Site Loader

Содержание

5Vsb на блоке питания

Добрый день, друзья!

В прошлый раз мы с вами учились врачевать высоковольтную часть компьютерного блока питания. Лечебное искусство (как и любой другое) растет с увеличением практики. Поэтому давайте сейчас посмотрим на

Силовые элементы низковольтной части

Эти элементы установлены на отдельном радиаторе.

Напомним, что в блоке питания имеется, как минимум, два отдельных радиатора – один для высоковольтных элементов, другой – для низковольтных.

Если в блоке имеется активная схема PFC, то она будет иметь свой радиатор, т.е. всего их будет три.

Силовые элементы низковольтной части – это, как правило, сдвоенные выпрямительные диоды Шоттки. Эти диоды отличаются от обычных тем, что на них падает меньшее напряжение.

Таким образом, при том же токе они рассеивают меньшую мощность и меньше греются.

Диодная сборка имеет общий катод, потому выводов у нее три, а не четыре. Как проверять диоды, написано здесь.

Пробное включение

После замены неисправных деталей необходимо произвести пробное включение блока.

При этом вместо предохранителя следует включить электрическую лампу 220 — 230 В мощностью 40 – 100 Вт. Дело в том, что неисправность силовых высоковольтных транзисторов могла быть вызвана неисправностью управляющей микросхемы-контроллера. При этом контроллер может ошибочно открыть сразу оба транзистора.

Через них потечет так называемый сквозной (очень большой) ток, и они выйдут из строя . После замены транзисторов – даже если контроллер и неисправен – почти все напряжение упадет на лампе. Ток будет ограничен, и транзисторы останутся целыми.

Итак, если после замены транзисторов лампа загорится в полный накал – неисправен контроллер или так называемая «обвязка» (дополнительные детали) вокруг него. Но это уже

сложная неисправность. Чтобы устранить ее, необходимо знать – как работает контроллер, какие сигналы выдает.

Поэтому такой случай оставим профессионалам. Если же лампа мигнет на короткое время и погаснет (или будет гореть едва заметным накалом), значит, сквозного тока через транзисторы нет.

Следует отметить, что схемотехника блоков питания постоянно совершенствуется, поэтому такой способ пробного включения, вообще говоря, не всегда может быть рекомендован.

Если вы будете использовать его, то помните, что вы применяете его на свой страх и риск.

Если пробное включение прошло нормально, то можно замерить

Напряжение дежурного источника

Напряжение дежурного источника 5VSB (обычно это провод фиолетового цвета) присутствует на выводе разъема блока питания.

Оно должно находиться в пределах 5% поля допуска, т.е. от 4,75 до 5,25 В.

Если оно находится в этих пределах, необходимо присоединить нагрузку к блоку питания и произвести запуск путем замыкания выводов PS ON и общего, обычно черного по цвету.

Контроль основных напряжений и сигнала Power Good

Если блок питания запустится (при этом закрутится вентилятор), следует проконтролировать напряжения +3,3 В, + 5 В, +12 В и сигнал PG (Power Good).

Напряжение на выводе PG должно быть равным +5 В.

Напоминаем, что эти напряжения должны находиться в пределах 5% поля допуска.

Сигнал Power Good служит для запуска процессора.

При включении блока питания в нем происходят переходные процессы, сопровождающиеся скачками выходных напряжений.

Это может сопровождаться потерей или искажениями данных в регистрах процессора.

Если сигнал на выводе PG неактивен (напряжение на нем равно нулю), то процессор находится в состоянии сброса и не стартует.

Сигнал на этом выводе появляется обычно через 0,3 – 0,5 с после включения. Если после включения напряжение там осталось равным нулю – это сложный случай, оставим его профессионалам.

Если напряжение дежурного источника будет ниже 4,5 В, компьютер может не запуститься. Если оно будет выше (бывает и такое), компьютер запустится, но он может «подвисать» и сбоить.

Если напряжение дежурного источника не находится в пределах нормы, это тоже сложный случай, но можно выполнить несколько типовых процедур проверки деталей.

Проверка элементов дежурного источника напряжения

В формировании дежурного напряжения участвуют следующие элементы:

Следует проверить их. Транзисторы можно проверить, не выпаивая, тестером (в режиме проверки диодов). Источник опорного напряжения лучше выпаять и проверить, собрав небольшую проверочную схему.

Как это сделать – можно почитать в соответствующей статье на этом сайте. Оптопара выходит из строя редко.

Чтобы проверить конденсаторы, необходим измеритель ESR. Если его нет, тогда можно заменить «подозрительный» элемент заведомо исправным — с такой же емкостью и рабочим напряжением.

Если конденсатор подсох, у него растет ESR и уменьшается емкость. Про конденсаторы и ESR можно почитать в предыдущей статье.

Иногда выходят из строя и резисторы, причем это может быть не очень заметно по внешнему виду.

Поиск такой неисправности – сущее наказание! :negative:

Необходимо смотреть на маркировку резистора (в виде цветных колец) и сверять маркировочное значение с реальным. И заодно глубоко вникать в принципиальную схему конкретного блока.

Были случаи, когда резистор в цепи источника опорного напряжения увеличивал свое сопротивление, и «дежурка» поднимала свое напряжение до +7 В!

Это повышенное напряжение питало часть компонентов на материнской плате. Компьютер из-за этого «подвисал».

Нагрузка блока питания

При тестировании блоков питания к ним необходимо подключать нагрузку.

Дело в том, что питаюшие блоки снабжены в большинстве своем элементами защиты и сигнализации. Эти цепи сообщают контроллеру об отсутствии нагрузки. Он может останавливать инвертор, уменьшая выходные напряжения до нуля.

В дешевых моделях эти цепи могут быть упрощены или вообще отсутствовать, и поэтому не исключена поломка блока питания.

При запуске блока питания достаточно подключить нагрузку в виде проволочных сопротивлений ПЭВ-25 6 -10 Ом (к шине +12 В) и 2 — 3 Ом (к шине +5 В).

Правда, могут быть случаи, когда с такой нагрузкой питающий блок запускается, а с реальной нагрузкой – нет.

Но такое бывает редко, и это, опять же, сложный случай. Если уж по-честному, то нагружать надо сильнее, в том числе и шину +3,3 В.

После ремонта надо обязательно проконтролировать напряжения +3,3 В, +5 В, +12 В. Они должны быть в пределах допуска — плюс-минус 5% . С другой стороны, + 12 В + 5% — это 12,6 В, что многовато…

Это напряжение подается на двигатели приводов, в том числе и на шпиндель винчестера, который и так греется достаточно сильно. Если есть регулировка, лучше снизить напряжение до +12 В. Впрочем, в недорогих моделях регулировки обычно нет.

Несколько слов о надежности блоков питания

Многие дешевые модели блоков питания уж слишком сильно «облегчены», что можно ощутить буквально – по весу.

Производители экономят каждую копейку (каждый юань) и не устанавливают некоторые детали на платах.

В частности, не ставят входной LC-фильтр, дроссели фильтра в каналах выходных напряжений, закорачивая их перемычками.

Если нет входного фильтра, импульсная помеха от инвертора блока питания поступает в питающую сеть и «загрязняет» и без того не очень «чистое» напряжение. Кроме того, увеличиваются скачки тока через высоковольтные элементы, что сокращает срок их службы.

В заключение скажем, что если нет дросселей фильтра в каналах выходных напряжений, уровень высокочастотных помех возрастает.

В результате импульсный стабилизатор на материнской плате, вырабатывающий напряжение питания для процессора, работает в более тяжелом режиме и сильнее нагревается.

Отсюда рекомендация – либо заменить такой блок, либо установить недостающие элементы входного и выходных фильтров.

В последнем случае хорошо бы заменить низковольтные выпрямительные диоды более мощными (потому что, скорее всего, сэкономили и на этом). Например, вместо диодных сборок 2040 с током 20 А, установить сборки 3040 с током 30 А.

«Кормите» компьютер качественным напряжением, и он будет служить Вам долгие годы! На компьютерном «желудке» (как и на своем) лучше не экономить.

Добрый день, друзья!

В прошлый раз мы с вами учились врачевать высоковольтную часть компьютерного блока питания. Лечебное искусство (как и любой другое) растет с увеличением практики. Поэтому давайте сейчас посмотрим на

Силовые элементы низковольтной части

Эти элементы установлены на отдельном радиаторе.

Напомним, что в блоке питания имеется, как минимум, два отдельных радиатора – один для высоковольтных элементов, другой – для низковольтных.

Если в блоке имеется активная схема PFC, то она будет иметь свой радиатор, т.е. всего их будет три.

Силовые элементы низковольтной части – это, как правило, сдвоенные выпрямительные диоды Шоттки. Эти диоды отличаются от обычных тем, что на них падает меньшее напряжение.

Таким образом, при том же токе они рассеивают меньшую мощность и меньше греются.

Диодная сборка имеет общий катод, потому выводов у нее три, а не четыре. Как проверять диоды, написано здесь.

Пробное включение

После замены неисправных деталей необходимо произвести пробное включение блока.

При этом вместо предохранителя следует включить электрическую лампу 220 — 230 В мощностью 40 – 100 Вт. Дело в том, что неисправность силовых высоковольтных транзисторов могла быть вызвана неисправностью управляющей микросхемы-контроллера. При этом контроллер может ошибочно открыть сразу оба транзистора.

Через них потечет так называемый сквозной (очень большой) ток, и

они выйдут из строя . После замены транзисторов – даже если контроллер и неисправен – почти все напряжение упадет на лампе. Ток будет ограничен, и транзисторы останутся целыми.

Итак, если после замены транзисторов лампа загорится в полный накал – неисправен контроллер или так называемая «обвязка» (дополнительные детали) вокруг него. Но это уже сложная неисправность. Чтобы устранить ее, необходимо знать – как работает контроллер, какие сигналы выдает.

Поэтому такой случай оставим профессионалам. Если же лампа мигнет на короткое время и погаснет (или будет гореть едва заметным накалом), значит, сквозного тока через транзисторы нет.

Следует отметить, что схемотехника блоков питания постоянно совершенствуется, поэтому такой способ пробного включения, вообще говоря, не всегда может быть рекомендован.

Если вы будете использовать его, то помните, что вы применяете его на свой страх и риск.

Если пробное включение прошло нормально, то можно замерить

Напряжение дежурного источника

Напряжение дежурного источника 5VSB (обычно это провод фиолетового цвета) присутствует на выводе разъема блока питания.

Оно должно находиться в пределах 5% поля допуска, т.е. от 4,75 до 5,25 В.

Если оно находится в этих пределах, необходимо присоединить нагрузку к блоку питания и произвести запуск путем замыкания выводов PS ON и общего, обычно черного по цвету.

Контроль основных напряжений и сигнала Power Good

Если блок питания запустится (при этом закрутится вентилятор), следует проконтролировать напряжения +3,3 В, + 5 В, +12 В и сигнал PG (Power Good).

Напряжение на выводе PG должно быть равным +5 В.

Напоминаем, что эти напряжения должны находиться в пределах 5% поля допуска.

Сигнал Power Good служит для запуска процессора.

При включении блока питания в нем происходят переходные процессы, сопровождающиеся скачками выходных напряжений.

Это может сопровождаться потерей или искажениями данных в регистрах процессора.

Если сигнал на выводе PG неактивен (напряжение на нем равно нулю), то процессор находится в состоянии сброса и не стартует.

Сигнал на этом выводе появляется обычно через 0,3 – 0,5 с после включения. Если после включения напряжение там осталось равным нулю – это сложный случай, оставим его профессионалам.

Если напряжение дежурного источника будет ниже 4,5 В, компьютер может не запуститься. Если оно будет выше (бывает и такое), компьютер запустится, но он может «подвисать» и сбоить.

Если напряжение дежурного источника не находится в пределах нормы, это тоже сложный случай, но можно выполнить несколько типовых процедур проверки деталей.

Проверка элементов дежурного источника напряжения

В формировании дежурного напряжения участвуют следующие элементы:

Следует проверить их. Транзисторы можно проверить, не выпаивая, тестером (в режиме проверки диодов). Источник опорного напряжения лучше выпаять и проверить, собрав небольшую проверочную схему.

Как это сделать – можно почитать в соответствующей статье на этом сайте. Оптопара выходит из строя редко.

Чтобы проверить конденсаторы, необходим измеритель ESR. Если его нет, тогда можно заменить «подозрительный» элемент заведомо исправным — с такой же емкостью и рабочим напряжением.

Если конденсатор подсох, у него растет ESR и уменьшается емкость. Про конденсаторы и ESR можно почитать в предыдущей статье.

Иногда выходят из строя и резисторы, причем это может быть не очень заметно по внешнему виду.

Поиск такой неисправности – сущее наказание! :negative:

Необходимо смотреть на маркировку резистора (в виде цветных колец) и сверять маркировочное значение с реальным. И заодно глубоко вникать в принципиальную схему конкретного блока.

Были случаи, когда резистор в цепи источника опорного напряжения увеличивал свое сопротивление, и «дежурка» поднимала свое напряжение до +7 В!

Это повышенное напряжение питало часть компонентов на материнской плате. Компьютер из-за этого «подвисал».

Нагрузка блока питания

При тестировании блоков питания к ним необходимо подключать нагрузку.

Дело в том, что питаюшие блоки снабжены в большинстве своем элементами защиты и сигнализации. Эти цепи сообщают контроллеру об отсутствии нагрузки. Он может останавливать инвертор, уменьшая выходные напряжения до нуля.

В дешевых моделях эти цепи могут быть упрощены или вообще отсутствовать, и поэтому не исключена поломка блока питания.

При запуске блока питания достаточно подключить нагрузку в виде проволочных сопротивлений ПЭВ-25 6 -10 Ом (к шине +12 В) и 2 — 3 Ом (к шине +5 В).

Правда, могут быть случаи, когда с такой нагрузкой питающий блок запускается, а с реальной нагрузкой – нет.

Но такое бывает редко, и это, опять же, сложный случай. Если уж по-честному, то нагружать надо сильнее, в том числе и шину +3,3 В.

После ремонта надо обязательно проконтролировать напряжения +3,3 В, +5 В, +12 В. Они должны быть в пределах допуска — плюс-минус 5% . С другой стороны, + 12 В + 5% — это 12,6 В, что многовато…

Это напряжение подается на двигатели приводов, в том числе и на шпиндель винчестера, который и так греется достаточно сильно. Если есть регулировка, лучше снизить напряжение до +12 В. Впрочем, в недорогих моделях регулировки обычно нет.

Несколько слов о надежности блоков питания

Многие дешевые модели блоков питания уж слишком сильно «облегчены», что можно ощутить буквально – по весу.

Производители экономят каждую копейку (каждый юань) и не устанавливают некоторые детали на платах.

В частности, не ставят входной LC-фильтр, дроссели фильтра в каналах выходных напряжений, закорачивая их перемычками.

Если нет входного фильтра, импульсная помеха от инвертора блока питания поступает в питающую сеть и «загрязняет» и без того не очень «чистое» напряжение. Кроме того, увеличиваются скачки тока через высоковольтные элементы, что сокращает срок их службы.

В заключение скажем, что если нет дросселей фильтра в каналах выходных напряжений, уровень высокочастотных помех возрастает.

В результате импульсный стабилизатор на материнской плате, вырабатывающий напряжение питания для процессора, работает в более тяжелом режиме и сильнее нагревается.

Отсюда рекомендация – либо заменить такой блок, либо установить недостающие элементы входного и выходных фильтров.

В последнем случае хорошо бы заменить низковольтные выпрямительные диоды более мощными (потому что, скорее всего, сэкономили и на этом). Например, вместо диодных сборок 2040 с током 20 А, установить сборки 3040 с током 30 А.

«Кормите» компьютер качественным напряжением, и он будет служить Вам долгие годы! На компьютерном «желудке» (как и на своем) лучше не экономить.

Для более доступного объяснения данного материала настоятельно рекомендую прочесть статью по основам ремонта компьютерных блоков питания.

Проверяем входное сопротивление

Итак, дали в ремонт блок питания Power Man на 350 Ватт

Что делаем первым делом? Внешний и внутренний осмотр. Смотрим на “потроха”. Если ли какие сгоревшие радиоэлементы? Может где-то обуглена плата или взорвался конденсатор, либо пахнет горелым кремнием? Все это учитываем при осмотре. Обязательно смотрим на предохранитель. Если он сгорел, то ставим вместо него временную перемычку примерно на столько же Ампер, а потом замеряем входное сопротивление через два сетевых провода. Это можно сделать на вилке блока питания при включенной кнопке “ВКЛ”. Оно НЕ должно быть слишком маленькое, иначе при включении блока питания еще раз произойдет короткое замыкание.

Замеряем напряжения

Если все ОК, включаем наш блок питания в сеть с помощью сетевого кабеля, который идет вместе с блоком питания, и не забываем про кнопочку включения, если она у вас была в выключенном состоянии.

Далее меряем напряжение на фиолетовом проводе

Мой пациент на фиолетовом проводе показал 0 Вольт. Беру мультиметр и прозваниваю фиолетовый провод на землю. Земля – это провода черного цвета с надписью СОМ. COM – сокращенно от “common”, что значит “общий”. Есть также некоторые виды “земель”:

Как только я коснулся земли и фиолетового провода, мой мультиметр издал дотошный сигнал “ппииииииииииип” и показал нули на дисплее. Короткое замыкание, однозначно.

Ну что же, будем искать схему на этот блок питания. Погуглив по просторам интернета, я нашел схему. Но нашел только на Power Man 300 Ватт. Они все равно будут похожи. Отличия в схеме были лишь в порядковых номерах радиодеталей на плате. Если уметь анализировать печатную плату на соответствие схемы, то это не будет большой проблемой.

А вот и схемка на Power Man 300W. Щелкните по ней для увеличения в натуральный размер.

Ищем виновника

Как мы видим в схеме, дежурное питание, далее по тексту – дежурка, обозначается как +5VSB:

Прямо от нее идет стабилитрон номиналом в 6,3 Вольта на землю. А как вы помните, стабилитрон – это тот же самый диод, но подключается в схемах наоборот. У стабилитрона используется обратная ветвь ВАХ. Если бы стабилитрон был живой, то у нас провод +5VSB не коротил бы на массу. Скорее всего стабилитрон сгорел и PN переход разрушен.

Что происходит при сгорании разных радиодеталей с физической точки зрения? Во-первых, изменяется их сопротивление. У резисторов оно становится бесконечным, или иначе говоря, уходит в обрыв. У конденсаторов оно иногда становится очень маленьким, или иначе говоря, уходит в короткое замыкание. С полупроводниками возможны оба этих варианта, как короткое замыкание, так и обрыв.

В нашем случае мы можем проверить это только одним способом, выпаяв одну или сразу обе ножки стабилитрона, как наиболее вероятного виновника короткого замыкания. Далее будем проверять пропало ли короткое замыкание между дежуркой и массой или нет. Почему так происходит?

Вспоминаем простые подсказки:

1)При последовательном соединении работает правило больше большего, иначе говоря, общее сопротивление цепи больше, чем сопротивление большего из резисторов.

2)При параллельном же соединении работает обратное правило, меньше меньшего, иначе говоря итоговое сопротивление будет меньше чем сопротивление резистора меньшего из номиналов.

Можете взять произвольные значения сопротивлений резисторов, самостоятельно посчитать и убедиться в этом. Попробуем логически поразмыслить, если у нас одно из сопротивлений параллельно подключенных радиодеталей будет равно нулю, какие показания мы увидим на экране мультиметра ? Правильно, тоже равное нулю…

И до тех пор пока мы не устраним это короткое замыкание путем выпаивания одной из ножек детали, которую мы считаем проблемной, мы не сможем определить, в какой детали у нас короткое замыкание. Дело все в том, что при звуковой прозвонке, ВСЕ детали параллельно соединенные с деталью находящейся в коротком замыкании, будут у нас звониться накоротко с общим проводом!

Пробуем выпаять стабилитрон. Как только я к нему прикоснулся, он развалился надвое. Без комментариев…

Дело не в стабилитроне

Проверяем, устранилось ли у нас короткое замыкание по цепям дежурки и массы, либо нет. Действительно, короткое замыкание пропало. Я сходил в радиомагазин за новым стабилитроном и запаял его. Включаю блок питания, и… вижу как мой новый, только что купленный стабилитрон испускает волшебный дым)…

И тут я сразу вспомнил одно из главных правил ремонтника:

Если что-то сгорело, найди сначала причину этого, а только затем меняй деталь на новую или рискуешь получить еще одну сгоревшую деталь.

Ругаясь про себя матом, перекусываю сгоревший стабилитрон бокорезами и снова включаю блок питания.

Так и есть, дежурка завышена: 8,5 Вольт. В голове крутится главный вопрос: “Жив ли еще ШИМ контроллер, или я его уже благополучно спалил?”. Скачиваю даташит на микросхему и вижу предельное напряжение питания для ШИМ контроллера, равное 16 Вольтам. Уфф, вроде должно пронести…

Проверяем конденсаторы

Начинаю гуглить по моей проблеме на спец сайтах, посвященных ремонту БП ATX. И конечно же, проблема завышенного напряжения дежурки оказывается в банальном увеличении ESR электролитических конденсаторов в цепях дежурки. Ищем эти конденсаторы на схеме и проверяем их.

Вспоминаю о своем собранном приборе ESR метре

Самое время проверить, на что он способен.

Проверяю первый конденсатор в цепи дежурки.

ESR в пределах нормы.

Находим виновника проблемы

Жду, когда на экране мультиметра появится какое-либо значение, но ничего не поменялось.

Понимаю, что виновник, или по крайней мере один из виновников проблемы найден. Перепаиваю конденсатор на точно такой же, по номиналу и рабочему напряжению, взятый с донорской платы блока питания. Здесь хочу остановиться подробнее:

Если вы решили поставить в блок питания ATX электролитический конденсатор не с донора, а новый, из магазина, обязательно покупайте LOW ESR конденсаторы, а не обычные. Обычные конденсаторы плохо работают в высокочастотных цепях, а в блоке питания, как раз именно такие цепи.

Итак, я включаю блок питания и снова замеряю напряжение на дежурке. Наученный горьким опытом уже не тороплюсь ставить новый защитный стабилитрон и замеряю напряжение на дежурке, относительно земли. Напряжение 12 вольт и раздается высокочастотный свист.

Снова сажусь гуглить по проблеме завышенного напряжения на дежурке, и на сайте rom.by, посвященном как ремонту БП ATX и материнских плат так и вообще всего компьютерного железа. Нахожу свою неисправность поиском в типичных неисправностях данного блока питания. Рекомендуют заменить конденсатор емкостью 10 мкФ.

Замеряю ESR на конденсаторе…. Жопа.

Результат, как и в первом случае: прибор зашкаливает. Некоторые говорят, мол зачем собирать какие-то приборы, типа вздувшиеся нерабочие конденсаторы итак видно – они припухшие, или вскрывшиеся розочкой

Да, я согласен с этим. Но это касается только конденсаторов большого номинала. Конденсаторы относительно небольших номиналов не вздуваются. В их верхней части нет насечек по которым они могли бы раскрыться. Поэтому их просто невозможно определить на работоспособность визуально. Остается только менять их на заведомо рабочие.

Итак, перебрав свои платы был найден и второй нужный мне конденсатор на одной из плат доноров. На всякий случай было измерено его ESR. Оно оказалось в норме. После впаивания второго конденсатора в плату, включаю блок питания клавишным выключателем и измеряю дежурное напряжение. То, что и требовалось, 5,02 вольта… Ура!

Измеряю все остальные напряжения на разъеме блока питания. Все соответствуют норме. Отклонения рабочих напряжений менее 5%. Осталось впаять стабилитрон на 6,3 Вольта. Долго думал, почему стабилитрон именно на 6,3 Вольта, когда напряжение дежурки равно +5 Вольт? Логичнее было бы поставить на 5,5 вольт или аналогичный, если бы он стоял для стабилизации напряжения на дежурке. Скорее всего, этот стабилитрон стоит здесь как защитный, для того, чтобы в случае повышения напряжения на дежурке, выше 6,3 Вольт, он сгорел и замкнул накоротко цепь дежурки, отключив тем самым блок питания и сохранив нашу материнскую плату от сгорания при поступлении на нее завышенного напряжения через дежурку.

Вторая функция этого стабилитрона, видать, защита ШИМ контроллера от поступления на него завышенного напряжения. Так как дежурка соединена с питанием микросхемы через достаточно низкоомный резистор, поэтому на 20 ножку питания микросхемы ШИМ поступает почти то же самое напряжение, что и присутствует у нас на дежурке.

Заключение

Итак, какие можно сделать выводы из этого ремонта:

1)Все параллельно подключенные детали при измерении влияют друг на друга. Их значения активных сопротивлений считаются по правилу параллельного соединения резисторов. В случае короткого замыкания на одной из параллельно подключенных радиодеталей, такое же короткое замыкание будет на всех остальных деталях, которые подключены параллельно этой.

2)Для выявления неисправных конденсаторов одного визуального осмотра мало и необходимо либо менять все неисправные электролитические конденсаторы в цепях проблемного узла устройства на заведомо рабочие, либо отбраковывать путем измерения прибором ESR-метром.

3)Найдя какую либо сгоревшую деталь, не торопимся менять её на новую, а ищем причину которая привела к её сгоранию, иначе мы рискуем получить еще одну сгоревшую деталь.

Weidmuller 1845141500 SAIL-VSB-180-15U0.5 Круглые соед. разъемы|Прово

Банковский перевод: счет на оплату формируется после оформления заказа или отправки заявки в произвольной форме на электронную почту [email protected]. Специалист свяжется с вами для уточнения деталей.

Самовывоз с нашего склада:
По адресу: Московская область, Люберецкий район, п. Томилино, мкр. Птицефабрика, стр. лит. А, офис 109. Мы есть на Яндекс.Карты.

Доставка до двери
Осуществляется курьерской службой или транспортной компанией (на Ваш выбор).
Мы работаем с ведущими транспортными компаниями и доставляем заказы во все регионы России и Казахстана.

Доставка до терминала
Транспортной компании в Москва – БЕСПЛАТНО.

Блоки питания — включение в обзор корпусов

Поскольку в настоящее время практически невозможно приобрести корпус ПК без блока питания, похоже, самое время добавить в число материалов, посвященных рассмотрению корпусов и обзоры блоков питания — на начальном этапе — хотя бы в минимальном объеме. Что подразумевается под минимальным объемом? Согласно основополагающим документам, спецификации ATX (версия 2.2 в настоящее время) и руководству по разработке блоков питания ATX12V Power Supply Design Guide (версия 2.01 в настоящее время), при тестировании блоков рекомендуется обращать внимание на несколько параметров, включая КПД, стабильность напряжений, величину пульсаций по основным шинам, защиту от короткого замыкания и т.д.

Под «минимальным объемом тестирования» я понимаю проведение испытаний, которые, в первую очередь, не сильно увеличат продолжительность проведения обзоров корпусов и по времени, и по подготовке необходимого инструментария. Говоря конкретнее, наиболее простыми параметрами, которые я смогу измерять, пока являются выходные напряжения (и их стабильность при работе с искусственными нагрузками), а также величина шумов по каждой из питающих шин. Нагрузка, вольтметр и осциллограф — вряд ли потребуется что-то помимо этого оборудования.

Немного теории

На текущий момент производителям блоков питания рекомендуется ориентироваться при разработке на ATX12V Power Supple Design Guide версии 2.01 от июня 2004 года, а также, разумеется, на спецификации ATX (системные платы) версий 2.03 и поздних (по мере появления). Наиболее заметными изменениями (касающимися, разумеется, блоков питания ATX12V), появившимися в предпоследней версии PSDG (которые упомянуты в версии 2.01 и будут актуальны для более поздних ревизий), стали:

  • Требования к мощности. Продолжает увеличиваться потребляемая мощность системных компонентов, к которым подводится питание +12 В, поэтому в последних версиях спецификации особо обращается внимание, что если потребляемый таким устройством ток по +12 В превышает 18 А, необходимо оснащать блоки (и платы) дополнительным разъемом +12 В
  • Минимальный КПД блоков должен составлять 70% при полной и «типичной» (50%) нагрузке и 60% при низкой нагрузке (20%). КПД является одним из важных параметров блока; согласно спецификации, для всех блоков питания оговорены требования по минимальному и рекомендуемому КПД при разных степенях нагрузки, а также для каждого из типов блоков питания (в зависимости от мощности) — конкретные параметры нагрузки по каждой шине:
     Полная нагрузкаТипичная нагрузкаНизкая нагрузка
    Требуемый минимальный КПД70%60%
    Рекомендованный минимальный КПД75%80%68%

    Таблица нагрузок для измерения КПД
     +12 V1+12 V2+5 V+3,3V-12V+5Vsb
    250 Вт блок (А)
    Полная411,56,86,50,31,0
    Типичная35340,11,0
    Низкая22,40,30,50,01,0
    300 Вт блок (А)
    Полная71287,50,21,0
    Типичная48340,11,0
    Низкая220,51,50,01,0
    350 Вт блок (А)
    Полная10139100,31,0
    Типичная59350,11,0
    Низкая331,02,00,01,0
    400 Вт блок (А)
    Полная12149110,31,0
    Типичная59350,11,0
    Низкая33130,01,0
  • Основной разъем питания БП, имевший 20 контактов (2 ряда × 10) заменен разъемом с 24 контактами (2 ряда × 12), что, в частности, сделано для удовлетворения требований по 75 Вт энергопотреблению устройств PCI Express. Назначение контактов осуществляется в соответствии с требованиями SSI. С добавлением количества контактов под напряжения +12, +5 и +3,3 В отпала необходимость в реализации разъема дополнительного питания Aux Power, в результате чего в спецификации удалены все упоминания о нем
  • Введены отдельные ограничения тока по 12V2 на дополнительном разъеме питания (4-контактный, 2 × +12 В, 2 × «земля»)

Стабильность выходных напряжений по основным шинам питания блока — один из наиболее интересных моментов, поскольку в разных документах некоторое время назад были отмечены разночтения, в настоящее же время ситуация более-менее стабилизировалась (согласно ATX ver.2.2, раздел 4.1.4, требования к питанию материнской платы выглядят так):

ВыходПредел отклонения (%)Мин. (В)Номинал (В)Макс. (В)
+12 V1±5+11,40+12,0+12,60
+12 V21
+5 V+4,75+5,0+5,25
+3,3 V2+3,14+3,30+3,47
-12 V±10-10,80-12,0-13,20
+5 Vsb±5+4,75+5,0+5,25

1 при пиковой нагрузке отклонения выходного напряжения +12 В могут составлять ±10%
2требуется устойчивое питание на основном разъеме и разъеме S-ATA (если используется).

Кроме того, в спецификации отмечено, что выходные напряжения не должны выходить за пределы допуска при изменениях нагрузки с частотой от 50 Гц до 10 кГц на 50% от максимально допустимой по шине +12 В и на 30% от максимально допустимой по шинам +5В и +3,3В, причем, это справедливо и для того случая, когда нагрузка одновременно изменяется в одну сторону (растет или уменьшается) на всех шинах. Скорость изменения нагрузки может достигать 1 А/мкс и при этом может комбинироваться с максимально допустимой емкостной нагрузкой (20000 мкФ по шине +12В, 10000 мкФ по шине +5В и 6000 мкФ по шине +3,3В):

НапряжениеВеличина изменения нагрузки (% от данных по току, см. таблицу распределения мощностей)Макс. величина изменения тока, А
+12V140   
+12V260
+5V30
+3,3V
-12V  0,1
+5Vsb0,5

Говоря о пульсациях, стоит отметить, что, согласно спецификации, величина колебаний и пульсаций (периодические или произвольные сигналы в диапазоне частот 10 Гц-20 МГц) выходных напряжений в зависимости от шины выглядит так:

ВыходМакс. пульсации (mVpp)
+12V1120
+12V2120
+5V50
+3,3V50
-12V120
+5Vsb50

Мысли вслух

Еще одной сложностью, с которой встречается любой человек, сталкивающийся с блоками питания (то есть, практически каждый пользователь ПК), является тот факт, что производители заявляют в зависимости от своей скромности совершенно разные максимальные токи для питающих шин, соответственно, выработать единый подход для нагрузки блоков одной «весовой категории» сложно, хотя и можно. Смысла в нагрузке блока питания, слепо исходя из заявленных производителем характеристик, разумеется, нет: вероятность того, что блок не выдержит нагрузки становится слишком большой. С целью выработки более-менее стандартизированного подхода «законодатели мод» используют такое понятие, как «кросс-нагрузка» — распределение нагрузок по различным шинам. В Power Supply Design Guide приведены «ознакомительные» таблицы и графики кросс-нагрузок, которые, как необходимо отметить, не могут рассматриваться в качестве рекомендованных для соблюдения производителями блоков.

250 Вт блок ATX12V
 Мин.ток (А)Макс. ток (А)Пиковый ток (А)
+12V11810
+12V2114 
+5V0,318 
+3,3V0,517 
-12V00,3 
+5Vsb022,5
300 Вт блок ATX12V
 Мин.ток (А)Макс. ток (А)Пиковый ток (А)
+12V11810
+12V2114 
+5V0,320 
+3,3V0,520 
-12V00,3 
+5Vsb022,5
350 Вт блок ATX12V
 Мин.ток (А)Макс. ток (А)Пиковый ток (А)
+12V111012
+12V2115 
+5V0,321 
+3,3V0,522 
-12V00,3 
+5Vsb022,5
400 Вт блок ATX12V
 Мин.ток (А)Макс. ток (А)Пиковый ток (А)
+12V111416
+12V2115 
+5V0,328 
+3,3V0,530 
-12V00,3 
+5Vsb022,5

Эти таблицы теоретически могут быть полезны при ответе на часто задаваемый вопрос, «А хватит ли для моей системы блока питания такой-то мощности?», но — только теоретически. Для однозначного ответа необходимо знать точное энергопотребление каждого конкретного компонента системы и возможностей конкретного блока питания. Разумеется, расчет энергопотребления системы можно сделать и исходя из теоретических выкладок (опираясь на данные datasheet’ов, например), но все равно, говоря о способности блока питания «потянуть систему», необходимо подбирать его под каждую конкретную систему.

Выводы

В ближайшее время предстоит расширить обзоры предлагаемых нам корпусов кратким ознакомлением с блоками питания, поставляемыми с ними. В частности, предполагается показать стабильность выдаваемых напряжений блоков при различной нагрузке, а также изучить величину пульсаций по основным шинам питания. Для чего это надо? Эти параметры позволят хотя бы частично оценить, насколько стабильным и качественным будет питание различных компонентов системы.

Вполне вероятно, что, помимо блоков, поставляемых с корпусами, придется «потренироваться» на отдельных блоках питания, имеющихся в нашем распоряжении — для отработки навыков, «обкатки» процесса тестирования и изучения возможности расширения тестов.

В качестве нагрузки блоков питания будут использованы нагрузочные блоки SL-300 от корейской компании Unicorn. Для проверки стабильности выходных напряжений блоков на трех шинах (+12, +3,3 и +5 В) будет создаваться переменная нагрузка, изменяющаяся циклично в пределах, упомянутых в таблице, по которой в PSDG предлагается оценивать КПД блока, изменения нагрузок по всем шинам будет одновременным. На остальных шинах питания блока нагрузка будет постоянной, в качестве нагрузки будут выступать обычные проволочные резисторы.

Для измерения пульсаций по шинам на каждую шину будет подаваться максимальное (исходя из названной выше таблицы) значение, соответствующее «полной» нагрузке, и сниматься осциллограмма.

Как доехать до Vsb в Gummersbach на автобусе, поезде или трамвае

Общественный транспорт до Vsb в Gummersbach

Не знаете, как доехать до Vsb в Gummersbach, Германия? Moovit поможет вам найти лучший способ добраться до Vsb от ближайшей остановки общественного транспорта, используя пошаговые инструкции.

Moovit предлагает бесплатные карты и навигацию в режиме реального времени, чтобы помочь вам сориентироваться в городе. Открывайте расписания, поездки, часы работы, и узнайте, сколько займет дорога до Vsb с учетом данных Реального Времени.

Ищете остановку или станцию около Vsb? Проверьте список ближайших остановок к пункту назначения: Gummersbach Remmelsohl; Gummersbach Vollmerhausen; Gummersbach Dieringhausen Bf; Wiehl Kurtensiefen.

Вы можете доехать до Vsb на автобусе, поезде или трамвае. У этих линий и маршрутов есть остановки поблизости: (Поезд) RB25 (Автобус) 304, 310

Хотите проверить, нет ли другого пути, который поможет вам добраться быстрее? Moovit помогает найти альтернативные варианты маршрутов и времени. Получите инструкции, как легко доехать до или от Vsb с помощью приложения или сайте Moovit.

С нами добраться до Vsb проще простого, именно поэтому более 930 млн. пользователей доверяют Moovit как лучшему транспортному приложению. Включая жителей Gummersbach! Не нужно устанавливать отдельное приложение для автобуса и отдельное приложение для метро, Moovit — ваше универсальное транспортное приложение, которое поможет вам найти самые обновленные расписания автобусов и метро.

Государственная коллегия адвокатов штата Вирджиния —

  • Формы заявлений на регистрацию в Части I (, Virginia Corporate Counsel ) можно найти в Коллегии адвокатов штата Вирджиния.
  • Формы заявления на регистрацию по Части II (, регистрант корпоративного юриста ):

Для получения информации о процессе подачи заявки и регистрации в рамках Части II, пожалуйста, свяжитесь с отделом соблюдения нормативных требований VSB по телефону (804) 775-0530 или по электронной почте.

Посмотреть текущий годовой отчет о ежегодных взносах регистранта корпоративного юрисконсульта (pdf)

Резюме правила корпоративного юрисконсульта Вирджинии

Правило 1A: 5 Верховного суда Вирджинии вступило в силу 1 сентября 2003 г.

Согласно Части I правила, юрист с хорошей репутацией в другом штате может получить сертификат корпоративного адвоката от Совета адвокатов штата Вирджиния, согласно которому его или ее практика ограничивается представительством одного работодателя Вирджинии. Сертификат корпоративного юриста в соответствии с Частью I дает право штатному юристу представлять своего работодателя в судах штата без необходимости соответствовать требованиям pro hac Vice , применимым к иностранным юристам в соответствии с Правилом 1A: 4.

После получения лицензии юристы с сертификатом в соответствии с Частью I должны соответствовать всем требованиям для активного статуса в Коллегии адвокатов штата Вирджиния, включая обязательное требование MCLE в течение двенадцати часов, которое действующие юристы должны выполнять ежегодно.

Согласно Части II, иностранный поверенный с хорошей репутацией в другом штате, который намеревается работать в Вирджинии в качестве штатного юриста, может «отказаться» от требований для активного статуса в адвокатуре. Внутренний юрист, решивший «отказаться от участия», должен, тем не менее, зарегистрироваться в Коллегии адвокатов штата Вирджиния в качестве штатного юриста и уплатить регистрационный сбор и ежегодные взносы.

В отличие от своих коллег, получивших лицензию в соответствии с Частью I, зарегистрированные лица в соответствии с Частью II не могут представлять своего работодателя в суде, если только они не будут сотрудничать с допущенным в Вирджинии поверенным и не подадут заявку на допуск pro hac Vice . Для юристов, зарегистрированных в соответствии с Частью II, их время работы в качестве штатного юриста у работодателя Вирджинии не должно учитываться Коллегией экзаменаторов адвокатов, если такой адвокат будет добиваться допуска в Коллегию адвокатов Вирджинии без экзамена.

Любой штатный юрист, который получает сертификат согласно Части I или регистрируется согласно Части II, подпадает под действие Правил профессионального поведения штата Вирджиния и юрисдикции дисциплинарной системы Коллегии адвокатов штата Вирджиния, если на них подана дисциплинарная жалоба во время работы, как в — домашний адвокат в Вирджинии.

Прочтите часто задаваемые вопросы о статусе корпоративного юриста.

Прочтите полное правило онлайн.

Обновлено: 30 дек.2019 г.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

бюллетеней стандартов на автомобили | Департамент инфраструктуры, транспорта, регионального развития и коммуникаций, правительство Австралии

Публикации серии «Вестник стандартов транспортных средств» (VSB) предоставляют информацию о проектировании, производстве, продаже, модификации, техническом обслуживании, импорте и ремонте дорожных транспортных средств для промышленности и других клиентов.

Термин «дорожные транспортные средства» включает как автомобили, так и прицепы.

Сериал представляет собой важный способ для Отдела стандартов безопасности транспортных средств Департамента инфраструктурного транспорта, регионального развития и коммуникаций передавать информацию о дорожных транспортных средствах.

Целью публикации информации в VSB является:

  • заблаговременно уведомлять о проблемах;
  • устанавливает своды правил и другие стандарты, дополняющие законодательные требования;
  • консультирует по вопросам безопасности и эксплуатации дорожных транспортных средств; и
  • привлекает внимание к информации по использованию лицами, имеющими отношение к дорожным транспортным средствам различной мощности.

Обратите внимание, что некоторые бюллетени не были подготовлены Отделом стандартов безопасности транспортных средств, но размещены на веб-сайте Департамента в качестве основного справочного материала. Члены Австралийского совета по сертификации автотранспортных средств и / или группы технической поддержки несут ответственность за написание ряда VSB. В соответствующих случаях вопросы, рассматриваемые в VSB, также будут рассматриваться другими органами, такими как Национальная комиссия по транспорту и Постоянный совет по транспорту и инфраструктуре.

Текущие бюллетени стандартов на автомобили:

Руководство малой мощности

Австралийские правила проектирования (ADR) устанавливают стандарты безопасности транспортных средств, защиты от угона и выбросов для дорожных транспортных средств, независимо от того, производятся ли они в Австралии или импортируются как новые или подержанные автомобили. Щелкните ссылку, чтобы получить доступ к ADR.

  • (cp) = Свод правил
  • (ib) = Информационный буклет
  • (pu) = Периодическое обновление

Некоторые файлы, доступные на этой веб-странице, недоступны в доступном формате.

Если у вас возникнут трудности и вам потребуется помощь, свяжитесь с нами, используя страницу обратной связи. Укажите, какие устройства и вспомогательные технологии вы используете.

SIT, глава 5 — VSB 2006 — Стратегические информационные технологии — Вилланова

Информационные системы и трансформация бизнеса

Sloan Valve Company — Процесс разработки нового продукта был сложным и медленным — Слишком медленно, впустую ресурсы, никто не отвечает за процесс — Руководство сначала вложило средства в корпоративную систему, чтобы автоматизировать внутреннюю процессы, полагая, что IS предоставит общий язык, базу данных и платформу, но проблема коммуникации и координации продолжается. новая система не имеет NPD процесс — Руководство поняло, что корпоративная система работает нормально, но основной процесс было нарушено.Решили переработать процесс NPD — Провел 9 месяцев, оценивая текущий способ работы и предлагая новый сквозной НПД процесс. Включите ШЕСТЬ подпроцессов. — Качество, сроки, выпуск NPD значительно улучшены — сокращено время вывода на рынок менее 12 мес

  • IS может способствовать или препятствовать изменениям в бизнесе.
  • Правильное решение в сочетании с правильной технологией может привести к положительным изменениям
  • Чтобы быть успешным менеджером, нужно понимать, как ИБ способствует изменениям в бизнесе. должны получить представление о бизнес-процессах и понять, как преобразовать бизнес-процессы эффективно.

Силосная перспектива — Использование разрозненных отделов организовано на основе их основных компетенций. — Даже когда компании используют перспективу модели цепочки создания стоимости, они по-прежнему сосредотачиваются на функции, которые доставляют свою долю процессу и «перебрасывают ее через стену» следующая группа в цепочке создания стоимости. — Силосы становятся автономными единицами — — позволяют организовать и оптимизировать экспертизу и обучение — избегать дублирования — упростить сравнительный анализ сторонних организаций — Однако отдельные организации могут испытывать недостаточную оптимизацию.- Отдельные отделы часто воссоздают информацию, хранящуюся в других отделах — пробелы в общении — Указание пальцем и потерянная информация — склонны упускать из виду цель всей организации и действовать таким образом, чтобы максимизирует свои локальные цели

Потеря общей картины означает потерю эффективности бизнеса

Перспектива бизнес-процесса — Держит в поле зрения общую картину и позволяет менеджеру сосредоточиться на работе, которая должны быть выполнены для обеспечения оптимального создания стоимости — Помогает менеджеру избежать или уменьшить дублирование работы — Лучшее обслуживание клиентов и заинтересованных сторон — Процесс — от начала до конца, входы и выходы, набор вкусов, набор показателей — Метрики — Пропускная способность: сколько выходов может быть произведено за единицу времени. — Время цикла: сколько времени требуется для выполнения всего процесса. — Примеры бизнес-процессов: выполнение заказов, планирование производства. — Межфункциональные бизнес-процессы — например, выполнение заказа включает оплату, заказ доставка, реализация продукта

Silo Perspective (Перспектива силоса) — Автономные функциональные единицы, такие как маркетинг, финансы и т. Д.

Enterprise System: набор инструментов ИБ, которые многие организации используют для передачи информации внутри и между процессами в организации

Гибкие бизнес-процессы: — процессы, разработанные с целью упрощения перепроектирования и реконфигурации за счет позволяя вносить постепенные изменения, чтобы легко адаптироваться к бизнесу среда — Производственные операции — реконфигурация производственных линий для регулярного размещения новых продукты — Разработка программного обеспечения

Динамические бизнес-процессы: — процесс, который реконфигурирует себя по мере обучения, повторяя через постоянное обновление цикл проектирования, доставки, оценки, редизайна и т. д. — Сеть с изменяющимся потоком данных.Могут быть встроены датчики для контроля потока.

Изменение бизнес-процессов — Реинжиниринг бизнес-процессов: радикальный дизайн процессов — Комплексное управление качеством и шесть сигм: инкрементальные

  • Sloan Valve изначально реализовал модуль ERP, но по мере разработки проекта для NPD процесс, модуль PLM был ключевым.

ERP

  • ERP: разработан, чтобы помочь крупным компаниям управлять фрагментацией информационных магазинов в сотни индивидуальных настольных компьютеров, компьютеров отделов и бизнес-единиц по всему миру организация
  • Интеграция
  • Пакеты
  • Лучшие практики
  • Требуется некоторая сборка
  • Развитие

CRM: набор программ, поддерживающих управленческую деятельность, выполняемую для получения, укреплять отношения с клиентами и удерживать их

SCM: управляет интегрированной цепочкой поставок

PLM: автоматизируйте этапы, на которых идеи для продуктов превращаются в реальные продукты.Начинается с идея продукта и заканчивается с окончанием срока службы продукта

Преимущества корпоративных систем: — Представляем набор лучших отраслевых практик — Все модули информационной системы легко взаимодействуют друг с другом, предлагая огромные возможности. эффективность по сравнению с автономными системами — Полезные инструменты для организации, стремящейся централизовать операции и принятие решений

Недостатки корпоративных систем: — Требует изменения бизнес-процессов для достижения оптимальной производительности интегрированные модули — Настройка до определенного уровня невозможна — Требовать изменений, выходящих за рамки процессов — Рискованно — здоровенный ценник

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *