Site Loader

Содержание

Регулятор напряжения генератора своими руками | Fermer.Ru — Фермер.Ру — Главный фермерский портал

Схемы и фото тут https://cloud.mail.ru/public/3HYa/3Mu… пароль на видео.

Теперь есть возможность людям самостоятельно делать шоколадку для своего генератора, Выставлять напряжение заряда такое — как вам нравиться. Почти любой щеточный генератор можно модифицировать. Не сколько лет назад я разрабатывал регулятор напряжения на без щеточный генератор трактора мтз 80. Схема прекрасно работала. Через какое то время я заменил шоколадку на автомобиле газель. в родной шоколадке меня не устраивало зарядное напряжение генератора. При включении нагрузки — свет + электро вентилятора зарядное напряжение падало до 12,5v — Покупать реле регулятор за 600р. Жаба душит, так еще и толку от покупки нового нет. Так как ситуация не меняется. Вот и поставил опять самодельную шоколадку на газель. И вот сегодняшний день — Китайский тракторный генератор на 350ватт, трактор DF-244. В магазине регулятора напряжения именно на этот генератор мы не нашли. Нам пояснили что стоить он будет дорого и ждать долго. По этому я принял решение собрать регулятор сам. и установить его в трактор. Цена запчастей на радио рынке 1500р. + пайка и установка 1000р. — цены демократические в нашем месте обитания.

Главным неудобством этой схемы является то, что нужно изолировать минусовой контакт щетки от массы генератора. Взамен вы получаете практически не убиваемый регулятор напряжения генератора. Стоит заметить — что не стоит перегружать генератор. Он может выйти из строя путем перегрева выпрямительных диодов или обмоток статора. Вся модификация происходит на ваш страх и риск.

Данная схема стабильно регулирует выходное напряжение генератора. Схема позволяет использовать силовой N-канальный полевой ключ или ключ игбт.

Итак начнем по порядку…
Первым делом мы должны получить стабильное опорное напряжение 10в, Это достигается линейным стабилизатором lm317z, можно использовать и любой другой стабилизатор на 10вольт. В схеме перед стабилизатором напряжения можно наблюдать линейный стабилизатор тока на 100ма, он не обязателен и используется просто как предохранитель всей схемы, к примеру если в схеме произойдет короткое замыкание, то стабилизатор тока не даст выгореть стабилизатору напряжения и другим компонентам.
Ядром схемы является компаратор состоящий из дифференциального усилителя на рассыпухе и логической микросхемы. Микросхема в данной системе может стоять как cd4001 или cd4011. Сама микросхема служит пороговым элементом. позволяющим быстро переключаться меж логическими значениями ноль или единица.
Резисторный делитель делит напряжение пополам получая 5в на вход нашего компаратора.
Много оборотный подстроечный резистор на 10килоом является резисторным делителем напряжения другого входа компаратора.
им можно задавать выходное напряжение генератора.
когда это плечо компаратора станет больше 5вольт произойдет переключение компаратора.

Резистор 390килоом нужен для организации тригера шмитта, резистор увеличивает или уменьшает опорное напряжение компаратора,
что не дает схеме начать работать в линейном режиме.

Выход микросхемы поступает на базы транзисторов выключенных в схему усилителя повторителя напряжения, являвшимся драйвером для силового транзистора.
не стоит забывать и про диод на щетках, он не допускает обратной эдс вырасти при закрытии ключа.

Светодиоды ставятся по желанию — эта индикация, очень помогает при настройке данного регулятора напряжения генератора.

Так же подойдет и для других генераторов для автомобилей и тракторов.

Но вам придется переключить щетки генератора так чтобы управление генератором шло по минусу.

Вот и всё! Мы желаем вам мира и добра. всем пока!

Схема » Автосхемы, схемы для авто, своими руками

Предлагаемые усовершенствования регулятора обеспечивают повышенную стабильность выходного напряжения автомобильного генератора при изменении тока его нагрузки и режима работы двигателя. Современные автомобили имеют сложное и многофункциональное электрооборудование, надёжная работа которого обеспечивает работоспособность транспортного средства и безопасность его эксплуатации. Надёжность электрооборудования во многом зависит от стабильности напряжения в бортовой сети. Обеспечение неизменности

Вариант 1 — Коммутация по минусу. (с применением N-канальных транзисторов) 1) «коммутация по минусу», т.е такой вариант при котором один питающий провод лампы соединен с +12В аккумулятора (источника питания), а второй провод коммутирует ток через лампу тем самым включает ее. В данном варианте будет подаваться минус. Для таких схем нужно применять N-канальные полевые транзисторы в качестве выходных ключей.

Довольно простой и высокоточный индикатор разряда аккумуляторных батарей можно реализовать с минимальным количеством задействованных компонентов. Схема реализована всего на двух транзисторах, в качестве индикатора разряда батареи задействован стандартный светодиод.

Предлагаемое устройство предназначено для подключения в качестве дополнительного модуля к любому источнику с выходным напряжением 9…24 В постоянного тока и обеспечивает выходное постоянное напряжение 5 В при токе нагрузки до 0,5 А. Его удобно использовать в автомобиле, автобусе, яхте, катере или любом ином транспортном средстве с бортовой сетью 12 или 24 В.

Хочу сказать, что сверхъестественного в этой статье нет, вся ценность заключается в том, что схема и печатка реально рабочие, схема стандартная, легко подгоняется под ваши нужды, путём рассчёта встроенного калькулятора.

Во время движения автомобиля в плотном дорожном потоке и при совершении водителем различных маневров указатели поворотов имеют немаловажное значение. Многие начинающие водители часто попросту теряются, забывая о том, что после завершения очередного маневра необходимо выключить поворотник. Этим самым они (неосознанно) провоцируют других участников движения.

Всем доброго времени суток. В общем сделал я себе неделю назад ДХО из ленты и они же стробоскопы. Делается всё не сложно, главное чтобы было немного времени и усердия. Итак начнём… Схема для печатной платы.

Автомобильный гараж для личной машины обычно включает в себя помещение, где располагается само средство передвижения и подвал. Причем часть подвала, как правило, отводят под смотровую яму, а часть — под погреб. Последний располагают либо перед гаражом под проезжей частью (при двухстороннем расположении гаражных боксов), либо сзади — при строительстве гаражей в один ряд.

Собирая ряд автомобильных усилителей на знаменитых микросхемах TDA7293/94 возникла необходимость использовать простой и компактный блок фильтра, который одновременно являлся бы и сумматором. Поиск схем в сети дал свои результаты и был найден оптимальный вариант схемы.

Я собираюсь рассказать Вам здесь о простой схеме плавного выключения освещения в салоне автомобиля. В её состав входит небольшой конденсатор и несколько необходимых для работы этого устройства вспомогательных элементов. Несмотря на кажущуюся простоту, схема может сгодиться для любого автомобиля. Всё, что для этого потребуется — это бережно и аккуратно припаять её к двум клеммам плафона салонного освещения.

Электронное реле управления вентилятором радиатора в зависимости от температуры двигателя. Давайте рассмотрим общие сведения. Данным электронным реле вы сможете плавно управлять скоростью вращения вентилятора. Оно устанавливается на место штатного реле в машинах, которые оборудованы датчиками температуры охлаждающей жидкости.

Как-то давным-давно установил в авто активатор замка багажника и кнопку в салоне для его открывания. Сам замок менять (спиливать второй зуб) не стал. Все бы хорошо, но когда двигатель запущен, приходилось его глушить, чтобы открыть багажник с брелка.

Свое участие в этом мини-проекте описал в блоге, но прямые ссылки на свои статьи — это моветон, поэтому можно найти там записи с темой «Продолжение возни с интеллектуальным реле…» и почитать избыточное количество текста с цветными картинками и видео.

Ко мне обратился мой друг и попросил сделать схему охраны для гаража, который находился порядка 50 метров от дома. В гараже не было электричества, и тянуть провода к нему не было возможности. Было решено сделать охранную систему на простейшем передатчике и приемнике в FM диапазоне.

Название заголовка говорит само за себя. Сделал данное «устройство» для панели приборов приоры, летом прошлого года. Тогда я и в помине не знал как конструировать схемы. Но кому нужно тот без труда добавит: регулятор напряжения и винтовые зажимы. А так схема работает 9 месяцев и без нареканий.

Регулятор напряжения 12 вольт своими руками схема

Генератор является самым важным устройством в системе регулирования. В систему регулирования напряжения входят следующие элементы: выпрямитель, генератор и аккумулятор.

Для создания регулятора напряжения на 12 вольт своими руками достаточно иметь схему регулятора напряжения и простые радиодетали.

В этой схеме нет стабилизаторов.

Для этого устройства потребуются следующие радиодетали:

  1. два резистора;
  2. два конденсатора на 1 тыс. мкФ;
  3. один транзистор;
  4. четыре диода.

На транзистор лучше поставить систему охлаждения, чтобы он не перегревался от нагрузок. Транзистор можно поставить более мощный, тогда можно будет заряжать этим устройством небольшие аккумуляторы.

Регулятор напряжения генератора

Генератор преобразует электричество. Без генератора не работала бы вся бортовая система машины. К обмотке магнита подключён специальный датчик. Простые пружины являются задающим устройством. Для устройства сравнения используется маленький рычаг. Группа контактов играет роль исполнительного устройства. Постоянное сопротивление представляет собой орган регулировки, который часто используется в машинах.

Во время работы генератора на его выходе возникает ток. Возникший ток переходит в обмотку магнитного реле. В результате появляется магнитное поле и под его воздействием плечо рычага раздвигается. На него начинает действовать пружина, и играет роль сравнивающего устройства. Когда ток превышает положенные значения, на магнитном реле контакты раздвигаются. В это время отключается постоянное сопротивление в цепи. Меньший ток поступает на обмотку.

Как сделать регулятор для трансформатора своими руками?

Регулятор напряжения для трансформатора коммутирует переменный ток при помощи тиристора. Тиристор является полупроводниковым прибором и используется для преобразования энергии большой мощности. Его управление весьма специфическое, так как он открывается импульсом тока, но закроется, когда ток будет ниже точки удержания.

Принцип работы регулятора напряжения для трансформатора

Для представленной схемы потребуются следующие элементы:

  • C1 на 0,34мкФ на 17В;
  • два резистора на 10 000 Ом 2 вт;
  • третий резистор на 100 Ом;
  • четвёртый резистор на 32 000 Ом;
  • пятый резистор 3 4 00 Ом;
  • шестой резистор — 4 2 00 Ом;
  • седьмой резистор — 4 6 00 Ом;
  • Четыре диода — Д246А;
  • стабилитрон — Д814Д;
  • тиристор — КУ202Н;
  • транзистор — КТ361B;
  • транзистор — КТ315B.

Для схемы можно использовать отечественные радиодетали. Если четыре диода и тиристор поставить на охладители, тогда регулятор сможет давать нагрузку 9 ампер, когда в сети 220 вольт. В результате можно будет управлять током при нагрузке в 2,1 киловатт.

Силовых компонентов в схеме только два тиристора и диодный мост. Рассчитаны эти компоненты на ток в 9 ампер при 400 вольтах. Переменное электричество преобразуется в пульсирующее полярное электричество за счёт диодного моста. Тиристор отвечает за фазовое регулирование полупериодов. Пятнадцать вольт поступает на систему управления и ограничивается при помощи двух резисторов R 1, R 2 и одного стабилитрона VD 5.

Чтобы увеличить рассеиваемую мощность, используются последовательные резисторы. Сначала в месте соединения резистора R 6 и R 7 отсутствует ток, но затем оно увеличивается и на эмиттере VT 1 оно тоже увеличивается и после этого откроется транзистор. Два транзистора образуют слабый по мощности тиристор. Если ток поступает на базу перехода VT 1 больше допустимого значения, транзистор начинает открываться и отпирает VT 2. При этом VT 2 открывает тиристор.

Как сделать регулятор напряжения для ламп

Для того, чтобы лампа накаливания плавно начинала гореть ярче, и создаётся регулятор напряжения. В представленной схеме применяется недорогой микроконтроллер. В этой схеме можно использовать дискретные элементы. В представленной схеме применяются 2 кнопки для регулировки яркости лампы. В схеме используется одна лампа.

Рассмотрим, по какому принципу работает представленная схема. Как только ток начинает поступать на контакт Х1, напряжение за счёт элементов R 1, C 1, VD 2 и VD 3 выравнивается и уменьшается до 5,2 В. Конденсаторы C 2, C 3 представленные на схеме фильтруют его. Микропрограмма на микроконтроллере начинает опрашивать копки S. B. На выходных цепях микросхемы D 1 и резистора R 3 образуется прерывания, если напряжение от сети начинает проходить через ноль из-за этого срабатывает таймер TMRO на микроконтроллере, и начинается загрузка записанных данных.

Как только таймер перестаёт считать, возникает прерывание, из-за этого в порт GP 5 выдаётся импульс продолжительностью в 14 мкс. В результате на транзисторе при помощи импульса открывается ключ, а он открывает симистор. Его угол открывания начнёт постепенно меняться. Возможно, увидеть в результате постепенное увеличение напряжения. Кнопки S. B. влияют на открытие симистора в разные стороны.

Полученные данные записываются на память контролера в результате яркость будет увеличивать до записанного значения. Для подавления скачков напряжения выше заданной нормы используется R 2. В представленной схеме используется симистор VS 1 небольшой мощности. У него максимальный ток составляет 2 А.

Трёхуровневый регулятор напряжения

Ток проходит через диод, а напряжение снижается на 0,4 вольта, но во многом всё зависит от самого технических параметров диода. Когда оно падает, регулятор заставляет генератор выдавать ток большего значения. Диодная схема применяется для создания трёхуровневого регулятора напряжения. Единственная разница заключается в том, что для трёхуровневого регулятора напряжения понадобиться добавить переключатель и дополнительный диод.

Диод подойдёт любой рассчитанный на ток не меньше 6А. В результате получается вот такая схема. Если повернуть переключатель в одном положении появляется 14,1 вольт, второе положение переключателя даёт 15,3 вольта, третье положение даёт 14,7 вольт.

Стабильность напряжения – это весьма важная характеристика электропитания для большинства электронных устройств. В них содержатся электрические цепи с нелинейными элементами. Для оптимальной настройки этих цепей существует определенная величина разности потенциалов. И если она будет изменяться, электрическая цепь утратит правильные эксплуатационные характеристики. Поскольку напряжение 12 вольт является стандартом не только для автомобилей, но и для многих других устройств, далее пойдет речь именно о таких регуляторах.

Особенности регулировки

Речь о том или ином регуляторе 12 вольт имеет смысл вести только при указании дополнительных данных:

  • постоянное или переменное напряжение надо регулировать;
  • какова максимальная величина тока в нагрузке;
  • величина разности потенциалов перед регулятором;
  • параметры напряжения на нагрузке в диапазоне регулирования.

Каждый из перечисленных параметров связан с определенными техническими решениями, которые отражаются в схеме. Общая схема регулятора – это нагрузка, которая соединена с некоторым устройством. Оно условно обозначено прямоугольником на схеме, показанной далее. Внутри этого прямоугольника может быть та или иная схема, которая соответствует дополнительным данным, упомянутым выше. Простейшим регулятором является переменный резистор. Он позволяет без искажений регулировать переменное напряжение. Также такой резистор применим и при постоянном токе.

Схема с переменным резистором. Схема с переменным резистором

Если разность потенциалов на входе значительно больше 12 вольт на выходе, в регуляторе будет теряться энергия. На переменном резисторе будет выделяться тепло. Чтобы избежать потерь тепла, на переменном токе надо применить переменную индуктивность, которой может стать ЛАТР. Его пропускная способность ограничивается, как и в переменном резисторе, конструкцией подвижного контакта. Но если допустимо переключение путем переставления между витками перемычки с надежными контактами, можно получать значительную силу тока.

Регулирование со стабилизацией

Для получения заданных параметров напряжения или тока нагрузки применяются стабилизаторы. В них выходное напряжение или ток сравниваются с эталонным значением, и при минимальном заданном изменении выполняется автоматическая компенсация регулятора управлением соответствующего полупроводникового прибора. Существует огромное количество разнообразных схем различных стабилизаторов. Наиболее простыми в использовании являются интегральные микросхемы.

Чтобы стабилизировать величину электрического напряжения, необходим регулятор, который сделает работу приборов надежной и долговечной. В быту регулятор напряжения может потребоваться для различных ситуаций. Совсем необязательно покупать магазинный вариант. Имея небольшие познания в радиоэлектронике, можно спаять его и самостоятельно.

Обычно схема простого регулятора включает всего 5 элементов:

  1. Регулируемый резистор на 10 кОм. Он и отвечает за регулировку напряжения, может менять силу тока в цепи или увеличивать сопротивление.
  2. Радиатор. Защищает приборы от перегрева и охлаждает их в случае необходимости.
  3. Резистор на 1 кОм. Он призван снизить нагрузку на основной резистор.
  4. Транзистор. Он служит для увеличения колебаний и повышения их частоты.
  5. Два провода, по которым пойдет ток.

Принцип сборки

Сборка производится следующим образом:

  • Левый конец транзистора соединяют с концом в середине резистора;
  • Середина транзистора спаивается с правым концом резистора;
  • Один проводок спаивается с тем, что вышло в результате второй операции;
  • Другой проводок припаивают к оставшемуся концу транзистора;
  • Весь собранный механизм прикручивают к радиатору;
  • Теперь осталось припаять резистор на 1 кОм к крайним выходам регулируемого резистора и транзистора.

Простейший регулятор напряжения готов.

По тому же принципу можно сделать регулятор оборотов на 12 вольт. Для этого понадобятся:

  • Реле на 12 вольт;
  • Тиристор КУ201;
  • Трансформатор для питания двигателя и реле;
  • Транзистор КТ 815;
  • Вентиль от дворников «Жигулей» первой модели;
  • Конденсатор.

Этот регулятор используют для подачи проволоки, поэтому в схему включен тормоз двигателя с реле.

Сборка этого прибора также не отличается сложностью. Два проводка с блока питания подсоединяются к реле, на которое подается плюс батареи. Остальное включается, как и на обычном регуляторе напряжения. Данная схема позволяет создать 12 вольт для двигателя.

“>

Реле регулятора напряжения генератора — как проверить, схема и принцип действия

Для того чтобы стабилизировать напряжение в бортовой сети автомобиля, используют специальное устройство, регулятор. Его работоспособность оказывает существенное влияние не только на отдельные характеристики автомобиля, но и на долговечность электронных и механических компонентов.

Электронные реле регуляторы

Как работает реле регулятор

Генератор создает напряжение, которое повышается при увеличении скорости вращения ротора. Его уровень зависит также от величины тока, который проходит через подключенную нагрузку и от параметров магнитного поля, образованного обмоткой возбуждения.

Чтобы обеспечить автоматическую настройку, необходимо выполнять измерение напряжения на выходе генератора. Для этого оно преобразуется в измерительный сигнал, который будет сравниваться с образцовым параметром. При обнаружении изменений, сравнивающий блок должен образовать сигнал управления, изменяющий определенным образом силу тока в обмотке возбуждения, что в итоге позволит оказать необходимое влияние на уровень выходного напряжения.

Общие принципы понятны. Но их реализация была разной, в зависимости от уровня технологического развития. В самых первых схемах использовались разные решения, вплоть до механических сил, которые приводили в действие пружинные узлы в реле. Разумеется, подобные конструкции отличались невысокой надежностью. В местах прерывания контактов под действием электрических разрядов повреждались защитные покрытия. Со временем приходили в негодность движущиеся узлы.

Ниже будут рассмотрены более совершенные схемы, соответствующие нынешнему уровню развития. Но для понимания процессов вполне достаточно рассмотреть простейший вариант, с реле в цепях защиты и управления. Подобные устройства до сих пор используются в грузовых автомобилях:

Электронные реле регуляторы

В этой несложной схеме используется единственный транзистор. Здесь он выполняет функцию ключа. Если генератор вращается медленно, напряжение на выходе сравнительно невелико. В этих условиях контакты реле управления (Рн) разомкнуты, а транзистор находится в открытом состоянии. При повышении напряжения выше определенного уровня, реле замыкает цепь. Полупроводниковый переход в транзисторе закрывается. Далее ток проходит не по пути коллектор-эмиттер, а через резисторы (Rд) и (Rу). Обмотка возбуждения создает магнитное поле с меньшей энергией, что снижает скорость вращения ротора. Уровень напряжения на выходе снижается.

На рис. ниже изображены изменения электрических параметров в обмотке. Ниже приведены пояснения:

Регулятор напряжения, созданный с использованием комбинированной схемы

  • Величины (n1) и (n2) – это разные скорости вращения ротора, на которых были произведены соответствующие измерения (частота n2 больше, чем n1).
  • Видно, что tвкл (время включения обмотки) на верхнем графике больше, а на нижнем – меньше. Таким образом, при увеличении скорости вращения обмотка меньше времени создает магнитное поле.
  • Параметр tвыкл (время, в течение которого происходит выключение) поясняет смысл второй стадии процесса. При ускорении вращения и повышении напряжения в обмотке уменьшается ток. Этот процесс обеспечивает необходимый результат, снижение выходного напряжения. 

Особенности регуляторов разных типов

Схема стандартного изделия вибрационного типа изображена на следующем рисунке:

Изменение электрических параметров

В этом перечне приведены основные части конструкции:

  • 1 – пружина;
  • 2 – якорь;
  • 3 – ярмо;
  • 4 – сердечник;
  • 5, 6, 9, 10, 15 – обмотки реле, ограничителя тока и регулятора;
  • 7, 12, 17 – подвижная группа контактов;
  • 8, 11, 16 – неподвижная группа контактов;
  • 14 – шунт;
  • 13, 18 и 19 – резисторы.

Понятно, что многочисленные механические контакты и движущиеся части снижают надежность. Такое реле регулятор напряжения генератора обладает большим весом и внушительными размерами.

Ниже изображена принципиальная схема одного из регуляторов BOSCH, в которой используется только электронная элементная база:

Принципиальная электрическая схема регулятора напряжения BOSCH

Такое решение существенно повышает надежность. Для размещения компактного изделия не требуется много места. Это устройство при соблюдении производственных технологий обладает высокой устойчивостью к вибрациям, перепадам температур.

В некоторых вариантах исполнения плата заливается компаундом, что еще больше повышает защитные свойства, продлевает срок службы при эксплуатации в самых тяжелых условиях.

Ниже рассмотрены особенности отдельных элементов:

  • На правой стороне рисунка (часть 2) изображена схема генератора с выпрямительными диодами. Вверху – лампочка, сигнализирующая включение устройства.
  • В левой стороне (часть 1) расположена электрическая схема регулятора.
  • (VT2) и (VT3) – это обозначение транзисторов, включенных по классической схеме для повышения коэффициента усиления.

Как правило, в подобных устройствах используют электронный элемент, созданный в едином корпусе и даже на одном кремниевом кристалле.

  • Стабилитрон обозначен символами (VD1). Этот прибор не пропускает ток до уровня, который определяет напряжение стабилизации. Как только пороговое значение пробито – ток начинает проходить по соответствующей цепи.

Даная принципиальная схема выполняет свои функции следующим образом:

  • С помощью резисторов (R1) и (R2), напряжение с выхода генератора делится в нужной пропорции и подается на стабилитрон.
  • Пока скорость вращения ротора невелика, его уровень недостаточен для пробития полупроводникового перехода стабилитрона. В такой ситуации ток не может проходить по соответствующей цепи. Он не поступает на базу (VT1). Поэтому транзистор закрыт.
  • В базу (VT2) ток проходит по другому пути, через (R6). Этот сдвоенный транзистор открыт. В таком состоянии обмотка подключена к цепи питания и создает магнитное поле.
  • По мере увеличения оборотов, или при определенном изменении сопротивления в нагрузке, напряжение на выходе генератора увеличивается. Если превышен определенный порог, будет пробит полупроводниковый переход стабилитрона.
  • После этого ток поступит на базу (VT1) и откроет его. Путь прохождения тока по пути коллектор-эмиттер на точку заземления будет открыт. Полупроводниковый переход составного транзистора закроется, что разорвет цепь питания обмотки.
  • При снижении уровня тока возбуждения скорость вращения ротора замедляется, уровень напряжения падает, переход стабилитрона закрывается.

Проверка работоспособности

Последовательное развитие технологий открывает новые возможности для улучшения потребительских параметров электроники при одновременном снижении веса и уменьшении размеров. В современных автомобилях даже последняя схема, из рассмотренных выше вариантов, будет выглядеть анахронизмом.

Современные регуляторы – это более сложные устройства. Они отличаются повышенной точностью контроля и стабилизации напряжения генератора. Их создают в герметичных корпусах, заливают компаундными смесями, которые после застывания создают надежную защиту от проникновения влаги, других внешних воздействий. Эти конструкции являются неразборными, поэтому при поломке их заменяют полностью.

Можно констатировать, что на практике ремонт отсутствует не только в специализированных мастерских. Частным мастерам и любителям сделать все самому приходится отправляться в специализированный магазин для приобретения необходимого узла в сборе. Таким образом, первоочередное значение приобретает не умение выпаивать отдельные элементы и разбираться в их работоспособности, а общая диагностика. Для ее проведения понадобится тестер и щупы, лампочка на 12 V и набор соединительных проводов, зарядное устройство.

Регулятор, установленный на корпусе генератора

Ниже приведен алгоритм действий, который поможет локализовать неисправность. Эти рекомендации – общие. Поэтому необходимо учитывать особые рекомендации производителя для правильного демонтажа регулятора напряжения и других узлов:

  • При выключенном двигателе замеряют напряжение на выводах аккумуляторной батареи (норма – в пределах от 11,9 до 12,7 V).
  • После запуска силового агрегата фиксируют новый уровень напряжения, который должен повыситься от первоначального уровня на 0,9-1,1 V.
  • Постепенно увеличивают обороты двигателя. Для удобства эту процедуру лучше выполнять с напарником. На средних – напряжение возрастает до 13,8-14,1 V. На самых высоких – до 14,4-14,5 V.

Если ускорение вращения ротора генератора никак не влияет на уровень напряжения, то возможна поломка регулятора.

Для более точной диагностики понадобится его демонтировать и подключить по следующей схеме:

Схема проверки регулятора

При включении зарядного устройства и постепенном повышении уровня до 14,4-14,5 V лампа будет гореть. Как только этот порог будет превышен, она погаснет. При снижении напряжения лампа загорится вновь. О неисправности свидетельствует не только отсутствие описанных реакций, но и срабатывание устройства при более высоком уровне напряжения. В таких условиях аккумулятор будет перезаряжаться, что снизит его срок службы. После завершения диагностики можно принимать решение о замене испорченного регулятора.

Видео. Проверка регулятора напряжения.

Чтобы своевременно использовать приведенную технологию, надо обращать внимание на отклонения от нормы заряда аккумуляторной батареи. Перед тем как демонтировать регулятор, следует убедиться в отсутствии загрязнений окислов в местах электрических контактов. В некоторых ситуациях обычная очистка соединений позволит устранить неполадки. Для предотвращения появления подобных проблем в будущем рекомендуется использовать специальные средства для защиты контактов.

Оцените статью:

схема подключения, как проверить, признаки неисправности

Автор: Виктор

Трехуровневый регулятор напряжения (РН) представляет собой один из основных составляющих элементов генераторного устройства. Как известно, выход из строя генератора может привести к неработоспособности автомобиля в целом, поэтому состояние всех его деталей и механизмов всегда должно быть рабочим. Подробнее о регуляторе, его разновидностях, а также диагностике вы можете узнать из этого материала.

Содержание

Открытьполное содержание

[ Скрыть]

Характеристика регулятора напряжения

Что такое регулятор постоянного тока, какую роль он играет в автомобильном генераторе, какое напряжение должен выдавать генератор? Можно ли поднять и увеличить количество выдаваемого параметра с помощью простейшего трехуровневого устройства? Для начала давайте разберем, какова конструкция элемента и в чем заключается его предназначение.

Назначение

Итак, для чего применяется электронный регулятор напряжения генератора автомобиля? При запуске силового агрегата, как известно, в первую очередь начинает вращаться коленчатый вал, это происходит в результате воздействия на него постоянного тока. Ток в амперах осуществляет начало движения роторного механизма, после чего начинает функционировать генераторный узел. Регулятор постоянного напряжения используется для контроля всех процессов.

Если напряжение будет не высоким, а из-за выхода из строя регулятора напряжения генератора мощность механизма будет отсутствовать, узел запустить не получится. При отсутствии мощности генератора ток в амперах просто не будет подаваться на оборудование. Простой регулятор напряжения дает возможность удерживать ток в амперах в указанном диапазоне, это его основное предназначение.

Конструкция

Теперь разберем вопрос устройства: любой повышающий РН, даже простой и самодельный, будет состоять из:

  1. Выпрямительного блока. Этот элемент включает в себя несколько диодных компонентов, обычно их количество равно шести. Все компоненты этого блока подключаются между собой по специальному мосту.
  2. Роторный механизм с обмоткой. Это устройство осуществляет вращение вокруг оси, его предназначение заключается в образовании магнитного поля внутри узла.
  3. Статорный механизм. На корпусе данного устройства расположены три обмотки, подключенные друг к другу. Благодаря этим обмоткам обеспечивается не только обеспечение более повышенного заряда, а также увеличения мощности для автомобильного аккумулятора. Они также позволяют обеспечить током всю электросеть транспортного средства.
  4. Крыльчатки. Данный элемент устанавливается на внешней части механизма. Крыльчатка используется для обдува и охлаждения обмотки, без нее возможен перегрев последней.
  5. Корпусная крышка. Ее назначение заключается в скрытии все составляющих конструктивных частей узла, благодаря чем у обеспечивается надежная защита устройства от воздействия грязи и пыли. В зависимости от модели, крышка может иметь специальный кожух — если конструкция подразумевает его наличие, то регуляторный элемент будет расположен сразу за ним.
  6. И само реле. Если генератор выдает большое напряжение, не свойственное для бортовой сети, или слишком низкое, то реле позволит стабилизировать этот параметр до нужного уровня. Стабилизатор должен обеспечить именно оптимальное напряжение, не повышенное и не пониженное (автор видео — Виталий Галанкин).

Принцип работы

В том случае, если вы решите подключить обмотку без регуляторного устройства к источнику питания, то значение постоянного тока после подсоединения, разумеется, будет повышенным. С помощью данного устройства осуществляется выравнивание значения, что позволяет предотвратить поломку оборудования. Регуляторное устройство асинхронного генераторного узла — это, фактически, выключатель. Если напряжение на зажимах генератора не соответствует норме, механизм осуществляет регулировку параметра до нужного значения.

Перед тем, как повысить напряжение генератора, необходимо точно узнать, сколько должен быть параметр на конкретном устройстве. В идеале значение должно варьироваться в районе 14-14.2 вольт, но допускается от 13.6 вольт. Здесь многое зависит от модели автомобиля и самого генераторного узла, установленного на нем. Поэтому точно узнать, сколько вольт должно быть, нужно в технической документации.

Следует отметить, что выработка параметра производится по принципу — когда вращается роторный узел, на обмотку поступает невысокое напряжение, а в ходе вращения на выводах механизма образуется переменный ток. Впоследствии он передается на обмотку. Если вы не знаете, как повысить напряжение генератора, то в первую очередь следует проверить качество натяжки самого ремня. Как правило, о необходимости увеличивать и повышать значение напряжения автовладельца задумываются в том случае, если ремешок устройства ослаб, хотя его нужно просто подтянуть (автор видео — канал T-Strannik).

Разновидности

Схема подключения РН практически идентична на всех видах генераторных узлов, однако существуют определенные разновидности девайсов.

Какие виды РН можно найти в продаже:

  1. Двухуровневые РН. Такие регуляторы на сегодняшний день считаются устаревшими, в большинстве своем они используются на отечественных авто. Конструктивно такой РН состоит из электромагнитного элемента, подключаемого к контроллеру обмотки. Также устройство оснащается пружинами, которые используются как задающие элементы, и подвижным рычагом, использующимся для стабилизации.
    Двухуровневые РН обычно небольшие по размерам. Существенным минусом девайсов такого типа считается невысокий срок службы, в результате чего они довольно быстро выходят из строя.
  2. Полупроводниковые РН на 40 ампер. В отличие от вышеописанных, такие РН обладают более высоким сроком службы, а это, в свою очередь, обеспечивает их более стабильную работу на протяжении всего ресурса эксплуатации.
  3. Трехуровневные РН. Такие девайсы по конструктивным особенностям схожи с вышеописанными. Единственно и важно отличие заключается в наличии в конструкции добавочного сопротивления.
  4. Многоуровневые РН. Как можно понять из названия, такие РН имеют много уровней защиты благодаря тому, что в их конструкции может быть 3-5 добавочных сопротивлений. В результате этого многие специалисты считают, что такое РН более эффективны и надежные, чем другие виды.

Фотогалерея «Самые распространенные виды РН»

1. Двухуровневый РН для автомобиля ГАЗ
2. Трехуровневый РН фирмы «Совет автоэлектрика»

Проведение диагностики РН своими руками

Теперь расскажем о том, как проверить трехуровневый регулятор напряжения своими руками. Процедура проверки регулятора может быть произведена как на СТО, так и в гаражных условиях, мы же рассмотрим второй вариант. Проверка регулятора напряжения на 40 ампер или меньше должна выполняться с помощью тестера — вольтметра либо мультиметра. Также следует учитывать, что выявление неисправностей в работе РН должно производиться исключительно при полностью заряженной АКБ.

Итак, как проверить регулятор напряжения генератора с помощью тестера:

  1. В первую очередь нужно открыть капот и повернуть ключ в замке, включив зажигание.
  2. Далее, производится запуск силового агрегата. Двигатель должен поработать вхолостую какое-то время, для получения более точных данных диагностики рекомендуется включить оптику. Число оборотов при работе двигателя должно составлять в районе 2.5-3 тысяч. Чтобы ДВС перешел в такой режим работы, обычно требуется подождать примерно 10 минут.
  3. Затем производится подключение щупов тестера к аккумуляторным выводам. Когда вы подключили тестер, на его дисплее должны высветиться показатели диагностики, в идеале они должны составлять примерно 14.1-14.3 вольта.

Если проверка показала другие значения, будь они более высокими или низкими, то нужно заняться ремонтом генераторного узла. Но как показывает практика, проблема обычно кроется именно в РН, поэтому вероятнее всего, его придется заменить. Перед тем, как приступить к диагностике, удостоверьтесь в том, что ремень нормально натянут. Во время диагностики не допускается замыкание контактов, так как это может стать причиной деформации и выхода из строя выпрямительного блока.

 Загрузка …

Видео «Подключение трехуровневого РН своими руками»

Подробная инструкция по подключению трехуровневого РН с описанием основных нюансов приведена в ролике ниже (автор — канал altevaa TV).

Принцип работы и схема подключение генератора

Самая основная функция генераторазарядка батареи аккумулятора и питание электрического оборудования двигателя.

Поэтому рассмотрим более подробнее схему генератора, как правильно его подключить, а также дадим несколько советов как проверить его своими руками.

Содержание:

Генератор – механизм, который превращает механическую энергию в электрическую. Генератор имеет вал, на который насажен шкив, через который и получает вращения от коленчатого вала двигателя.

  1. Аккумуляторная батарея
  2. Выход генератора «+»
  3. Выключатель зажигания
  4. Лампа-индикатор исправности генератора
  5. Помехоподавляющий конденсатор
  6. Положительные диоды силового выпрямителя
  7. Отрицательные диоды силового выпрямителя
  8. «Масса» генератора
  9. Диоды обмотки возбуждения
  10. Обмотки трех фаз статора
  11. Питание обмотки возбуждения, опорное напряжение для регулятора напряжения
  12. Обмотка возбуждения (ротор)
  13. Регулятор напряжения

Автомобильный генератор используют для питания электропотребителей, таких как: система зажигания, бортовой компьютер, автомобильная светотехника, система диагностики, а также есть возможность заряжать автомобильный аккумулятор. Мощность генератора легкового автомобиля составляет приблизительно 1 кВт. Автомобильные генераторы достаточно надежные в работе, потому что обеспечивают бесперебойную работу множеству приборов в автомобиле, а поэтому и требования к ним соответствующие.

Устройство генератора

Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.

Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щеткодержатель с регулятором напряжения.

Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.

Новые автомобили чаще всего оборудованы электронным блоком на регуляторе напряжения, поэтому бортовой компьютер может контролировать величину нагрузки на генераторную установку. В свою очередь на гибридных автомобилях генератор выполняет работу стартер-генератора, аналогичная схема используется и в других конструкциях системы стоп-старт.

Принцип работы генератора авто

Схема подключения генератора ВАЗ 2110-2115

Схема подключения генератора переменного тока включает такие составляющие:

  1. Аккумулятор.
  2. Генератор.
  3. Блок предохранителя.
  4. Ключ зажигания.
  5. Приборная панель.
  6. Выпрямительный блок и добавочные диоды.

Принцип работы достаточно простой, при включении зажигания плюс через замок зажигания идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.

Наиболее опасным для генератора является замыкание пластин теплоотводов, соединенных с «массой» и выводом «+» генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением.

Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.

Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.

Схема подключения генератора на ВАЗ 2107

Схема зарядки ВАЗ 2107 зависит от того, какой применяется тип генератора. Чтобы подзарядить аккумуляторную батарею на таких авто, как: ВАЗ-2107, ВАЗ-2104, ВАЗ-2105, которые стоят на карбюраторном двигателе, будет необходим генератор типа Г-222 или его аналог с максимальным током отдачи в 55А. В свою очередь автомобили ВАЗ-2107 у которых инжекторный двигатель используют генератор 5142.3771 или его прототип, который называется генератором повышенной энергии, с максимальным током отдачи 80-90А. Также можно устанавливать более мощные генераторы с током отдачи до 100А. Абсолютно во все виды генераторов переменного тока встраиваются выпрямительные блоки и регуляторы напряжения, они, как правило, изготовлены в одном корпусе со щетками либо съемные и крепятся на самом корпусе.

Схема зарядки ВАЗ 2107 имеет незначительные отличия в зависимости от года изготовления автомобиля. Самым главным отличием есть наличие или отсутствие контрольной лампы заряда, которая расположена на панели приборов, также способ ее подключения и наличие либо отсутствие вольтметра. Такие схемы в основном используются на карбюраторных автомобилях, тогда как на авто с инжекторными двигателями схема не меняется, она идентична с теми автомобилями, которые изготовлялись ранее.

Обозначения генераторных установок:

  1. “Плюс” силового выпрямителя: “+”, В, 30, В+, ВАТ.
  2. “Масса”: “-”, D-, 31, B-, M, E, GRD.
  3. Вывод обмотки возбуждения: Ш, 67, DF, F, EXC, E, FLD.
  4. Вывод для соединения с лампой контроля исправности: D, D+, 61, L, WL, IND.
  5. Вывод фазы: ~, W, R, STА.
  6. Вывод нулевой точки обмотки статора: 0, МР.
  7. Вывод регулятора напряжения для подсоединения его в бортовую сеть, обычно к “+” аккумуляторной батареи: Б, 15, S.
  8. Вывод регулятора напряжения для питания его от выключателя зажигания: IG.
  9. Вывод регулятора напряжения для соединения его с бортовым компьютером: FR, F.

Схема генератора ВАЗ-2107 типа 37.3701

  1. Аккумуляторная батарея.
  2. Генератор.
  3. Регулятор напряжения.
  4. Монтажный блок.
  5. Выключатель зажигания.
  6. Вольтметр.
  7. Контрольная лампа заряда аккумуляторной батареи.

При включении зажигания плюс от замка идет к предохранителю № 10, а затем уже поступает на реле контрольной лампы заряда аккумуляторной батареи, потом идет к контакту и на вывод катушки. Второй вывод катушки взаимодействует с центральным выводом стартера, где соединяются все три обмотки. Если контакты реле замыкаются, то и контрольная лампа горит. При запуске двигателя генератор вырабатывает ток и на обмотках появляется переменное напряжение 7В. Через катушку реле проходит ток и якорь начинает притягиваться, при этом контакты размыкаются. Генератор № 15 через предохранитель № 9 пропускает ток. Аналогично через генератор напряжения щетки получает питание обмотка возбуждения.

Схема зарядки ВАЗ с инжекторными двигателями

Такая схема идентичная схемам на других моделях ВАЗов. Она отличается от предыдущих, способом возбуждения и контроля на исправность генератора. Он может быть осуществлен при помощи специальной контрольной лампы и вольтметра на панели приборов. Также через лампу заряда происходит первоначальное возбуждение генератора в момент начала работы. Во время работы генератор работает “анонимно”, то есть возбуждение идет напрямую с 30-го вывода.Когда включается зажигание, то питание через предохранитель №10 идет на лампу зарядки в панели приборов. Далее через монтажный блок поступает на 61-й вывод. Три дополнительные диода обеспечивают питание регулятору напряжения, а он в свою очередь передает его на обмотку возбуждения генератора. В этом случае контрольная лампа будет гореть. Именно в тот момент, когда генератор будет работать на обкладках выпрямительного моста напряжение будет гораздо выше, чем у аккумуляторной батареи. В этом случае контрольная лампа не будет гореть, потому что напряжение с ее стороны на дополнительных диодах будет ниже, чем со стороны статорной обмотки и диоды закроются. Если во время работы генератора контрольная лампа горит в пол накала, то это может означать, что пробиты дополнительные диоды.

Проверка работы генератора

Проверить работоспособность генератора можно несколькими способами применяя определенные методы, например: можно проверить напряжение отдачи генератора, падение напряжения на проводе, который соединяет токовый вывод генератора с аккумуляторной батареей или проверить регулируемое напряжение.

Для проверки будет необходим мультиметр, автомобильный аккумулятор и лампа с припаянными проводами, провода для подключения между генератором и аккумулятором, а еще можно взять дрель с подходящей головкой, так как возможно придется крутить ротор за гайку на шкиве.

Элементарная проверка лампочкой и мультиметром

Схема подключения: выходная клемма (В+) и ротор (D+). Лампу нужно подключить между основным выходом генератора В+ и контактом D+. После этого берем силовые провода и подключаем “минус” к минусовой клемме аккумулятора и к массе генератора, “плюс” соответственно к плюсу генератора и к выходу В+ генератора. Закрепляем на тиски и подключаем.

“Массу” нужно подключать в последнюю очень, чтобы не закоротить аккумулятор.

Включаем тестер в режим (DC) постоянного напряжения, цепляем один щуп на аккумулятор к “плюсу”, второй также, но к “минусу”. Далее, если все в рабочем состоянии, то должна загореться лампочка, напряжение в этом случае будет 12,4В. Затем берем дрель и начинаем крутить генератор, соответственно лампочка в этом момент перестанет гореть, а напряжение уже будет 14,9В. После чего добавляем нагрузку, берем галогенную лампу h5 и вешаем ее на клемму аккумулятора, она должна загореться. После чего в аналогичном порядке подключаем дрель и напряжение на вольтметре будет показывать уже 13,9В. В пассивном режиме аккумулятор под лампочкой дает 12,2В, а когда крутим дрелью, то 13,9В.

Схема проверки генератора

Строго не рекомендуется:

  1. Проводить проверку на работоспособность генератора путем короткого замыкания, то есть “на искру”.
  2. Допускать, чтобы генератор работал без включенных потребителей, также нежелательна работа при отключенном аккумуляторе.
  3. Соединение клеммы “30” (в некоторых случаях B+) с “массой” или клемму “67” (в некоторых случаях D+).
  4. Проводить сварочные работы кузова автомобиля при подключенных проводах генератора и аккумулятора.

Спрашивайте в комментариях. Ответим обязательно!

Регулятор напряжения 12 вольт – схемы и способы изготовления своими руками

Стабильность напряжения – это весьма важная характеристика электропитания для большинства электронных устройств. В них содержатся электрические цепи с нелинейными элементами. Для оптимальной настройки этих цепей существует определенная величина разности потенциалов. И если она будет изменяться, электрическая цепь утратит правильные эксплуатационные характеристики. Поскольку напряжение 12 вольт является стандартом не только для автомобилей, но и для многих других устройств, далее пойдет речь именно о таких регуляторах.

Особенности регулировки

Речь о том или ином регуляторе 12 вольт имеет смысл вести только при указании дополнительных данных:

  • постоянное или переменное напряжение надо регулировать;
  • какова максимальная величина тока в нагрузке;
  • величина разности потенциалов перед регулятором;
  • параметры напряжения на нагрузке в диапазоне регулирования.

Каждый из перечисленных параметров связан с определенными техническими решениями, которые отражаются в схеме. Общая схема регулятора – это нагрузка, которая соединена с некоторым устройством. Оно условно обозначено прямоугольником на схеме, показанной далее. Внутри этого прямоугольника может быть та или иная схема, которая соответствует дополнительным данным, упомянутым выше. Простейшим регулятором является переменный резистор. Он позволяет без искажений регулировать переменное напряжение. Также такой резистор применим и при постоянном токе.

Схема с переменным резистором.

Элементарная схема регулятораСхема с переменным резистором

Если разность потенциалов на входе значительно больше 12 вольт на выходе, в регуляторе будет теряться энергия. На переменном резисторе будет выделяться тепло. Чтобы избежать потерь тепла, на переменном токе надо применить переменную индуктивность, которой может стать ЛАТР. Его пропускная способность ограничивается, как и в переменном резисторе, конструкцией подвижного контакта. Но если допустимо переключение путем переставления между витками перемычки с надежными контактами, можно получать значительную силу тока.

Индуктивный регулятор

Другим способом регулирования своими руками переменного напряжения 12 вольт может быть изменение индуктивности регулятора. Для этого вручную изменяется либо зазор, либо число витков, специально предназначенных для этого. По такому принципу устроен регулируемый сварочный трансформатор, используемый для электропитания вольтовой дуги. Если регулятор напряжения 12 вольт не обладает свойствами стабилизатора и управляется своими руками, разность потенциалов на нагрузке необходимо контролировать вольтметром.

Переменный резистор и переменная индуктивность могут быть использованы и как регулятор тока. В этом случае необходимо контролировать ток в нагрузке амперметром. Если параметры напряжения на нагрузке не оговорены, за исключением его величины в 12 В, регулировать можно диммером. Это может быть мощный регулятор, поскольку он обычно выполнен на основе тиристора. А современные тиристоры выпускаются для очень широкого диапазона разности потенциалов и тока.

Регулирование со стабилизацией

Для получения заданных параметров напряжения или тока нагрузки применяются стабилизаторы. В них выходное напряжение или ток сравниваются с эталонным значением, и при минимальном заданном изменении выполняется автоматическая компенсация регулятора управлением соответствующего полупроводникового прибора. Существует огромное количество разнообразных схем различных стабилизаторов. Наиболее простыми в использовании являются интегральные микросхемы.

Внешний вид и схема подключения микросхемы – стабилизатора 12 В

Такие готовые стабилизаторы очень удобны для питания светодиодов как в автомобилях, так и в системах освещения. При питании от сети 220 вольт необходим понижающий трансформатор с выпрямителем, подключаемый к входу. Поскольку во многих случаях параметры нагрузки весьма специфичны, делаются специальные стабилизаторы напряжения и тока. Они могут работать как в непрерывном, так и в импульсном режиме. Но это уже совсем другая история…

Автоматический регулятор напряжения (АРН) для генераторов


ТЕОРИЯ РАБОТЫ

Автоматический регулятор напряжения (АРН) — это электронное устройство для автоматического поддержания выходного напряжения на клеммах генератора на заданном значении при переменной нагрузке и рабочей температуре. Он управляет выходным сигналом, считывая напряжение V на выходе на катушке, генерирующей энергию, и сравнивая его со стабильным эталоном. Затем сигнал ошибки используется для корректировки среднего значения тока возбуждения.


Некоторые небольшие дешевые портативные генераторы имеют фиксированное возбуждение.В таких машинах, когда генератор переменного тока нагружен, его выходное напряжение V out падает из-за его внутреннего сопротивления. Этот импеданс складывается из реактивного сопротивления рассеяния, реактивного сопротивления якоря и сопротивления якоря. V out также зависит от коэффициента мощности нагрузки. Вот почему для поддержания выходной мощности в более жестких пределах в большинстве моделей используется AVR. Обратите внимание, что все АРН помогают регулировать выход в основном в установившемся режиме, но, как правило, медленно реагируют на быстрые переходные нагрузки.Некоторые высокопроизводительные устройства, такие как многие модели Honda, используют более точный цифровой DAVR с лучшей переходной характеристикой.

Блок-схема справа иллюстрирует основные концепции, используемые для стабилизации выходной мощности генераторных установок с генераторами переменного тока с самовозбуждением. Вот как это работает. Когда ротор вращается двигателем, в обмотке возбуждения генерируется переменное напряжение. Этот переменный ток преобразуется в постоянный ток выпрямительным мостом «RB» и конденсатором фильтра «C». Схема обнаружения сравнивает напряжение, представляющее V на выходе , с заданным значением и включает и выключает транзистор «Q».Когда «Q» включен, через обмотку возбуждения течет ток. Когда «Q» выключен, ток возбуждения уменьшается, продолжая течь через диод «D». Ротор может включать в себя небольшой постоянный магнит для обеспечения некоторого базового тока, когда «Q» выключен. Правильно изменяя рабочий цикл транзистора «Q», можно регулировать V out . Обратите внимание, что теоретически «Q» также может работать в линейном режиме, но его тепловыделение будет увеличиваться.

СХЕМА РЕГУЛЯТОРА

На схеме ниже показана типовая реализация АРН.Этот тип схемы существует уже много лет. Его многочисленные варианты используются как в портативных генераторах, так и в автомобильных генераторах переменного тока и описаны в различных патентах, таких как US3376496 General Motor для трехфазных систем и US6522106 Honda.

Выпрямитель RB1 с конденсатором C1 выдает уровень постоянного тока, близкий к пику В на выходе . Небольшой резистор R1 ограничивает ток заряда C1 и предотвращает «отсечение» синусоидального сигнала. Теоретически его можно опустить. Если делитель R2-R3-R4 установлен правильно, когда V на выходе ниже требуемого значения, Q1 будет выключен, Q2 будет смещен вперед через R6, а пара Дарлингтона Q2, Q3 будет активировать обмотку возбуждения.И наоборот, когда V из повышается и напряжение на катоде D1 превышает примерно Vz + 0,7 В, Q1 размыкается и отключает как Q2, так и Q3.
Вот возможный список деталей , который немного изменен по сравнению с тем, что было предоставлено в этом обсуждении: RB1 / RB2 = GBU6J, R1 = 10Ω / 1 Вт, C1 = 2,2 мк / 250 В, R2 = 56 кОм, R3 = 2,49 кОм, R4 = 0 … 2 кОм (потенциометр), R5 = 2,49 кОм, C2 = 0,01 мк, D1 = 1N4738 (Vz = 8,2 В), Q1 = MPSA06, Q2 = 2N6515, Q3 = BU931T, D2, D3 = 1N4005, C3 = 470 мк / 200 В. Конечно, разные производители могут использовать разные конфигурации.Например, здесь вы можете увидеть реконструированный старый регулятор Generac, который использует SCR и UJT. Многие современные машины часто используют MOSFET вместо биполярных транзисторов Q2-Q3 для снижения потерь переключения. Вам просто нужно защитить его ворота дополнительным стабилитроном.

Вся информация здесь предоставляется «КАК ЕСТЬ» только для технической справки, без каких-либо гарантий и обязательств любого типа, явных или подразумеваемых, и не является профессиональной консультацией — прочтите наш полный отказ от ответственности.


Конструкция и принцип действия классических автомобильных регуляторов напряжения

АВТО ТЕОРИЯ

Регуляторы напряжения

Как вы, возможно, помните из статьи прошлого месяца о функциях генераторов в вашем классическом автомобиле, нет никаких средств внутреннего контроля их мощности.Другими словами, чем быстрее он вращается, тем больше напряжения поступает в электрическую систему автомобиля. Если бы это не контролировалось, генератор повредил бы аккумулятор и сгорел бы фары автомобиля. Кроме того, если генератор не был отключен от схемы автомобиля, когда он не работает, аккумулятор разрядился бы через его корпус.



Вот где вступает в силу РЕГУЛЯТОР (обычно называемый регулятором напряжения, но это только один компонент системы). За прошедшие десятилетия регуляторы претерпели множество конструктивных улучшений, но наиболее часто используемый электромеханический регулятор — это три блока управления в один тип коробки.Давайте посмотрим, как это работает …

Реле отключения

Это устройство, которое иногда называют автоматическим выключателем, представляет собой магнитный выключатель. Он подключает генератор к цепи батареи (и, следовательно, остальной части автомобиля), когда напряжение генератора достигает желаемого значения. Он отключает генератор, когда он замедляется или останавливается.

Реле имеет железный сердечник, намагниченный для опускания шарнирного якоря. Когда якорь опускается, набор точек контакта замыкается, и цепь замыкается.Когда магнитное поле нарушается (например, когда генератор замедляется или останавливается), пружина тянет якорь вверх, нарушая точки контакта.



Очевидным видом отказа являются контактные точки. Когда они открываются и закрываются, возникает небольшая искра, которая в конечном итоге разъедает материал на точках, пока они либо не «свариваются» вместе, либо не приобретут такое высокое сопротивление, что не будут проводить ток в закрытом состоянии. В первом случае батарея разряжалась бы через генератор за ночь, а во втором случае не было бы никакой зарядки системы.

Регулятор напряжения

Другой набор контактных точек с железным сердечником используется для постоянного регулирования максимального и минимального напряжения. В этой схеме также есть шунтирующая цепь (шунт перенаправляет электрический поток), которая заземляется через резистор и размещается прямо перед (электрически) точками. Когда точки замкнуты, цепь возбуждения идет «легким» путем к земле, но когда точки разомкнуты, цепь возбуждения должна проходить через резистор, чтобы добраться до земли.

Катушка возбуждения генератора подключена к одной из точек контакта регулятора напряжения.Другая точка ведет прямо к земле.

Когда генератор работает (батарея разряжена или работает несколько устройств), его напряжение может оставаться ниже того, на которое установлено управление. Поскольку ток будет слишком слабым, чтобы тянуть якорь вниз, поле генератора будет уходить на землю через точки. Однако, если система полностью заряжена, напряжение генератора будет увеличиваться до тех пор, пока не достигнет максимального предела, и ток, протекающий через шунтирующую катушку, будет достаточно высоким, чтобы опустить якорь и разделить точки.

Этот цикл повторяется снова и снова в реальном времени. Точки открываются и закрываются примерно от 50 до 200 раз в секунду, поддерживая постоянное напряжение в системе.

Регулятор тока

Даже если напряжение генератора регулируется, его ток может стать слишком большим. Это приведет к перегреву генератора, поэтому для предотвращения преждевременного отказа встроен регулятор тока.

По внешнему виду похожий на железный сердечник регулятора напряжения, сердечник регулятора тока намотан несколькими витками толстого провода и соединен последовательно с якорем генератора.



Во время работы ток увеличивается до предварительно определенного значения установки. В это время ток, протекающий через обмотки из толстого провода, заставит сердечник опускать якорь, открывая точки регулятора тока. Чтобы замкнуть цепь, цепь возбуждения должна пройти через резистор. Это снижает текущий выход, указывает на закрытие, вывод увеличивается, указывает на открытие, вывод вниз, указывает на закрытие и т. Д. Следовательно, точки колеблются при открытии и закрытии так же, как и точки регулятора напряжения, много раз в секунду.

Хорошие и плохие новости

Поскольку регуляторы напряжения являются механическими, их легко устранить. Если вы изучите функцию каждой из трех частей и то, как они взаимосвязаны, станет очевидно, какая часть неисправна, в зависимости от симптомов. Это означает, что любой, кто понимает, как все работает, может легко устранить проблемы. Это хорошие новости.

Плохая новость заключается в том, что зазоры между остриями и давление пружин определяют пределы напряжения / тока, и их чрезвычайно трудно отрегулировать.Иногда это можно сделать на автомобиле с помощью вольтметра, но обычно лучше заменить весь блок регулятора, когда какая-то его часть выходит из строя. Заводская сборка регуляторов требовала относительно сложных измерительных приборов. Регулировка их «наощупь» — дело удачи и часто может привести к повреждению.

В целом, хорошая новость заключается в том, что регуляторы недороги и их относительно легко найти. Замена — всегда хорошая идея.

А как насчет регуляторов генератора?

Регулятор того же типа изначально использовался в автомобилях с генераторами переменного тока, и они работают примерно так же.Однако, поскольку в некоторых автомобилях использовались амперметры, регулятор тока не понадобился. Поэтому для включения обмоток статора генератора был использован «единичный» регулятор. Это был просто регулятор без секции регулятора тока.

Вскоре после этого автомобильные компании перешли на транзисторные регуляторы напряжения. Используя стабилитроны, транзисторы, резисторы, конденсатор и термистор, эти регуляторы поддерживают надлежащее напряжение и ток в системе. Их схемы работают со скоростью 2000 раз в секунду, и они чрезвычайно надежны.С другой стороны, эти регуляторы нелегко ремонтировать. Их можно выбросить и заменить.

Многие «твердотельные» регуляторы устанавливаются внутри генератора и не подлежат обслуживанию, кроме возможности устанавливать пределы напряжения. Это нормально, потому что они работают очень хорошо в течение длительного времени. Чтобы проверить их работу, просто измерьте напряжение аккумулятора при выключенном двигателе, а затем при работающем. Во время работы вы должны увидеть что-то между 13 и 15 вольт. Отсутствие изменения напряжения означает, что либо регулятор, либо генератор переменного тока не работают, в то время как более высокое напряжение означает, что регулятор «не регулируется должным образом».«

А как насчет перехода с генераторов на генераторы переменного тока?

Ну, это двусторонний вопрос. Мы считаем, что такие переоборудование необходимо производить, если при ремонте или капитальном обновлении автомобиля были установлены дополнительные электрические устройства. Кондиционер, электрические вентиляторы охлаждения и т. Д. Потребляют много тока, с которым не справляются старые генераторы. Генераторы обеспечивают в три раза больший ток и весят намного меньше, чем их старые аналоги.

С другой стороны, переход на генератор переменного тока повлияет на внешний вид автомобиля.Это, конечно, личный выбор, но его стоит задуматься. Скоро мы напишем статью о конверсии.

data-matched-content-ui-type = «image_card_stacked» data-matched-content-rows-num = «3» data-matched-content-columns-num = «1» data-ad-format = «autorelaxed»>

Как установить регулятор напряжения генератора

Стабилизатор напряжения генератора необходим для поддержания постоянного напряжения в генераторе переменного или постоянного тока.Во время работы двигатель в генераторе работает на разных скоростях в зависимости от мощности, которую необходимо произвести. Переработанный двигатель может нагреться и вызвать скачки напряжения, которые могут нанести вред генератору. Стабилизатор напряжения в основном используется в автомобилях, чтобы аккумулятор не перезарядился и не вышел из строя.

Шаг 1 — Проверьте генератор

Перед установкой регулятора проверьте, работает ли ваш генератор. Также проверьте состояние аккумулятора, поскольку он является неотъемлемой частью системы.Проводка между генератором, регулятором и аккумулятором часто подвержена коррозии, которую можно удалить с помощью мелкой наждачной бумаги. Перед тем, как отсоединить какие-либо провода от их подключения, пометьте их, чтобы вы могли повторно подключить их. Перед проверкой регулятора необходимо поляризовать генератор. Подключите положительный полюс батареи к якорю генератора, чтобы поляризовать его. Удалите аккумулятор после этого шага. Хотя в некоторых руководствах указано, что регулятор должен быть поляризован, на самом деле это означает просто генератор, поскольку регуляторы не чувствительны к полярности.

Шаг 2 — Выберите регулятор

Убедитесь, что используемый регулятор подходит для генератора. Величина напряжения, которое производит ваш генератор, должна попадать в диапазон, который может контролировать регулятор. Популярный диапазон для регулятора — от 6 до 12 вольт. Большинство регуляторов имеют маркировку силы тока и напряжения для облегчения идентификации. Не думайте, что чем выше напряжение, указанное на регуляторе, тем лучше для вашего генератора и аккумулятора.Если у вас есть внутренний регулятор, это означает, что ваш регулятор установлен внутри генератора, и его нельзя снять или заменить. Если регулятор неисправен, вам нужно будет переустановить весь генератор.

Шаг 3. Общие сведения о проводке генераторов переменного тока и регуляторов

Хотя большинство генераторов переменного тока поставляются со встроенным регулятором, некоторые из них имеют внешний регулятор. Клемма заземления аккумуляторной батареи должна быть отключена перед работой с генератором или регулятором.Регулятор будет иметь три провода. Вам нужно будет подключить два провода меньшего размера к генератору. На генераторе обычно есть маркировка с надписью F и R. Подключите F к месту, где указано 1 на регуляторе, а R — к месту, где указано 2. Иногда на маркировке генератора и регулятора написано 1 и 2 или на регуляторе вместо этого написано F и R. генератора. Просто запомните соответствующие подключения. Подключите большой провод к батарее. Во всех случаях убедитесь, что проводка выполнена точно, так как любое неправильное подключение приведет к повреждению регулятора и генератора.

Шаг 4. Общие сведения о проводке генераторов постоянного тока и регуляторов

В этой системе необходимо позаботиться только о трех основных проводах: выключателе, регуляторе тока и регуляторе напряжения. Подключите провод F вашего регулятора к проводу возбуждения генератора, подключите A is к якорю генератора и подключите BATT к положительной клемме батареи. BATT обычно коричневый / желтый, F — желтый / зеленый, а A — в основном коричневый (имейте в виду, что эти цвета могут меняться в зависимости от марки устройства).

ПОЛОЖЕНИЕ

РЕГУЛИРОВАНИЕ
РЕГУЛИРОВКА НАПРЯЖЕНИЯ ГЕНЕРАТОРА

Эффективная работа электрооборудования в самолете зависит от постоянное напряжение питания от генератора. Среди факторов, определяющих выходное напряжение генератора, только один, напряженность поля ток, можно удобно контролировать. Чтобы проиллюстрировать этот элемент управления, см. к схеме на рисунке 9-22, показывающей простой генератор с реостатом в полевой цепи.Если реостат настроен на увеличение сопротивления в цепи возбуждения меньше тока протекает через обмотку возбуждения и сила магнитного поля, в котором вращается якорь, уменьшается. Следовательно, выходное напряжение генератора уменьшается. Если сопротивление в цепи возбуждения уменьшается с реостатом, протекает больше тока через обмотки возбуждения магнитное поле становится сильнее, и генератор выдает большее напряжение.

Когда генератор работает с нормальной скоростью и выключатель K разомкнут (рисунок 9-23) полевой реостат настраивают так, чтобы напряжение на клеммах составляет около 60 процентов от нормы.Соленоид S слаб и контакт B удерживается закрывается к весне. Когда K замкнут, происходит короткое замыкание через полевой реостат. Это действие вызывает увеличение тока возбуждения и напряжение на клеммах должно возрасти.

Когда напряжение на клеммах поднимается выше определенного критического значения, тяга соленоида вниз превышает натяжение пружины, и контакт B размыкается, таким образом повторно вставляя полевой реостат в цепь возбуждения и уменьшая ток возбуждения и напряжение на клеммах.

Когда напряжение на клеммах падает ниже определенного критического напряжения, контакт якоря соленоида B снова замыкается пружиной, реостат возбуждения закорочен, и напряжение на клеммах начинает расти. Цикл повторяется с быстрым, непрерывным действием. Таким образом поддерживается среднее напряжение с изменением нагрузки или без нее.

Панель управления P обеспечивает более плавную работу, действуя как демпфер для предотвращения охота. Конденсатор C на контакте B исключает искрение.Добавлена ​​нагрузка вызывает короткое замыкание полевого реостата на более длительный период времени и, таким образом, якорь соленоида вибрирует медленнее. Если нагрузка снижена и напряжение на зажимах возрастает, якорь вибрирует быстрее и регулятор поддерживает постоянное значение напряжения на клеммах при любых изменениях. под нагрузкой, от холостого хода до полной нагрузки, на генераторе.

Регуляторы вибрационного типа нельзя использовать с генераторами, требующими высокий ток возбуждения, так как контакты будут рыть или гореть.Генератор для тяжелых условий эксплуатации системы требуют другого типа регулятора, такого как угольный ворс регулятор напряжения.

Регулятор напряжения с угольными сваями

Регулятор напряжения углеродного ворса зависит от сопротивления ряда углеродных дисков, собранных в стопку или стопку. Сопротивление углерода стек изменяется обратно пропорционально приложенному давлению. Когда стек сжимается при значительном давлении сопротивление в стопке меньше.Когда давление уменьшается, сопротивление углеродного стека увеличивается, потому что между дисками больше воздушного пространства, и воздух имеет высокое сопротивление. Давление на угольную сваю зависит от двух противодействующих сил: пружины. и электромагнит. Пружина сжимает углеродный ворс, а электромагнит оказывает давление, которое снижает давление. Катушка электромагнита, как показано на диаграмме на рисунке 9-24, подключен через клемму B генератора и через реостат (регулируемый ручку) и резистор (угольные диски) на массу.

При изменении напряжения генератора изменяется тяговое усилие электромагнита. Если напряжение генератора поднимается выше определенного значения, тяговое усилие электромагнит увеличивается, уменьшая давление, оказываемое на углерод ворс и повышение его сопротивления. Поскольку это сопротивление последовательно с полем через обмотку возбуждения протекает меньше тока, есть соответствующее уменьшение напряженности поля, и напряжение генератора падает. С другой стороны, если выходная мощность генератора упадет ниже указанного значения, тяга электромагнита уменьшается, и углеродный ворс размещается меньше сопротивление в цепи обмотки возбуждения.Кроме того, напряженность поля увеличивается, а мощность генератора увеличивается. Небольшой реостат обеспечивает средство регулирования тока, протекающего через катушку электромагнита. Фигура 9-25 показан типичный регулятор напряжения на 24 В с его внутренними цепями.

Трехступенчатые регуляторы

Многие легкие самолеты используют трехступенчатый регулятор для генератора. системы. Этот тип регулятора включает в себя ограничитель тока и реверсивный отключение тока в дополнение к регулятору напряжения.

Действие блока регулятора напряжения аналогично вибрационному. регулятор, описанный ранее. Второй из трех блоков — ток регулятор для ограничения выходного тока генератора. Третий блок выключатель обратного тока, отключающий аккумулятор от генератора. Если аккумулятор не отсоединить, он разрядится через генератор. якорь, когда напряжение генератора падает ниже напряжения батареи, таким образом привод генератора как двигателя.Это действие называется «движение» на автомобиле. генератор и, если это не предотвратить, разрядит аккумулятор в короткое время.

Работа трехступенчатого регулятора описана ниже. абзацы. (См. Рисунок 9-26.)

Действие вибрирующего контакта C1 в блоке регулятора напряжения вызывает периодическое короткое замыкание между точками R1 и L2. Когда генератор не работает, пружина S1 удерживает C1 в закрытом состоянии; C2 также замыкается S2.В поле шунта подключается непосредственно через якорь.

Когда генератор запускается, напряжение на его клеммах будет увеличиваться по мере того, как генератор набирает обороты, а якорь будет снабжать поле энергией. ток через замкнутые контакты C2 и C1.

По мере увеличения напряжения на клеммах ток через L1 увеличивается. и железный сердечник намагничивается сильнее. С определенной скоростью и напряжение, когда магнитное притяжение на подвижной руке становится сильным достаточно, чтобы преодолеть натяжение пружины S1, точки контакта C1 разделены.Теперь ток возбуждения протекает через R1 и L2. Потому что сопротивление добавлено к цепи возбуждения, поле на мгновение ослабевает и рост напряжение на клеммах проверяется. Кроме того, поскольку обмотка L2 противоположна Обмотка L1, магнитное притяжение L1 к S1 частично нейтрализуется, и пружина S1 замыкает контакт C1. Следовательно, R1 и L2 снова закорочены. вне цепи, и ток возбуждения снова увеличивается; выходное напряжение увеличивается, а C1 открывается из-за действия L1.Цикл быстрый и происходит много раз в секунду. Напряжение на клеммах генератора изменяется незначительно, но быстро, выше и ниже среднего определяемого значения натяжением пружины S1, которое можно регулировать.

Назначение ограничителя тока вибрационного типа — ограничить выходную мощность. ток генератора автоматически до максимального номинального значения, чтобы для защиты генератора. Как показано на рисунке 9-26, L3 последовательно с основная линия и нагрузка.Таким образом, количество тока, протекающего в линии определяет, когда C2 будет открыт, а R2 будет установлен последовательно с генератором поле. Напротив, регулятор напряжения приводится в действие линейным напряжением, тогда как ограничитель тока приводится в действие линейным током. Пружина S2 держит контакт C2 замкнут до тех пор, пока ток через основную линию и L3 не превысит определенное значение, определяемое натяжением пружины S2, и вызывает C2 должен быть открыт. Увеличение тока происходит из-за увеличения нагрузки.Это действие вставляет R2 в цепь возбуждения генератора и уменьшает ток возбуждения и генерируемое напряжение. Когда генерируемое напряжение уменьшается, ток генератора уменьшается. Ядро L3 частично размагничивается, и пружина замыкает точки контакта. Это вызывает напряжение и ток генератора повышаются, пока ток не достигнет значения достаточно, чтобы снова запустить цикл. Определенное минимальное значение тока нагрузки необходимо, чтобы ограничитель тока завибрировал.

Реле отключения обратного тока предназначено для автоматического отключите аккумулятор от генератора, когда напряжение генератора упало. меньше напряжения аккумулятора. Если это устройство не использовалось в генераторе В цепи аккумулятор разрядился бы через генератор. Это бы имеют тенденцию заставлять генератор работать как двигатель, но поскольку генератор соединен с двигателем, он не мог вращать такую ​​большую нагрузку. Под В этом состоянии обмотки генератора могут быть серьезно повреждены чрезмерным Текущий.

На сердечнике из мягкого железа расположены две обмотки, L4 и L5. Электрический ток обмотка L4, состоящая из нескольких витков тяжелого провода, соединена последовательно с линия и переносит весь линейный ток. Обмотка напряжения, L5, состоящий из большого количества витков тонкой проволоки, шунтируется через клеммы генератора.

Когда генератор не работает, контакты C3 остаются разомкнутыми. к весне S3. По мере роста напряжения генератора L5 намагничивает железное ядро.Когда ток (в результате генерируемого напряжения) производит достаточный магнетизм в железном сердечнике, контакт C3 замкнут, как показано. Затем аккумулятор получает зарядный ток. Винтовая пружина S3 так отрегулировано, чтобы обмотка напряжения не замыкала точки контакта до тех пор, пока напряжение генератора превышает нормальное напряжение аккумулятор. Зарядный ток, проходящий через L4, помогает току в L5. держать контакты плотно закрытыми. В отличие от C1 и C2, контакт C3 делает не вибрировать.Когда генератор замедляется или, по любой другой причине, напряжение генератора снижается до определенного значения ниже, чем у аккумулятора, ток через L4 меняется на противоположный, а амперные витки L4 противостоят тем L5. Таким образом, мгновенный ток разряда от аккумулятора снижает магнетизм сердечника и C3 открывается, предотвращая разряд аккумулятора в генератор и двигать его. C3 не закроется снова, пока генератор напряжение на клеммах превышает напряжение аккумулятора на заданное значение.

Регулятор напряжения генератора — Century Electric, Inc.

Уровень техники

Генераторы переменного тока хорошо известны в данной области техники и используются для создания выходных напряжений переменного тока либо однофазных, либо трехфазных. Типичный трехфазный генератор переменного тока типа вращающегося поля имеет катушки возбуждения, возбуждаемые катушкой возбудителя на том же валу. Поле возбудителя возбуждает якорь возбудителя, выходной сигнал которого выпрямляется и используется для возбуждения поля генератора, которое при вращении индуцирует переменное напряжение в статоре генератора.

Постоянное напряжение, приложенное к полю возбудителя, регулирует напряженность поля возбудителя, которая, в свою очередь, регулирует напряжение якоря возбудителя и, следовательно, напряженность основного магнитного поля. Поскольку магнитная напряженность основного поля регулируется, то и выходное напряжение генератора, индуцируемое в статоре генератора.

Также хорошо известны схемы регуляторов напряжения, которые подключены к выводам выходного напряжения от статора генератора и которые управляют напряжением, прикладываемым к полю возбудителя, для управления силой основного поля для регулировки выходного напряжения.Для выборки или измерения выходного напряжения используется множество различных методов, одна из которых знакома изобретателям, включает в себя определение пика каждого второго полупериода выходного напряжения, сравнение его с желаемым эталонным значением и затем регулировку напряжения поля возбудителя. вверх или вниз по мере необходимости для корректировки выходного напряжения генератора.

Другая проблема, связанная с использованием регуляторов напряжения, которые обнаруживают выходное напряжение генератора и сравнивают выходное напряжение генератора с опорным напряжением, заключается в том, что необходимо найти способ обойти эту схему регулятора во время запуска, когда генератор набирает обороты.Пока выходное напряжение генератора не достигнет минимального значения, желательно активировать поле возбудителя полным напряжением, чтобы быстро увеличить выходное напряжение до номинального значения генератора. После достижения минимального выходного напряжения желательно переключить управление напряжением возбудителя на схемы регулятора для контролируемого включения поля возбудителя и выходного напряжения.

Для решения этих конструктивных проблем изобретателям удалось разработать уникальную и новую схему регулятора, которая интегрирует каждый полупериод выходного напряжения, сравнивает это интегрированное значение с опорным напряжением и переключает тиристор в источнике напряжения поля возбудителя при правильный фазовый угол, чтобы подать напряжение на поле возбудителя, достаточное для регулирования выходного напряжения.Операционный усилитель и конденсатор обратной связи используются для интегрирования выходного напряжения в течение каждого отрицательного полупериода. Интегрированное напряжение на конденсаторе разряжается через резистор и сравнивается с опорным напряжением с помощью дифференциального усилителя, который сравнивает два напряжения и запускает генератор импульсов в тот момент спада напряжения, когда значения выравниваются. Генератор импульсов генерирует импульс для запуска источника напряжения возбудителя, управляемого SCR, а также сбрасывает напряжение на конденсаторе для следующего полупериода.

В дополнение к схеме регулятора изобретатели разработали схему байпаса, которая фиксирует SCR в источнике напряжения возбудителя поля, чтобы позволить низкому остаточному напряжению генератора напрямую связываться с полем возбудителя для максимального возбуждения во время запуска. . После того, как выходное напряжение достигает минимального предварительно выбранного значения, эта схема байпаса блокируется парой транзисторов, и схемы регулятора напряжения, описанные ранее, вступают в действие в нормальных условиях работы.

Хотя вышеизложенное было кратким описанием основных преимуществ новой конструкции изобретателей, все изобретение можно более полно понять, обратившись к чертежу и описанию предпочтительного варианта осуществления, которое следует ниже.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

РИС. 1A-B — электрическая схема цепи регулятора напряжения согласно настоящему изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ

Как показано на чертеже, типичный генератор вращающегося поля включает поле 20 возбуждения, которое возбуждает якорь 22 возбудителя, выход которого выпрямляется полнополупериодным мостом 24 с подключенными ограничителями 26 переходных процессов. через выход моста 24 вместе с генератором поля 28.Поле 28 генератора индуцирует напряжение в статоре 30 генератора, как известно в данной области техники.

Схема 32 регулятора напряжения включает в себя резисторы 34, 36 и конденсатор 38, которые образуют делитель напряжения и суммирующую сеть, подключенную к выходным клеммам 20, 22, которая измеряет выходное напряжение генератора и снижает его до одиночного сигнала переменного тока низкого напряжения для ввода в регулятор 32. Напряжение на конденсаторе 38 обратно пропорционально выходной частоте генератора, так что регулятор 32 будет управлять выходным напряжением генератора на уровне напряжения, пропорциональном его частоте.

Выходное напряжение на конденсаторе 38 вводится в операционный усилитель 40 через конденсатор 42. Другой конденсатор 44 подключен к усилителю 40 и интегрирует выходной сигнал усилителя 40 в течение отрицательного полупериода выходного напряжения. Во время положительного полупериода выходного напряжения диод 46 обходит усилитель 40. Напряжение, накопленное на конденсаторе 44, относительно медленно разряжается через резистор 48 в течение положительного полупериода выходного напряжения до сброса транзистора 50 и резистора 52, как поясняется ниже.Таким образом, напряжение во время отрицательного полупериода выходного сигнала генератора вводится на отрицательный вывод операционного усилителя 40 и интегрируется в конденсатор 44. Во время положительного полупериода это интегрированное напряжение конденсатора 44 падает на резисторе 48 до тех пор, пока не сработает транзистор 50, который соединяет резистор 52 последовательно с конденсатором 44 для быстрого рассеивания в нем напряжения и сброса его для следующего отрицательного полупериода выхода генератора.

Медленно убывающее напряжение конденсатора 44 на входе дифференциального усилителя 54 через резистор 56.Опорное напряжение генерируется и вводится на отрицательный вывод дифференциального усилителя 54, как поясняется ниже. Дифференциальный усилитель 54 сравнивает это медленно убывающее напряжение с опорным напряжением и, когда оно становится равным опорному напряжению, генерирует положительный сигнал через диод 58 для зарядки конденсатора 62 через резистор 60. Однопереходный транзистор 64 выдает импульс через резистор 66 для срабатывания транзистора 50. и для сброса схемы интегратора, а также через диод 68, резистор 70, резистор 72 и конденсатор 74 для переключения SCR 76.Этот SCR 76 проводит ограниченный переменный ток 16 В через диод 78 к источнику 80 питания поля возбудителя для управления его выходным напряжением, как будет объяснено ниже.

При работе, если выходное напряжение высокое, напряжение, интегрированное в конденсатор 44, также будет высоким, и, поскольку оно медленно спадает через резистор 48, оно пересекает опорное напряжение в конце положительного полупериода и переключает однопереходный транзистор 64 и тиристор. 76 в конце положительного полупериода и, таким образом, соответственно уменьшают напряжение поля возбудителя.И наоборот, если выходное напряжение низкое, напряжение, интегрированное в конденсатор 44, также будет низким и будет медленно снижаться, чтобы пересечь опорное напряжение раньше в положительном полупериоде и переключать однопереходный транзистор 64 и SCR 76 раньше в положительном полупериоде для увеличения. напряжение поля возбудителя. Таким образом, эта схема обеспечивает управление фазовым углом для источника 80 напряжения возбудителя поля, которое напрямую зависит от интегрированного значения напряжения во время отрицательного полупериода выходного напряжения генератора.Поскольку схема сбрасывается каждый положительный полупериод, схема работает каждые полупериод, чтобы обеспечить быстрый отклик.

Источник питания 80 поля возбудителя включает в себя SCR 82 с выводом 84 затвора, подключенным к SCR 76 через диод 78. При переключении SCR 82 он подключает отфильтрованное выходное напряжение к полю 20 возбудителя, фильтрация обеспечивается индукторами 86, 88. ; конденсаторы 90, 92 и резисторы 94. Кроме того, диод 96 обеспечивает путь для потока индуктивной энергии в поле 20 возбудителя во время непроводящего периода SCR 82, а схемы 98, 100 ограничивают скорость нарастания напряжения на SCR 82 и диод 96, как известно в данной области техники.

Различные напряжения, используемые регулятором 32, генерируются выходным напряжением генератора, подключенным через резисторы 102, 104 к диодам 106, 108 и конденсаторам 110, 112. Эта схема создает напряжения постоянного тока через резисторы 114, 116 из +12 и -12. вольт. Стабилитроны 118, 120 регулируют этот источник питания, чтобы обеспечить точный источник питания для цепей управления. Переменный ток с полуволновым выпрямлением обеспечивается диодом 122 и резистором 124 для схемы компаратора, состоящей из дифференциального усилителя 54, как показано.Опорное напряжение для компаратора и дифференциала 54 регулируется стабилитроном 126 и регулируется потенциометром 128, выход которого подключен к цепи делителя напряжения, состоящей из резисторов 130, 132, 134 и 136.

При запуске В генераторе напряжения выходные напряжения слишком низкие для питания цепей управления и цепи регулятора 32. Во время этого запуска более плавная и надежная работа может быть получена путем обхода цепи регулятора 32 до тех пор, пока выходное напряжение не достигнет предварительно выбранного минимума. значение.Полевой транзистор (FET) 138 обеспечивает эту функцию, напрямую соединяя анод и затвор SCR 82 через диод 140 и резистор 142, так что остаточное напряжение статора 30 генератора может использоваться для прямого смещения SCR 82 и его непрерывного включения. для подачи меньшего напряжения во время пуска непосредственно на поле возбудителя 20. Полевой транзистор 138 включается выходным напряжением генератора, проводимым через диод 144 и резистор 146, к зарядному конденсатору 150, который замыкается на полевом транзисторе 138 через резистор 148.По мере увеличения выходного напряжения генератора второй конденсатор 152 заряжается через второй диод 154 и резистор 156. Напряжение на конденсаторе 152 делится резисторами 158, 160, которые смещают транзистор 162 через диод 164 и резистор 166. Поскольку транзистор 162 поворачивается, на нем вырабатывается напряжение 168, которое включает транзистор 170. Когда транзисторы 160 и 170 включены, напряжение на выводе затвора полевого транзистора 138 фиксируется до минимального значения, которое выключает его и разъединяет цепь между выводами анода и затвора SCR 82 в источнике 80 питания поля возбудителя.Это освобождает источник питания 80 возбуждения для управления схемой 32 регулятора, как описано ранее.

Следует отметить, что есть другие различные части схем, которые обеспечивают стабильность и дополнительное управление с обратной связью. Например, резистор 172, конденсатор 174, конденсатор 176 и резистор 178 обеспечивают сигнал отрицательной обратной связи с постоянной времени, установленной в соответствии с постоянной времени генератора, чтобы стабилизировать схему 30 регулятора и обеспечить быстрый отклик без перерегулирования или скачков.Кроме того, трансформатор 180 тока измеряет линейный ток и вырабатывает напряжение на потенциометре 182, которое подается на резистор 184 через резистор 186 для регулировки напряжения на входе операционного усилителя 40 интегратора.

Полярности таковы, что фазовое соотношение напряжения на конденсаторе 38 находится в фазе с напряжением на резисторе 184, когда ток в генераторе имеет нулевой коэффициент мощности с запаздыванием. Значения резистора 184 и конденсатора 38 выбраны таким образом, чтобы напряжение на 184 составляло приблизительно пять процентов от напряжения конденсатора 38.Это позволяет регулировать напряжение в цепи регулятора 32 от 100% до девяноста пяти процентов в зависимости от коэффициента мощности на выходе генератора.

В изобретение заявителя могут быть внесены различные изменения и модификации, которые будут очевидны специалистам в данной области техники. Однако любые из этих изменений или модификаций включены в содержание раскрытия заявителя, и он намеревается, что его изобретение ограничивается только объемом прилагаемой формулы изобретения.

Элементы управления генератором (часть вторая)

Элементы управления генератором для генераторов с малой выходной мощностью

Типичная схема управления генератором для генераторов с низкой выходной мощностью изменяет ток в поле генератора для управления выходной мощностью генератора.При изменении параметров полета и электрических нагрузок блок GCU должен контролировать электрическую систему и вносить соответствующие корректировки для обеспечения надлежащего напряжения и тока системы. Типичное управление генератором называется регулятором напряжения или GCU.

Поскольку большинство генераторов с малой мощностью используется на старых самолетах, системами управления для этих систем являются электромеханические устройства. (Твердотельные блоки можно найти на более современных самолетах, в которых используются генераторы постоянного тока, а не генераторы постоянного тока.) Двумя наиболее распространенными типами регуляторов напряжения являются регулятор с угольным стержнем и трехступенчатый регулятор.Каждый из этих блоков управляет током возбуждения с помощью переменного резистора. Затем управление током возбуждения регулирует мощность генератора. Упрощенная схема управления генератором показана на Рисунке 9-57.

Рисунок 9-57. Регулятор напряжения для маломощного генератора.

Регуляторы углеродного сваи

Регулятор углеродного сваи управляет выходной мощностью генератора постоянного тока, направляя ток возбуждения через стопку углеродных дисков (углеродную кучу). Углеродные диски включены последовательно с генератором поля.Если сопротивление дисков увеличивается, ток возбуждения уменьшается и мощность генератора падает. Если сопротивление дисков уменьшается, ток возбуждения увеличивается, и выходная мощность генератора возрастает. Как видно на рис. 9-58, катушка напряжения установлена ​​параллельно выходным выводам генератора. Катушка напряжения действует как электромагнит, который увеличивает или уменьшает силу при изменении выходного напряжения генератора. Магнетизм катушки напряжения контролирует давление на угольную стопку. Давление на углеродный пакет контролирует сопротивление углерода; сопротивление углерода контролирует ток возбуждения, а ток возбуждения контролирует выходную мощность генератора.

Рисунок 9-58. Углеродный регулятор ворса.

Регуляторы с угольными сваями требуют регулярного технического обслуживания для обеспечения точного регулирования напряжения; поэтому большинство из них было заменено на самолетах более современными системами.

Трехуровневые регуляторы

Трехуровневый регулятор, используемый с системами генераторов постоянного тока, состоит из трех отдельных узлов. Каждый из этих блоков выполняет определенную функцию, жизненно важную для правильной работы электрической системы. Типичный трехкомпонентный регулятор состоит из трех реле, установленных в одном корпусе.Каждое из трех реле контролирует выходы генератора и размыкает или замыкает точки контакта реле в соответствии с потребностями системы. Типичный трехблочный регулятор показан на Рисунке 9-59.

Рисунок 9-59. Три реле этого регулятора используются для регулирования напряжения, ограничения тока и предотвращения обратного тока.

Регулятор напряжения

Секция регулятора напряжения трехзвенного регулятора используется для управления выходным напряжением генератора. Регулятор напряжения контролирует выходную мощность генератора и при необходимости регулирует ток возбуждения генератора.Если регулятор определяет, что напряжение в системе слишком высокое, точки реле размыкаются, и ток в цепи возбуждения должен проходить через резистор. Этот резистор снижает ток возбуждения и, следовательно, снижает выходную мощность генератора. Помните, что выходная мощность генератора падает всякий раз, когда падает ток возбуждения генератора.

Как видно на Рисунке 9-60, катушка напряжения подключена параллельно с выходом генератора, и поэтому она измеряет напряжение в системе. Если напряжение выходит за пределы заданного предела, катушка напряжения становится сильным магнитом и размыкает точки контакта.Если точки контакта разомкнуты, ток возбуждения должен проходить через резистор, и, следовательно, ток возбуждения уменьшается. Пунктирная стрелка показывает ток, протекающий через регулятор напряжения, когда точки реле разомкнуты.

Рисунок 9-60. Регулятор напряжения.

Поскольку этот регулятор напряжения имеет только два положения (точки разомкнуты и точки замкнуты), устройство должно постоянно регулироваться для поддержания точного контроля напряжения. Во время нормальной работы системы точки открываются и закрываются через равные промежутки времени.По сути, точки вибрируют. Этот тип регулятора иногда называют регулятором вибрирующего типа. По мере того, как точки вибрируют, ток возбуждения повышается и понижается, а магнетизм поля в среднем достигает уровня, который поддерживает правильное выходное напряжение генератора. Если системе требуется большая мощность генератора, точки остаются закрытыми дольше и наоборот.

Ограничитель тока

Секция ограничителя тока трехзвенного регулятора предназначена для ограничения выходного тока генератора.Этот блок содержит реле с катушкой, включенной последовательно по отношению к выходу генератора. Как показано на Рисунке 9-61, весь выходной ток генератора должен проходить через токовую катушку реле. Это создает реле, чувствительное к токовому выходу генератора. То есть, если выходной ток генератора увеличивается, точки реле размыкаются, и наоборот. Пунктирная линия показывает ток, протекающий в поле генератора, когда точки ограничителя тока открыты. Следует отметить, что, в отличие от реле регулятора напряжения, ограничитель тока обычно замкнут во время нормального полета.Только при экстремальных токовых нагрузках точки ограничителя тока должны открываться; в это время ток возбуждения снижается, а выходная мощность генератора остается в установленных пределах.

Рисунок 9-61. Ограничитель тока.

Реле обратного тока

Третий блок трехзвенного регулятора используется для предотвращения выхода тока из батареи и питания генератора. Этот тип протекания тока приведет к разрядке батареи и противоположен нормальной работе. Это можно рассматривать как ситуацию с обратным током и известно как реле обратного тока.Простое реле обратного тока, показанное на рис. 9-62, содержит как катушку напряжения, так и катушку тока.

Рисунок 9-62. Реле обратного тока.

Катушка напряжения подключена параллельно выходу генератора и запитывается каждый раз, когда выход генератора достигает своего рабочего напряжения. Когда катушка напряжения находится под напряжением, точки контакта замыкаются, и ток пропускается к электрическим нагрузкам самолета, как показано пунктирными линиями. На схеме показано реле обратного тока в нормальном рабочем положении; точки замкнуты, и ток течет от генератора к электрическим нагрузкам самолета.Когда ток течет к нагрузкам, токовая катушка находится под напряжением, а точки остаются закрытыми. Если нет выхода генератора из-за сбоя системы, контактные точки размыкаются из-за потери магнетизма в реле. При разомкнутых точках контакта генератор автоматически отключается от бортовой сети, что предотвращает обратный поток от шины нагрузки к генератору. Типичный трехступенчатый регулятор для авиационных генераторов показан на рис. 9-63.

Рисунок 9-63. Трехступенчатый регулятор для генераторов с регулируемой частотой вращения.[щелкните изображение, чтобы увеличить] Как видно на Рисунке 9-63, все три блока регулятора работают вместе, чтобы управлять выходной мощностью генератора. Регулятор контролирует выходную мощность генератора и регулирует мощность нагрузки самолета по мере необходимости для переменных полета. Обратите внимание, что только что описанный вибрационный регулятор был упрощен для целей объяснения. Типичный регулятор вибрации, установленный на самолете, вероятно, будет более сложным.

Flight Mechanic рекомендует

Устранение неисправностей регулятора напряжения генератора

Delco-Remy

Райан Хотчкисс

Creatas Images / Creatas / Getty Images

До появления генераторов генераторы использовались для подзарядки батарей и выработки тока для электрических системы в транспортных средствах, тяжелой и сельскохозяйственной технике.Точно так же, как электрические системы, питаемые от генератора, 6-вольтовые системы требуют регулятора напряжения, чтобы аккумулятор и генератор не сгорали лампочки, не перегорели предохранители и не расплавили электрическую систему. Проверить генератор и регулятор на 6-вольтовой электросети несложно. Все тесты проводятся от аккумулятора. Многие тесты проводятся от аккумулятора.

Проверка генератора и регулятора

Шаг 1

Подключите положительный датчик мультиметра к положительной клемме аккумуляторной батареи, а отрицательный к отрицательной клемме при выключенном двигателе.Мультиметр должен показывать более 6 вольт на несколько десятых; От 6,4 до 6,8 указывает на здоровую батарею. Если выходное напряжение батареи меньше 6 вольт, зарядите батарею и проверьте ее снова. Если плохой выходной сигнал сохраняется, замените аккумулятор.

Шаг 2

Попросите помощника запустить двигатель. Дисплей мультиметра должен увеличиться до 6,8–7,4 вольт, если генератор работает нормально на холостом ходу. Если нет увеличения напряжения, значит, щетки генератора неисправны или не контактируют с внутренней стороной стенки генератора.В этом случае восстановите или замените генератор.

Попросите вашего помощника медленно увеличить обороты двигателя, чтобы увеличить обороты двигателя. Мультиметр должен показывать устойчивый рост напряжения, а затем остановиться на отметке 7,8 или 8 вольт. Если это происходит, регулятор работает нормально. Если напряжение продолжает подниматься выше отметки 8,2, регулятор выходит из строя. В этом случае устраните неисправность регулятора.

Устранение неисправностей реле выключателя регулятора

Шаг 1

Отсоедините аккумуляторную батарею, сначала отрицательную клемму, затем положительную.После нескольких сотен часов работы точки соприкосновения нарушились. Это может привести к тому, что регулятор не сможет управлять текущим напряжением. Чтобы устранить эту проблему, запишите контактные точки на регуляторе. Сначала снимите положительный и отрицательный провода с якоря, ослабив винты на монтажном кронштейне, расположенном сбоку от регулятора, затем отсоедините провода от якоря. Удалите коррозию с арматуры. Подсоедините положительный и отрицательный провода к якорю и замените кронштейн и крепежные винты.Проверить регулятор.

Шаг 2

Проверьте воздушный зазор, нажав пальцами на рычаг якоря, расположенный сверху и сбоку от обмотки шунта. Убедитесь, что все точки контакта обмотки касаются нижней части рычага одновременно при нажатии. Если нет, согните якорь рядом с установочным винтом, пока он не замкнет все контакты одновременно, когда вы надавите на него.

Шаг 3

Отрегулируйте зазор на регуляторе, слегка согнув верхний упор якоря — не более чем на 1/16 дюйма.Это выступ, расположенный сбоку от обрамления средней обмотки. Он прижимается к верхней части каркаса обмотки шунта. Согните его, вставив отвертку с плоским жалом между ним и рамкой шунтирующей обмотки.

Подключите аккумулятор. Сначала положительный вывод, затем отрицательный. Проверьте напряжение замыкания — точку, в которой регулятор останавливает повышение напряжения, поступающего в цепь.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *