатель может управляться только униполярным способом, так как общий центральный вывод соединяет обе фазы. 8-выводная конфигурация двигателя встречается редко, но обеспечивает максимальную гибкость. Такой двигатель может быть подключен для управления также как 6- или 5- выводной двигатель. Пара обмоток может быть подключена последовательно для высоковольтного биполярного управления с малыми токами или параллельно для низковольтного управления с большими токами.

    8-выводные двигатели могут быть соединены в нескольких конфигурациях:
  • униполярной;
  • биполярной с последовательным соединением. Больше индуктивность, но ниже ток обмотки;
  • биполярной с параллельным соединением. Больше ток, но ниже индуктивность;
  • биполярной с одной обмоткой на фазу. Метод использует только половину обмоток двигателя при работе, что уменьшает доступный момент на низких оборотах, но требует меньше тока.
Полношаговое управление

Полношаговое управление обеспечивает больший момент, чем волновое управление так как обе обмотки двигателя включены одновременно. Положение ротора при полношаговом управлении показано на рисунке ниже.

Полношаговое биполярное управление показанное на рисунке выше имеет такой же шаг как и при волновом управлении. Униполярное управление (не показано) потребует два однополярных управляющих сигнала для каждого биполярного сигнала. Однополярное управление требует менее сложной и дорогой схемы управления. Дополнительная стоимость биполярного управления оправдана когда требуется более высокий момент.

Полушаговое управление

Шаг для данной геометрии шагового двигателя делится пополам. Полушаговое управление обеспечивает большее разрешение при позиционировании вала двигателя.

Полушаговое управление – комбинация волнового управления и полношагового управления с питанием по очереди: сначала одной обмотки, затем с питанием обоих обмоток. При таком управлении количество шагов увеличивается в двое по сравнению с другими методами управления.

Гибридный шаговый двигатель

Гибридный шаговый двигатель был создан с целью объединить лучшие свойства обоих шаговых двигателей: реактивного и с постоянными магнитами, что позволило добиться меньшего угла шага. Ротор гибридного шагового двигателя представляет из себя цилиндрический постоянный магнит, намагниченный вдоль продольной оси с радиальными зубьями из магнитомягкого материала.

Статор обычно имеет две или четыре фазы распределенные между парами явно выраженных полюсов. Обмотки статора могут иметь центральное ответвление для униполярного управления. Обмотка с центральным ответвлением выполняется с помощью бифилярной намотки .

Заметьте что 48 зубьев на одной секции ротора смещены на половину зубцового деления λ относительно другой секции (рисунок ниже). Из-за этого смещения ротор фактически имеет 96 перемежающихся полюсов противоположной полярности.

Зубья на полюсах статора соответствуют зубьям ротора, исключая отсутствующие зубья в пространстве между полюсами. Таким образом один полюс ротора, скажем южный полюс, можно выровнять со статором в 48 отдельных положениях. Однако зуб южного полюса ротора смещен относительно северного зуба на половину зубцового деления. Поэтому ротор может быть выставлен со статором в 96 отдельных положениях.

Соседние фазы статора гибридного шагового двигателя смещены друг относительно друга на одну четверть зубцового деления λ. В результате ротор перемещается с шагом в четверть зубцового деления во время переменного возбуждения фаз. Другими словами для такого двигателя на один оборот приходится 2×96=192 шага.

    Шаговый гибридный двигатель имеет:
  • шаг меньше, чем у реактивного двигателя и двигателя с постоянными магнитами;
  • ротор – постоянный магнит с тонкими зубьями. Северные и южные зубья ротора смещены на половину зубцового деления для уменьшения шага;
  • полюсы статора имеют такие же зубья как и ротор;
  • статор имеет не менее чем две фазы;
  • зубья соседних полюсов статора смещены на четверть зубцового деления для создания меньшего шага.

Для работы практически всех электрических приборов, необходимы специальные приводные механизмы. Предлагаем рассмотреть, что такое шаговый двигатель, его конструкцию, принцип работы и схемы подключения.

Что такое шаговый двигатель?

Шаговый двигатель представляет собой электрическую машину, предназначенную для преобразования электрической энергии сети в механическую энергию. Конструктивно состоит из обмоток статора и магнитомягкого или магнитотвердого ротора. Отличительной особенностью шагового двигателя является дискретное вращение, при котором заданному числу импульсов соответствует определенное число совершаемых шагов. Наибольшее применение такие устройства получили в станках с ЧПУ, робототехнике, устройствах хранения и считывания информации.

В отличии от других типов машин шаговый двигатель совершает вращение не непрерывно, а шагами, от чего и происходит название устройства. Каждый такой шаг составляет лишь часть от его полного оборота. Количество необходимых шагов для полного вращения вала будет отличаться, в зависимости от схемы соединения, марки двигателя и способа управления.

Преимущества и недостатки шагового электродвигателя

К преимуществам эксплуатации шагового двигателя можно отнести:

  • В шаговых электродвигателях угол поворота соответствует числу поданных электрических сигналов, при этом, после остановки вращения сохраняется полный момент и фиксация;
  • Точное позиционирование – обеспечивает 3 – 5% от установленного шага, которая не накапливается от шага к шагу;
  • Обеспечивает высокую скорость старта, реверса, остановки;
  • Отличается высокой надежностью за счет отсутствия трущихся компонентов для токосъема, в отличии от коллекторных двигателей;
  • Для позиционирования шаговому двигателю не требуется обратной связи;
  • Может выдавать низкие обороты для непосредственно подведенной нагрузки без каких-либо редукторов;
  • Сравнительно меньшая стоимость относительно тех же сервоприводов;
  • Обеспечивается широкий диапазон управления скоростью оборотов вала за счет изменения частоты электрических импульсов.

К недостаткам применения шагового двигателя относятся:

  • Может возникать резонансный эффект и проскальзывание шагового агрегата;
  • Существует вероятность утраты контроля из-за отсутствия обратной связи;
  • Количество расходуемой электроэнергии не зависит от наличия или отсутствия нагрузки;
  • Сложности управления из-за особенности схемы

Устройство и принцип работы

На рисунке 1 изображены 4 обмотки, которые относятся к статору двигателя, а их расположение устроено так, что они находятся под углом 90º относительно друг друга. Из чего следует, что такая машина характеризуется размером шага в 90º.

В момент подачи напряжения U1 в первую обмотку происходит перемещение ротора на те же 90º. В случае поочередной подачи напряжения U2, U3, U4 в соответствующие обмотки, вал продолжит вращение до завершения полного круга. После чего цикл повторяется снова. Для изменения направления вращения достаточно изменить очередность подачи импульсов в соответствующие обмотки.

Типы шаговых двигателей

Для обеспечения различных параметров работы важна как величина шага, на который будет смещаться вал, так и момент, прилагаемый для перемещения. Вариации данных параметров достигаются за счет конструкции самого ротора, способа подключения и конструкции обмоток.

По конструкции ротора

Вращаемый элемент обеспечивает магнитное взаимодействие с электромагнитным полем статора. Поэтому его конструкция и технические особенности напрямую определяют режим работы и параметры вращения шагового агрегата. Чтобы на практике определить тип шагового мотора, при обесточенной сети необходимо провернуть вал, если ощущаете сопротивление, то это свидетельствует о наличии магнита, в противном случае, это конструкция без магнитного сопротивления.

Реактивный

Реактивный шаговый двигатель не оснащается магнитом на роторе, а выполняется из магнитомягких сплавов, как правило, его набирают из пластин для уменьшения потерь на индукцию. Конструкция в поперечном разрезе напоминает шестерню с зубцами. Полюса статорных обмоток запитываются противоположными парами и создают магнитную силу для перемещения ротора, который двигается от попеременного протекания электрического тока в обмоточных парах.

С переменным магнитным сопротивлением

Весомым плюсом такой конструкции шагового привода является отсутствие стопорящего момента, образуемого полем по отношению к арматуре. По факту это тот же синхронный двигатель, в котором поворот ротора идет в соответствии с полем статора. Недостатком является снижение величины вращающего момента. Шаг для реактивного двигателя колеблется от 5 до 15°.

С постоянными магнитами

В этом случае подвижный элемент шагового двигателя собирается из постоянного магнита, в котором может быть два и большее количеством полюсов. Вращение ротора обеспечивается притяжением или отталкиванием магнитных полюсов электрическим полем при подаче напряжения в соответствующие обмотки. Для этой конструкции угловой шаг составляет 45-90°.

С постоянным магнитом

Гибридные

Был разработан с целью объединения лучших качеств двух предыдущих моделей, за счет чего агрегат обладает меньшим углом и шагом. Его ротор выполнен в виде цилиндрического постоянного магнита, который намагничен по продольной оси. Конструктивно это выглядит как два круглых полюса, на поверхности которых расположены зубцы ротора из магнитомягкого материала. Такое решение позволило обеспечить отличный удерживающий и крутящий момент.

По виду обмоток

На практике шаговый двигатель представляет собой многофазный мотор. Плавность работы в котором напрямую зависит от количества обмоток – чем их больше, тем плавне происходит вращение, но и выше стоимость. При этом крутящий момент от числа фаз не увеличивается, хотя для нормальной работы их минимальное число на статоре электродвигателя должно составлять хотя бы две. Количество фаз не определяет числа обмоток, так двухфазный шаговый двигатель может иметь четыре и более обмотки.

Униполярный

Униполярный шаговый двигатель отличается тем, что в схеме подключения обмотки имеется ответвление от средней точки. Благодаря чему легко меняются магнитные полюса. Недостатком такой конструкции является использование только одной половины доступных витков, из-за чего достигается меньший вращающий момент. Поэтому они отличаются большими габаритами.

Униполярный ШД

Для использования всей мощности катушки средний вывод оставляют не подключенным. Рассмотрите конструкции униполярных агрегатов, они могут содержать 5 и 6 выводов. Их количество будет зависеть от того, выводится срединный провод отдельно от каждой обмотки двигателя или они соединяются вместе.

Схема а) с различными, б) с одним выводом

Биполярный

Биполярный шаговый двигатель подключается к контроллеру через 4 вывода. При этом обмотки могут соединяться внутри как последовательно, так и параллельно. Рассмотрите пример его работы на рисунке.

Биполярный шаговый двигатель

В конструктивной схеме такого двигателя вы видите с одной обмоткой возбуждения в каждой фазе. Из-за этого смена направления тока требует использовать в электронной схеме специальные драйверы (электронные чипы, предназначенные для управления). Добиться подобного эффекта можно при помощи включения Н-моста. В сравнении с предыдущим, биполярное устройство обеспечивает тот же момент при гораздо меньших габаритах.

Подключение шагового двигателя

Чтобы запитать обмотки, потребуется устройство способное выдать управляющий импульс или серию импульсов в определенной последовательности. В качестве таких блоков выступают полупроводниковые приборы для подключения шагового двигателя, микропроцессорные драйвера. В которых имеется набор выходных клемм, каждая из них определяет способ питания и режим работы.

В зависимости от схемы подключения должны применяться те или другие выводы шагового агрегата. При различных вариантах подведения тех или иных клемм к выходному сигналу постоянного тока получается определенная скорость вращения, шаг или микрошаг линейного перемещения в плоскости. Так как для одних задач нужна низкая частота, а для других высокая, один и тот же двигатель может задавать параметр за счет драйвера.

Типичные схемы подключения ШД

В зависимости того, какое количество выводов представлено на конкретном шаговом двигателе: 4, 6 или 8 выводов, будет отличаться и возможность использования той или иной схемы их подключения Посмотрите на рисунки, здесь показаны типичные варианты подключения шагового механизма:

Схемы подключения различных типов шаговых двигателей

При условии запитки основных полюсов шаговой машины от одного и того же драйвера, по данным схемам можно отметить следующие отличительные особенности работы:

  • Выводы однозначно подводятся к соответствующим клеммам устройства. При последовательном соединении обмоток увеличивает индуктивность обмоток, но понижает ток.
  • Обеспечивает паспортное значение электрических характеристик. При параллельной схеме увеличивается ток и снижается индуктивность.
  • При подключении по одной фазе на обмотку снижется момент на низких оборотах и уменьшает величину токов.
  • При подключении осуществляет все электрические и динамические характеристики согласно паспорта, номинальный токи. Значительно упрощается схема управления.
  • Выдает куда больший момент и применяется для больших частот вращения;
  • Как и предыдущая предназначена для увеличения момента, но применяется для низких частот вращения.

Управление шаговым двигателем

Выполнение операций шаговым агрегатом может осуществляться несколькими методами. Каждый из которых отличается способом подачи сигналов на пары полюсов. Всего выделяют тир метода активации обмоток.

Волновой – в таком режиме происходит возбуждение только одной обмотке, к которой и притягиваются роторные полюса. При этом шаговый двигатель не способен вытягивать большую нагрузки, так как выдает лишь половину момента.

Волновое управление

Полношаговый — в таком режиме происходит одновременная коммутация фаз, то есть, возбуждаются сразу обе. Из-за чего обеспечивается максимальный момент, в случае параллельного соединения или последовательного включения обмоток будет создаваться максимальное напряжение или ток.

Полношаговое управление

Полушаговый – представляет собой комбинацию двух предыдущих методов коммутации обмоток. Во время реализации которого в шаговом двигателе происходит поочередная подача напряжения сначала в одну катушку, а затем сразу в две. Благодаря чему обеспечивается лучшая фиксация на максимальных скоростях и большее количество шагов.

Полушаговое управление

Для более мягкого управления и преодоления инерции ротора используется микрошаговое управление, когда синусоида сигнала осуществляется микроступенчатыми импульсами. За счет чего силы взаимодействия магнитных цепей в шаговом двигателе получают более плавное изменение и, как следствие, перемещение ротора между полюсами. Позволяет в значительной степени снизить рывки шагового двигателя.

Без контроллера

Для управления бесколлекторными двигателями применяется система Н-моста. Который позволяет переключать полярность для реверса шагового двигателя. Может выполняться на транзисторах или микросхемах, которые создают логическую цепочку для перемещения ключей.

Схема Н-моста

Как видите, от источника питания V напряжение подается на мост. При попарном включении контактов S1 – S4 или S3 – S2 будет происходить движение тока через обмотки двигателя. Что и обусловит вращение в ту или иную сторону.

С контроллером

Устройство контроллера позволяет осуществлять управление шаговым двигателем в различных режимах. В основе контроллера лежит электронный блок, формирующий группы сигналов и их последовательность, посылаемых на катушки статора. Для предотвращения возможности его повреждения в случае короткого замыкания или другой аварийной ситуации на самом двигателе каждый вывод защищается диодом, который не пропусти импульс в обратную сторону.

Подключение через контроллер однополярного шагового двигателя

Популярные схемы управления ШД

Является одним из наиболее помехозащищенных способов работы. При этом прямой и инверсный сигнал напрямую подключается к соответствующим полюсам. В такой схемы должно применяться экранирование сигнального проводника. Прекрасно подходит для нагрузки с низкой мощностью.

Схема управления от контроллера с выходом типа «открытый коллектор»

В данной схеме происходит объединение положительных вводов контроллера, которые подключаются к положительному полюсу. В случае питания выше 9В требуется включение в схему специального резистора для ограничения тока. Позволяет задавать необходимое количество шагов со строго установленной скоростью, определить ускорение и т.д.

Простейший драйвер шагового двигателя своими руками

Чтобы собрать схему драйвера в домашних условиях могут пригодиться некоторые элементы от старых принтеров, компьютеров и другой техники. Вам понадобятся транзисторы, диоды, резисторы (R) и микросхема (RG).

Схема простейшего драйвера

Для построения программы руководствуйтесь следующим принципом: при подаче на один из выводов D логической единицы (остальные сигнализируют ноль) происходит открытие транзистора и сигнал проходит к катушке двигателя. Таким образом, выполняется один шаг.

На основе схемы составляется печатная плата, которую можно попытаться изготовить самостоятельно или сделать под заказ. После чего на плате впаиваются соответствующие детали. Устройство способно управлять шаговым устройством от домашнего компьютера за счет подключения к обычному USB порту.

Шаговые двигатели – принцип работы

Принцип работы шаговых двигателей, характеристики шаговых двигателей, типы ШД и ключевые различия.

Принцип работы шаговых двигателей

Принцип работы шаговых двигателей можно изложить кратко. ШД, как и все типы двигателей, состоят из статора (состоящего из катушек (обмоток)) и ротора, на котором установлены постоянные магниты.

На картинке изображены 4 обмотки, расположенные на статоре под углом в 90 градусов относительно друг друга. Тип обмотки зависит от конкретного типа подключения шагового двигателя (как подключить шаговый двигатель).На примере выше обмотки двигателя не соединены, что означает, что двигатель с такой схемой имеет шаг поворота в 90 градусов. Обмотки задействуются поочередно по часовой стрелке, а направление вращения вала двигателя обусловлен порядком задействования обмоток. Через обмотки протекает ток с интервалом 1 сек. Вал двигателя вращается на 90 градусов каждый раз, когда через очередную катушку протекает ток.

Шаговые двигатели – применение

Шаговые двигатели: принцип работы и отличия от двигателей постоянного тока

Двигатели постоянного тока (ДПТ) с постоянными магнитами Lenze начинают работать сразу, как только к якорной обмотке будет приложено постоянное напряжение. Переключение направления тока через обмотки ротора осуществляется механическим коммутатором — коллектором. Постоянные магниты при этом расположены на статоре.

Шаговый двигатель (ШД) может быть рассмотрен как ДПТ без коллекторного узла. Обмотки ШД являются частью статора. На роторе расположен постоянный магнит или, для случаев с переменным магнитным сопротивлением, зубчатый блок из магнитомягкого материала. Все коммутации производятся внешними схемами. Обычно система мотор — контроллер разрабатывается так, чтобы была возможность вывода ротора в любую, фиксированную позицию, то есть система управляется по положению. Цикличность позиционирования ротора зависит от его геометрии.

Принято различать шаговые двигатели и серводвигатели. Принцип их действия во многом похож, и многие контроллеры могут работать с обоими типами. Основное отличие заключается в шаговом (дискретном) режиме работы шагового двигателя (n шагов на один оборот ротора) и плавности вращения синхронного двигателя. Серводвигатели требуют наличия в системе управления датчика обратной связи по скорости и/или положению, в качестве которого обычно используется резольвер или sin/cos энкодер. Шаговые двигатели преимущественно используются в системах без обратных связей, требующих небольших ускорений при движении. В то время как синхронные сервомоторы обычно используются в скоростных высокодинамичных системах.

Шаговые двигатели (ШД) делятся на две разновидности: двигатели с постоянными магнитами и двигатели с переменным магнитным сопротивлением (гибридные двигатели). С точки зрения контроллера отличие между ними отсутствует. Двигатели с постоянными магнитами обычно имеют две независимые обмотки, у которых может присутствовать или отсутствовать срединный отвод (см. рис. 1).

Биполярные шаговые двигатели с постоянными магнитами и гибридные двигатели сконструированы более просто, чем униполярные двигатели, обмотки в них не имеют центрального отвода (см. рис. 2).

За это упрощение приходится платить более сложным реверсированием полярности каждой пары полюсов мотора.

Шаговые двигатели имеют широкий диапазон угловых разрешений. Более грубые моторы обычно вращаются на 90° за шаг, в то время как прецизионные двигатели могут иметь разрешение 1,8° или 0,72° на шаг. Если контроллер позволяет, то возможно использование полушагового режима или режима с более мелким дроблением шага (микрошаговый режим), при этом на обмотки подаются дробные значения напряжений, зачастую формируемые при помощи ШИМ-модуляции.

Если в процессе управления используется возбуждение только одной обмотки в любой момент времени, то ротор будет поворачиваться на фиксированный угол, который будет удерживаться пока внешний момент не превысит момента удержания двигателя в точке равновесия.

Для правильного управления биполярным шаговым двигателем необходима электрическая схема, которая должна выполнять функции старта, стопа, реверса и изменения скорости. Шаговый двигатель транслирует последовательность цифровых переключений в движение. «Вращающееся» магнитное поле обеспечивается соответствующими переключениями напряжений на обмотках. Вслед за этим полем будет вращаться ротор, соединенный посредством редуктора с выходным валом двигателя.

Каждая серия содержит высокопроизводительные компоненты, отвечающие все возрастающим требованиям к характеристикам современных электронных применений.

Схема управления для биполярного шагового двигателя требует наличия мостовой схемы для каждой обмотки. Эта схема позволит независимо менять полярность напряжения на каждой обмотке.

На рисунке 3 показана последовательность управления для режима с единичным шагом.

На рисунке 4 показана последовательность для полушагового управления.

Максимальная скорость движения определяется исходя из физических возможностей шагового двигателя. При этом скорость регулируется путем изменения размера шага. Более крупные шаги соответствуют большей скорости движения.

В системах управления электроприводами для отработки заданного угла или перемещения используют датчики обратной связи по углу или положению выходного вала исполнительного двигателя.

Если в качестве исполнительного двигателя использовать синхронный шаговый двигатель, то можно обойтись без датчика обратной связи (Дт) и упростить систему управления двигателем (СУ), так как отпадает необходимость использования в ней цифро%аналоговых (ЦАП) и аналого-цифровых (АЦП) преобразователей.

Шаговыми двигателями называются синхронные двигатели, преобразующие команду, заданную в виде импульсов, в фиксированный угол поворота двигателя или в фиксированное положение подвижной части двигателя без датчиков обратной связи.

Мощность шаговых двигателей лежит в диапазоне от единиц ватт до одного киловатта.Шаговый двигатель имеет не менее двух положений устойчивого равновесия ротора в пределах одного оборота. Напряжение питания обмоток управления шагового двигателя представляет собой последовательность однополярных или двуполярных прямоугольных импульсов, поступающих от электронного коммутатора (К). Результирующий угол соответствует числу переключений коммутатора, а частота вращения двигателя соответствует частоте переключений электронного коммутатора.

Шаговые двигатели различаются по конструктивным группам: активного типа (с постоянными магнитами), реактивного типа и индукторные.

Шаговые синхронные двигатели активного типа

В отличие от синхронных машин непрерывного вращения шаговые двигатели имеют на статоре явно выраженные полюса, на которых расположены катушки обмоток управления.Принцип действия шагового двигателя активного типа рассмотрим на примере двухфазного двигателя.

Различают два вида коммутации обмотки шагового двигателя: симметричная и несимметричная.

При симметричной системе коммутации на всех четырех тактах возбуждается одинаковое число обмоток управления.

При несимметричной системе коммутации четным и нечетным тактам соответствует различное число возбужденных обмоток управления.

Ротор у шагового двигателя активного типа представляет собой постоянный магнит, при числе пар полюсов больше 1, выполненный в виде «звездочки».

Число тактов KT системы управления называют количеством состояний коммутатора на периоде его работы T. Как видно из рисунков для симметричной системы управления KT=4, а для несимметричной KT=8.

В общем случае число тактов KT зависит от числа обмоток управления (фаз статора) mу и может быть посчитано по формуле:

где: n1=1 — при симметричной системе коммутации;

n1=2 — при несимметричной системе коммутации;

n2=1 — при однополярной коммутации;

n2=2 — при двуполярной коммутации.

При однополярной коммутации ток в обмотках управления протекает в одном направлении, а при двуполярной — в обеих. Синхронизирующий (электромагнитный) момент машины является результатом взаимодействия потока ротора с дискретно вращающимся магнитным полем статора. Под действием этого момента ротор стремится занять такое положение в пространстве машины, при котором оси потоков ротора и статора совпадают. Мы рассмотрели шаговые синхронные машины с одной парой полюсов (р=1). Реальные шаговые микродвигатели являются многополюсными (р>1). Для примера приведем двуполюсный трехфазный шаговый двигатель.

Двигатель с р парами полюсов имеет зубчатый ротор в виде звездочки с равномерно расположенными вдоль окружности 2р постоянными магнитами. Для многополюсной машины величина углового шага ротора равна:

Чем меньше шаг машины, тем точнее (по абсолютной величине) будет отрабатываться угол. Увеличение числа пар полюсов связано с технологическими возможностями и увеличением потока рассеяния. Поэтому р=4…6. Обычно величина шага ротора активных шаговых двигателей составляет десятки градусов.

Реактивные шаговые двигатели

У активных шаговых двигателей есть один существенный недостаток: у них крупный шаг, который может достигать десятков градусов.

Реактивные шаговые двигатели позволяют редуцировать частоту вращения ротора. В результате можно получить шаговые двигатели с угловым шагом, составляющим доли градуса.

Отличительной особенностью реактивного редукторного двигателя является расположение зубцов на полюсах статора.

При большом числе зубцов ротора Zр его угол поворота значительно меньше угла поворота поля статора.

Величина углового шага редукторного реактивного шагового двигателя определится выражением:

В выражении для KT величину n2 следует брать равной 1, т.к. изменение направления поля не влияет на положение ротора.

Электромагнитный синхронизирующий момент реактивного двигателя обусловлен, как и в случае обычного синхронного двигателя, разной величиной магнитных сопротивлений по продольной и поперечной осям двигателя.

Основным недостатком шагового реактивного двигателя является отсутствие синхронизирующего момента при обесточенных обмотках статора.

Повышение степени редукции шаговых двигателей, как активного типа, так и реактивного, можно достичь применением двух, трех и многопакетных конструкций. Зубцы статора каждого пакета сдвинуты относительно друг друга на часть зубцового деления. Если число пакетов два, то этот сдвиг равен 1/2 зубцового деления, если три, то — 1/3, и т.д. В то же время роторы-звездочки каждого из пакетов не имеют пространственного сдвига, т.е. оси их полюсов полностью совпадают. Такая конструкция сложнее в изготовлении и дороже однопакетной, и, кроме того, требует сложного коммутатора.

Индукторные (гибридные) шаговые двигатели. Стремление совместить преимущества активного шагового двигателя (большой удельный синхронизирующий момент на единицу объема, наличие фиксирующего момента) и реактивного шагового двигателя (малая величина шага) привело к созданию гибридных индукторных шаговых двигателей.

В настоящее время имеется большое число различных конструкций индукторных двигателей, различающихся числом фаз, размещением обмоток, способом фиксации ротора при обесточенном статоре и т.д. Во всех конструкциях индукторных шаговых двигателей вращающий момент создается за счет взаимодействия магнитного поля, создаваемого обмотками статора и постоянного магнита в зубчатой структуре воздушного зазора. При этом синхронизирующий момент шагового индукторного двигателя по природе является реактивным и создается намагничивающей силой обмоток статора, а постоянный магнит, расположенный либо на статоре, либо на роторе, создает фиксирующий момент, удерживающий ротор двигателя в заданном положении при отсутствии тока в обмотках статора.

По сравнению с шаговым двигателем реактивного типа у индукторного шагового двигателя при одинаковой величине шага больше синхронизирующий момент, лучшие энергетические и динамические характеристики

Линейные шаговые синхронные двигатели

При автоматизации производственных процессов весьма часто необходимо перемещать объекты в плоскости (например, в графопостроителях современных ЭВМ и т.д.). В этом случае приходится применять преобразователь вращательного движения в поступательное с помощью кинематического механизма.

Линейные шаговые двигатели преобразуют импульсную команду непосредственно в линейное перемещение. Это позволяет упростить кинематическую схему различных электроприводов.

Статор линейного шагового двигателя представляет собой плиту из магнитомягкого материала. Подмагничивание магнитопроводов производится постоянным магнитом.

Зубцовые деления статора и подвижной части двигателя равны. Зубцовые деления в пределах одного магнито-провода ротора сдвинуты на половину зубцового деления t/2. Зубцовые деления второго магнитопровода сдвинуты относительно зубцовых делений первого магнитопровода на четверть зубцового деления t/4. Магнитное сопротивление потоку подмагничивания не зависит от положения подвижной части.

Принцип действия линейного шагового двигателя не отличается от принципа действия индукторного шагового двигателя. Разница лишь в том, что при взаимодействии потока обмоток управления с переменной составляющей потока подмагничивания создается не момент, а сила FС, которая перемещает подвижную часть таким образом, чтобы против зубцов данного магнитопровода находились зубцы статора, т.е. на четверть зубцового деления t/4.

где Kt — число тактов схемы управления.

Для перемещения объекта в плоскости по двум координатам применяются двухкоординатные линейные шаговые двигатели.

В линейных шаговых двигателях применяют магнито-воздушную подвеску. Ротор притягивается к статору силами магнитного притяжения полюсов ротора. Через специальные форсунки под ротор нагнетается сжатый воздух, что создает силу отталкивания ротора от статора. Таким образом, между статором и ротором создается воздушная подушка, и ротор подвешивается над статором с минимальным воздушным зазором. При этом обеспечивается минимальное сопротивление движению ротора и высокая точность позиционирования.

Режимы работы синхронного шагового двигателя

Шаговый двигатель работает устойчиво, если в процессе отработки угла при подаче на его обмотки управления серии импульсов не происходит потери ни одного шага. Это значит, что в процессе отработки каждого из шагов ротор двигателя занимает устойчивое равновесие по отношению к вектору результирующей магнитной индукции дискретно вращающегося магнитного поля статора.

Режим отработки единичных шагов соответствует частоте импульсов управления, подаваемых на обмотки шагового двигателя, при котором шаговый двигатель отрабатывает до прихода xследующего импульса заданный угол вращения. Это значит, что в начале каждого шага угловая скорость вращения двигателя равна 0.

При этом возможны колебания углового вала двигателя относительно установившегося значения. Эти колебания обусловлены запасом кинетической энергии, которая была накоплена валом двигателя при отработке угла. Кинетическая энергия преобразуется в потери: механические, магнитные и электрические. Чем больше величина перечисленных потерь, тем быстрее заканчивается переходный процесс отработки единичного шага двигателем.

В процессе пуска ротор может отставать от потока статора на шаг и более; в результате может быть расхождение между числом шагов ротора и потока статора.

Основными характеристиками шагового двигателя являются: шаг, предельная механическая характеристика и приемистость.

Предельная механическая характеристика — это зависимость максимального синхронизирующего момента от частоты управляющих импульсов.

Приемистость — это наибольшая частота управляющих импульсов, при которой не происходит потери или добавления шага при их отработке. Она является основным показателем переходного режима шагового двигателя. Приемистость растет с увеличением синхронизирующего момента, а также с уменьшением шага, момента инерции вращающихся (или линейно перемещаемых) частей и статического момента сопротивления.

Приемистость падает с увеличением нагрузки.

“>

Управление шаговым двигателем. Схема и описание

Шаговые двигатели не сильно отличаются от многих классических двигателей. Для управления шаговым двигателем необходимо подавать постоянное напряжение на обмотки в точной последовательности. Благодаря этому принципу, можно обеспечить точный угол поворота оси.

Более того, оставив напряжение питания на одной или нескольких обмотках двигателя, мы переводим двигатель в режим удержания. Шаговые двигатели получили широкое распространение в технике, к примеру, их можно найти в гибких дисководах, сканерах и принтерах. Существует несколько типов шаговых двигателей.

Типы шаговых двигателей

Существуют три основных типа шаговых двигателей:

  1. Двигатель с постоянным магнитом
  2. Двигатель с переменным магнитным сопротивлением
  3. Гибридный двигатель

Шаговый двигатель с постоянными магнитами

Шаговый двигатель с постоянными магнитами применяется наиболее часто в устройствах бытового назначения, нежели в промышленных устройствах. Это недорогой двигатель, имеющий низкий крутящий момент и низкую скорость вращения. Он идеально подходит для устройств компьютерной периферии.

Производство шагового двигателя с постоянными магнитами несложно и экономически оправдано, когда дело касается производства больших объемов. Однако из-за его относительной инертности, применение ограничено в устройствах, где требуется точное позиционирование по времени.

 Шаговый двигатель с переменным магнитным сопротивлением

В шаговом двигателе с переменным магнитным сопротивлением нет постоянного магнита, и как результат этого — ротор вращается свободно, без остаточного крутящего момента. Этот тип двигателя часто используется в малогабаритных устройствах, например, в системах микро-позиционирования. Они не чувствительны к полярности тока и требуют систему управления отличную от других типов двигателей.

Гибридный шаговый двигатель

Гибридный двигатель, на сегодняшний день, является самым популярным двигателем в промышленной сфере. Его название происходит от того, что он сочетает в себе принципы работы двух других типов двигателя (с постоянными магнитами и переменным магнитным сопротивлением). Большинство гибридных двигателей имеют две фазы.

Как работает гибридный двигатель

Работу гибридного шагового двигателя легко понять, глядя на очень простую модель, которая производит 12 шагов за один оборот.

Ротор этой машины состоит из двух частей, каждая из которых имеет три зуба. Между двумя частями находится постоянный магнит, намагниченный в направлении оси ротора, создавая, таким образом, южный полюс на одной части детали, и северного полюса на другой. Статор состоит из трубки, имеющей четыре зуба внутри нее. Обмотки статора намотаны вокруг каждого такого зуба.

Когда ток протекает через одну из обмоток, ротор занимает одно из положений, показанных на рисунках. Это связано с тем что, постоянный магнит ротора пытается минимизировать магнитное сопротивление обмотки. Крутящий момент, что стремится держать ротор в этих положениях, как правило, небольшой и называется «релаксация крутящего момента». Ниже изображена схема работы двигателя с 12 шагами.

Если ток течет по двум обмоткам статора, результирующие полюса будут притягивать зубы обратной полярности на каждом конце ротора. Есть три устойчивых позиций для ротора, столько же, сколько количество зубьев на роторе. Момент, необходимый для перемещения ротора от его стабильного положения во вращательное движение называется «удержание крутящего момента»

Изменяя ток первой до второй обмотки (В), магнитное поле статора поворачивается на 90 градусов и притягивает новую пару полюсов ротора. В результате этого ротор поворачивается на 30 градусов, что соответствует полному шагу. Возвращение к первому набору обмоток статора, но с питанием обратной полярности, изменяет магнитное поле статора еще на 90 градусов, и ротор поворачивается на 30 градусов (С).

Наконец, второй набор обмоток работает в противоположном направлении, обеспечивая третье положение ротора (еще 30 градусов). Теперь мы можем вернуться снова к первому этапу (А), и после прохождения заново всех этих четырех этапов, ротор будет перемещен еще на один зуб.

Очевидно, что если полярность питания обмоток будет противоположной описанной, то вращение двигателя так же сменится на противоположное.

Режим полшага

Подавая питание поочередно на одну обмотку, а затем на две, ротор будет совершать вращение на 15 градусов в каждом шаге и таким образом количество шагов на один оборот увеличится в два раза. Этот режим называется режимом «полшага», и большинство промышленных устройств применяют этот режим. Даже если это иногда вызывает небольшую потерю крутящего момента, режим в полшага намного плавнее на низких скоростях и вызывает меньший резонанс в конце каждого шага.

Когда шаговый двигатель находится под контролем в режиме «неполного шага», две фазы одновременно находятся под напряжением и крутящий момент обеспечивается на каждом шаге. В режиме полушага, питание чередуется между двумя фазами, и отдельной обмоткой, как показано на рисунке.

Биполярные и униполярные шаговые двигатели

От того какая у шагового двигателя форма обмоток, двигатели делятся на униполярные и биполярные. У биполярного двигателя по 1 обмотке в каждой фазе. Всего две обмотки и соответственно 4 вывода (рис. а). Для обеспечения вращения вала на эти обмотки должно подаваться напряжение с изменяемой полярностью. Поэтому для биполярного двигателя необходим полумостовой либо мостовой драйвер, снабженный двухполярным питанием.

Униполярный двигатель также как и биполярный, для каждой фазы имеет по одной обмотке, но каждая обмотка содержит отвод от середины. В связи с этим, путем переключения половинок обмотки шагового двигателя, появляется возможность менять направление магнитного поля.

В данном случае значительно упрощается структура драйвера двигателя. Он должен обладать всего лишь четырьмя силовыми ключами. Соответственно, в униполярном двигателе применяется иной метод изменения направления магнитного поля. Отводы обмоток зачастую объединяются внутри двигателя, вследствие этого данный тип двигателя может обладать пятью или шестью проводами (рис. б).

Порой униполярные двигатели снабжаются четырьмя обмотками, каждая из которых содержит собственные выводы – то есть их всего восемь (рис. в). При определенном соединении этих обмоток подобный шаговый двигатель возможно использовать как биполярный либо униполярный. Кстати, униполярный двигатель, имеющий две обмотки с отводами по середине, возможно использовать и как биполярный. В этом случае провода, идущие от середины обмоток не используются.

Управление шаговым двигателем

В качестве примера управления шаговым двигателем возьмем униполярный шаговый двигатель ШД-1ЕМ, имеющий характеристики: количество шагов — 200/об., ток обмотки – 0,5А, мощность — 12 Ватт.

Драйвером, управляющим обмотками шагового двигателя выберем микросхему ULN2003A. Эта уникальная микросхема, не что иное, как транзисторная сборка по схеме Дарлингтона с открытым коллектором, снабженная диодом, защищающим цепь питания нагрузки. ULN2003A имеет семь каналов управления с током нагрузки 500мА каждый.

Входы микросхемы ULN2003A можно напрямую подключать к выходам цифровых микросхем, поскольку она имеет резисторы, подключенные к базам транзисторов. Еще одним немаловажным моментом является то, что выходы ULN2003A снабжены диодами, которые защищают микросхему от индукционных выбросов в момент коммутации обмоток шагового двигателя.

Вывод 9 микросхемы ULN2003A подведен к источнику питания через стабилитрон, который защищает схему от ЭДС самоиндукции, появляющейся в момент выключения блока питания схемы. Управление шаговым двигателем производится с помощью компьютера через LPT порт при помощи программы:

Скачать программу управления шаговым двигателем (204,1 KiB, скачано: 2 163)

Управление фазами шагового двигателя

Диаграммы, диаграммы…

Существует несколько способов управления фазами шагового двигателя.

Первый способ обеспечивается попеременной коммутации фаз, при этом они не перекрываются, в один момент времени включена только одна фаза (рис 8а). Этот способ называют «one phase on» full step или wave drive mode. Точки равновесия ротора для каждого шага совпадают с точками равновесия ротора у незапитанного двигателя. Недостатком этого способа управления является то, что для биполярного двигателя в один и тот же момент времени иcпользуется 50% обмоток, а для униполярного — только 25%. Это означает, что в таком режиме не может быть получен полный момент.

Рис. 8.  Различные способы управления фазами шагового двигателя.

Второй способ — управление фазами с перекрытием: две фазы включены в одно и то же время. Его называют «two-phase-on» full step или просто full step mode. При этом способе управления ротор фиксируется в промежуточных позициях между полюсами статора (рис. 8б) и обеспечивается примерно на 40% больший момент, чем в случае одной включенной фазы. Этот способ управления обеспечивает такой же угол шага, как и первый способ, но положение точек равновесия ротора смещено на пол-шага.

Третий способ является комбинацией первых двух и называется полушаговым режимом, «one and two-phase-on» half step или просто half step mode, когда двигатель делает шаг в половину основного. Этот метод управления достаточно распространен, так как двигатель с меньшим шагом стоит дороже и очень заманчиво получить от 100-шагового двигателя 200 шагов на оборот. Каждый второй шаг запитана лишь одна фаза, а в остальных случаях запитаны две (рис. 8в). В результате угловое перемещение ротора составляет половину угла шага для первых двух способов управления. Кроме уменьшения размера шага этот способ управления позволяет частично избавиться от явления резонанса. Полушаговый режим обычно не позволяет получить полный момент, хотя наиболее совершенные драйверы реализуют модифицированный полушаговый режим, в котором двигатель обеспечивает практически полный момент, при этом рассеиваемая мощность не превышает номинальной.

Еще один способ управления называется микрошаговым режимом или micro stepping mode. При этом способе управления ток в фазах нужно менять небольшими шагами, обеспечивая таким образом дробление половинного шага на еще меньшие микрошаги. Когда одновременно включены две фазы, но их токи не равны, то положение равновесия ротора будет лежать не в середине шага, а в другом месте, определяемом соотношением токов фаз. Меняя это соотношение, можно обеспечить некоторое количество микрошагов внутри одного шага. Кроме увеличения разрешающей способности, микрошаговый режим имеет и другие преимущества, которые будут описаны ниже. Вместе с тем, для реализации микрошагового режима требуются значительно более сложные драйверы, позволяющие задавать ток в обмотках с необходимой дискретностью. Полушаговый режим является частным случаем микрошагового режима, но он не требует формирования ступенчатого тока питания катушек, поэтому часто реализуется.

Держи его!

В полношаговом режиме с двумя включенными фазами положения точек равновесия ротора смещены на пол-шага. Нужно отметить, что эти положения ротор принимает при работе двигателя, но положение ротора не может сохраняться неизменным после выключения тока обмоток. Поэтому при включении и выключении питания двигателя ротор будет смещаться на пол-шага. Для того, чтобы он не смещался при остановке, необходимо подавать в обмотки ток удержания. То же справедливо и для полушагового и микрошагового режимов. Следует отметить, что если в выключенном состоянии ротор двигателя поворачивался, то при включении питания возможно смещение ротора и на большую, чем половина шага величину.

Ток удержания может быть меньше номинального, так как от двигателя с неподвижным ротором обычно не требуется большого момента. Однако есть применения, когда в остановленном состоянии двигатель должен обеспечивать полный момент, что для шагового двигателя возможно. Это свойство шагового двигателя позволяет в таких ситуациях обходиться без механических тормозных систем. Поскольку современные драйверы позволяют регулировать ток питания обмоток двигателя, задание необходимого тока удержания обычно не представляет проблем. Задача обычно заключается просто в соответствующей программной поддержке для управляющего микроконтроллера.

Полушаговый режим

Основным принципом работы шагового двигателя является создание вращающегося магнитного поля, которое заставляет ротор поворачиваться. Вращающееся магнитное поля создается статором, обмотки которого соответствующим образом запитываются.

Для двигателя, у которого запитана одна обмотка, зависимость момента от угла поворота ротора относительно точки равновесия является приблизительно синусоидальной. Эта зависимость для двухобмоточного двигателя, который имеет N шагов на оборот (угол шага в радианах S = (2*pi)/N), показана на рис. 9.

Рис. 9.  Зависимость момента от угла поворота ротора для одной запитанной обмотки.

Реально характер зависимости может быть несколько другой, что объясняется неидеальностью геометрии ротора и статора. Пиковое значение момента называется моментом удержания. Формула, описывающая зависимость момента от угла поворота ротора, имеет следующий вид:

T = — Th*sin((pi/2)/S)*Ф),

где T — момент, Th — момент удержания,
S — угол шага,
Ф — угол поворота ротора.

Если к ротору приложить внешний момент, который превышает момент удержания, ротор провернется. Если внешний момент не превышает момента удержания, то ротор будет находится в равновесии в пределах угла шага. Нужно отметить, что у обесточенного двигателя момент удержания не равен нулю вследствие действия постоянных магнитов ротора. Этот момент обычно составляет около 10% максимального момента, обеспечиваемого двигателем.

Иногда используют термины «механический угол поворота ротора» и «электрический угол поворота ротора». Механический угол вычисляется исходя из того, что полный оборот ротора составляет 2*pi радиан. При вычислении электрического угла принимается, что один оборот соответствует одному периоду угловой зависимости момента. Для приведенных выше формул Ф является механическим углом поворота ротора, а электрический угол для двигателя, имеющего 4 шага на периоде кривой момента, равен ((pi/2)/S)*Ф или (N/4)*Ф, где N — число шагов на оборот. Электрический угол фактически определяет угол поворота магнитного поля статора и позволяет строить теорию независимо от числа шагов на оборот для конкретного двигателя.

Если запитать одновременно две обмотки двигателя, то момент будет равен сумме моментов, обеспечиваемых обмотками по отдельности (рис. 10).

Рис. 10. Зависимость момента от угла поворота ротора для двух запитанных обмоток.

При этом, если токи в обмотках одинаковы, то точка максимума момента будет смещена на половину шага. На половину шага сместится и точка равновесия ротора (точка e на рисунке). Этот факт и положен в основу реализации полушагового режима. Пиковое значение момента (момент удержания) при этом будет в корень из двух раз больше, чем при одной запитанной обмотке.

Th2 = 2 0.5*Th1,

где Th2 — момент удержания при двух запитанных обмотках,
Th1 — момент удержания при одной запитанной обмотке.

Именно этот момент обычно и указывается в характеристиках шагового двигателя.

Величина и направление магнитного поля показаны на векторной диаграмме (рис. 11).

Рис. 11. Величина и направление магнитного поля для разных режимов питания фаз.

Оси X и Y совпадают с направлением магнитного поля, создаваемого обмотками первой и второй фазы двигателя. Когда двигатель работает с одной включенной фазой, ротор может занимать положения 1, 3, 5, 7. Если включены две фазы, то ротор может занимать положения 2, 4, 6, 8. К тому же, в этом режиме больше момент, так как он пропорционален длине вектора на рисунке. Оба эти метода управления обеспечивают полный шаг, но положения равновесия ротора смещены на пол-шага. Если скомбинировать два этих метода и подать на обмотки соответствующие последовательности импульсов, то можно заставить ротор последовательно занимать положения 1, 2, 3, 4, 5, 6, 7, 8, что соответствует половинному шагу.

По сравнению с полношаговым режимом, полушаговый режим имеет следующие преимущества:
  • более высокая разрешающая способность без применения более дорогих двигателей
  • меньшие проблемы с явлением резонанса. Резонанс приводит лишь к частичной потере момента, что обычно не мешает нормальной работе привода.

Недостатком полушагового режима является довольно значительное  колебание момента от шага к шагу. В тех положениях ротора, когда запитана одна фаза, момент составляет примерно 70% от полного, когда запитаны две фазы. Эти колебания могут явиться причиной повышенных вибраций и шума, хотя они всё равно остаются меньшими, чем в полношаговом режиме.

Способом устранения колебаний момента является поднятие момента в положениях с одной включенной фазой и обеспечение таким образом одинакового момента во всех положениях ротора. Это может быть достигнуто путем увеличения тока в этих положениях до уровня примерно 141% от номинального. Некоторые драйверы, такие как PBL 3717/2 и PBL 3770A фирмы Ericsson, имеют логические входы для изменения величины тока. Нужно отметить, что величина 141% является теоретической, поэтому в приложениях, требующих высокой точности поддержания момента эта величина должна быть подобрана экспериментально для конкретной скорости и конкретного двигателя. Поскольку ток поднимается только в те моменты, когда включена одна фаза, рассеиваемая мощность равна мощности в полношаговом режиме при токе 100% от номинального. Однако такое увеличение тока требует более высокого напряжения питания, что не всегда возможно. Есть и другой подход. Для устранения колебаний момента при работе двигателя в полушаговом режиме можно снижать ток в те моменты, когда включены две фазы. Для получения постоянного момента этот ток должен составлять 70.7% от номинального. Таким образом реализует полушаговый режим, например, микросхема драйвера A3955 фирмы Allegro.

Для полушагового режима очень важным является переход в состояние с одной выключенной фазой. Чтобы заставить ротор принять соответствующее положение, ток в отключенной фазе должен быть уменьшен до нуля как можно быстрее. Длительность спада тока зависит от напряжения на обмотке в то время, когда она теряет свою запасенную энергию. Замыкая в это время обмотку на источник питания, который представляет максимальное напряжение, имеющееся в системе, обеспечивается максимально быстрый спад тока. Для получения быстрого спада тока при питании обмоток двигателя H-мостом все транзисторы должны закрываться, при этом обмотка через диоды оказывается подключенной к источнику питания. Скорость спада тока значительно уменьшится, если один транзистор моста оставить открытым и закоротить обмотку на транзистор и диод. Для увеличения скорости спада тока при управлении униполярными двигателями подавление выбросов ЭДС самоиндукции предпочтительнее осуществлять не диодами, а варисторами или комбинацией диодов и стабилитрона, которые ограничат выброс на большем, но безопасном для транзисторов уровне.

Микрошаговый режим

Микрошаговый режим обеспечивается путем получения поля статора, вращающегося более плавно, чем в полно- или полушаговом режимах. В результате обеспечиваются меньшие вибрации и практически бесшумная работа вплоть до нулевой частоты. К тому же меньший угол шага способен обеспечить более точное позиционирование. Существует много различных микрошаговых режимов, с величиной шага от 1/3 полного шага до 1/32 и даже меньше. Шаговый двигатель является синхронным электродвигателем. Это значит, что положение равновесия неподвижного ротора совпадает с направлением магнитного поля статора. При повороте поля статора ротор тоже поворачивается, стремясь занять новое положение равновесия.

Рис. 12. Зависимость момента от угла поворота ротора в случае разных значений тока фаз.

Чтобы получить нужное направление магнитного поля, необходимо выбрать не только правильное направление токов в катушках, но и правильное соотношение этих токов.

Если одновременно запитаны две обмотки двигателя, но токи в этих обмотках не равны (рис. 12), то результирующий момент будет

Th = ( a2 + b2 )0.5,

а точка равновесия ротора сместится в точку

x = ( S / (pi/2) ) arctan( b / a ),

где a и b — момент, создаваемый первой и второй фазой соответственно,
Th — результирующий момент удержания,
x — положение равновесия ротора в радианах,
S — угол шага в радианах.

Смещение точки равновесия ротора говорит о том, что ротор можно зафиксировать в любой произвольной позиции. Для этого нужно лишь правильно установить отношение токов в фазах. Именно этот факт используется при реализации микрошагового режима.
Ещё раз нужно отметить, что приведенные выше формулы верны только в том случае, если зависимость момента от угла поворота ротора синусоидальная и если ни одна часть магнитной цепи двигателя не насыщается.
В пределе, шаговый двигатель может работать как синхронный электродвигатель в режиме непрерывного вращения. Для этого токи его фаз должны быть синусоидальными, сдвинутыми друг относительно друга на 90 град.
Результатом использования микрошагового режима является намного более плавное вращение ротора на низких частотах. На частотах в 2 — 3 раза выше собственной резонансной частоты ротора и нагрузки, микрошаговый режим дает незначительные преимущества по сравнению с полу- или полношаговым режимами. Причиной этого является фильтрующее действие инерции ротора и нагрузки. Система с шаговым двигателем работает подобно фильтру нижних частот. В микрошаговом режиме можно осуществлять только разгон и торможение, а основное время работать в полношаговом режиме. К тому же, для достижения высоких скоростей в микрошаговом режиме требуется очень высокая частота повторения микрошагов, которую не всегда может обеспечить управляющий микроконтроллер. Для предотвращения переходных процессов и потери шагов, переключения режимов работы двигателя (из микрошагового режима в полношаговый и т.п.) необходимо производить в те моменты, когда ротор находится в положении, соответствующем одной включенной фазе. Некоторые микросхемы драйверов микрошагового режима имеют специальный сигнал, который информирует о таком положении ротора. Например, это драйвер A3955 фирмы Allegro.
Во многих приложениях, где требуются малые относительные перемещения и высокая разрешающая способность, микрошаговый режим способен заменить механический редуктор. Часто простота системы является решающим фактором, даже если при этом придется применить двигатель больших габаритов. Несмотря на то, что драйвер, обеспечивающий микрошаговый режим, намного сложнее обычного драйвера, всё равно система может оказаться более простой и дешевой, чем шаговый двигатель, плюс редуктор. Современные микроконтроллеры иногда имеют встроенные ЦАПы, которые можно использовать для реализации микрошагового режима взамен специальных контроллеров. Это позволяет сделать практически одинаковой стоимость оборудования для полношагового и микрошагового режимов.
Иногда микрошаговый режим используется для увеличения точности величины шага сверх заявленной производителем двигателя. При этом используется номинальное число шагов. Для повышения точности используется коррекция положения ротора в точках равновесия. Для этого сначала снимают характеристику для конкретного двигателя, а затем, изменяя соотношение токов в фазах, корректируют положение ротора индивидуально для каждого шага. Такой метод требует предварительной калибровки и дополнительных ресурсов управляющего микроконтроллера. Кроме того, требуется датчик начального положения ротора для синхронизации его положения с таблицой корректирующих коэффициентов.

На практике при осуществлении каждого шага ротор не сразу останавливается в новом положении равновесия, а осуществляет затухающие колебания вокруг положения равновесия. Время установления зависит от характеристик нагрузки и от схемы драйвера. Во многих приложениях такие колебания являются нежелательными. Избавиться от этого явления можно путем использования микрошагового режима. На рис. 13 показаны перемещения ротора при работе в полношаговом и микрошаговом режимах.

Рис. 13. Перемещения ротора в полношаговом и микрошаговом режимах.

Видно, что в полношаговом режиме наблюдаются выбросы и колебания, в то время как в микрошаговом режиме их нет. Однако и в этом режиме график положения ротора отличается от прямой линии. Эта погрешность объясняется погрешностью геометрии деталей двигателя и может быть уменьшена путем проведения калибровки и последующей компенсации путем корректировки токов фаз.
На практике существуют некоторые факторы, ограничивающие точность работы привода в микрошаговом режиме. Некоторые из них относятся к драйверу, а некоторые непосредственно к двигателю.

Обычно производители шаговых двигателей указывают такой параметр, как точность шага. Точность шага указывается для положений равновесия ротора при двух включенных фазах, токи которых равны. Это соответствует полношаговому режиму с перекрытием фаз. Для микрошагового режима, когда токи фаз не равны, никаких данных обычно не приводится.

Идеальный шаговый двигатель при питании фаз синусоидальным и косинусоидальным током должен вращаться с постоянной скоростью. У реального двигателя в таком режиме будут наблюдаться некоторые колебания скорости. Связано это с нестабильностью воздушного зазора между полюсами ротора и статора, наличием магнитного гистерезиса, что приводит к погрешностям величины и направления магнитного поля и т.д. Поэтому положения равновесия и момент имеют некоторые отклонения. Эти отклонения зависят от погрешности формы зубцов ротора и статора и от примененного материала магнитопроводов.

Конструкция некоторых двигателей оптимизирована для наилучшей точности в полношаговом режиме и максимального момента удержания. Специальная форма зубцов ротора и статора спроектирована так, чтобы в положении равновесия для полношагового режима магнитный поток сильно возростал. Это приводит к ухудшению точности в микрошаговом режиме. Лучшие результаты позволяют получить двигатели, у которых момент удержания в обесточенном состоянии меньше.

Отклонения можно разделить на два вида: отклонения величины магнитного поля, которые приводят к отклонениям момента удержания в микрошаговом режиме и отклонения направления магнитного поля, которые приводят к отклонениям положения равновесия. Отклонения момента удержания в микрошаговом режиме обычно составляют 10 — 30% от максимального момента. Нужно сказать, что и в полношаговом режиме момент удержания может колебаться на 10 — 20 % вследствие искажений геометрии ротора и статора.

Если измерить положения равновесия ротора при вращении двигателя по и против часовой стрелки, то получатся несколько разные результаты. Этот гистерезис связан в первую очередь с магнитным гистерезисом материала сердечника, хотя свой вклад вносит и трение. Магнитный гистерезис приводит к тому, что магнитный поток зависит не только от тока обмоток, но и от предыдущего его значения. Погрешность, создаваемая гистерезисом может быть равна нескольким микрошагам. Поэтому в высокоточных приложениях при движении в одном из направлений нужно проходить за желаемую позицию, а затем возвращаться назад, чтобы подход к нужной позиции всегда осуществлялся в одном направлении.

Вполне естественно, что любое желаемое увеличение разрешающей способности наталкивается на какие-то физические ограничения. Не стоит думать, что точность позиционирования для 7.2 град. двигателя в микрошаговом режиме не уступает точности 1.8 град. двигателя.

Препятствием являются следующие физические ограничения:

  • нарастание момента в зависимости от угла поворота у 7.2 градусного двигателя в четыре раза более пологое, чем у настоящего 1.8-градусного двигателя. Вследствие действия момента трения или момента инерции нагрузки точность позиционирования уже будет хуже
  • как будет показано ниже, если в системе есть трение, то вследствие появления мертвых зон точность позиционирования будет ограничена
  • большинство коммерческих двигателей не обладают прецизионной конструкцией и зависимость между моментом и углом поворота ротора не является в точности синусоидальной. Вследствие этого зависимость между фазой синусоидального тока питания и углом поворота вала будет нелинейной. В результате ротор двигателя будет точно проходить положения каждого шага и полушага, а между этими положениями будут наблюдаться довольно значительные отклонения

Эти проблемы наиболее ярко выражены для двигателей с большим количеством полюсов. Существуют однако двигатели, ещё на этапе разработки оптимизированные для работы в микрошаговом режиме. Полюса ротора и статора таких двигателей менее выражены благодаря скошенной форме зубцов.

Еще один источник погрешностей позиционирования — это ошибка квантования ЦАП, с помощью которого формируются токи фаз. Дело в том, что ток должен формироваться по синусоидальному закону, поэтому для минимизации погрешности линейный ЦАП должен иметь повышенную разрядность. Существуют специализированные драйверы со встроенным нелинейным ЦАПом, который позволяет сразу получать осчеты функции sin. Примером может служить драйвер A3955 фирмы Allegro, который имеет встроенный 3-х разрядный ЦАП, который обеспечивает следующие значения тока фаз: 100%, 92.4%, 83.1%, 70.7%, 55.5%, 38.2%, 19.5%, 0%. Это позволяет работать в микрошаговом режиме с величиной шага 1/8, при этом погрешность установки тока фаз не превышает 2%. Кроме того, этот драйвер имеет возможность управлять скоростью спада тока обмоток двигателя во время работы, что позволяет произвести драйвера под конкретный двигатель для получения наименьшей погрешности позиционирования.

Даже если ЦАП точно сформировал синусоидальное опорное напряжение, его нужно усилить и превратить в синусоидальный ток обмоток. Многие драйверы имеют значительную нелинейность вблизи нулевого значения тока, что вызывает значительные искажения формы и, как следствие, значительные ошибки позиционирования. Если используются высококачественные драйверы, например PBM3960 и PBL3771 фирмы Ericsson, погрешность, связанная с драйвером исчезающе мала по сравнению с погрешностью двигателя.

Иногда контроллеры шаговых двигателей позволяют корректировать форму выходного сигнала путем добавления или вычитания из синуса его третьей гармоники. Однако такая подстройка должна производится индивидуально под конкретный двигатель, характеристики которого должны быть перед этим измерены.

Из-за этих ограничений микрошаговый режим используется в основном для обеспечения плавного вращения (особенно на очень низких скоростях), для устранения шума и явления резонанса. Микрошаговый режим также способен  уменьшить время установления механической системы, так как в отличие от полношагового режима отсутствуют выбросы и осцилляции. Однако в большинстве случаев для обычных двигателей нельзя гарантировать точного позицианирования в микрошаговом режиме.

Синусоидальный ток фаз может быть обеспечен применением специальных драйверов. Некоторые из них, например A3955, A3957 фирмы Allegro, уже содержат ЦАП и требуют о микроконтроллера только цифровых кодов. Другие же, такие как L6506, L298 фирмы SGS-Thomson, требуют внешних опорных напряжений синусоидальной формы, которые должен формировать микроконтроллер с помощью ЦАПов. Нужно сказать, что слишком большое количество дискретов синуса не приводит к повышению точности позиционирования, так как начинает доминировать ошибка, связанная с неидеальностью геометрии полюсов двигателя. Тем более, в этом случае отсчеты должны следовать с большой частотой, что является проблемой при их программном формировании. При работе на больших скоростях разрешающую способность ЦАПов можно уменьшить. Более того, при очень больших скоростях вообще рекомендуется работать в обычном полношаговом режиме, так как управление гармоническим сигналом теряет преимущества. Происходит это по той причине, что обмотки двигателя представляют собой индуктивность, соответственно любая конкретная схема драйвера с конкретным напряжением питания обеспечивает вполне определенную максимальную скорость нарастания тока. Поэтому при повышении частоты форма тока начинает отклоняться от синусоидальной и на очень больших частотах становится треугольной.

Зависимость момента от скорости, влияние нагрузки

Момент, создаваемый шаговым двигателем, зависит от нескольких факторов:

  • скорости
  • тока в обмотках
  • схемы драйвера

На рис. 14а показана зависимость момента от угла поворота ротора.

Рис. 14. Возникновение мертвых зон в результате действия трения.

У идеального шагового двигателя эта зависимость синусоидальная. Точки S являются положениями равновесия ротора для негруженного двигателя и соответствуют нескольким последовательным шагам. Если к валу двигателя приложить внешний момент, меньший момента удержания, то угловое положение ротора изменится на некоторый угол Ф.

Ф = (N/(2*pi))*sin(Ta/Th),

где Ф — угловое смещение,
N — количество шагов двигателя на оборот,
Ta — внешний приложенный момент,
Th — момент удержания.

Угловое смещение Ф является ошибкой позиционирования нагруженного двигателя. Если к валу двигателя приложить момент, превышающий момент удержания, то под действием этого момента вал провернется. В таком режиме положение ротора является неконтролируемым.
На практике всегда имеется приложенный к двигателю внешний момент, хотя бы потому, что двигателю приходится преодолевать трение. Силы трения могут быть расделены на две категории: статическое трение или трение покоя, для преодоления которого требуется постоянный момент и динамическое трение или вязкое трение, которое зависит от скорости. Рассмотрим статическое трение. Предположим, что для его преодоления требуется момент в половину от пикового. На рис. 14а штриховыми линиями показан момент трения. Таким образом, для вращения ротора остается только момент, лежащий на графике за пределами штриховых линий. Отсюда следуют два вывода: трение снижает момент на валу двигателя и появляются мертвые зоны вокруг каждого положения равновесия ротора (рис. 14б):

d = 2 ( S / (pi/2) ) arcsin(T f /T h) = ( S / (pi/4) ) arcsin(T f / Th),

где d — ширина мертвой зоны в радианах,
S — угол шага в радианах,
Tf — момент трения,
Th — момент удержания.

Мертвые зоны ограничивают точность позиционирования. Например, наличие статического трения в половину от пикового момента двигателя с шагом 90 град. вызовет наличие мертвых зон в 60 град. Это означает, что шаг двигателя может колебаться от 30 до 150 град., в зависимости от того, в какой точке мертвой зоны остановится ротор после очередного шага.

Наличие мертвых зон является очень важным для микрошагового режима. Если, например, имеются мертвые зоны величиной d, то микрошаг величиной менее d вообще не сдвинет ротор с места. Поэтому для систем с использованием микрошагов очень важно минимизировать трение покоя.

Когда двигатель работает под нагрузкой, всегда существует некоторый сдвиг между угловым положением ротора и ориентацией магнитного поля статора. Особенно неблагоприятной является ситуация, когда двигатель начинает торможение и момент нагрузки реверсируется. Нужно отметить, что запаздывание или опережение относится только к положению, но не к скорости. В любом случае, если синхронность работы двигателя не потеряна, это запаздывание или опережение не может превышать величины двух полных шагов. Это весьма приятный факт.

Каждый раз, когда шаговый двигатель осуществляет шаг, ротор поворачивается на S радиан. При этом минимальный момент имеет в место, когда ротор находится ровно между соседними положениями равновесия (рис. 15).

Рис. 15. Момент удержания и рабочий момент шагового двигателя.

Этот момент называют рабочим моментом, он означает, какой наибольший момент может преодолевать двигатель при вращении с малой скоростью. При синусоидальной зависимости момента от угла поворота ротора, этот момент Tr = Th/(20.5). Если двигатель делает шаг с двумя запитанными обмотками, то рабочий момент равен моменту удержания для одной запитанной обмотки.

Параметры привода на основе шагового двигателя сильно зависят от характеристик нагрузки. Кроме трения, реальная нагрузка обладает инерцией. Инерция препятствует изменению скорости. Инерционная нагрузка требует от двигателя больших моментов на разгоне и торможении, ограничивая таким образом максимальное ускорение. С другой стороны, увеличение инерционности нагрузки увеличивает стабильность скорости.

Такой параметр шагового двигателя, как зависимость момента от скорости является важнейшим при выборе типа двигателя, выборе метода управления фазами и выборе схемы драйвера. При конструировании высокоскоростных драйверов шаговых двигателей нужно учитывать, что обмотки двигателя представляют собой индуктивность. Эта индуктивность определяет время нарастания и спада тока. Поэтому если к обмотке приложено напряжение прямоугольной формы, форма тока не будет прямоугольной. При низких скоростях (рис. 16а) время нарастания и спада тока не способно сильно повлиять на момент, однако на высоких скоростях момент падает. Связано это с тем, что на высоких скоростях ток в обмотках двигателя не успевает достигнуть номинального значения (рис. 16б).

Рис. 16. Форма тока в обмотках двигателя на разных скоростях работы.

Для того, чтобы момент падал как можно меньше, необходимо обеспечить высокую скорость нарастания тока в обмотках двигателя, что достигается применением специальных схем для их питания.

Поведение момента при увеличении частоты коммутации фаз примерно таково: начиная с некоторой частоты среза момент монотонно падает. Обычно для шагового двигателя приводятся две кривые зависимости момента от скорости (рис. 17).

Рис. 17. Зависимость момента от скорости.

Внутренняя кривая (кривая старта, или pull-in curve) показывает, при каком максимальном моменте трения для данной скорости шаговый двигатель способен тронуться. Эта кривая пересекает ось скоростей в точке, называемой максимальной частотой старта или частотой приемистости. Она определяет максимальную скорость, на которой ненагруженный двигатель может тронуться. На практике эта величина лежит в пределах 200 — 500 полных шагов в секунду. Инерционность нагрузки сильно влияет на вид внутренней кривой. Большая инерционность соответствует меньшей области под кривой. Эта область называется областью старта. Внешняя кривая (кривая разгона, или pull-out curve) показывает, при каком максимальном моменте трения для данной скорости шаговый двигатель способен поддерживать вращение без пропуска шагов. Эта кривая пересекает ось скоростей в точке, называемой максимальной частотой разгона. Она показывает максимальную скорость для данного двигателя без нагрузки. При измерении максимальной скорости нужно иметь в виду, что из-за явления резонанса момент равен нулю еще и на резонансной частоте. Область, которая лежит между кривыми, называется областью разгона.

Нужно отметить, что схема драйвера в значительной степени влияет на ход кривой момент-скорость, но этот вопрос будет рассмотрен ниже.

Разогнать!

Для того, чтобы работать на большой скорости из области разгона (рис. 17), необходимо стартовать на низкой скорости из области старта, а затем выполнить разгон. При остановке нужно действовать в обратном порядке: сначала выполнить торможение, и только войдя в область старта можно прекратить подачу управляющих импульсов. В противном случае произойдет потеря синхронности и положение ротора будет утеряно. Использование разгона и торможения позволяет достичь значительно больших скоростей — в индустриальных применениях используются скорости до 10000 полных шагов в секунду. Необходимо отметить, что непрерывная работа шагового двигателя на высокой скорости не всегда допустима ввиду нагрева ротора. Однако высокая скорость кратковременно может быть использована при осуществлении позиционирования.

При разгоне двигатель проходит ряд скоростей, при этом на одной из скоростей можно столкнуться с неприятным явлением резонанса. Для нормального разгона желательно иметь нагрузку, момент инерции которой как минимум равен моменту инерции ротора. На ненагруженном двигателе явление резонанса проявляется наиболее сильно. Подробно методы борьбы с этим явлением будут описаны ниже.
При осуществлении разгона или торможения важно правильно выбрать закон изменения скорости и максимальное ускорение. Ускорение должно быть тем меньше, чем выше инерционность нагрузки. Критерий правильного выбора режима разгона — это осуществление разгона до нужной скорости для конкретной нагрузки за минимальное время. На практике чаще всего применяют разгон и торможение с постоянным ускорением.

Реализация закона, по которому будет производится ускорение или торможение двигателя, обычно производится программно управляющим микроконтроллером, так как именно микроконтроллер обычно является источником тактовой частоты для драйвера шагового двигателя. Хотя раньше для этих целей применялись управляемые напряжением генераторы или пограммируемые делители частоты. Для генерации тактовой частоты удобно использовать аппаратный таймер, который имеется в составе практически любого микроконтроллера. Когда двигатель вращается с постоянной скоростью, достаточно загрузить в таймер постоянное значение периода повторения шагов (длительность шага). Если же двигатель разгоняется или тормозится, этот период меняется с каждым новым шагом. При разгоне или торможении с постоянным ускорением частота повторения шагов должна изменяться линейно, соответствено значение периода, которое необходимо загружать в таймер, должно меняться по гиперболическому закону.

Для наиболее общего случая требуется знать зависимость длительности шага от текущей скорости. Количество шагов, которое осуществляет двигатель при разгоне за время t равно:

N = 1/2At2+Vt, где N — число шагов, t — время, V — скорость, выраженная в шагах в единицу времени, A — ускорение, выраженное в шагах, деленных на время в квадрате.

Для одного шага N = 1, тогда длительность шага t1 = T = (-V+(V2+2A)0.5)/A

В результате осуществления шага скорость становится равной Vnew = (V2+2A)0.5

Вычисления по приведенным формулам довольно трудоемки и требуют значительных затрат процессорного времени. В то же время, они позволяют изменять значение ускорения в произвольный момент. Расчеты можно существенно упростить, если потребовать постоянства ускорения во время разгона и торможения. В этом случае можно записать зависимость длительности шага от времени разгона:
V = V0+At, где V — текущая скорость, V0 — начальная скорость (минимальная скорость, с которой начинается разгон), A — ускорение;
1/T = 1/T0+At, где T — длительность шага, T0 — начальная длительность шага, t — текущее время;

Откуда T = T0/(1+T0At)

Вычисления по этой формуле осуществить значительно проще, однако для того, чтобы поменять значение ускорения, требуется остановить двигатель.

Резонанс

Шаговым двигателям свойственен нежелательный эффект, называемый резонансом. Эффект проявляется в виде внезапного падения момента на некоторых скоростях. Это может привести к пропуску шагов и потере синхронности. Эффект проявляется в том случае, если частота шагов совпадает с собственной резонансной частотой ротора двигателя.

Когда двигатель совершает шаг, ротор не сразу устанавливается в новую позицию, а совершает затухающие колебания. Дело в том, что систему ротор — магнитное поле — статор можно рассматривать как пружинный маятник, частота колебаний которого зависит от момента инерции ротора (плюс нагрузки) и величины магнитного поля. Ввиду сложной конфигурации магнитного поля, резонансная частота ротора зависит от амплитуды колебаний. При уменьшении амплитуды частота растет, приближаясь к малоамплитудной частоте, которая более просто вычисляется количественно. Эта частота зависит от угла шага и от отношения момента удержания к моменту инерции ротора. Больший момент удержания и меньший момент инерции приводят к увеличению резонансной частоты.
Резонансная частота вычисляется по формуле:

F0 = (N*TH/(JR+JL))0.5/4*pi,

где F0 — резонансная частота,
N — число полных шагов на оборот,
TH — момент удержания для используемого способа управления и тока фаз,
JR — момент инерции ротора,
JL — момент инерции нагрузки.

Необходимо заметить, что резонансную частоту определяет момент инерции собственно ротора двигателя плюс момент инерции нагрузки, подключенной к валу двигателя. Поэтому резонансная частота ротора ненагруженного двигателя, которая иногда приводится среди параметров, имеет маленькую практическую ценность, так как любая нагрузка, подсоединенная к двигателю, изменит эту частоту.
На практике эффект резонанса приводит к трудностям при работе на частоте, близкой к резонансной. Момент на частоте резонанса равен нулю и без принятия специальных мер шаговый двигатель не может при разгоне пройти резонансную частоту. В любом случае, явление резонанса способно существенно ухудшить точностные характеристики привода.

В системах с низким демпфированием существует опасность потери шагов или повышения шума, когда двигатель работает вблизи резонансной частоты. В некоторых случаях проблемы могут возникать и на гармониках частоты основного резонанса.

Когда используется не микрошаговый режим, основной причиной появления колебаний является прерывистое вращение ротора. При осуществлении шага ротору толчком сообщается некоторая энергия. Этот толчок возбуждает колебания. Энергия, которая сообщается ротору в полушаговом режиме, составляет около 30% от энергии полного шага. Поэтому в полушаговом режиме амплитуда колебаний существенно меньше. В микрошаговом режиме с шагом 1/32 основного при каждом микрошаге сообщается всего около 0.1% от энергии полного шага. Поэтому в микрошаговом режиме явление резонанса практически незаметно.

Для борьбы с резонансом можно использовать различные методы. Например, применение эластичных материалов при выполнении механических муфт связи с нагрузкой. Эластичный материал способствует поглощению энергии в резонансной системе, что приводит к затуханию паразитных колебаний. Другим способом является применение вязкого трения. Выпускаются специальные демпферы, где внутри полого цилиндра, заполненного вязкой кремнийорганической смазкой, может вращаться металлический диск. При вращении этой системы с ускорением диск испытывает вязкое трение, что эффективно демпфирует систему.

Существуют электрические методы борьбы с резонансом. Колеблющийся ротор приводит к возникновению в обмотках статора ЭДС. Если закоротить обмотки, которые на данном шаге не используются, это приведет к демпфированию резонанса.

И, наконец, существуют методы борьбы с резонансом на уровне алгоритма работы драйвера. Например, можно использовать тот факт, что при работе с двумя включенными фазами резонансная частота примерно на 20% выше, чем с одной включенной фазой. Если резонансная частота точно известна, то ее можно проходить, меняя режим работы.

Если это возможно, при старте и остановке нужно использовать частоты выше резонансной. Увеличение момента инерции системы ротор-нагрузка уменьшает резонансную частоту.

Однако, самой эффективной мерой для борьбы с резонансом является применение микрошагового режима.

Чем же его кормить?

Для питания обычного двигателя постоянного тока требуется лишь источник постоянного напряжения, а необходимые коммутации обмоток выполняются коллектором. С шаговым двигателем всё сложнее. Все комутации должен выполнять внешний контроллер. В настоящее время примерно в 95% случаев для управления шаговыми двигателями используются микроконтроллеры. В простейшем случае для управления шаговым двигателем в полношаговом режиме требуются всего два сигнала, сдвинутые по фазе на 90 градусов. Направление вращения зависит  от того, какая фаза опережает. Скорость определяется часотой следования импульсов. В полушаговом режиме всё несколько сложнее и требуется уже минимум 4 сигнала. Все сигналы управления шаговым двигателем можно сформировать программно, однако это вызовет большую загрузку микроконтроллера. Поэтому чаще применяют специальные микросхемы драйверов шагового двигателя, которые уменьшают количество требуемых от процессора динамических сигналов. Типично эти микросхемы требуют тактовую частоту, которая является частотой повторения шагов и статический сигнал, который задает направление. Иногда еще присутствует сигнал включения полушагового режима. Для микросхем драйверов, которые работают в микрошаговом режиме, требуется большее количество сигналов. Распространенным является случай, когда необходимые последовательности сигналов управления фазами формируются с помощью одной микросхемы, а необходимые токи фаз обеспечивает другая микросхема. Хотя в последнее время появляется все больше драйверов, реализующих все функции в одной микросхеме.

 Мощность, которая требуется от драйвера, зависит от размеров двигателя и составляет доли ватта для маленьких  двигателей и до 10-20 ватт для больших двигателей. Максимальный уровень рассеиваемой мощности ограничен нагревом двигателя. Максимальная рабочая температура обычно указывается производителем, но можно приблизительно считать, что нормальной является температура корпуса 90 градусов. Поэтому при конструировании устройств с шаговыми двигателями, непрерывно работающими на максимальном токе, необходимо принимать меры, исключающие касание корпуса двигателя обслуживающим персоналом. В отдельных случаях возможно применение охлаждающего радиатора. Иногда это позволяет применить двигатель меньших размеров и добиться лучшего отношения мощность/стоимость.

Для данного размера шагового двигателя место, занимаемое обмотками, ограничено. Поэтому очень важно сконструировать драйвер так, чтобы для данных параметров обмоток обеспечить наилучшую эффективность.

Схема драйвера должна выполнять три главных задачи:

  • иметь возможность включать и выключать ток в обмотках, а также менять его направление
  • поддерживать заданное значение тока
  • обеспечивать как можно более быстрое нарастание и спад тока для хороших скоростных характеристик

Способы изменения направления тока

При работе шагового двигателя требуется изменение направления магнитного поля независимо для каждой фазы. Изменение направления магнитного поля может быть выполнено разными способами. В униполярных двигателях обмотки имеют отвод от середины или имеются две отдельные обмотки для каждой фазы. Направление магнитного поля меняется путем перключения половинок обмоток или целых обмоток. В этом случае требуются только два простых ключа A и B для каждой фазы (рис. 18).

Рис. 18. Питание обмотки униполярного двигателя.

В биполярных двигателях направление меняется путем переполюсовки выводов обмоток. Для такой переполюсовки требуется полный H-мост (рис. 19). Управление ключами в том и другом случае должно осуществляться логической схемой, реализующей нужный алгоритм работы. Предпологается, что источник питания схем имеет номинальное для обмоток двигателя напряжение.

Рис. 19. Питание обмотки биполярного двигателя.

Это простейший способ управления током обмоток, и как будет показано в дальнейшем, он существенно ограничивает возможности двигателя. Нужно отметить, что при раздельном управлении транзисторами H-моста возможны ситуации, когда источник питания закорочен ключами. Поэтому логическая схема управления должна быть построена таким образом, чтобы исключить эту ситуацию даже в случае сбоев управляющего микроконтроллера.

Обмотки двигателя представляют собой индуктивность, а это значит, что ток не может бесконечно быстро нарастать или бесконечно быстро спадать без привлечения бесконечной разности потенциалов. При подключении обмотки к источнику питания ток будет с некоторой скоростью нарастать, а при отключении обмотки произойдет выброс напряжения. Этот выброс способен повредить ключи, в качестве которых используются биполярные или полевые транзисторы. Для ограничения этого выброса устанавливают специальные защитные цепочки. На схемах рис. 18 и 19 эти цепочки образованы диодами, значительно реже применяют конденсаторы или их комбинацию с диодами. Применение конденсаторов вызывает появление электрического резонанса, что может вызвать увеличение момента на некоторой скорости. На рис. 18 потребовалось 4 диода по той причине, что половинки обмоток униполярного двигателя расположены на общем сердечнике и сильно связаны между собой. Они работают как автотрансформатор и выбросы возникают на выводах обеих обмоток. Если в качестве ключей применены МОП-транзисторы, то достаточно только двух внешних диодов, так как у них внутри уже имеются диоды. В интегральных микросхемах, содержащих мощные выходные каскады с открытым коллектором, также часто имеются такие диоды. Кроме того, некоторые микросхемы, такие как ULN2003, ULN2803 и подобные имеют внутри оба защитных диода для каждого транзистора. Нужно отметить, что в случае применения быстродействующих ключей требуются сравнимые по быстродействию диоды. В случае применения медленных диодов требуется их шунтирование небольшими конденсаторами.

Стабилизация тока

Для регулировки момента требуется регулировать силу тока в обмотках. В любом случае, ток должен быть ограничен, чтобы не превысить рассеиваимую мощность на омическом сопротивлении обмоток. Более того, в полушаговом режиме ещё требуется в определенные моменты обеспечивать нулевое значение тока в обмотках, а в микрошаговом режиме вообще требуется задание разных значений тока.

Для каждого двигателя производителем указывается номинальное рабочее напряжение обмоток. Поэтому простейший способ питания обмоток — это использование источника постоянного напряжения. В этом случае ток ограничен омическим сопротивлением обмоток и напряжением источника питания (рис. 20а), поэтому такой способ питания называют L/R-питанием. Ток в обмотке нарастает по экспоненциальному закону со скоростью, определяемой индуктивностью, активным сопротивлением обмотки и приложенным напряжением. При повышении частоты ток не достигает номинального значения и момент падает. Поэтому такой способ питания пригоден только при работе на малых скоростях и используется на практике только для маломощных двигателей.

Рис. 20. Питание обмотки номинальным напряжением (а) и использование ограничительного резистора (б).

При работе на больших скоростях требуется увеличивать скорость нарастания тока в обмотках, что возможно путем повышения напряжения источника питания. При этом максимальный ток обмотки должен быть ограничен с помощью дополнительного резистора. Например, если используется напряжение питание в 5 раз большее номинального, то требуется такой дополнительный резистор, чтобы общее сопротивление составило 5R, где R — омическое сопротивление обмотки (L/5R-питание). Этот способ питания обеспечивает более быстрое нарастание тока и как следствие, больший момент (рис. 20б). Однако он имеет существенный недостаток: на резисторе рассеивается дополнительная мощность. Большие габариты мощных резисторов, необходимость отвода тепла и повышенная необходимая мощность источника питания — всё это делает такой метод неэффективным и ограничивает область его применение небольшими двигателями мощностью 1 — 2 ватта. Нужно сказать, что до начала 80-х годов прошлого века параметры шаговых двигателей, приводимые производителями, относились именно к такому способу питания.

Еще более быстрое нарастание тока можно получить, если использовать для питания двигателя генератор тока. Нарастание тока будет происходить линейно, это позволит быстрее достигать номинального значения тока. Тем более, что пара мощных резисторов может стоить дороже, чем пара мощных транзисторов вместе с радиаторами. Но как и в предыдущем случае, генератор тока будет рассеивать дополнительную мощность, что делает эту схему питания неэффективной.

Существует еще одно решение, обеспечивающее высокую скорость нарастания токи и низкую мощность потерь. Основано оно на применении двух источников питания.

Рис. 21. Питание обмотки двигателя ступенчатым напряжением.

В начале каждого шага кратковременно обмотки подключаются к более высоковольтному источнику, который обеспечивает быстрое нарастание тока (рис. 21). Затем напряжение питания обмоток уменьшается (момент времени t1 на рис. 21). Недостатком этого метода является необходимость двух ключей, двух источников питания и более сложной схемы управления. В системах, где такие источники уже есть, метод может оказаться достаточно дешёвым. Еще одной трудностью является невозможность определения момента времени t1 для общего случая. Для двигателя с меньшей индуктивностью обмоток скорость нарастания тока выше и при фиксированном t1 средний ток может оказаться выше номинального, что чревато перегревом двигателя.

Еще одним методом стабилизации тока в обмотках двигателя является ключевое (широтно-импульсное) регулирование. Современные драйверы шаговых двигателей используют именно этот метод. Ключевой стабилизатор обеспечивает высокую скорость нарастания тока в обмотках вместе с простотой его регулирования и очень низкими потерями. Еще одним преимуществом схемы с ключевой стабилизацией тока является и то, что она поддерживает момент двигателя постоянным, независимо от колебаний напряжения питания. Это позволяет использовать простые и дешевые нестабилизированные источники питания.

Для обеспечения высокой скорости нарастания тока используют напряжение источника питания, в несколько раз превышающее номинальное. Путем регулировки скважности импульсов, среднее напряжение и ток поддерживаются на номинальном для обмотки уровне. Поддержание производится в результате действия обратной связи. Последовательно с обмоткой включается резистор — датчик тока R (рис. 22а). Падение напряжения на этом резисторе пропорционально току в обмотке. Когда ток достигает установленного значения, ключ выключается, что приводит к падению тока. Когда ток спадает до нижнего порога, ключ снова включается. Этот процесс повторяется периодически, поддерживая среднее значение тока постоянным.

Рис. 22. Различные схемы ключевой стабилизации тока.

Управляя величиной Uref можно регулировать ток фазы, например, увеличивать его при разгоне и торможении и снижать при работе на постоянной скорости. Можно также задавать его с помощью ЦАП в форме синусоиды, реализуя таким образом микрошаговый режим. Такой способ управления ключевым транзистором  обеспечивает постоянную величину пульсаций тока в обмотке, которая определяется гистерезисом компаратора. Однако частота переключений будет зависеть от скорости изменения тока в обмотке, в частности, от ее индуктивности и от напряжения питания. Кроме того, две такие схемы, питающие разные фазы двигателя, не могут быть засинхронизированы что может явится причиной дополнительных помех.

От указанных недостатков свободна схема с постоянной частотой переключения (рис. 22б). Ключевым транзистором управляет триггер, который устанавливается специальным генератором. Когда триггер устанавливается, ключевой транзистор открывается и ток фазы начинает расти. Вместе с ним растет и падение напряжения на датчике тока. Когда оно достигает опорного напряжения, компаратор переключается, сбрасывая триггер. Ключевой транзистор при этом выключается и ток фазы начинает спадать до тех пор, пока триггер не будет вновь установлен генератором. Такая схема обеспечивает постоянную частоту коммутации, однако величина пульсаций тока не будет постоянной. Частота генератора обычно выбирается не менее 20кГц, чтобы двигатель не создавал слышимого звука. В то же время слишком высокая частота переключений может вызвать повышенные потери в сердечнике двигателя и потери на переключениях транзисторов. Хотя потери в сердечнике с повышением частоты растут не так быстро ввиду уменьшения амплитуды пульсаций тока с ростом частоты. Пульсации порядка 10% от среднего значения тока обычно не вызывают проблем с потерями.

Подобная схема реализована внутри микросхемы L297 фирмы SGS-Thomson, применение которой сводит к минимуму количество внешних компонентов. Ключевое регулирование реализуют и другие специализированные микросхемы.

Рис. 23. Форма тока в обмотках двигателя для различных способов питания.

На рис. 23 показана форма тока в обмотках двигателя для трех способов питания. Наилучшим в смысле момента является ключевой метод. К тому же он обеспечивает высокий КПД и позволяет просто регулировать величину тока.

Быстрый и медленный спад тока

На рис. 19 были показаны конфигурации ключей в H-мосту для включения разных направлений тока в обмотке. Для выключения тока можно выключить все ключи H-моста или же оставить один ключ включенным (рис. 24). Эти две ситуации различаются по скорости спада тока в обмотке. После отключения индуктивности от источника питания ток не может мгновено прекратится. Возникает ЭДС самоиндукции, имеющая противоположное источнику питания направление. При использовании транзисторов в качестве ключей необходимо использовать шунтирующие диоды, чтобы обеспечить проводимость в обе стороны. Скорость изменения тока в индуктивности пропорциональна приложенному напряжению. Это справедливо как для нарастания тока, так и для его спада. Только в первом случае источником энергии является источник питания, а во втором сама индуктивность отдает запасенную энергию. Этот процесс может происходить при разных условиях.

Рис. 24. Медленный и быстрый спад тока.

На рис. 24а показано состояние ключей H-моста, когда обмотка включена. Включены ключи A и D, направление тока показано стрелкой. На рис. 24б обмотка выключена, но ключ A включен. ЭДС самоиндукции закорачивается через этот ключ и диод VD3. В это время на выводах обмотки будет небольшое напряжение, равное прямому падению на диоде плюс падение на ключе (напряжение насыщения транзистора). Так как напряжение на выводах обмотки мало, малой будет и скорость изменения тока. Соответственно малой будет и скорость спадания магнитного поля. А это значит, еще некоторое время статор двигателя будет создавать магнитное поле, которого в это время быть не должно. На вращающийся ротор это поле будет оказывать тормозящее воздействие. При высоких скоростях работы двигателя этот эффект может серъезно помешать нормальной работе двигателя. Быстрое спадание тока при выключении является очень важным для высокоскоростных контроллеров, работающих в полушаговом режиме.

Возможен и другой способ отключения тока обмотки, когда размыкаются все ключи H-моста (рис 24в). При этом ЭДС самоиндукции закорачивается чрез диоды VD2, VD3 на источник питания. Это значит, что во время спада тока на обмотке будет напряжение, равное сумме напряжения источника питания и прямого падения на двух диодах. По сравнению с первым случаем, это значительно большее напряжение. Соответственно, более быстрым будет спад тока и магнитного поля. Такое решение, использующее напряжение источника питания для ускорения спада тока является наиболее простым, но не единственным. Нужно сказать, что в ряде случаев на источнике питания могут появится выбросы, для подавления которых понадобятся специальные демферные цепочки. Безразлично, каким способом обеспечивается на обмотке повышенное напряжение во время спада тока. Для этого можно применить стабилитроны или варисторы. Однако на этих элементах будет рассеиваться дополнительная мощность, которая в первом случае отдавалась обратно в источник питания.

Для униполярного двигателя ситуация более сложная. Дело в том, что половинки обмотки, или две отдельных обмотки одной фазы сильно связаны между собой. В результате этой связи на закрывающемся транзисторе будут иметь место выбросы повышенной амплитуды. Поэтому транзисторы должны быть защищены специальными цепочками. Эти цепочки для обеспечения быстрого спада тока должны обеспечивать довольно высокое напряжение ограничения. Чаще всего применяются диоды вместе со стабилитронами или варисторы. Один из способов схемотехнической реализации показан на рис. 25.

Рис. 25. Пример реализации быстрого спада тока для униполярного двигателя.

При ключевом регулировании величина пульсаций тока зависит от скорости его спада. Здесь возможны разные вырианты.

Если обеспечить закорачивание обмотки диодом, будет реализован медленный спад тока. Это приводит к уменьшению амплитуды пульсаций тока, что является весьма желательным, особенно при работе двигателя в микрошаговом режиме. Для данного уровня пульсаций медленный спад тока позволяет работать на более низких частотах ШИМ, что уменьшает нагрев двигателя. По этим причинам медленный спад тока широко используется. Однако существует несколько причин, по которым медленное нарастание тока не всегда является оптимальным: во-первых, из-за отрицательной обратной ЭДС, ввиду малого напряжения на обмотке во время спада тока, реальный средний ток обмотки может оказаться завышенным; во-вторых, когда требуется резко уменьшить ток фазы (например, в полушаговом режиме), медленный спад не позволит сделать это быстро; в-третьих, когда требуется установить очень низкое значение тока фазы, регулирование может нарушится ввиду существования ограничения на минимальное время включенного состояния ключей.

Высокая скорость спада тока, которая реализуется путем замыкания обмотки на источник питания, приводит к повышенным пульсациям. Вместе с тем, устраняются недостатки, свойственные медленному спаду тока. Однако при этом точность поддержания среднего тока меньше, также больше потери.

Наиболее совершенные микросхемы драйверов имеют возможность регулировать скорость спада тока.


Ссылки по теме:

Схема простого шагового двигателя безопасна?

После различных разочарований я наконец понял, как найти эти проклятые провода на шаговых двигателях. Я думал, что управлять биполярными двигателями проще, но, в конце концов, я предпочитаю униполярные шаговые двигатели … больше кабелей, но легче управлять.

В любом случае … сломав свой единственный L293D, я решил попробовать еще раз со знаменитым ULN2803A . С некоторым терпением и низким напряжением (5 В) я следил за ранее упомянутым описанием видео и записал все последовательности проводов шаговых двигателей, которые я спас.

  1. OKI EM-199 ( SMA6511 ) от принтера epson
  2. OKI EM-154 ( STK6711AMK4B ) от принтера epson
  3. OKI EM-318 ( LB1847 ) от принтера epson
  4. Mineba PM35L-048-HPI2 от принтера hp
  5. Mitsumi M55SP-1N от принтера hp

Как вы можете видеть, я нашел только таблицы данных двигателей, которые мне не удалось найти в таблице данных драйверов. Так…

Из того, что я понимаю, Mitsumi M55SP-1N :

  1. потребляет меньше: 259mA/phase
  2. режим возбуждения — тот, который используется в библиотеке 2-2 Phase excitation
  3. и я знаю, что могу использовать его 12vдля вождения.

Я впервые использую шаговый двигатель

Я не хочу разрушать свой микроконтроллер или любую другую часть схемы.

И вот вопрос:

Безопасно ли использовать ULN2803A для управления Mitsumi M55SP-1N при 12 В от 3,3 В или 5 В?

под этим я подразумеваю:

  1. ULN2803A уже имеет множество защитных диодов .. достаточно безопасно?
  2. в таблице данных Mitsumi M55SP-1N указано 259 мА / фаза * 4 = 1,1 Ампер .. правильно? uln2803 обрабатывает 500 мА на канал и максимум 2,5 А …..
  3. источник питания 1,25 Ампера …. достаточно, не так ли?
  4. Странно получилось .. @ 5v при быстром степпинге ULN2803A сильно нагрелся . 50-60 ° С нормально?

смоделировать эту схему — Схема, созданная с помощью CircuitLab

Если все в порядке (безопасно) …. какой конденсатор я должен поставить рядом с Vin шагового двигателя?

И если вы думаете, что мне следует использовать один из вышеперечисленных шаговых драйверов или узнать больше о неизвестных двигателях, я буду рад узнать новое …

Примечание. Как я уже сказал, я уже тестировал все двигатели при низком напряжении и низких оборотах, все они работают при 5 В с использованием вышеуказанной схемы, за исключением конденсаторов. Это на макете .. теперь я хочу спаять его вместе. Я новичок в электронике, и кое-что, что для вас очевидно, возможно, я даже не знаю.

Брюс Эбботт

  1. ULN2803A уже имеет много защитных диодов .. достаточно безопасно?

да.

  1. в таблице данных Mitsumi M55SP-1N указано 259 мА / фаза * 4 = 1,1 Ампер .. правильно?

Да (достаточно близко). Сопротивление каждой фазы составляет 50 Ом + -7%, поэтому при 12 В он должен потреблять примерно 12/50 = 240 мА на фазу (на самом деле оно должно быть даже меньше этого значения из-за падения напряжения на транзисторах Дарлингтона).

  1. источник питания 1,25 Ампера …. достаточно, не так ли?

да.

Произошла странная вещь .. @ 5v при быстром степпинге ULN2803A сильно нагрелся. 50-60 ° С нормально?

Ожидается нагревание на высокой скорости. Каждый раз, когда катушка выключается, обратный диод пропускает импульс тока, поскольку магнитное поле в катушке рассеивается. На высокой скорости диоды пропускают столько же тока, когда катушки выключены, сколько транзисторы, когда они включены, что увеличивает общие потери мощности. Транзисторы также имеют потери переключения, которые становятся более значительными с увеличением скорости шага.

Температура корпуса 50-60 ° в норме. ULN2803 не очень эффективен. При 240 мА каждый транзистор Дарлингтона падает примерно на 1,1 В, что соответствует 1,1 Вт полной потери мощности при включении всех 4 фаз. Максимально допустимая температура перехода 125 ° C. Тепловое сопротивление перехода к окружающей среде составляет 73 ° C / Вт (пакет D), поэтому при комнатной температуре (20 ° C) и мощности 1,1 Вт температура перехода должна составлять ~ 100 ° C.

uln2803 обрабатывает 500 мА на канал и максимум 2,5 А ….

Это абсолютные максимальные значения нагрузки, не рекомендуемые для нормальной работы. Для безопасности и надежности вы не должны превышать половину этих значений.

Схема контроллера шагового двигателя


Шаговые двигатели доступны в нескольких версиях и размерах с различными рабочими напряжениями. Преимущество этого универсального контроллера заключается в том, что он может использоваться с широким диапазоном рабочих напряжений, примерно от 5 В до 18 В. Он может приводить двигатель в действие с пиковым напряжением, равным половине напряжения питания, поэтому он может легко управляйте шаговыми двигателями, рассчитанными на напряжение от 2,5 В до 9 В.

Схема также может обеспечивать ток двигателя до 3.5 А, что означает, что его можно использовать для управления относительно большими двигателями. Схема также защищена от короткого замыкания и имеет встроенную защиту от перегрева. Для приведения в действие шагового двигателя требуются два сигнала. С логической точки зрения, они составляют код Грея, что означает, что они представляют собой два прямоугольных сигнала с одинаковой частотой, но с постоянной разностью фаз 90 градусов.

IC1 генерирует прямоугольный сигнал с частотой, которую можно установить с помощью потенциометра P1. Эта частота определяет частоту вращения шагового двигателя.Код Грея генерируется десятичным счетчиком в форме 4017. Выходы Q0 – Q9 счетчика последовательно переходят в высокий уровень в ответ на нарастающие фронты тактового сигнала. Код Грея может быть сгенерирован из выходов с помощью двух логических элементов ИЛИ, которые здесь сформированы с использованием двух диодов и резистора для каждого затвора, для создания сигналов I и Q.

Здесь «I» означает «синфазный», а «Q» — «квадратурный», что означает, что он имеет сдвиг фазы на 90 градусов относительно I-сигнала. Обычно для управления обмотками шагового двигателя используется пара двухтактных схем для каждой обмотки, которая называется «H-мостом».Это позволяет изменять направление тока через каждую обмотку, что необходимо для правильной работы биполярного двигателя (того, чьи обмотки не имеют центральных ответвлений).

Конечно, его также можно использовать для правильного управления униполярным двигателем (с обмотками с центральным отводом). Вместо использования такой двухтактной схемы мы решили использовать микросхемы аудиоусилителей (тип TDA2030), хотя это может показаться немного странным. С функциональной точки зрения TDA2030 на самом деле является своего рода операционным усилителем мощности.Он имеет разностный усилитель на входе и двухтактный драйверный каскад на выходе.

Принципиальная схема:


IC3, IC4 и IC5 относятся к этому типу (по экономичной цене). Здесь IC3 и IC4 подключены как компараторы. Их неинвертирующие входы управляются ранее упомянутыми сигналами I и Q, при этом на инвертирующих входах установлен потенциал, равный половине напряжения питания. Этот потенциал обеспечивается третьим TDA2030. Таким образом, выходы IC3 и IC4 отслеживают свои неинвертирующие входы, и каждый из них управляет одной обмоткой двигателя.

Другие концы обмоток, в свою очередь, подключены к половине напряжения питания, обеспечиваемого IC5. Поскольку один конец каждой обмотки подключен к прямоугольному сигналу, который чередуется между 0 В и потенциалом, близким к напряжению питания, в то время как другой конец находится на половине напряжения питания, всегда применяется напряжение, равное половине напряжения питания. к каждой обмотке, но его полярность меняется в зависимости от состояний сигналов I и Q.

Это именно то, что нам нужно для привода биполярного шагового двигателя.Скорость вращения можно изменять с помощью потенциометра P1, но фактическая скорость различается для каждого типа двигателя, поскольку она зависит от количества шагов на оборот. Двигатель, использованный в прототипе, продвигался примерно на 9 ° за шаг, и его скорость могла регулироваться в диапазоне примерно от 2 до 10 секунд на оборот.

В принципе, можно получить любую желаемую скорость, регулируя значение C1, если двигатель может с этим справиться. Диапазон регулировки P1 можно увеличить, уменьшив номинал резистора R5.Диапазон регулировки составляет 1: (1000 + R5) / R5, где R5 задается в k. Если шаговый двигатель выключен путем снятия напряжения питания с цепи, двигатель может продолжать вращаться на определенную величину из-за собственная инерция или механическая нагрузка на двигатель (эффект маховика).

Также возможно, что положение двигателя не согласуется с состояниями сигналов I и Q при первом подаче питания на схему. В результате двигатель иногда может «запутаться» при запуске, в результате чего он делает шаг в неправильном направлении, прежде чем начать движение в направлении, определяемом сигналами привода.Этих эффектов можно избежать, добавив дополнительный переключатель S1 и резистор 1-k, который затем можно использовать для запуска и остановки двигателя. Когда S1 замкнут, тактовый сигнал прекращается, но IC2 сохраняет свои выходные уровни в этот момент, поэтому постоянные токи через обмотки двигателя магнитно «фиксируют» ротор в нужном положении.

TDA2030 имеет внутреннюю защиту от перегрева, поэтому выходной ток будет автоматически уменьшен, если микросхема станет слишком горячей. По этой причине рекомендуется устанавливать IC3, IC4 и IC5 на радиатор (возможно, на общий радиатор), когда используется относительно мощный двигатель.Язычок корпуса TO220 электрически соединен с выводом отрицательного напряжения питания, поэтому микросхемы могут быть присоединены к общему радиатору без использования изолирующих шайб.

Автор: Герт Баарс — Авторские права: Elektor Electronics Magazine

Схема драйвера шагового двигателя

| ATO.com

Униполярные и биполярные драйверы архитектуры чаще всего используются для шаговых двигателей.
Униполярный шаговый двигатель обозначает шаговый двигатель с 2 катушками и 5 или 6 линиями.То есть в середине одной катушки увеличивается на один отвод. 5 строк можно рассматривать как 6 строк. Две промежуточные линии двух катушек могут быть подключены. Поскольку в середине одной катушки есть отвод, ток может течь в другом направлении на половине пути в одной катушке, но только половина катушки двигателя используется.
Униполярная схема управления использует четыре транзистора для управления двумя фазами шагового двигателя. Конфигурация двигателя, как показано на рисунке 1, состоит из двух наборов катушек с центральным ответвлением, и весь двигатель имеет в общей сложности шесть линий, подключенных к внешней стороне.Хотя шестипроводный шаговый двигатель также известен как униполярный шаговый двигатель, на самом деле он может одновременно использовать униполярную или биполярную схему привода.
Биполярный шаговый двигатель обозначает шаговый двигатель с 2 катушками и 4 линиями. Ток может течь в прямом и обратном направлении по двум катушкам, так называемая биполярность.
Схема возбуждения биполярного шагового двигателя показана на рисунке 2, где для управления двумя фазами используются восемь транзисторов. Биполярная схема привода может также управлять четырехпроводным или шестипроводным шаговым двигателем.Хотя он может использовать только биполярную схему привода, четырехпроводный двигатель может значительно снизить стоимость приложений массового производства. Количество транзисторов, используемых в схемах управления биполярными шаговыми двигателями, вдвое больше, чем количество транзисторов, используемых в униполярной схеме управления, в которой четыре нижних транзистора обычно управляются непосредственно микроконтроллером, в то время как верхний транзистор требует более высокую схему драйвера верхнего уровня. Транзисторы, используемые в биполярных схемах привода, должны выдерживать только напряжение двигателя.Следовательно, им не нужно зажимать ту же цепь, что и униполярные схемы возбуждения.
Биполярный двигатель отличается высокой эффективностью применения при протекании тока в прямом и обратном направлениях одной катушки. Что касается униполярного шагового двигателя, эффективность низкая, поскольку половина катушки используется большую часть времени. Однако с точки зрения жестких требований к стоимости униполярный двигатель нашел широкое применение. Но ATO.com предлагает для вашей справки все виды биполярных шаговых двигателей по низкой цене.
Теперь, чтобы узнать больше о схеме привода шагового двигателя, мы возьмем в качестве примера шаговый двигатель ATO47-1684A и драйвер шагового двигателя ATODSP42.ATO47-1684A — 2-фазный 4-проводный биполярный шаговый двигатель с углом шага 1,8 градуса. ATODSP42 — это цифровой двухфазный драйвер шагового двигателя с обратной связью, в котором используется новейшая 32-битная технология управления DSP, подходящая для шаговых двигателей Nema 11, 14, 17. Как показано на рисунке 3, легко найти способ соединения шагового двигателя с драйвером шагового двигателя.

Схема шагового двигателя

— Онлайн-курс по цифровой электронике

На следующей схеме показаны различные блоки в цепи для управления униполярным шаговым двигателем.2 блока по

  • 2-битный синхронный счетчик — входы D (направление) и CLK. D определяет направление вращения, а частота CLK задает скорость вращения.
  • Схема драйвера двигателя и униполярный шаговый двигатель — схема драйвера двигателя преобразует цифровые сигналы Q A и Q B в соответствующие управляющие токи, необходимые для шагового двигателя.

2-битный синхронный счетчик

Следующая диаграмма состояний описывает последовательность шагового двигателя.

Получено из приведенной ниже таблицы. Используя диаграмму состояний, перейдите к проектированию синхронной схемы, чтобы построить схему.

Схема драйвера двигателя и униполярный шаговый двигатель

Обычным шаговым двигателем является униполярный двигатель с четырьмя катушками. Их называют униполярными, потому что они требуют только включения и выключения катушек.

Показан шаговый двигатель PF443-03A от Mycom. Он указан при напряжении питания 12 В и токе катушки 0,31 А. Каждый шаг равен 1.8 градусов. Для прототипирования можно подключить шаговый двигатель от 5В.

Шаговый двигатель не может работать напрямую от выхода триггеров. ULN2003, высоковольтный сильноточный драйвер Дарлингтона, состоящий из семи пар Дарлингтона NPN, используется для привода двигателя. Все они оснащены встроенными фиксирующими диодами для переключения индуктивных нагрузок. ULN2003 имеет максимальное поддерживаемое выходное напряжение 50 В и максимальный выходной ток 0,5 А на канал, что легко соответствует требованиям шагового двигателя Mycom PF443.

Показана последовательность шагов для униполярных шаговых двигателей с четырьмя катушками. Если вы запускаете последовательность шагов вперед, шаговый двигатель вращается по часовой стрелке; запустите его назад, и шаговый двигатель вращается против часовой стрелки. Скорость двигателя зависит от того, насколько быстро контроллер выполняет последовательность шагов.

Поскольку доходы от рекламы падают, несмотря на рост числа посетителей, нам нужна ваша помощь в поддержании и улучшении этого сайта, что требует времени, денег и упорного труда. Благодаря щедрости наших посетителей, которые давали раньше, вы можете пользоваться этим сайтом бесплатно.

Если вы получили пользу от этого сайта и можете, пожалуйста, отдать 10 долларов через Paypal . Это позволит нам продолжаем в будущее. Это займет всего минуту. Спасибо!

Я хочу дать!

экспериментов с шаговыми двигателями

экспериментов с шаговыми двигателями

Шаговые двигатели

обычно управляются микропроцессорами или индивидуальными микросхемами контроллеров. и ток часто переключается с помощью микросхем драйвера шагового двигателя или силовых транзисторов.Точное движение возможно, но сложность обычно вызывает у любителей шаговые двигатели. в корзину запчастей «может быть когда-нибудь». Но степперы можно использовать для множества приложения без сложной схемы или программирования. На первый взгляд шаговый двигатель выглядит немного устрашающе, так как проводов как минимум четыре, а часто и шесть. Самый шаговые двигатели имеют две независимые обмотки, а некоторые — с центральным отводом, следовательно, четыре или шесть провода. Быстрая проверка омметром определит, какие провода принадлежат друг другу, а центральный отвод можно определить путем измерения сопротивления между проводами; центральный кран будет измерять 1/2 общего сопротивления обмотки на любом конце катушки.Свяжите провода которые должны быть вместе в узел, и завязать еще один узел на центральной проволоке для облегчения идентификация позже. Шаговые двигатели стали довольно распространены и доступны во всех формы и размеры от многих излишков дилеров. Экспериментаторы также могут спасти отличные степперы от старой офисной и компьютерной техники.

Шаговые двигатели перемещаются с небольшими приращениями, обычно указываемыми на этикетке в градусах. Сделать Шаговый двигатель вращается в одном направлении, ток проходит через одну обмотку, затем через другую, затем через первую обмотку с противоположной полярностью, затем через вторую с перевернутой полярность тоже.Эта последовательность повторяется для непрерывного вращения. Направление вращение зависит от того, какая обмотка является «ведущей», а какая — «последователь». Вращение будет обратным, если перевернуть любую обмотку. В версии с центральным отводом упрощают реверсирование тока, поскольку центральный отвод может быть привязан к Vcc, и каждый конец катушки можно поочередно заземлить. Двигатели без резьбы требуется биполярное напряжение привода или немного больше коммутационной схемы. Если применяется ток к обеим обмоткам шаговый двигатель установится между двумя ступенями (это часто называется «полушаг»).Если довести идею полушага до крайности, можно применить два квадратурные синусоиды на обмотках и очень плавное вращение. Этот метод не будет особенно эффективным, поскольку контроллер будет рассеивать как минимум столько же мощность, как у мотора, но, если требуется плавное движение, возможно, стоит попробовать! Или для тем, кто не возражает против сложности, синусоиды можно эффективно аппроксимировать, используя переменная скважность импульсов. Но цель здесь — вытащить эти моторы из хлама. коробка, чтобы не думать о других причинах оставить их в покое! Итак, вот несколько простых вещей, пытаться.

Steppers — отличные маломощные генераторы и удивительно эффективные маломощные двигатели для приложений с низкой частотой вращения. В качестве отправной точки попробуйте подключить обмотки двух степперов вместе. Выбирайте степперы, которые свободно вращаются, чтобы внутренние трение не портит эксперимент. Когда вы вращаете один вал двигателя, другой будет следить. Правда, крутящего момента мало. Но это показывает, что степперы могут быть используется для выработки электроэнергии. Вот пара скетчей, показывающих, как подключить степпер двигатели как генераторы:

Обмотки переменного тока не подключаются напрямую, так как напряжение на 90 градусов выходит за пределы фаза, и результирующее напряжение будет несколько ниже.Двойные изолированные выходы возможно, если заземления для каждой обмотки не соединены вместе. Вот несколько идеи применения:

Большой конденсатор может заряжаться для работы слаботочных устройств в течение некоторого времени после нескольких быстрые вращения рукоятки. Для некоторых устройств может потребоваться регулятор напряжения, но используйте эффективный серийный регулятор для экономии энергии при ручном приводе.

Несмотря на маркировку на этикетке, из многих шаговых двигателей получаются отличные двигатели малой мощности.Для Например, шаговый двигатель, рассчитанный на 16,8 вольт, 280 мА, потребляет только 20 мА в ненагруженном состоянии и управляется биполярными прямоугольными волнами 5 вольт. Такие малые токи могут быть непосредственно извлечены из многие операционные усилители и логические устройства без дополнительных драйверов! Очевидно механический нагрузка должна быть небольшой, а скорость будет низкой, иначе двигатель остановится, но многие полезные приложения показывают небольшую нагрузку. Вот несколько примеров:

Следующая схема обычно называется квадратурным генератором или синус-косинусом. генератор и может быть построен с использованием практически любого операционного усилителя с достаточно высоким выходным током.LM358 действительно работал в этой схеме, но только с трудом! Лучшим выбором будет LM833 или любой из многих операционных усилителей с более высоким током.

Два транзистора генерируют Vcc / 2, так что ток в обмотках изменится на противоположное, когда операционные усилители будут повышать или понижать обороты. Они не нужны, если двойная полярность используется блок питания. Просто заземлите обмотки, идущие к эмиттерам. Двигатель мощностью 16.8 В и 280 мА потребляли только 30 мА в вышеуказанной цепи без нагрузки. Попробуйте что угодно доступен шаговый двигатель и отрегулируйте напряжение источника питания для правильной работы. Не надо ожидайте получить большой крутящий момент от этой схемы! Для увеличения возможностей привода подключите два транзисторы к выходам операционного усилителя таким же образом, как и в схеме Vcc / 2, описанной выше. Оставить резисторы и просто подключите две базы к выходу операционного усилителя. Два излучателя соединить вместе и с обмоткой двигателя.

Вышеупомянутая схема — это все, что нужно для многих приложений, кроме следующая схема имеет немного больше гибкости.

В этой схеме 74HC74 напрямую приводит в действие шаговый двигатель для малой мощности. Приложения. Два триггера поочередно синхронизируются, чтобы обеспечить желаемый последовательность импульсов «следование за лидером». Двигатель 16,8 В (размер шага 1,8 градуса) описанный выше, потребляет только 20 мА в этой цепи и крошечный шаг 15 градусов, 12 вольт. двигатель потребляет только 30 мА.Неиспользуемые инверторы подключены к генератору медленных импульсов. который может использоваться для случайного изменения направления вращения. Собственно, смена направление часто синхронизируется с осциллятором вращения, давая возвратно-поступательное действие если только частота генератора не подходит. Это изменение направления добавит интереса к движущимся дисплеям.

Схема генерирует четыре управляющих сигнала и схему суммирования для высокого силовая операция довольно проста.Если используется двигатель с центральной резьбой, то следующие соединение будет работать:

Вам понадобится одна из этих цепей для каждой обмотки двигателя. Если мотор не имеет центрального отвода, попробуйте схему ниже. Значения являются только репрезентативными. и может варьироваться в зависимости от двигателя и усиления транзистора. Никаких положений не показано защищают от индуктивной отдачи, но малые двигатели, похоже, не производят много энергии. Тем не мение, некоторая осторожность может потребоваться, если используются более мощные двигатели и более высокие токи.Рассмотрите возможность добавления диоды от каждой обмотки двигателя к Vcc (катод идет к Vcc). Кроме того, 2N440Xs хорош только для нескольких сотен миллиампер, поэтому выбирайте более мощные транзисторы и используйте меньшее значение резисторы, если ожидаются более высокие токи двигателя.

Показанный триггер является устройством HC, и его питание должно быть ограничено. до 5 или 6 вольт, но триггер может быть устройством серии 4000, если транзисторы драйвера добавлен. Устройства серии 4000 не могут обеспечивать большой ток, но они будут работать от +15 вольт.Увеличьте резисторы до 10 кОм и используйте транзисторы Дарлингтона (или МОП-транзисторы, такие как VN10KM) вместо показанных NPN.

Вот записка, присланная Гариным:

Я благодарен вашему домашнему сайту экспериментаторов за новые гайки электроники. Хороший источник готового Система шагового двигателя «робот» — это старый матричный компьютер. принтер. В нем не только несколько двигателей, но и в нем электроника для управления ими, которая может быть подключена к вашему управлять компьютером через параллельный порт.Коды управления списком старых руководств которые можно перевести в ваше приложение намного быстрее и дешевле чем проектирование собственной системы. Фактически с появлением цветной струйной печати принтеры, многие старые компьютерные принтеры с точечной матрицей можно получить бесплатно. Надеюсь, эта заметка вам поможет.

Шаговые двигатели — MECControl

В отличие от обычных двигателей, шаговые двигатели содержат несколько катушек, что позволяет точно контролировать положение ротора путем включения и выключения его четырех фаз в определенной последовательности шагов.

Шаговые двигатели

нельзя напрямую подключить к Arduino / Genuino Uno или Mega по нескольким причинам:

  • Обычно они требуют более высокого напряжения и тока, чем может обеспечить Arduino / Genuino Uno или Mega.
  • Противоэлектродвижущая сила, создаваемая в их катушках, может повредить Arduino / Genuino Uno или Mega.

Схема, называемая мостом H , может использоваться для решения всех этих проблем.

Одна из самых популярных мостовых схем H основана на интегральной схеме L298.Он содержит два идентичных Н-моста, что позволяет управлять одним шаговым двигателем, потребляющим до 2 А на катушку при напряжении от 7,5 В до 46 В постоянного тока.

Хотя вы можете построить свою собственную мостовую схему L298 H, дешевле и проще купить готовый модуль. В приведенных ниже примерах предполагается использование такого модуля, работающего от источника питания постоянного тока 12 В, вместе с шаговым двигателем на 12 В.

В магазине MECControl имеется мостовой модуль L298 H. Вы можете подключить модуль напрямую к Arduino / Genuino Uno или Mega без пайки с помощью прилагаемого разъема, а затем управлять своим шаговым двигателем из MECControl.

Подключение шаговых двигателей

Посмотреть видеоурок

Количество выводов, которые есть у шагового двигателя, подскажет вам, является ли он однополярным или биполярным (или может быть любым), и определит, как он подключен к мостовому модулю L298 H.

Вам нужно будет свериться с таблицей характеристик вашего двигателя или провести некоторое тестирование с помощью мультиметра, настроенного на диапазон его сопротивления (Ом), чтобы определить, какой провод какой.

Двигатель с четырьмя выводами

Этот биполярный двигатель имеет два вывода для каждой из двух катушек.

Если вы измеряете низкое сопротивление между двумя его выводами, то эти два провода подключаются к первой катушке, а два других провода подключаются ко второй катушке.

Двигатель может быть подключен к вашему модулю моста Arduino / Genuino Uno или Mega и L298 H, как показано в этом примере:

Если двигатель работает нестабильно, поменяйте местами провода, подключенные к одной из катушек.

Входы (IN1, IN2, IN3 и IN4) от модуля моста L298 H могут быть подключены к любому из цифровых контактов на Arduino / Genuino Uno или Mega, обозначенных 2-13 на Uno и 2-53 на Mega.

Двигатель с пятью выводами

Этот униполярный двигатель имеет два вывода для каждой из двух катушек. Одиночный вывод подключен к центральному отводу обеих катушек.

Если вы измеряете одинаковое низкое сопротивление между одним из его выводов и всеми четырьмя другими выводами, то этот вывод подключается к центральному отводу.

Двигатель может быть подключен к вашему модулю моста Arduino / Genuino Uno или Mega и L298 H, как показано в этом примере:

Если двигатель работает нестабильно, поменяйте местами нецентральные выводы ответвителя, пока двигатель не будет вести себя правильно.

Входы (IN1, IN2, IN3 и IN4) от модуля моста L298 H могут быть подключены к любому из цифровых контактов на Arduino / Genuino Uno или Mega, обозначенных 2-13 на Uno и 2-53 на Mega.

Двигатель с шестью выводами

Этот двигатель имеет по три вывода для каждой из двух катушек. Каждая катушка имеет свой собственный вывод центрального отвода , поэтому ее можно использовать как однополярный двигатель или как биполярный двигатель .

Если вы измеряете одинаковое низкое сопротивление между одним из его выводов и двумя другими, то этот вывод подключается к центральному отводу первой катушки, а два других также подключаются к первой катушке.Если вы измеряете такое же низкое сопротивление между одним из трех оставшихся выводов и двумя другими, то этот вывод подключается к центральному отводу второй катушки, а два других также подключаются ко второй катушке.

Двигатель может быть подключен к вашему модулю моста Arduino / Genuino Uno или Mega и L298 H, как показано в следующих примерах:

Если двигатель работает нестабильно, поменяйте местами нецентральные выводы ответвителя, пока двигатель не будет вести себя правильно.

Входы (IN1, IN2, IN3 и IN4) от модуля моста L298 H могут быть подключены к любому из цифровых контактов на Arduino / Genuino Uno или Mega, обозначенных 2-13 на Uno и 2-53 на Mega.

Двигатель с восемью выводами

Этот двигатель имеет два вывода для каждой из четырех катушек. Выводы от двух соседних катушек могут быть соединены для создания центрального отвода , поэтому его можно использовать как униполярный двигатель или как биполярный двигатель .Катушки также можно подключать параллельно для получения более высокого крутящего момента.

Если вы измеряете низкое сопротивление между двумя его выводами, то эти два провода подключаются к первой катушке. Измерьте сопротивление между другими парами выводов, чтобы выяснить, какие выводы подключены ко второй, третьей и четвертой катушкам.

Двигатель может быть подключен к вашему модулю моста Arduino / Genuino Uno или Mega и L298 H, как показано в следующих примерах:

Если двигатель работает нестабильно, поменяйте местами нецентральные выводы ответвителя, пока двигатель не будет вести себя правильно.

Входы (IN1, IN2, IN3 и IN4) от модуля моста L298 H могут быть подключены к любому из цифровых контактов на Arduino / Genuino Uno или Mega, обозначенных 2-13 на Uno и 2-53 на Mega.

Шаговые двигатели подвижные

Как только ваш шаговый двигатель подключен к Arduino / Genuino Uno или Mega через мостовой модуль L298 H, используйте команду Connect, чтобы дать ему имя и сообщить MECControl, к каким контактам он подключен:

Подключите ручной шаговый двигатель к контактам 2, 3, 4, 5

В этом примере шаговый двигатель с именем Hand был подключен через цифровые контакты с метками 2, 3, 4 и 5.Контакты не обязательно должны быть последовательными, хотя, если они есть, их также можно указать в виде диапазона:

Подсоедините ручной шаговый двигатель к контактам 2-5

Затем вы можете ссылаться на шаговый двигатель по имени в последующих командах, как в этом примере:

Переместите руку по часовой стрелке на 10 шагов

Эта команда перемещает ручной шаговый двигатель по часовой стрелке на 10 шагов. Вы можете так же легко повернуть шаговый двигатель против часовой стрелки:

Переместите руку против часовой стрелки на 10 шагов

Вы также можете ссылаться на число, хранящееся в ранее определенной переменной:

Перемещение руки против часовой стрелки по шагам

Иногда полезно давать действиям шагового двигателя имена, которые что-то значат в контексте вашего проекта.

Вы можете сделать это, добавив именованные Действия в конец команды Подключить:

Подключите ручной шаговый двигатель к контактам 2-5 Действия Лево Право

Теперь эти действия можно использовать с командой Move:

Переместите руку влево на 10 шагов

MECControl будет ждать завершения действия. Это означает, что другие устройства не могут управляться во время движения шагового двигателя, и любые нажатия кнопок будут игнорироваться.

Скорость шагового двигателя

Вы можете указать скорость шагового двигателя в шагах в секунду:

Перемещайте руку по часовой стрелке на 200 шагов со скоростью 60 шагов в секунду

Скорость может быть любой от 0.От 1 до 1000 шагов в секунду с шагом 0,1.

Вы также можете обратиться к скорости, сохраненной в ранее определенной переменной:

Перемещайте руку по часовой стрелке на 200 шагов со скоростью шагов в секунду

В качестве альтернативы вы можете перемещать двигатель в течение определенного периода времени:

Переместите руку по часовой стрелке на 200 шагов за 60 секунд

Период времени может быть любым от 0,1 до 60 секунд с шагом 0,1 секунды.

Вы также можете обратиться к периоду времени, хранящемуся в ранее определенной переменной:

Перемещайте руку по часовой стрелке на 200 шагов во времени, секунды

Отключение шаговых двигателей

Шаговый двигатель обычно удерживается в положении, заданном последней командой перемещения.

Чтобы шаговый двигатель мог свободно двигаться, вы можете использовать команду Disable:

Биполярный шаговый двигатель

— обзор

зона нечувствительности : зона между вращением по часовой стрелке и против часовой стрелки, в которой ротор активированного SM может остановиться

перерегулирование : is максимальная величина превышения положения ступеньки

фаза : часть обмотки между линией питания и точкой отвода (униполярного SM) или между двумя линиями питания (в случае биполярный шаговый двигатель)

удерживающий момент : максимальный крутящий момент, который может быть приложен к валу ротора без его непрерывного вращения при включенном двигателе и управлении нулевым шагом

фиксирующий момент : (остаточный крутящий момент) максимальный крутящий момент обесточенного двигателя, который может быть приложен к валу без того, чтобы он начал непрерывно вращаться

время установления : общее время между подачей сигнала ступенчатого изменения и временем, которое требуется валу двигателя для стабилизации на этом новом значении шага

максимальная скорость нарастания : максимальная схема переключения, при которой ненагруженный SM может оставаться синхронным

режим : определенная схема включения различных фаз двигателя

момент втягивания : максимальный момент нагрузки, с которым SM может запускаться или останавливаться с определенной частотой управления и моментом инерции без потери шага.

крутящий момент отрыва (момент остановки): момент нагрузки, для которого SM теряет синхронизацию при движении определенного инерция при заданном количестве шагов

скорость вытягивания : количество шагов (= управляющая частота), при котором t SM теряет синхронизацию при данной инерционной нагрузке.

Угол шага : угол, под которым вал SM вращается для каждого управляющего импульса, когда последовательные фазы активируются одна за другой.Большинство SM имеют угол шага от 0,45 ° до 90 °.

точность шага : (допуск угла шага) указывает максимальную ошибку углового положения, которая может возникнуть. Ошибка не суммируется и выражается в процентах от угла шага.

имя шагового двигателя : SM именуется в соответствии с: количеством фаз статора, методом переключения, типом ротора. Пример: двухфазный биполярный PM-SM (рис.22-21).

Схема драйвера шагового двигателя с использованием IC 555

В этом проекте мы узнаем, как создать простую схему драйвера униполярного шагового двигателя с использованием микросхемы таймера 555. Помимо таймера 555 нам также понадобится микросхема CD 4017, которая представляет собой микросхему декадного счетчика.

Анкит Неги

Любой униполярный двигатель может быть подключен к этой цепи для выполнения определенной задачи, хотя сначала вам необходимо внести некоторые небольшие изменения.

Скорость шагового двигателя можно контролировать с помощью потенциометра, подключенного между выводом разряда и пороговым значением таймера 555.

Основные сведения о шаговых двигателях

Шаговые двигатели используются в областях, где требуется определенная величина вращения, недостижимая при использовании обычных двигателей постоянного тока. Типичное применение шагового двигателя — 3D ПРИНТЕР. Вы найдете два типа популярных шаговых двигателей: УНИПОЛЯРНЫЙ и БИПОЛЯРНЫЙ.

Как следует из названия, униполярный шаговый двигатель содержит обмотки с общим проводом, которые можно легко запитать по одной.

В то время как биполярный шаговый двигатель не имеет общего вывода между катушками, из-за чего его нельзя запустить просто по предлагаемой схеме.Для управления биполярным шаговым двигателем нам понадобится h-мостовая схема.

КОМПОНЕНТЫ:

1. 555 ТАЙМЕР IC

2. CD 4017 IC

3. РЕЗИСТОРЫ 4,7K, 1K

4. ПОТЕНЦИОМЕТР 220K

5. КОНДЕНСАТОР 1 мкФ

6. 4 ДИОДА 1N4007

.4 ТРАНЗИСТОРА 2N2222

8. УНИПОЛЯРНЫЙ ШАГОВЫЙ ДВИГАТЕЛЬ

9. ИСТОЧНИК ПИТАНИЯ ПОСТОЯННОГО ТОКА

НАЗНАЧЕНИЕ ТАЙМЕРА 555:

Таймер 555 требуется здесь для генерации тактовых импульсов определенной частоты (можно изменять с помощью потенциометра 220k), который определяет скорость шагового двигателя.

IC 555 Описание выводов

НАЗНАЧЕНИЕ CD4017:

Как уже упоминалось выше, это микросхема декадного счетчика, т.е. она может считать до 10 тактовых импульсов. Особенность этой ИС заключается в том, что в нее встроен собственный декодер. Благодаря этому вам не нужно добавлять дополнительную микросхему для декодирования двоичных чисел.

4017 считает до 10 тактовых импульсов от таймера 555 и выдает высокий выходной сигнал, соответствующий каждому тактовому импульсу один за другим на своих 10 выходных контактах. Одновременно высокий только один контакт.

НАЗНАЧЕНИЕ ТРАНЗИСТОРОВ:

Здесь есть два назначения транзистора:

1. Транзисторы действуют здесь как переключатели, таким образом запитывая одну катушку за раз.

2. Транзисторы пропускают через них большой ток, а затем через двигатель, тем самым полностью исключая таймер 555, поскольку он может подавать очень небольшое количество тока.

СХЕМА:

Выполните соединения, как показано на рисунке.

1. Подключите контакт 3 или выходной контакт таймера 555 к контакту 14 (тактовый вывод) IC 4017.
2. Подключите разрешающий контакт или 13-й контакт 4017 к земле.
3. Подключите контакты 3,2,4,7 один за другим к транзисторам 1,2,3,4 соответственно.
4. Подключите 10-й и 15-й контакты к земле через резистор 1 кОм.
5. Подключите общий провод шагового двигателя к плюсу питания.
6. Подключите другие провода шагового двигателя таким образом, чтобы катушки были под напряжением одна за другой для правильного совершения одного полного оборота. (Вы можете посмотреть данные двигателя, предоставленные производителем)

ПОЧЕМУ ВЫХОДНОЙ КОНТАКТ 10 ИС 4017 ПОДКЛЮЧЕН К ЕГО КОНТАКТУ 15 (ПИН СБРОСА)?

Как уже упоминалось выше, 4017 считает тактовые импульсы один за другим до 10-го тактового импульса и соответственно выдает высокий выходной сигнал на выходных контактах, каждый выходной контакт становится высоким.

Это вызывает некоторую задержку вращения двигателя, в которой нет необходимости. Поскольку нам требуются только первые четыре контакта для одного полного оборота двигателя или первые четыре десятичных отсчета от 0 до 3, контакт № 10 подключен к выводу 15, так что после 4-го отсчета ИС сбрасывается и счет начинается заново. Это гарантирует отсутствие прерывания вращения двигателя.

РАБОТА:

После правильного подключения, если вы включите контур, двигатель начнет пошагово вращаться. Таймер 555 выдает тактовые импульсы в зависимости от номиналов резистора, потенциометра и конденсатора.

Если вы измените значение любой из этих трех составляющих, частота тактового импульса изменится.

Эти тактовые импульсы подаются на микросхему IC CD 4017, которая затем считает тактовые импульсы один за другим и выдает 1 в качестве выходного сигнала на вывод 3,2,4,7 соответственно и непрерывно повторяет этот процесс.

Поскольку транзистор Q1 подключен к контакту 3, он включается сначала, затем транзистор Q2, затем Q3 и Q4. Но когда один транзистор включен, все остальные остаются выключенными.

Когда Q1 включен, он действует как замкнутый переключатель, и ток течет через общий провод к проводу 1, а затем на землю через транзистор Q1.

Это возбуждает катушку 1, и двигатель вращается на некоторый угол, который зависит от тактовой частоты. То же самое происходит с Q2, который возбуждает катушку 2, затем катушку 3 и катушку 4. Таким образом, получается один полный оборот.

При вращении потенциометра:

Допустим, изначально положение потенциометра таково, что между разрядом и пороговым штифтом есть максимальное сопротивление (220 кОм). Формула для частоты выходного тактового импульса:

F = 1,44 / (R1 + 2R2) C1

Из формулы видно, что частота тактовых импульсов уменьшается с увеличением значения R2.Таким образом, когда R2 или значение потенциометра является максимальным, частота минимальна, из-за чего IC 4017 считает медленнее и дает более задержанный выходной сигнал.

По мере уменьшения значения сопротивления R2 частота увеличивается, что вызывает минимальную задержку между выходами IC 4017. Следовательно, шаговый двигатель вращается быстрее.

Таким образом, значение потенциометра определяет скорость шагового двигателя.

ВИДЕО ДЛЯ МОДЕЛИРОВАНИЯ:

Здесь вы можете ясно увидеть, как скорость двигателя зависит от сопротивления R2.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *