Site Loader

Содержание

Принципиальная Схема Компьютерного Блока Питания

Через переходные конденсаторы С5, С6 и ограничительные резисторы R5, R7 в базу ключевых транзисторов поступают управляющие сигналы, режекторная цепь R4C4 предотвращает проникновение импульсных помех в переменную электрическую сеть. Расположение элементов на плате Для начала взгляните на картинку, на ней подписаны все узлы блока питания, далее мы кратко рассмотрим их предназначение.


Структурная схема блока питания компьютера Схема блока питания компьютера кликните для увеличения. Управляющие импульсы на транзисторы преобразователя поступают через согласующий трансформатор Т2.

В случае их наличия заменить микросхему U4.
Зарядное устройство из компьютерного блока питания (ПОДРОБНО).

Все эти показатели изменяются из-за нестабильного напряжения, температуры и загруженности выхода преобразователя. Конечно, блоки питания современной аппаратуры хоть и имеют общие принципы работы, но схемотехнически отличаются достаточно сильно.



Проверить наличие на контакте PS-ON потенциала корпуса нуля , исправность микросхемы U4 и элементов ее обвязки.

Это связано с маленькой емкостью фильтра сетевого напряжения и в момент падения напряжения повышается ток ККМ, и в этот момент включается защита от короткого замыкания. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста; Дисковый термистор обозначен красным тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ.

В этих БП используют специальный дроссель с индуктивностью выше чем на входе.

Это быстродействующие диоды с малым падением напряжения. Если БП, подключенный только к материнской плате не заработал, следует продолжить поиск неисправности и определить, какое из этих устройств неисправно.

Автомобильное зарядное из компьютерного блока питания ATX DELUX без схемы

Отзывы о сервисе

Работа источника питания. Отказ выходных транзисторов импульсного преобразователя чаще всего является следствием их длительного перегрева, вызванного перегрузкой или недостаточным охлаждением. Варисторы V3, V4 ограничивают выпрямленное напряжение при бросках сетевого напряжения выше принятых пределов. Схема выходного каскада изображена на рисунке.


Если напряжения в пределах нормы.

Понятное дело, что каждый день появляются все более новые и актуальные варианты, поэтому постараемся оперативно пополнять сборник схем более новыми вариантами.

Именно первый структурный элемент схемы представлен на рисунке.

Возможные неисправности БП Использование в течение многих лет отработанной схемы импульсного преобразователя позволило сделать ее крайне надежной. Этот фильтр позволяет подавлять помехи, неизбежно возникающие при работе импульсного БП, могут негативно воздействовать на работу теле- и радиоаппаратуры.

Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. PS-ON Включение блока питания при замыкании вывода на массу.

Начальный ток затвора транзистора Q1 создается резистором R11R
переделка однотактного блока питания компьютера подробно

Распределение нагрузки и возможные неисправности

Проверка БП компьютера измерением величины сопротивления выходных цепей При ремонте БП некоторые виды его неисправности можно определить путем измерения омметром величины сопротивления между общим проводом GND черного цвета и остальными контактами выходных разъемов.


Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании. Кроме основного контактного разъёма питания из блока выходят провода с колодками для подключения напряжения к жесткому диску, оптическому приводу SATA и MOLEX, дополнительное питание процессора, видеокарты, питание для флоппи-дисковода. Это снизит уровень шума, но не стоит так делать, если блок питания нагружен полностью.

Этот блок отвечает за управление силовыми транзисторами 4 блок , стабилизацию напряжения с помощью обратной связи , защиту от КЗ. Стабилизация выходных параметров устройства осуществляется с помощью широтно-импульсной модуляции управляющих сигналов. Если возникли проблемы с работой источника дежурного питания, то БП может после пуска сразу отключиться.

Вторая половина моста образована конденсаторами С1, С2, создающими делитель выпрямленного напряжения. Поэтому большинство неисправностей БП персональных компьютеров связаны либо со старением его компонентов, либо со значительными отклонениями питания или нагрузки от номинальных параметров. Двухзвенный фильтр выходного напряжения состоит из конденсатора С15, дросселя L3 и конденсатора С Это один из самых не надежных узлов блока питания и ремонтировать его сложно.

Установка компьютерного блока питания в корпус системного блока Для этого засовываете его в верхнюю часть системного блока, и затем фиксируете тремя или четырьмя винтами к тыловой панели системного блока. Возможные неисправности БП Использование в течение многих лет отработанной схемы импульсного преобразователя позволило сделать ее крайне надежной. По бокам тоже бывают наклейки, мешающие снять крышку, их нужно прорезать по линии сопряжения деталей корпуса БП.


Резистор R67 — нагрузка делителя. Диодный мостик — находится сразу за фильтром помех и позволяет преобразовать переменный электроток в постоянный пульсирующий. Такая упрощенная схема БП с использованием контроллера широтно-импульсной модуляции показана на следующем рисунке. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями.

Если же отсутствует напряжение только на одном из управляемых силовых выходов, стоит в первую очередь обратить внимание на выпрямительный диод и фильтрующий конденсатор этой цепи. Неисправности компьютерного блока питания и способы их диагностирования и ремонта Приступая к поиску неисправности рекомендуется ознакомится со схемой компьютерного БП. Ground Масса. У него 20 выводов, на современных материнских платах подключается дополнительных 4 вывода. Но, из-за дороговизны, эти комплектующие могут отсутствовать.

Отрицательные напряжения -5 и В раз в десять слабее основных плюсовых, поэтому там стоят простые 2-х амперные диоды без радиаторов. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Единственная микросхема способна выполнять роль преобразователя и корректора КМ, что сокращает общее количество элементов в схеме БП. Кроме основного контактного разъёма питания из блока выходят провода с колодками для подключения напряжения к жесткому диску, оптическому приводу SATA и MOLEX, дополнительное питание процессора, видеокарты, питание для флоппи-дисковода.
как сделать лабораторный блок питания и зарядник из компьютерного блока питания АТХ ч.1

Что это такое

При этом на микросхеме U3 выв. В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения.

Не стоит забывать и о том, что перегрев выходного каскада может быть связан с накоплением большого количества пыли внутри блока питания. Подайте на блок сетевое питание.

Выходные каскады преобразователя Именно на этот элемент конструкции ложится основная нагрузка.

Проверка работоспособности К компьютеру ИП подключается через стандартизированный разъём, он универсален в большинстве блоков, за исключением специализированных источников питания, которые могут использовать ту же клеммную колодку, но с иной распиновкой, давайте рассмотрим стандартный разъём и назначение его выводов. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов. Неисправности компьютерного блока питания и способы их диагностирования и ремонта Приступая к поиску неисправности рекомендуется ознакомится со схемой компьютерного БП.

Структурная схема

Как правило, их неисправность может быть обнаружена путем визуального осмотра. Плюс кулера к желтому проводу, а минус к красному. Еще лучше найти автомобильные или мотоциклетные 6В лампы накаливания и подключить несколько штук параллельно. В случае исправности элементов обвязки заменить U4.

На противоположный вход усилителя выв. Проверка блока питания Хотя импульсный БП и не относится к числу радиоэлектронных схем начального уровня, его диагностика и ремонт своими руками доступны многим людям, имеющим базовые знания и навыки в области радиоэлектроники. PS-ON Включение блока питания при замыкании вывода на массу. Включайте неизвестные блоки питания через лампочку, чтобы не повредить проводку и дорожки печатной платы.

Cхемы компьютерных блоков питания ATX

При этом через диод D5, подключенный к этой обмотке, заряжается конденсатор С7, и происходит намагничивание трансформатора. Ground Масса. При проверке блока желательно его отключить от материнской платы, это предотвратит превышение напряжений выше номинальных если блок всё же не исправен.

Фильтры этих источников -L6. В случае их выхода за эти пределы более чем на мкс на выходе 3 микросхемы U4 устанавливается высокий уровень напряжения, и источник питания выключается по входу 4 микросхемы U3. Такие модели более комфортны в использовании, поскольку создают меньше шума при малых нагрузках. Аналогичная ситуация возникает в условиях аварийной эксплуатации блока питания, связанной с короткими замыканиями в нагрузке, контроль которых осуществляется специальной схемой контроля.
КАК СДЕЛАТЬ РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ СВОИМИ РУКАМИ

принцип работы, принципиальная схема и проверка его работоспособности

Сегодня комплектующие для десктопного ПК устаревают очень быстро. Единственным исключением является блок питания (БП). Конструкция этого устройства не претерпела серьезных изменений за последние 15 лет, когда на рынке появились БП форм-фактора ATX. Принцип работы и принципиальная схема блока питания для компьютера мало чем отличаются у всех производителей.

Структура и принцип работы

Типовая схема компьютерного блока питания стандарта ATX показана ниже. По своей конструкции это классический БП импульсного типа, основанный на ШИМ-контроллере TL 494. Сигнал к началу работы этого элемента поступает с материнской платы. До формирования управляющего импульса активным остается лишь источник дежурного питания, выдающий напряжение в 5 В.

Выпрямитель и ШИМ-контроллер

Чтобы было проще разобраться с устройством блока питания компьютера и принципом его работы, нужно рассмотреть отдельные структурные элементы. Начать стоит с сетевого выпрямителя.

Основная задача этого блока заключается в преобразовании переменного сетевого электротока в постоянный, который необходим для функционирования ШИМ-контроллера, а также дежурного источника питания. В состав блока входит несколько основных деталей:

  • Предохранитель F1 – необходим для защиты БП от перегрузки.
  • Терморезистор – он расположен в магистрали «нейтраль» и призван снижать скачки электротока, возникающие в момент включения ПК.
  • Фильтр помех – в его состав входят дроссели L1 и L2, конденсаторы C1- C4, а также Tr1, имеющие встречную обмотку. Этот фильтр позволяет подавлять помехи, неизбежно возникающие при работе импульсного БП, могут негативно воздействовать на работу теле- и радиоаппаратуры.
  • Диодный мостик – находится сразу за фильтром помех и позволяет преобразовать переменный электроток в постоянный пульсирующий. Для сглаживания пульсаций предусмотрен емкостно-индукционный фильтр.

На выходе из сетевого выпрямителя напряжение присутствует до того момента, пока БП не будет отключен от розетки. При этом ток поступает на дежурный источник питания и ШИМ-контроллер. Именно первый структурный элемент схемы представлен на рисунке.

​Он представляет собой преобразователь малой мощности импульсного типа. В его основе лежит транзистор Т11, задачей которого является генерация питающих импульсов для микросхемы 7805.

После транзистора ток сначала проходит через разделительный трансформатор и выпрямитель, основанный на диоде D 24. Используемая в этом БП микросхема обладает одним довольно серьезным недостатком – высоким падением напряжения, что при больших нагрузках может вызвать перегрев элемента.

Основой любого преобразователя импульсного типа является ШИМ-контроллер. В рассматриваемом примере он реализован с помощью микросхемы TL 494. Основная задача модуля ШИМ (широтно-импульсная модуляция) заключается в изменении длительности импульсов напряжении при сохранении их амплитуды и частоты. Полученное выходное напряжение на импульсном преобразователе стабилизируется с помощью настройки длительности импульсов, которые генерирует ШИМ-контроллер.

Выходные каскады преобразователя

Именно на этот элемент конструкции ложится основная нагрузка. Это приводит к серьезному нагреву коммутирующих транзисторов Т2 и Т4. По этой причине они установлены на массивные радиаторы. Однако пассивное охлаждение не всегда позволяет справляться с сильным тепловыделением, все БП оснащены кулером. Схема выходного каскада изображена на рисунке.

Перед выходным каскадом расположена цепь включения БП, основанная на транзисторе Т9. При пуске блока питания на этот элемент конструкции напряжение в 5 В подается через сопротивление R 8. Это происходит после формирования сигнала к пуску ПК на материнской плате. Если возникли проблемы с работой источника дежурного питания, то БП может после пуска сразу отключиться.

Сейчас все производители используют практически аналогичные схемы блоков питания компьютеров. Вносимые ими изменения не оказывают серьезного влияния на принцип работы устройства.

Распиновка главного коннектора

Сначала БП форм-фактора ATX для соединения с системной платой оснащались разъемом на 20 пин. Однако совершенствование вычислительной техники привело к необходимости использовать дополнительно еще 4 контакта. Современные блоки питания могут оснащаться 24-пиновым разъемом в одном корпусе или иметь 20+4 пин. Все контакты коннекторов стандартизованы и вот основные из них:

  • +3,3 В – питание материнской платы и центрального процессора.
  • +5 В – напряжение необходимо для работы некоторых узлов системной платы, винчестеров и внешних устройств, подключенных к портам USB.
  • +12 В – управляемое напряжение, используемое HDD и кулерами.
  • -5 В – начиная с версии ATX 1.3 не используется.
  • -12 В – сегодня применяется крайне редко.
  • Ground – масса.

Распределение нагрузки и возможные неисправности

Напряжение, выдаваемое источником питания, предназначено для различных нагрузок. Таким образом, в зависимости от конфигурации конкретного ПК, потребление энергии в каждой цепи источника питания может меняться. Именно поэтому в технических характеристиках БП указывается не только общая мощность устройства, но и максимальное потребление электротока для каждого типа выходного напряжения.

При апгрейде «железа» ПК следует помнить об этом факте. Например, установка мощного современного видеоускорителя приводит к резкому повышению нагрузки в цепи 12 В. Чтобы ПК работал корректно, возможно потребуется и замена блока питания. Чаще всего неполадки с работой БП связаны со старением элементов его конструкции либо существенным недостатком мощности.

Не стоит забывать и о том, что перегрев выходного каскада может быть связан с накоплением большого количества пыли внутри блока питания. Электролитические конденсаторы, установленные в сетевом выпрямителе и выходных каскадах, больше других деталей склонны к старению.

В первую очередь это касается продукции малоизвестных брендов, использующих дешевые комплектующие. По сути, именно элементная база и качество деталей отличает хорошие устройства от дешевых. Провести ремонт БП самостоятельно может только человек, имеющий определенный набор знаний в области электроники. Однако современные устройства, изготовленные известными брендами, отличаются высокой надежностью. При соблюдении правил обслуживания ПК, проблемы с ними возникают очень редко.

3.4. Принципиальная схема. Импульсные блоки питания для IBM PC

3.4. Принципиальная схема

Импульсные источники питания данного класса имеют несколько различных модификаций схемотехнической реализации отдельных вспомогательных узлов. Принципиальных различий в их рабочих характеристиках нет, а разнообразие объясняется множеством производителей блоков питания. Поэтому при описании узлов и каскадов источников питания и особенностей их функционирования будут также приведены и графические иллюстрации вариантов их исполнения. Для подробного обсуждения принципа построения и функционирования блока питания компьютеров типа AT/XT в качестве базовой выбрана модель, принципиальная схема которой показана на рис. 3.2.

Рис. 3.2. Принципиальная схема импульсного блока питания

На принципиальной схеме не показан сетевой выключатель, так как он относится к системному модулю компьютера. В самом блоке питания по входу первичной электрической сети установлен предохранитель – необходимый элемент системы защиты. Предохранитель предназначен для отключения импульсного источника питания от питающей сети при возникновении в нем неисправностей и не используется для сохранения работоспособности активных элементов источника питания, так как обладает высокой тепловой инерционностью. Процессы пробоя развиваются лавинообразно, остановить их может только электронная защита. Предохранитель способен лишь предотвратить лавинообразное нарастание процесса, который разрушает конструктивные элементы блока питания и повреждает проводники печатной платы.

Терморезистор TR1, также подключенный по входу первичной цепи, имеет отрицательный коэффициент сопротивления. Этот элемент имеет максимальное значения сопротивления в холодном состоянии, то есть в момент включения источника. Основным назначением терморезистора TR1 является ограничение пускового тока, протекающего по входной цепи блока питания. При включении источника питания возникает скачок тока, так как конденсаторы сглаживающего фильтра C10 и C11 в начальный момент времени не заряжены и их сопротивление крайне мало. По мере их заряда уровень тока, протекающего по входным цепям блока питания, постепенно снижается. Под действием тока терморезистор TR1 медленно разогревается, а его сопротивление снижается. После выхода на рабочий режим сопротивление TR1 имеет значение десятых долей Ома и практически не влияет на общие энергетические показатели блока питания.

После терморезистора и предохранителя в первичную цепь источника питания включен сетевой фильтр. В конструкции фильтра использованы элементы, которые должны обеспечивать значительный уровень затухания помех, проникающих в источник питания и исходящих из него. В отсутствие сетевого фильтра блок питания можно применять только в идеальных условиях, при полном отсутствии приборов, способствующих возникновению помех. Но даже в этом случае целесообразность его установки вполне оправдана, так как фильтр значительно ограничивает уровень паразитных колебаний, проникающих в сеть от самого источника с импульсным преобразователем. Конструкцию входного фильтра рассчитывают из условий, обеспечивающих работу блока питания при кратковременных бросках и провалах сетевого напряжения. Стандарт отечественной сети переменного тока допускает изменение напряжения в диапазоне 220 В ±15 %. Но стандарт не может предусмотреть уровней кратковременных импульсных помех, источником которых являются приборы и устройства на основе электродвигателей, электромагнитных пускателей. Импульсные помехи от таких приборов могут проникать во вторичные цепи источника питания и оказывать негативное влияние на функционирование нагрузочных элементов. Наличие входного фильтра способствует устранению или значительному ослаблению влияния внешних помех на работоспособность блока питания и элементов нагрузки, подключенных к его вторичным цепям.

Помехоподавляющий фильтр представляет собой звено П-типа, состоящее из конденсаторов C1 – C4 и дросселя T, две обмотки которого намотаны в одном направлении на общий сердечник из материала с высоким значением магнитной проницаемости. Обмотки имеют одинаковое количество витков. Конденсаторы C3 и C4 включены последовательно, точка их соединения подключается к корпусной клемме блока питания. В отечественной сети выполняется заземление нулевого провода и поэтому точка соединения обязательно должна подключаться через корпус к «нулю». Таким образом, один из конденсаторов C3, C4 оказывается зашунтированным, а второй подключается параллельно конденсатору C2. Если корпус источника питания с таким фильтром оставить без подключения к защитному «нулю», то в средней точке емкостного делителя образуется напряжение, равное половине входного питающего напряжения.

Емкостное сопротивление конденсаторов C1 и C2 фильтра на частоте питающей сети достаточно большое и составляет примерно 145 кОм. Такое сопротивление не оказывает заметного влияния на помехи с частотой, близкой к частоте промышленной сети. Импульсные же помехи, имеющие спектр от десятков килогерц до нескольких мегагерц, замыкаются через малое сопротивление этих конденсаторов, и поэтому происходит значительное снижение их уровня. Полностью нейтрализовать помеху, проникающую из сети, одними конденсаторами не удается, и для более глубокой фильтрации применяется индуктивный элемент – дроссель Т1. По конструкции и техническому смыслу дроссель T1 больше похож на трансформатор, поэтому в специальной литературе иногда его называют нейтрализующим трансформатором. Каждая из обмоток дросселя включена в цепь потенциального проводника. По одной из обмоток протекает ток прямого направления, по второй – возвратный ток. Направление токов противоположно, но их величины абсолютно одинаковы. Токи, протекающие по каждой из обмоток, будут создавать магнитные потоки, равные по величине, но противоположные по направлениям. Взаимно противоположные потоки будут компенсировать друг друга. Ни один из потоков не будет преобладающим, а значит, не будет происходить намагничивание сердечника и индуктивность обмоток дросселя будет иметь максимально возможное значение. Это положение справедливо независимо от уровня тока потребления блока питания. Магнитные потоки, создаваемые колебаниями помехи, также взаимно компенсируются. Индуктивное сопротивление обмоток дросселя прямо пропорционально частоте протекающего тока. На частоте сети его величина относительно небольшая, но для высокочастотных колебаний помех она значительна. Затухание помех растет по мере увеличения их частоты. Установка отдельных дросселей на каждом отдельном проводнике будет производить значительно меньший эффект. В выпрямителе сетевого напряжения устанавливаются НЧ диоды. Ток, протекающий через сетевой выпрямитель, имеет пульсирующий характер, определяемый частотой переключения силовых транзисторов импульсного преобразователя. В моменты изменения полярности напряжения на диодах D1 – D4 выпрямителя происходит перезарядка их внутренней емкости. Этот процесс занимает определенный временной интервал. Диоды, изменяющие свое проводящее состояние на закрытое, не могут переключиться мгновенно, и некоторое время остаются открытыми. В это время одна пара диодов еще не закрыта, а вторая – постепенно открывается и начинает пропускать ток. Возникают сквозные токи, которые возбуждают кратковременные помеховые колебания. Подавление помех такого типа выполняют конденсаторы C2 – C4, подключенные к защитному заземлению или «нулю». Все конденсаторы сетевого фильтра рассчитаны на максимальное рабочее напряжение 1 кВ.

С помощью селектора уровня входного напряжения S1 выполняется переключение входной цепи блока питания для работы от сетевого напряжения с номинальными уровнями 220 или 115 В. Переключатель имеет только два состояния: замкнутое и разомкнутое. Разомкнутое состояние переключателя устанавливается, когда напряжение сети равно 220 В. Контакты переключателя замыкаются для подключения блока питания к сети с пониженным напряжением. Естественно, что при сохранении энергетического баланса, ток потребления и соответственно нагрузка на входные цепи источника питания при пониженном входном напряжении увеличивается в два раза по сравнению с режимом работы от 220 В. Действие переключателя достаточно подробно рассмотрено в главе 2 при описании аналогичного узла источника питания для компьютеров ATX форм-фактора. Следует еще раз отметить, что коммутация переключателя S1 при его замыкании переводит схему выпрямителя на работу в режиме удвоителя напряжения. Основная же цель установки переключателя заключается в сохранении уровня постоянного напряжения питания на силовом каскаде. Когда происходит коммутация транзисторов полумостового усилителя, на силовой трансформатор подается импульсное напряжение, полный размах которого равен напряжению питания силового каскада. Сохранение этого напряжения на неизменном уровне позволяет использовать все элементы силового каскада без каких-либо модификаций. В этом случае отпадает необходимость применения транзисторов для силового каскада с повышенным напряжением коллектор-эмиттер, а также не происходит коммутации обмоток трансформатора для изменения коэффициентов трансформации.

Диодный мост выпрямителя нагружен на два электролитических конденсатора C10 и C11, включенных последовательно, а таже на силовой каскад импульсного преобразователя. Конденсаторы входят в состав фильтра, сглаживающего выпрямленное пульсирующее напряжение. Параллельно каждому из конденсаторов С10 и С11 сглаживающего фильтра включены высокоомные резисторы соответственно R17 и R18, создающие цепь разряда конденсаторов при отключении источника питания от сети. Резисторы выбраны с такими номиналами сопротивления, чтобы не оказывать влияния на работу ВЧ преобразователя.

Вся остальная электрическая схема блока питания предназначена непосредственно для генерации, усиления импульсных сигналов и их преобразования во вторичные напряжения, поступающие на элементы нагрузки. Этапы функционирования импульсного преобразователя приведены ниже в последовательности, соответствующей изложению материала в главе 2.

Но прежде чем перейти к детальному разбору функционирования отдельных каскадов, следует дать общую схему развития процессов, происходящих в блоке питания непосредственно после его включения в сеть. Именно начальный этап включения блоков питания для компьютеров AT/XT коренным образом отличается от более поздних модификаций, используемых в ATX системах.

В блоке питания, схема которого представлена на рис. 3.2, нет узла, аналогичного вспомогательному автогенератору ATX преобразователя, от которого блок управления получает первичное питание для запуска генератора импульсных последовательностей. Поэтому одним из основных вопросов при подключении к питающей сети такого источника является обеспечение начального запуска и первичная запитка узла управления. Решение этой проблемы заключается в особой конструкции силового каскада преобразователя и, в частности, в способе подключения трансформатора внешнего возбуждения T2 к базовой цепи транзистора Q5. Вторичная цепь T2 имеет три обмотки. Две из них традиционно подключены к базовым цепям силовых транзисторов Q5 и Q6, а третья – к эмиттеру транзистора Q5 и через конденсатор C15 с первичной обмоткой импульсного трансформатора T4. Базовая цепь каждого силового транзистора соединена со своим коллектором через резистор с большим сопротивлением. Таким образом, через резисторы R27 и R29 на базы транзисторов Q5 и Q6 подается положительное смещение. Благодаря этим двум особенностям происходит полное открывание одного из силовых транзисторов Q5 или Q6, в результате которого на вторичных обмотках появляется импульс напряжения. Этим импульсным напряжением заряжаются емкости конденсаторов C18 и C17, образующие сглаживающий фильтр. Положительная обкладка конденсатора C17 подключена к выводу питания IC1/12 микросхемы ШИМ регулятора. Уровня напряжения на конденсаторах C17 и C18 и энергии их заряда оказывается достаточно для запуска микросхемы IC1 и получения на выходах IC1/8,11 последовательностей импульсов. Через каскады промежуточного усилителя, выполненного на транзисторах Q3 и Q4, импульсы управления подаются в базовые цепи силовых транзисторов Q5 и Q6. Возникает устойчивый колебательный процесс переключения силовых транзисторов, происходящий под управлением импульсов, формируемых схемой управления. Когда импульсные колебания принимают установившийся характер, напряжения на вторичных обмотках нарастают до номинальных уровней, и происходит формирование сигнала «питание в норме». Далее начинает действовать система слежения за выходным уровнем напряжения канала +5 В и регулирования поступления энергии во вторичные цепи. Если нагрузка каналов находится в определенных пределах, источник питания обеспечивает энергетическую поддержку вторичных цепей. При резком и неконтролируемом отклонении уровня нагрузки, приводящего к КЗ по одному из каналов, включается система блокировки схемы управления и отключения силового каскада.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

ATX БЛОК ПИТАНИЯ — СХЕМА

ATX БЛОК ПИТАНИЯ, СХЕМА

     С каждым днём всё более популярны среди радиолюбителей компьютерные блоки питания ATX. При относительно небольшой цене, они представляют собой мощный, компактный источник напряжения 5 и 12 В 250 – 500 ватт. БП ATX  можно использовать и в зарядных устройствах для автомобильных аккумуляторов, и в лабораторных блоках питания, и в сварочных инверторах, и ещё массу применений можно найти для них при определённой фантазии. Причём если схема БП ATX и подвергается переделке, то минимальной.

 

     Схемотехника этих блоков питания примерно одинакова практически у всех производителей. Небольшое отличие касается лишь БП AT и ATX. Главное различие между ними заключается в том, что БП в AT не поддерживает программно стандарт расширенного управления питанием. Отключить данный БП можно, лишь прекратив подачу напряжение на его вход, а в блоках питания формата ATX есть возможность программного отключения сигналом управления с материнской платы. Как правило плата ATX имеет большие размеры чем AT и вытянута по вертикали. 

     В любом компьютерном БП, напряжение +12 В предназначено для питания двигателей дисковых накопителей. Источник питания по этой цепи должен обеспечивать большой выходной ток, особенно в компьютерах с множеством отсеков для дисководов. Это напряжение также подается на вентиляторы. Они потребляют ток до 0.3 А, но в новых компьютерах это значение ниже 0.1 А. Питание +5 вольт подаётся на все узлы компьютера, поэтому имеет очень большую мощность и ток, до 20 А, а напряжение +3.3 вольта предназначено исключительно для запитки процессора. Зная что современные многоядерные процессоры имеют мощность до 150 ватт, нетрудно подсчитать ток этой цепи: 100 ватт/3.3 вольт=30 А! Отрицательные напряжения -5 и -12 В раз в десять слабее основных плюсовых, поэтому там стоят простые 2-х амперные диоды без радиаторов.

     В задачи БП входит и приостановка функционирования системы до тех пор, пока величина входного напряжения не достигнет значения, достаточного для нормальной работы. В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения. После этого на системную плату посылается специальный сигнал Power Good. Если этот сигнал не поступил, компьютер работать не будет.

     Сигнал Power Good можно использовать для сброса вручную если подать его на микросхему тактового генератора. При заземлении сигнальной цепи Power Good, генерация тактовых сигналов прекращается и процессор останавливается. После размыкания переключателя вырабатывается кратковременный сигнал начальной установки процессора и разрешается нормальное прохождение сигнала — выполняется аппаратная перезагрузка компьютера. В компьютерных БП типа ATX, предусмотрен сигнал, называемый PS ON, он может использоваться программой для отключения источника питания.

     Здесь можно скачать сборник схем компьютерных блоков питания, а тут очень полезная книга по описанию, видам и принципу действия БП AT и ATX. Для проверки работоспособности блока питания, следует нагрузить БП лампами для автомобильных фар и замерять все выходные напряжения тестером. Если напряжения в пределах нормы. Также стоит проверить изменение выдаваемое БП напряжение с изменением нагрузки.

     Работа этих блоков питания очень стабильна и надёжна, но в случае сгорания, чаще всего выходят из строя мощные транзисторы, низкоомные резисторы, выпрямительные диоды на радиаторе, варисторы, трансформатор и предохранитель.

     

ФОРУМ по компьютерным БП

Принципиальные электрические схемы компьютерного оборудования.

&nbsp &nbsp На этой страничке размещено несколько десятков электрических принципиальных схем, и полезные ссылки на ресурсы, связанные с темой ремонта оборудования. В основном, компьютерного. Помня о том, сколько сил и времени иногда приходилось затрачивать на поиск нужной информации, справочника или схемки, я собрал здесь почти все, чем пользовался при ремонте и что имелось в электронном виде. Надеюсь, кому-нибудь, что-нибудь пригодится.

Утилиты и справочники.

cables.zip — Разводка кабелей — Справочник в формате .chm. Автор данного файла — Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru — краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратуа, игровые приставки, интерфейсы автомобилей.

Конденсатор 1.0 — Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).

startcopy.ru — по моему мнению, это один из лучших сайтов рунета, посвященный ремонту принтеров, копировальной техники, многофункциональных устройств. Можно найти методики и рекомендации по устранению практически любой проблемы с любым принтером.

Блоки питания.

Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:

ATXPower.rar — Схемы блоков питания ATX 250 SG6105, IW-P300A2, и 2 схемы неизвестного происхождения.

colors_it_330u_sg6105.gif — Схема БП NUITEK (COLORS iT) 330U.

codegen_250.djvu — Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.

codegen_300x.gif — Схема БП Codegen 300w mod. 300X.

deltadps200.gif — Схема БП Delta Electronics Inc. модель DPS-200-59 H REV:00.

deltadps260.ARJ — Схема БП Delta Electronics Inc. модель DPS-260-2A.

DTK_PTP_2038.gif — Схема БП DTK PTP-2038 200W.

FSP145-60SP.GIF — Схема БП FSP Group Inc. модель FSP145-60SP.

green_tech_300.gif — Схема БП Green Tech. модель MAV-300W-P4.

HIPER_HPU-4K580.rar — Схемы блока питания HIPER HPU-4K580

hpc-360-302.pdf — Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-360-302 DF REV:C0

hpc-420-302.pdf — Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-420-302 DF REV:C0

iwp300a2.gif — Схемы блока питания INWIN IW-P300A2-0 R1.2.

IW-ISP300AX.gif — Схемы блока питания INWIN IW-P300A3-1 Powerman.

JNC_LC-B250ATX.gif — JNC Computer Co. LTD LC-B250ATX

JNC_SY-300ATX.pdf — JNC Computer Co. LTD. Схема блока питания SY-300ATX

JNC_SY-300ATX.rar — предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.

KME_pm-230.GIF — Схемы блока питания Key Mouse Electronics Co Ltd модель PM-230W

Power_Master_LP-8_AP5E.gif — Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).

Power_Master_FA_5_2_v3-2.gif — Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.

MaxpowerPX-300W.GIF — Схема БП Maxpower PX-300W

microlab350w.pdf — Схема БП Microlab 350W

microlab_400w.pdf — Схема БП Microlab 400W

linkworld_LPJ2-18.GIF — Схема БП Powerlink LPJ2-18 300W

SevenTeam_ST-200HRK.gif — Схема БП SevenTeam ST-200HRK

SHIDO_ATX-250.gif — Схемы блока питания SHIDO модель LP-6100 250W.

SUNNY_ATX-230.png — Схема БП SUNNY TECHNOLOGIES CO. LTD ATX-230

Другое оборудование.

splitter.arj — 2 принципиальные схемы ADSL — сплиттеров.

KS3A.djvu — Документация и схемы для 29″ телевизоров на шасси KS3A.

GFL2.20E.pdf — Документация и схемы для телевизоров Philips на шасси GFL2.20E.

Если вы желаете помочь развитию проекта, можете воспользоваться кнопкой «Поделиться» для своей социальной сети

В начало страницы &nbsp&nbsp&nbsp | &nbsp&nbsp&nbsp На главную страницу сайта

ПРИНЦИПИАЛЬНАЯ СХЕМА ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ КОМПЬЮТЕРА

ПРИНЦИПИАЛЬНАЯ СХЕМА ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ
КОМПЬЮТЕРА

СТАТЬЯ ПОДГОТОВЛЕНА НА ОСНОВЕ КНИГИ А. В. ГОЛОВКОВА и В. Б ЛЮБИЦКОГО «БЛОКИ ПИТАНИЯ ДЛЯ СИСТЕМНЫХ МОДУЛЕЙ ТИПА IBM PC-XT/AT» ИЗДАТЕЛЬСТВА «ЛАД и Н»

ПРИМЕР ПОСТРОЕНИЯ ОДНОГО ИЗ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ

   Подводя итог всему сказанному, для полноты картины приведем в качества примера полное описание принципиальной схемы для одного из 200-ваттных импульсных блоков питания (производство Тайвань PS6220C) (рис. 56).
    Переменное напряжение сети подается через сетевой выключатель PWR SW через сетевой предохранитель F101 4А, помехоподавляющие фильтры, образованные элементами С101, R101, L101, С104, С103, С102 и дроссели И 02, L103 на:
    • выходной трехконтактный разъем, к которому может подстыковываться кабель питания дисплея;
    • двухконтактный разъем JP1, ответная часть которого находится на плате.
    С разъема JP1 переменное напряжение сети поступает на:
    • мостовую схему выпрямления BR1 через терморезистор THR1;
    • первичную обмотку пускового трансформатора Т1.

 

Рисунок 56. Схема электрическая принципиальная импульсного блока питания ИБП PS-6220C

    На выходе выпрямителя BR1 включены сглаживающие емкости фильтра С1, С2. Терморезистор THR ограничивает начальный бросок зарядного тока этих конденсаторов. Переключатель 115V/230V SW обеспечивает возможность питания импульсного блока питания как от сети 220-240В, так и от сети 110/127 В.
    Высокооомные резисторы R1, R2, шунтирующие конденсаторы С1, С2 являются симметрирующими (выравнивают напряжения на С1 и С2), а также обеспечивают разрядку этих конденсаторов после выключения импульсного блока питания из сети. Результатом работы входных цепей является появление на шине выпрямленного напряжения сети постоянного напряжения Uep, равного +310В, с некоторыми пульсациями. В данном импульсном блоке питания используется схема запуска с принудительным (внешним) возбуждением, которая реализована на специальном пусковом трансформаторе Т1, на вторичной обмотке которого после включения блока питания в сеть появляется переменное напряжение с частотой питающей сети. Это напряжение выпрямляется диодами D25, D26, которые образуют со вторичной обмоткой Т1 двухполупериодную схему выпрямления со средней точкой. СЗО — сглаживающая емкость фильтра, на которой образуется постоянное напряжение, используемое для питания управляющей микросхемы U4.
    В качестве управляющей микросхемы в данном импульсном блоке питания традиционно используется ИМС TL494.
    Питающее напряжение с конденсатора СЗО подается на вывод 12 U4. В результате на выводе 14 U4 появляется выходное напряжение внутреннего опорного источника Uref=-5B, запускается внутренний генератор пилообразного напряжения микросхемы, а на выводах 8 и 11 появляются управляющие напряжения, которые представляют собой последовательности прямоугольных импульсов с отрицательными передними фронтами, сдвинутые друг относительно друга на половину периода. Элементы С29, R50, подключенные к выводам 5 и 6 микросхемы U4 определяют частоту пилообразного напряжения, вырабатываемого внутренним генератором микросхемы.
    Согласующий каскад в данном импульсном блоке питания выполнен по бестранзисторной схеме с раздельным управлением. Напряжение питания с конденсатора СЗО подается в средние точки первичных обмоток управляющих трансформаторов Т2, ТЗ. Выходные транзисторы ИМС U4 выполняют функции транзисторов согласующего каскада и включены по схеме с ОЭ. Эмиттеры обоих транзисторов (выводы 9 и 10 микросхемы) подключены к «корпусу». Коллекторными нагрузками этих транзисторов являются первичные полуобмотки управляющих трансформаторов Т2, ТЗ, подключенные к выводам 8, 11 микросхемы U4 (открытые коллекторы выходных транзисторов). Другие половины первичных обмоток Т2, ТЗ с подключенными к ним диодами D22, D23 образуют цепи размагничивания сердечников этих трансформаторов.
    Трансформаторы Т2, ТЗ управляют мощными транзисторами полумостового инвертора.
    Переключения выходных транзисторов микросхемы вызывают появление импульсных управляющих ЭДС на вторичных обмотках управляющих трансформаторов Т2, ТЗ. Под действием этих ЭДС силовые транзисторы Q1, Q2 попеременно открываются с регулируемыми паузами («мертвыми зонами»). Поэтому через первичную обмотку силового импульсного трансформатора Т5 протекает переменный ток в виде пилообразных токовых импульсов. Это объясняется тем, что первичная обмотка Т5 включена в диагональ электрического моста, одно плечо которого образовано транзисторами Q1, Q2, а другое — конденсаторами С1, С2. Поэтому при открывании какого-либо из транзисторов Q1, Q2 первичная обмотка Т5 оказывается подключена к одному из конденсаторов С1 или С2, что и обуславливает протекание через нее тока в течение всего времени, пока открыт транзистор.
    Демпферные диоды D1, D2 обеспечивают возврат энергии, запасенной в индуктивности рассеяния первичной обмотки Т5 за время закрытого состояния транзисторов Q1, Q2 обратно в источник (рекуперация).
    Цепочка С4, R7, шунтирующая первичную обмотку Т5, способствует подавлению высокочастотных паразитных колебательных процессов, которые возникают в контуре, образованном индуктивностью первичной обмотки Т5 и ее меж-витковой емкостью, при закрываниях транзисторов Q1, Q2, когда ток через первичную обмотку резко прекращается.
    Конденсатор СЗ, включенный последовательно с первичной обмоткой Т5, ликвидирует постоянную составляющую тока через первичную обмотку Т5, исключая тем самым нежелательное подмагничивание его сердечника.
    Резисторы R3, R4 и R5, R6 образуют базовые делители для мощных транзисторов Q1, Q2 соответственно и обеспечивают оптимальный режим их переключения с точки зрения динамических потерь мощности на этих транзисторах.
    Протекание переменного тока через первичную обмотку Т5 обуславливает наличие знакопеременных прямоугольных импульсных ЭДС на вторичных обмотках этого трансформатора.
    Силовой трансформатор Т5 имеет три вторичные обмотки, каждая из которых имеет вывод от средней точки.
    Обмотка IV обеспечивает получение выходного напряжения +5В. Диодная сборка SD2 (полумост) образует с обмоткой IV двухполупериодную схему выпрямления со средней точкой (средняя точка обмотки IV заземлена).
    Элементы L2, СЮ, С11, С12 образуют сглаживающий фильтр в канале +5В.
    Для подавления паразитных высокочастотных колебательных процессов, возникающих при коммутациях диодов сборки SD2, эти диоды за-шунтированы успокаивающими RC-цепочками С8, R10nC9, R11.
    Диоды сборки SD2 представляют собой диоды с барьером Шоттки, чем достигается необходимое быстродействие и повышается КПД выпрямителя.
    Обмотка III совместно с обмоткой IV обеспечивает получение выходного напряжения +12В вместе с диодной сборкой (полумостом) SD1. Эта сборка образует с обмоткой III двухполупериодную схему выпрямления со средней точкой. Однако средняя точка обмотки III не заземлена, а подключена к шине выходного напряжения +5В. Это даст возможность использовать диоды Шоттки в канале выработки +12В, т.к. обратное напряжение, прикладываемое к диодам выпрямителя при таком включении, уменьшается до допустимого для диодов Шоттки уровня.
    Элементы L1, С6, С7 образуют сглаживающий фильтр в канале +12В.
    Резисторы R9, R12 предназначены для ускорения разрядки выходных конденсаторов шин +5В и +12В после выключения ИБП из сети.
    RC-цепочка С5, R8 предназначена для подавления колебательных процессов, возникающих в паразитном контуре, образованном индуктивностью обмотки III и ее межвитковой емкостью.
    Обмотка И с пятью отводами обеспечивает получение отрицательных выходных напряжений -5В и-12В.
    Два дискретных диода D3, D4 образуют полумост двухполупериодного выпрямления в канале выработки -12В, а диоды D5, D6 — в канале -5В.
    Элементы L3, С14 и L2, С12 образуют сглаживающие фильтры для этих каналов.
    Обмотка II, также как и обмотка III, зашунтиро-вана успокоительной RC-цепочкой R13, С13.
    Средняя точка обмотки II заземлена.
    Стабилизация выходных напряжений осуществляются разными способами в разных каналах.
    Отрицательные выходные напряжения -5В и -12В стабилизируются при помощи линейных интегральных трехвыводных стабилизаторов U4 (типа 7905) и U2 (типа 7912).
    Для этого на входы этих стабилизаторов подаются выходные напряжения выпрямителей с конденсаторов С14, С15. На выходных конденсаторах С16, С17 получаются стабилизированные выходные напряжения -12В и -5В.
    Диоды D7, D9 обеспечивают разрядку выходных конденсаторов С16, С17 через резисторы R14, R15 после выключения импульсного блока питания из сети. Иначе эти конденсаторы разряжались бы через схему стабилизаторов, что нежелательно.
    Через резисторы R14, R15 разряжаются и конденсаторы С14, С15.
    Диоды D5, D10 выполняют защитную функцию в случае пробоя выпрямительных диодов.
    Если хотя бы один из этих диодов (D3, D4, D5 или D6) окажется «пробитым», то в отсутствие диодов D5, D10 ко входу интегрального стабилизатора U1 (или U2) прикладывалось бы положительное импульсное напряжение, а через электролитические конденсаторы С14 или С15 протекал бы переменный ток, что привело бы к выходу их из строя.
    Наличие диодов D5, D10 в этом случае устраняет возможность возникновения такой ситуации, т.к. ток замыкается через них.
    Например, в случае, если «пробит» диод D3, положительная часть периода, когда D3 должен быть закрыт, ток замкнется по цепи: к-а D3 — L3 -D7- D5- «корпус».
    Стабилизация выходного напряжения +5В осуществляется методом ШИМ. Для этого к шине выходного напряжения +5В подключен измерительный резистивный делитель R51, R52. Сигнал, пропорциональный уровню выходного напряжения в канале +5В, снимается с резистора R51 и подается на инвертирующий вход усилителя ошибки DA3 (вывод 1 управляющей микросхемы). На прямой вход этого усилителя (вывод 2) подается опорный уровень напряжения, снимаемый с резистора R48, входящего в делитель VR1, R49, R48, который подключен к выходу внутреннего опорного источника микросхемы U4 Uref=+5B. При изменениях уровня напряжения на шине +5В под воздействием различных дестабилизирующих факторов происходит изменение величины рассогласования (ошибки) между опорным и контролируемым уровнями напряжения на входах усилителя ошибки DA3. В результате ширина (длительность) управляющих импульсов на выводах 8 и 11 микросхемы U4 изменяется таким образом, чтобы вернуть отклонившееся выходное напряжение +5В к номинальному значению (при уменьшении напряжения на шине +5В ширина управляющих импульсов увеличивается, а при увеличении этого напряжения -уменьшается).
    Устойчивая (без возникновения паразитной генерации) работа всей петли регулирования обеспечивается за счет цепочки частотно-зависимой отрицательной обратной связи, охватывающей усилитель ошибки DA3. Эта цепочка включается между выводами 3 и 2 управляющей микросхемы U4 (R47, С27).
    Выходное напряжение +12В в данном ИБП не стабилизируется.
    Регулировка уровня выходных напряжений в данном ИБП производится только для каналов +5В и +12В. Эта регулировка осуществляется за счет изменения уровня опорного напряжения на прямом входе усилителя ошибки DA3 при помощи подстроечного резистора VR1.
    При изменении положения движка VR1 в процессе настройки ИБП будет изменяться в некоторых пределах уровень напряжения на шине +5В, а значит и на шине +12В, т.к. напряжение с шины +5В подается в среднюю точку обмотки III.
    Комбинированная зашита данного ИБП включает в себя:
    • ограничивающую схему контроля ширины управляющих импульсов;
    • полную схему защиты от КЗ в нагрузках;
    • неполную схему контроля выходного перенапряжения (только на шине +5В).
    Рассмотрим каждую из этих схем.
    Ограничивающая схема контроля использует в качестве датчика трансформатор тока Т4, первичная обмотка которого включена последовательно с первичной обмоткой силового импульсного трансформатора Т5.
    Резистор R42 является нагрузкой вторичной обмотки Т4, а диоды D20, D21 образуют двухпо-лупериодную схему выпрямления знакопеременного импульсного напряжения, снимаемого с нагрузки R42.
    Резисторы R59, R51 образуют делитель. Часть напряжения сглаживается конденсатором С25. Уровень напряжения на этом конденсаторе пропорционально зависит от ширины управляющих импульсов на базах силовых транзисторов Q1, Q2. Этот уровень через резистор R44 подается на инвертирующий вход усилителя ошибки DA4 (вывод 15 микросхемы U4). Прямой вход этого усилителя (вывод 16) заземлен. Диоды D20, D21 включены так, что конденсатор С25 при протекании тока через эти диоды заряжается до отрицательного (относительно общего провода) напряжения.
    В нормальном режиме работы, когда ширина управляющих импульсов не выходит за допустимые пределы, потенциал вывода 15 положителен, благодаря связи этого вывода через резистор R45 с шиной Uref. При чрезмерном увеличении ширины управляющих импульсов по какой-либо причине, отрицательное напряжение на конденсаторе С25 возрастает, и потенциал вывода 15 становится отрицательным. Это приводит к появлению выходного напряжения усилителя ошибки DA4, которое до этого было равно 0В. Дальнейший рост ширины управляющих импульсов приводит к тому, что управление переключениями ШИМ-ком-паратора DA2 передается к усилителю DA4, и последующего за этим увеличения ширины управляющих импульсов уже не происходит (режим ограничения), т.к. ширина этих импульсов перестает зависеть от уровня сигнала обратной связи на прямом входе усилителя ошибки DA3.
    Схема защиты от КЗ в нагрузках условно может быть разделена на защиту каналов выработки положительных напряжений и защиту каналов выработки отрицательных напряжений, которые схемотехнически реализованы примерно одинаково.
    Датчиком схемы защиты от КЗ в нагрузках каналов выработки положительных напряжений (+5В и +12В) является диодно-резистивный делитель D11, R17, подключенный между выходными шинами этих каналов. Уровень напряжения на аноде диода D11 является контролируемым сигналом. В нормальном режиме работы, когда напряжения на выходных шинах каналов +5В и +12В имеют номинальные величины, потенциал анода диода D11 составляет около +5,8В, т.к. через делитель-датчик протекает ток с шины +12В на шину +5В по цепи: шина +12В — R17- D11 — шина +56.
    Контролируемый сигнал с анода D11 подается на резистивный делитель R18, R19. Часть этого напряжения снимается с резистора R19 и подается на прямой вход компаратора 1 микросхемы U3 типа LM339N. На инвертирующий вход этого компаратора подается опорный уровень напряжения с резистора R27 делителя R26, R27, подключенного к выходу опорного источника Uref=+5B управляющей микросхемы U4. Опорный уровень выбран таким, чтобы при нормальном режиме работы потенциал прямого входа компаратора 1 превышал бы потенциал инверсного входа. Тогда выходной транзистор компаратора 1 закрыт, и схема ИБП нормально функционирует в режиме ШИМ.
    В случае КЗ в нагрузке канала +12В, например, потенциал анода диода D11 становится равным 0В, поэтому потенциал инвертирующего входа компаратора 1 станет выше, чем потенциал прямого входа, и выходной транзистор компаратора откроется. Это вызовет закрывание транзистора Q4, который нормально открыт током базы, протекающим по цепи: шина Upom — R39 — R36 -б-э Q4 — «корпус».
    Открывание выходного транзистора компаратора 1 подключает резистор R39 к «корпусу», и поэтому транзистор Q4 пассивно закрывается нулевым смещением. Закрывание транзистора Q4 влечет за собой зарядку конденсатора С22, который выполняет функцию звена задержки срабатывания защиты. Задержка необходима из тех соображений, что в процессе выхода ИБП на режим, выходные напряжения на шинах +5В и +12В появляются не сразу, а по мере зарядки выходных конденсаторов большой емкости. Опорное же напряжение от источника Uref, напротив, появляется практически сразу же после включения ИБП в сеть. Поэтому в пусковом режиме компаратор 1 переключается, его выходной транзистор открывается, и если бы задерживающий конденсатор С22 отсутствовал, то это привело бы к срабатыванию защиты сразу при включении ИБП в сеть. Однако в схему включен С22, и срабатывание защиты происходит лишь после того как напряжение на нем достигнет уровня, определяемого номиналами резисторов R37, R58 делителя, подключенного к шине Upom и являющегося базовым для транзистора Q5. Когда это произойдет, транзистор Q5 открывается, и резистор R30 оказывается подключен через малое внутреннее сопротивление этого транзистора к «корпусу». Поэтому появляется путь для протекания тока базы транзистора Q6 по цепи: Uref — э-6 Q6 — R30 — к-э Q5 -«корпус».
    Транзистор Q6 открывается этим током до насыщения, в результате чего напряжение Uref=5B, которым запитан по эмиттеру транзистор Q6, оказывается приложенным через его малое внутреннее сопротивление к выводу 4 управляющей микросхемы U4. Это, как было показано ранее, ведет к останову работы цифрового тракта микросхемы, пропаданию выходных управляющих импульсов и прекращению переключении силовых транзисторов Q1, Q2, т.е. к защитному отключению. КЗ в нагрузке канала +5В приведет к тому, что потенциал анода диода D11 будет составлять всего около +0.8В. Поэтому выходной транзистор компаратора (1) окажется открыт, и произойдет защитное отключение.
    Аналогичным образом построена защита от КЗ в нагрузках каналов выработки отрицательных напряжений (-5В и -12В) на компараторе 2 микросхемы U3. Элементы D12, R20 образуют диодно-резистивный делитель-датчик, подключаемый между выходными шинами каналов выработки отрицательных напряжений. Контролируемым сигналом является потенциал катода диода D12. При КЗ в нагрузке канала -5В или -12В, потенциал катода D12 повышается (от -5,8 до 0В при КЗ в нагрузке канала -12В и до -0,8В при КЗ в нагрузке канала -5В). В любом из этих случаев открывается нормально закрытый выходной транзистор компаратора 2, что и обуславливает срабатывание защиты по приведенному выше механизму. При этом опорный уровень с резистора R27 подается на прямой вход компаратора 2, а потенциал инвертирующего входа определяется номиналами резисторов R22, R21. Эти резисторы образуют двуполярно запитанный делитель (резистор R22 подключен к шине Uref=+5B, а резистор R21 — к катоду диода D12, потенциал которого в нормальном режиме работы ИБП, как уже отмечалось, составляет -5,8В). Поэтому потенциал инвертирующего входа компаратора 2 в нормальном режиме работы поддерживается меньшим, чем потенциал прямого входа, и выходной транзистор компаратора будет закрыт.
    Защита от выходного перенапряжения на шине +5В реализована на элементах ZD1, D19, R38, С23. Стабилитрон ZD1 (с пробивным напряжением 5,1В) подключается к шине выходного напряжения +5В. Поэтому, пока напряжение на этой шине не превышает +5,1 В, стабилитрон закрыт, а также закрыт транзистор Q5. В случае увеличения напряжения на шине +5В выше +5,1В стабилитрон «пробивается», и в базу транзистора Q5 течет отпирающий ток, что приводит к открыванию транзистора Q6 и появлению напряжения Uref=+5B на выводе 4 управляющей микросхемы U4, т.е. к защитному отключению. Резистор R38 является балластным для стабилитрона ZD1. Конденсатор С23 предотвращает срабатывание защиты при случайных кратковременных выбросах напряжения на шине +5В (например, в результате установления напряжения после скачкообразного уменьшения тока нагрузки). Диод D19 является развязывающим.
    Схема образования сигнала PG в данном импульсном блоке питания является двухфункциональной и собрана на компараторах (3) и (4) микросхемы U3 и транзисторе Q3.
    Схема построена на принципе контроля наличия переменного низкочастотного напряжения на вторичной обмотке пускового трансформатора Т1, которое действует на этой обмотке лишь при наличии питающего напряжения на первичной обмотке Т1, т.е. пока импульсный блок питания включен в питающую сеть.
    Практически сразу после включения ИБП в питающую сеть появляется вспомогательное напряжение Upom на конденсаторе СЗО, которым запитывается управляющая микросхема U4 и вспомогательная микросхема U3. Кроме того, переменное напряжение со вторичной обмотки пускового трансформатора Т1 через диод D13 и то-коограничивающий резистор R23 заряжает конденсатор С19. Напряжением с С19 запитывается резистивный делитель R24, R25. С резистора R25 часть этого напряжения подается на прямой вход компаратора 3, что приводит к закрыванию его выходного транзистора. Появляющееся сразу вслед за этим выходное напряжение внутреннего опорного источника микросхемы U4 Uref=+5B за-питывает делитель R26, R27. Поэтому на инвертирующий вход компаратора 3 подается опорный уровень с резистора R27. Однако этот уровень выбран меньшим, чем уровень на прямом входе, и поэтому выходной транзистор компаратора 3 остается в закрытом состоянии. Поэтому начинается процесс зарядки задерживающей емкости С20 по цепи: Upom — R39 — R30 — С20 — «корпус».
    Растущее по мере зарядки конденсатора С20 напряжение подается на инверсный вход 4 микросхемы U3. На прямой вход этого компаратора подается напряжение с резистора R32 делителя R31, R32, подключенного к шине Upom. Пока напряжение на заряжающемся конденсаторе С20 не превышает напряжения на резисторе R32, выходной транзистор компаратора 4 закрыт. Поэтому в базу транзистора Q3 протекает открывающий ток по цепи: Upom — R33 — R34 — 6-э Q3 — «корпус».
    Транзистор Q3 открыт до насыщения, а сигнал PG, снимаемый с его коллектора, имеет пассивный низкий уровень и запрещает запуск процессора. За это время, в течение которого уровень напряжения на конденсаторе С20 достигает уровня на резисторе R32, импульсный блок питания успевает надежно выйти в номинальный режим работы, т.е. все его выходные напряжения появляются в полном объеме.
    Как только напряжение на С20 превысит напряжение, снимаемое с R32, компаратор 4 переключится, него выход ной транзистор откроется.
    Это повлечет за собой закрывание транзистора Q3, и сигнал PG, снимаемый с его коллекторной нагрузки R35, становится активным (Н-уровня) и разрешает запуск процессора.
    При выключении импульсного блока питания из сети на вторичной обмотке пускового трансформатора Т1 переменное напряжение исчезает. Поэтому напряжение на конденсаторе С19 быстро уменьшается из-за малой емкости последнего (1 мкф). Как только падение напряжения на резисторе R25 станет меньше, чем на резисторе R27, компаратор 3 переключится, и его выходной транзистор откроется. Это повлечет за собой защитное отключение выходных напряжений управляющей микросхемы U4, т.к. откроется транзистор Q4. Кроме того, через открытый выходной транзистор компаратора 3 начнется процесс ускоренной разрядки конденсатора С20 по цепи: (+)С20 — R61 — D14 — к-э выходного транзистора компаратора 3 — «корпус».
    Как только уровень напряжения на С20 станет меньше, чем уровень напряжения на R32, компаратор 4 переключится, и его выходной транзистор закроется. Это повлечет за собой открывание транзистора Q3 и переход сигнала PG в неактивный низкий уровень до того, как начнут недопустимо уменьшаться напряжения на выходных шинах ИБП. Это приведет к инициализации сигнала системного сброса компьютера и к исходному состоянию всей цифровой части компьютера.
    Оба компаратора 3 и 4 схемы выработки сигнала PG охвачены положительными обратными связями с помощью резисторов R28 и R60 соответственно, что ускоряет их переключение.
    Плавный выход на режим в данном ИБП традиционно обеспечивается при помощи формирующей цепочки С24, R41, подключенной к выводу 4 управляющей микросхемы U4. Остаточное напряжение на выводе 4, определяющее максимально возможную длительность выходных импульсов, задается делителем R49, R41.
    Питание двигателя вентилятора осуществляется напряжением с конденсатора С14 в канале выработки напряжения -12В через дополнительный развязывающий Г-образный фильтр R16, С15.

Транзисторы, используемый в компьютерных импульсных блоках питания

Тип транзистора

IK max, А

Ur max
(Uкэ0 max, B

Uкб0 max, В

Pк max, Вт

Tmax,°C

h21э

Режим измерения

Iкб0,мкА

fгр, МГц

CK,пФ

tсп,мкс

Корпус

Uкэ, В

Iк, A

2SC3320

15

400

600

100

>10

6

5

0-15

ТО-247

2SC3042

12

(400)

500

2,5

140

15-50

5

0.8

10

20

ТО-218

2SC2625

10

400

650

100

>10

2

5

20

1

ТО-247

2SC3318

10

400

600

100

>10

2

5

0.15

ТО-247

2SC3306

10

400

530

100

140

>10

5

5

0,1

1

ТО-247

MJE16080

8

400

800

100

140

15-25

4

2500

20

ТО-220АВ

2N6929

8

350

550

100

175

10-35

8

3

100

20

ТО-220АВ

2SC3040

8

(400)

500

2.5

140

15-50

5

0.8

10

20

ТО-218

2N6928

8

300

450

100

175

10-35

8

3

100

25

ТО-220АВ

2SC3636

7

500

900

80

150

>8

0,8

5

10

0.2

SOT-93 (ТО-218)

2SC3039

7

(400)

500

1,7

140

15-50

5

0,8

10

20

ТО-220

2SC3039L

7

(400)

500

1.7

140

15-30

5

0.8

10

20

ТО-220

2SC3039M

7

(400)

500

1.6

140

20-30

5

0,8

10

20

ТО-220

2SC3039N

7

(400)

500

1,7

145

30-50

5

0,8

10

20

ТО-220

2SC3039

7

(400)

500

1.7

140

15-50

5

0,8

10

20

ТО-220

2SC3039L

7

(400)

500

1.7

140

15-30

5

0,8

10

20

ТО-220

2SC2536

7

400

500

80

140

>20

0,1

5

100

1

SOT-93 (ТО-218)

2SC4242

7

400

450

60

210

40

5

30

1

ТО-220АВ

2SC2305

7

400

400

80

140

>10

5

4

10

SOT-93 (ТО-218)

2SC3044A

6

450

450

100

175

>10

3

5

10

30

ТО-220АВ

2SC3755

5

800

1500

60

140

>8

1

5

10

0.3

SOT-93 (ТО-218)

2SD1877

4

800

1500

50

140

3.5-7

2.5

5

10

20

0.3

SOT-93 (ТО-218)

2SD1883

4

800

1500

50

140

3.5-7

2.5

5

10

20

0.3

SOT-93 (ТО-218)

2SD1876

3

800

1500

50

145

3-6

2

5

10

25

0.3

SOT-93 (ТО-218)

2SC2378

0.1

(50)

70

0.25

125

185

6

0.1

0.1

250

3

ТО-92 (ТО-226АА)

2SC945

0.1

50

60

0,25

125

200

6

0.001

0.1

250

3,5

ТО-92 (ТО-226АА)

2SC945RA

0.1

(50)

60

0.25

125

180

5

0,001

0.1

250

3

ТО-92 (ТО-226АА)

2SC945R

0.1

(50)

60

0.25

125

90

6

0,0013

0.1

250

3,5

ТО-92 (ТО-226АА)

2SC945PA

0.1

(50)

60

0,25

125

400

6

0.001

0,1

250

3

ТО-92 (ТО-226АА)

2SC945QA

0.1

(50)

60

0.25

125

270

6

0,001

0.1

250

3

ТО-92 (ТО-226АА)

2SC945P

0.1

(50)

60

0.25

125

200

6

0.001

0,1

250

3,5

ТО-92 (ТО-226АА)

2SC945Q

0.1

(50)

60

0,25

125

135

6

0.001

0.1

250

3.5

ТО-92 (ТО-226АА)

2SC945KA

0.1

(50)

60

0,25

125

600

6

0.001

0.1

250

3

ТО-92 (ТО-226АА)

2SC945LRA

0.1

(50)

60

0,25

125

180

6

0,001

0.1

250

3

ТО-92 (ТО-226АА)

2SC945K

0.1

(50)

60

0.25

125

300

6

0.001

0.1

250

3.5

ТО-92 (ТО-226АА)

КТ375А

0.1

60

60

0.2

125

10-100

2

0.002

0.4

250

5

ТО-92 (ТО-226АА)

2SC1222E

0,1

(50)

60

0.25

125

350

6

0,001

0,05

250

3.5

ТО-92 (ТО-226АА)

2SC2308

0,1

(50)

60

0.2

125

100

12

0.002

230

ТО-92 (ТО-226АА)

2SC1345D

0.1

(50)

55

0.2

125

250

12

0.002

0.5

230

3.5

ТО-92 (ТО-226АА)

2SC1570F

0.1

(50)

55

0.2

125

160

6

0.001

0,1

100

ТО-92 (ТО-226АА)

2SC641KC

0.1

(15)

40

0.1

125

80

5

0,001

0.25

400

0.9

ТО-92 (ТО-226АА)

2SC2026

0.05

(14)

30

0,25

150

80

10

0.01

0.1

1500

0.75

ТО-92 (ТО-226АА)

2SC2037

0,05

(14)

30

0.25

150

80

10

0.01

0,1

1500

0.75

ТО-92 (ТО-226АА)

 

 


Адрес администрации сайта: [email protected]
   

 

Схема блока питания компьютера — электрическая, структурная, подключение, импульсного

Работа любого компьютера невозможна без блока питания. Поэтому стоит отнестись серьезно к выбору. Ведь от стабильной и надежной работы БП будет зависеть работоспособность самого компьютера.

Что это такое

Главной задачей блока питания является преобразование переменного тока и дальнейшее формирование требуемого напряжения, для нормальной работы всех комплектующих ПК.

Напряжение, требуемое для работы комплектующих:

Кроме этих заявленных величин существует и дополнительное величины:

Фото: блок питания

БП выполняет роль гальванической развязки между электрическим током из розетки и комплектующими потребляющие ток. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Часто используются источники питания (ИП) формата ATX.

Обзор схем источников питания

Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь. Работа преобразователей этого типа заключается в использовании двухтактного режима.

Стабилизация выходных параметров ИП осуществляется применением широтно-импульсной модуляции (ШИМ-контроллер) управляющих сигналов.

В импульсных источниках питания часто используется микросхема ШИМ-контроллера TL494, которая обладает рядом положительных свойств:

  • приемлемые рабочие характеристики микросхемы. Это – малый пусковой ток, быстродействие;
  • наличие универсальных внутренних элементов защиты;
  • удобство использования.

Простой импульсный БП

Принцип работы обычного импульсного БП можно увидеть на фото.

Фото: блок схема работы импульсного

Первый блок выполняет изменение переменного тока в постоянный. Преобразователь выполнен в виде диодного моста, который преобразовывает напряжение, и конденсатора, сглаживающего колебания.

Кроме этих элементов могут присутствовать еще дополнительные комплектующие: фильтр напряжения и термисторы. Но, из-за дороговизны, эти комплектующие могут отсутствовать.

Генератор создает импульсы с определенной частотой, которые питают обмотку трансформатора. Трансформатор выполняет главную работу в БП, это – гальваническая развязка и преобразование тока до требуемых величин.

Далее переменное напряжение, генерируемое трансформатором, идет на следующий блок. Этот блок из диодов, выравнивающих напряжение, и фильтра пульсаций. Фильтр состоит из группы конденсаторов и дросселя.

Видео: Принцип работы ШИМ контроллера БП

АТХ без коррекции коэффициента

Простой импульсный БП хоть и рабочее устройство, но на практике его использовать неудобно. Многие из его параметров на выходе «плавают», в том числе и напряжение. Все эти показатели изменяются из-за нестабильного напряжения, температуры и загруженности выхода преобразователя.

Но если осуществлять управление этими показателями с помощью контроллера, который будет выполнять роль стабилизатора и дополнительные функции, то схема будет вполне пригодной для применения.

Структурная схема БП с использованием контроллера широтно-импульсной модуляции проста и представляет генератор импульсов на ШИМ-контроллере.

Фото: ИП для компьютера с ШИМ-контроллером

ШИМ-контроллер регулирует амплитуду изменения сигналов проходящих через фильтр низких частот (ФНЧ). Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании.

АТХ с коррекцией коэффициента мощности

В новых источниках питания для ПК появляется дополнительный блок – корректор коэффициента мощности (ККМ). ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности (КМ).

Поэтому производителями активно изготавливаются БП с обязательной коррекцией КМ. Это означает, что ИП на компьютере будет работать в диапазоне от 300Вт и более.

Фото: схема блока питания компьютера 300w

В этих БП используют специальный дроссель с индуктивностью выше чем на входе. Такой ИП называют PFC или пассивным ККМ. Имеет внушительный вес из-за дополнительного использования конденсаторов на выходе выпрямителя.

Из недостатков можно выделить невысокую надежность ИП и некорректную работу с ИБП во время переключения режима работы «батарея/сеть».


Это связано с маленькой емкостью фильтра сетевого напряжения и в момент падения напряжения повышается ток ККМ, и в этот момент включается защита от короткого замыкания.

На двухканальном ШИМ-контролере

Часто используют в современных источниках питания для компьютера двухканальные ШИМ-контроллеры. Единственная микросхема способна выполнять роль преобразователя и корректора КМ, что сокращает общее количество элементов в схеме БП.

Фото: схема БП с использованием двухканального ШИМ-котроллера

 

В приведенной схеме первая часть выполняет формирование стабилизированного напряжение +38В, а вторая часть является преобразователем, который формирует стабилизированное напряжение +12В.

Схема подключения блока питания компьютера

Для подключения блока питания к компьютеру следует выполнить ряд последовательных действий:

  • установить БП в системный блок. Все эти действия нужно выполнять аккуратно, чтобы не задеть остальные комплектующие;
  • закрепить БП к задней панели системного блока специальными винтами;
  • подсоединить кабели питания ко всем устройствам находящимся в системном блоке (материнская плата, дисковод, видеокарта, винчестер). Особых предпочтений в порядке подключения нет, главное все сделать аккуратно и правильно.

    фото: схема подключения питания компьютера PcCar CarPc

Конструктивные особенности

Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. На задней его части расположен разъем под сетевой кабель и кнопка выключателя.

Кроме этого может находится еще на задней стенке БП и разъем для подключения монитора.

В различных моделях могут быть и другие разъемы: 

  • индикатор напряжения;
  • кнопки изменения режима работы вентилятора;
  • переключатель входящего напряжения;
  • USB-порты, встроенные в БП.

    Фото: внешний вид БП для ПК

В современных источниках питания для ПК реже устанавливают вентилятор на задней стенке, который вытягивал горячий воздух из БП. В замен этого решения начали использовать вентилятор на верхней стенке, который был больше и работал тише.

На некоторых моделях возможно встретить сразу два вентилятора. Из стенки, которая находится внутри системного блока, выходит провод со специальным разъемом для подачи тока на материнскую плату. На фото указаны возможные разъемы подключения и обозначение контактов.

Фото: обозначение контактов разъемов БП

Каждый цвет провода подает определенное напряжение:

  • желтый — +12 В;
  • красный — +5 В;
  • оранжевый — +3,3 В;
  • черный – заземление.

У различных производителей могут изменяться значения для этих цветов проводов.

Также есть разъемы для подачи тока комплектующим компьютера.

Фото: специальные разъемы для комплектующих

Параметры и характеристики

БП персонального компьютера имеет много параметров, которые могут не указываться в документации. На боковой этикетке указываются несколько параметров – это напряжение и мощность.

Мощность – основной показатель

Эта информация пишется на этикетке крупным шрифтом. Показатель мощности БП указывает на общее количество электроэнергии доступной для внутренних комплектующих.

Казалось бы, выбрать БП с требуемой мощностью будет достаточным просуммировать потребляемые показатели комплектующими и выбрать БП с небольшим запасом. Поэтому большой разницы между 200w и 250w не будет существенной.

Фото: Импульсный блок питания компьютера (ATX) на з00 Вт

Но на самом деле ситуация выглядит сложнее, потому что выдаваемое напряжение может быть разным — +12В, -12В и другим. Каждая линия напряжения потребляет определенную мощность. Но в БП расположен один трансформатор, который генерирует все напряжения, используемые ПК. В редких случаях может быть размещено два трансформатора. Это дорогой вариант и используется в качестве источника на серверах.

В простых же БП используется 1 трансформатор. Из-за этого мощность на линиях напряжений может меняться, увеличиваться при малой нагрузке на других линиях и наоборот уменьшаться.

Рабочие напряжение

При выборе БП следует обратить внимание на максимальные значения рабочих напряжений, а также диапазон входящих напряжений, он должен быть от 110В до 220В.

Правда большинство из пользователей на это не обращают своего внимания и выбирая БП с показателями от 220В до 240В рискуют к появлению частых отключений ПК.

Фото: параметры блока питания компьютера

Такой БП будет выключаться при падении напряжения, которые не редкость для наших электросетей.Превышение заявленных показателей приведет к выключению ПК, сработает защита. Чтобы включить обратно БП придется отключить его от сети и подождать минуту.

Следует помнить, что процессор и видеокарта потребляю самое большее рабочее напряжение в 12В. Поэтому следует обращать внимание на эти показатели.Для снижения нагрузки на разъемы, линию 12В разделяют на пару параллельных с обозначением +12V1 и +12V2. Эти показатели должны быть указаны на этикетке.

Советы по выбору источника

Перед тем как выбрать для покупки БП, следует обратить внимание на потребляемую мощность внутренними компонентами ПК.

Но некоторые видеокарты требуют особый потребляемый ток +12В и эти показатели следует учитывать при выборе БП. Обычно для ПК, в котором установлена одна видеокарта, достаточно источника с мощностью в 500вт или 600.

Фото: Super Power 300X

Также следует ознакомится с отзывами покупателей и обзорами специалистов о выбранной модели, и компании производителе. Лучшие параметры, на которые следует обратить внимание, это: мощность, тихая работа, качество и соответствие написанным характеристикам на этикетке.

Вам необходимо настроить модем в режиме роутера! Подробнее в настройке модема в роутер ByFly.

Интересует настройка роутера ZYXEL KEENETIC LITE PPPoE? Читайте тут.

Настройка IPTV в роутере DIR 620 от Ростелеком? Читайте в статье.

Экономить при этом не следует, ведь от работы БП будет зависеть работа всего ПК. Поэтому чем качественнее и надежнее источник, тем дольше прослужит компьютер. Пользователь может быть уверен, что сделал правильный выбор и не беспокоится о внезапных выключениях своего ПК.

5 Схема блока питания ПК для вас

Хорошая схема импульсного блока питания постоянного тока от старого компьютера, который не используется. Он мощный, прочный и отлично работает.
В настоящее время компьютер становится электроприбором, необходимым для каждого дома, потому что они очень полезны.

Но срок службы и очень быстро устаревают. Есть новая программа. Желаемая машина с высоким КПД. Всегда можно поменять на новый. (К современному).

-Где старые компы? Скорее всего, он будет отброшен как спам.Это может быть очень ценно для многих, в том числе и для меня. Многие соседи всегда давали мне старый компьютер для работы над проектами.

-Первое, что мне нравится использовать, это мощность, пусть даже старая, но мощная, долговечная и отлично работает. Но это всегда должно быть правильно заземлено. Для предотвращения утечки тока или поражения электрическим током. Нормальное напряжение составляет 3,3 В, 5 В, 12 В и многое другое.

5V 12V 15A max Цепь питания с коммутационным режимом

Это цепь питания с коммутационным режимом 5V 12V, макс 15A.Это старая схема блока питания ПК мощностью 200Вт . Эта схема подходит для ремонта. Я использую популярную микросхему TL494 в качестве основной. В схеме имеется сдвоенный выход на 2 части.

  • 5V 15A и -5V 1A
  • 12V 10A и -12V 1A

TL494, популярный IC PWM


Источник: я не знаю источника.

Я надеюсь, что эта схема может в рядах проверять медитацию на ремонте компьютера у друзей. Думаю, снова используйте номер интегральной схемы TL494.И по-прежнему использовать транзисторную мощность.

Ремонт компьютера Dell GX620 с собой

Я давно пользуюсь компьютером Dell GX620, потому что он хорош и долговечен. Я потерял его несколько дней назад. Мой друг, который занимается ремонтом компьютеров, сказал, что проблема с блоком питания. Он сказал мне купить его на amazon.com, они очень хорошие, у него невысокая стоимость, и его тоже можно доставить бесплатно.

Иногда замена цепей питания компьютера серии может оказаться нецелесообразной.Потому что покупать его не было или могло быть слишком дорого.

Отремонтировать блок питания ЭБУ до поиска неисправности. Это хорошее решение. Какие нормальные цепи таким образом питаются. Часто сначала разрабатывается как дешевое оборудование. Например, резисторы-предохранители. Маленькие транзисторы. Или конденсаторный тип, дружественный к электролизу, часто проблема, решение для выхода из строя, особенно на старых компьютерах около 10 лет.

Для простоты ремонта нам нужна схема. Я предлагаю следующие схемы…

-Иногда вам, возможно, придется использовать старый компьютер.Дети будут изучать основы или играть в простые игры. Цепь питания повреждена. Что делать?

— Основные моменты Девятого автодрома — это старая технология, это самая простая часть. Но иногда бывает сложно найти схемы. Собираю старую, планирую руководство ремонтом или модификацией не ограничивается. Имеется 5 схем, как показано ниже. (см. ниже!)

200W PC блок питания переключения схемы 110V-220V


Это будет блок питания ПК для компьютера снова интересная схема.Может быть преимущество с друзьями по занятию может починить компьютер? Подумайте, как быть персонажем Импульсный источник питания 200 Вт, размер источника переменного напряжения 2, уровень 110 В и 220 В можно использовать не спеша. И все же используйте напряжение во многих группах + 5В, + 12В, -12В, которого достаточно для питания малогабаритного компьютера или AT. Когда вы увидите схему, вы подумаете, что использовать интегральную схему IC TL494, источник питания, будет опорным оборудованием. Сделайте так, чтобы схема была несложной или легко ремонтировалась. Детали другие, пожалуйста, посмотрите в схеме лучше.

Compaq Блок питания ПК 200 Вт


Сегодня в гости к другу приезжает мой друг, который занимается ремонтом компьютеров. Он думает, что я делаю итоги круга на сайте. Тогда дайте Compaq блок питания 200Watt Circuit, продолжайте анонсировать на сайте. Судя по тому, что он принес с другого сайта, уже не может вспомнить название. Как я вижу, не уверен, что да, схема Compaq Computer или нет. Но спасибо этому другу. Мне хорошо часто давай всегда. По крайней мере, надеюсь, что эта трасса может быть полезна друзьям.

Старый компьютер Схема питания ПК на TL494


Мой старший брат занимается ремонтом компьютера. Однажды встретившись с проблемой переключения блока питания, компьютер потерял. Это старая схема. Затем я помогаю искать отдачу. Получите эту схему думаю можете не согласиться. Но достаточное использование может заменить. Если друзья встретят такую ​​же проблему, попробуйте, пожалуйста. Он может выдавать выходное напряжение 5 В, + 12 В, -12 В. Используйте интегральную схему TL494 быть основным оборудованием легко найти хорошее.
При подаче напряжения 110В и 220В выберите включенный виток SW1.Это еще одна деталь, которую друг видит в схеме.

Схема питания компьютера 230Вт 220В


Здесь схема питания компьютера 230Вт 220В.
он использует IC-TL494 и транзистор.
Out put 5V, 12V

250W china Схема блока питания компьютера

Мой друг спрашивает о схеме переключения блока питания. Которые производят от модели Китайской Народной Республики схема все. Быть китайцам сложно искать много схем. Затем я пытаюсь найти много схем.Познакомьтесь с этой схемой. Думаю, может да. Потому что здесь китайцы контролируют все детали оборудования. Но должен просить прощения, друзья. С этой моделью схема не ясна, но может ли хватить в рядах прибыли? Несколько то немного, когда видят хорошее, в результате видят положение оборудования понимает не очень сложно. Существует интегральная схема TL494 с выходным напряжением +12 В, -12 В и + 5 В.

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Схема компьютерных комплектующих для ПК

AT и ATX Схема компьютерных комплектующих для ПК

AT и ATX

Схема компьютерных комплектующих для ПК AT и ATX

На этой странице я собрал схемы коммутационных блоков для компьютеров (SMPS) ATX v 1.0, ATX v 2.0 и некоторых AT, которые я нашел в Интернете. Я не автор. Автор отмечается обычно прямо на схеме.


Схема питания полумоста ATX (AT) на TL494, KA7500
Микросхемы TL494 и KA7500 эквивалентны.Буквы 494 могут отличаться. В этих источниках питания используются биполярные переходные транзисторы (BJT) типа NPN.

Схема питания полумоста ATX PC с SG6105.
Схема коммутационных блоков ATX с SG6105. В этих источниках питания используются биполярные переходные транзисторы (BJT) типа NPN.

Схема блоков питания полумостовых ATX для ПК с KA3511
Поставляет ATX с интегральной схемой KA3511.В этих источниках питания используются биполярные переходные транзисторы (BJT) типа NPN.

Схема блоков питания полумостовых ATX для ПК с DR B2003
SMPS для ПК ATX с DR B2003, помеченным как 2003. В этих источниках питания используются биполярные переходные транзисторы (BJT) типа NPN.

Схемы комплектующих других полумостовых компьютеров.
Коммутационные блоки ATX с DR B2002 (с маркировкой 2002), AT2005 (2005) и их эквивалентами LPG899 и WT7520.В этих источниках питания используются биполярные переходные транзисторы (BJT) типа NPN.

Схемы поставок ATX прямой топологии с UC3842, 3843, 3844, 3845 и др.
Поставляет ATX с использованием прямой топологии с одним или двумя коммутаторами (полууправляемый мост). Транзисторы — это полевые МОП-транзисторы. Управляющие ИС — это UC3842, 3843, 3844, 3845 или другие ИС, которые представляют собой комбинацию для источника питания и активного управления PFC. как ML4824, FAN480X и ML4800.


DPS-260-2A, ML4824, акт. PFC

ATX — два переключателя вперед, PFC

два переключателя вперед + PFC, FAN480X

два переключателя вперед + PFC с ML4800

неполный IP-P350AJ2-0,
UC3843, 350W

UTIEK ATX12V-13 600T, UC3843

ATX CWT PUh500W два коммутатора
вперед, UC3845

Sunny technologies co.ATX230,
230 Вт, одиночный переключатель, UC3843

ATX с PTP-2068, одиночный коммутатор
, UC3843

ATX 350T — 350 Вт, UC3842

Солнечные технологии ATX-230
2SK2545, UC3843

ATX с STW12NK90Z, UC3843

API3PCD2-Y01, два переключателя
вперед, пропущенные значения

дом

Принципиальная схема блока питания представлена ​​ниже.

Контекст 1

… на этом этапе выпрямитель преобразует напряжение 18 В переменного тока от трансформатора в пульсирующее напряжение постоянного тока. Для этого использовался полный мостовой выпрямитель. Он состоит из четырех диодов (серия IN 4001), расположенных, как показано на рис. 2. Во время положительных полупериодов диоды D2 и D3 смещены в прямом направлении, и ток течет через клеммы. В отрицательном полупериоде диоды D1 и D4 смещены в прямом направлении. Поскольку ток нагрузки в обоих полупериодах имеет одинаковое направление, на выводах появляется сигнал двухполупериодного выпрямителя…

Контекст 2

… Блок-схема состоит из 4 ступеней для выпрямления напряжения питания 240 В переменного тока на 12 В постоянного тока, батарейного питания и релейного переключателя. Описание каждой ступени приведено ниже: Эта ступень состоит из понижающего трансформатора 240 В / 18 В. Он преобразует подачу напряжения 240 В (переменного тока) из сети в 18 В (переменного тока), предохранитель на 1 А (F1) был встроен в первичную обмотку трансформатора для защиты от избыточного тока. Затем напряжение 18 В (перем. Ток) передается на выпрямительный каскад.Был выбран понижающий трансформатор 220/18 В, поскольку для работы используемого регулятора требовалось более 12 В. На этом этапе выпрямитель преобразует напряжение 18 В переменного тока от трансформатора в пульсирующее напряжение постоянного тока. Для этого использовался полный мостовой выпрямитель. Он состоит из четырех диодов (серия IN 4001), расположенных, как показано на рис. 2. Во время положительных полупериодов диоды D2 и D3 смещены в прямом направлении, и ток течет через клеммы. В отрицательном полупериоде диоды D1 и D4 смещены в прямом направлении.Поскольку ток нагрузки в обоих полупериодах имеет одинаковое направление, на выводах появляется сигнал двухполупериодного выпрямителя [13]. Пульсирующее постоянное напряжение, выходящее из каскада выпрямителя, преобразуется в постоянное постоянное напряжение с помощью конденсатора фильтра (C1). Этот конденсатор является электролитическим конденсатором большой емкости. Он заряжается (то есть накапливает энергию) в течение полупериода проводимости, тем самым препятствуя любым изменениям напряжения. Таким образом, ступень фильтра отфильтровывает пульсации (или пульсации) напряжения.Выходной сигнал каскада фильтра незначительно изменяется при изменении тока нагрузки или выходного напряжения, и это напряжение питания 18 В постоянного тока, что превышает требования схемы. По этим причинам регулятор LM 7312 использовался для стабилизации напряжения, а также для снижения его с 18 В до постоянного постоянного тока 12 В.

Использование четкой принципиальной схемы для устранения неисправностей настольного компьютера 400 Вт ATX SMPS

Мне позвонил покупатель и сказал, что его компьютер не включается, и он подтвердил проблему с SMPS, потому что у него есть опыт ремонта на уровне карты.Поэтому я прошу его отправить SMPS ко мне в ремонт.

По прибытии ИИП, подключенный к серии Bulb Board, лампочка не загорается ни малейшего признака Жизни. Итак, для дальнейшего осмотра я открыл SMPS.

Обнаружен полный пыли под печатной платой. В первую очередь разрядите сетевые конденсаторы для безопасности, затем очистите печатную плату.

После чистки настало время для визуального осмотра. Я обнаружил, что один главный конденсатор вздулся. За исключением этого конденсатора, я не обнаружил никаких следов физических повреждений.

Мы не обнаружили никаких признаков жизни в SMPS, поэтому первым подозреваемым был предохранитель. Проверено предохранителем на предмет перегорания, но визуально кажется, что все в порядке. Проверено. Обнаружен предохранитель. Хорошо. Этим результатом подтверждается отсутствие короткого замыкания на этом ИИП. Итак, решил провести тестирование напряжения …………. (Будьте осторожны при испытании под напряжением. Высокое напряжение 320 В доступно на сетевом конденсаторе)

  1. Проверил напряжения на сетевом конденсаторе отдельно, он показывает 160 В постоянного тока, так как оба конденсатора подключены последовательно, мы получаем 320 В постоянного тока, напрямую идущего на сетевой трансформатор переключения и включение Сток обоих MosFet на первичной части.

Для облегчения понимания пути напряжения найдите схему исходной схемы ATX SMPS, как показано ниже. На затворе обоих MosFet нет напряжения для переключения. Далее проверил, что питание VCC на выводе № 7 PWN IC UC 3843 отсутствует. Проверено на наличие постоянного напряжения 5 В постоянного тока. Рядом с резервным трансформатором. Нет напряжения на диоде. Это означает, что что-то не так на этапе PWM ????? ……………….

Эта принципиальная схема применима к большинству блоков питания компьютеров ATX.Вот распиновка и эталонные напряжения на микросхеме PWM.

Итак, первым делом необходимо заменить сетевой конденсатор и проверить результат.

После повторной замены конденсатора я проверил напряжение, но проблема не решена. Удалены некоторые другие детали из печатной платы для проверки.

Проверял и другие мелкие детали, но вроде все в порядке. Исчерпаны в процессе, чтобы понять работу схемы. Из-за отсутствия надлежащей принципиальной схемы.Так что я оставил все на стороне для работы на следующий день. На следующий день Утро снова в командировке.

Сейчас я сосредоточил свое внимание на резервной цепи только потому, что для процесса переключения требуется это напряжение. Итак, прежде всего, что я сделал, я сделал диаграмму расположения компонентов резервного каскада на бумаге и прямо вниз по номиналу каждого резистора, чтобы сэкономить время на поиск неисправностей и не ускользнуть ни от одного компонента для тестирования по ошибке.

Сделав эту диаграмму, я снова начал тестировать компоненты один за другим.Вот то, что я ускользнул от компонента для тестирования, это резистор 470 кОм чуть выше трансформатора Stand by. Резистор показывает около 430 Ом в цепи, но когда я проверил его вне схемы, он не показывает никаких показаний, что означает, что этот резистор разомкнут.

Я установил рабочий резистор для своей утилизации и заменил на схеме. После замены резистора я включил SMPS, и теперь я вижу, что вытяжной вентилятор ATX вращается.

Подключил smps на тестере …………….

SMPS работает нормально. Теперь миссия завершена ………………………………. & Вот роль резистора в цепи.

Stand by MosFet Получение напряжения затвора напрямую от линии постоянного тока 320 В (сетевой конденсатор) и поступление на затвор MosFet с помощью двух резисторов 470 кОм и 22 кОм. Из них 470кОм обнаружил обрыв цепи, как указано на схеме компонентов.

Когда резервный MosFet начинает переключаться, резервный трансформатор начинает колебаться, и от вторичной стороны резервного трансформатора подается резервное питание 5 В Напряжение на один оптопара, и оптопара выдает выходное напряжение на базу одного транзистора, и этот транзистор обеспечивает питание VCC для PWM IC на контакте No.7 и контактом № 6 он подает напряжения срабатывания затвора на главный переключающий MosFet и запускает переключение, а главный трансформатор создает напряжения O / p на вторичной стороне цепи.

Эта статья была подготовлена ​​для вас Йогешем Панчалом, который работает инженером по компьютерному оборудованию в Мумбаи, Индия.

P.S- Знаете ли вы кого-нибудь из ваших друзей, кому бы пригодился этот контент, который вы сейчас читаете? Если да, отправьте этот веб-сайт своим друзьям, или вы можете пригласить своих друзей подписаться на мою информационную рассылку бесплатно по этой ссылке Ссылка .

Примечание: вы можете проверить его предыдущие статьи по ремонту по ссылке ниже:

https://jestineyong.com/creative-sbs-370-2-1-speaker-modifications/

Нравится (77) Не нравится (1)

schematic% 20diagram% 20atx% 20power% 20supply% 20500w техническое описание и примечания по применению

схема платы питания жк-дисплея

Аннотация: Схема жесткого диска samsung, СХЕМА ОСНОВНОЙ ПЛАТЫ ICh5-M hdd, схема, схема последовательности электропитания, схема samsung, схема зарядного устройства, схема ddr
Текст: нет текста в файле


Оригинал
PDF 47ент схема платы питания lcd схема samsung hdd ГЛАВНАЯ ПЛАТА ИЧ5-М схема жесткого диска последовательность мощности схематический принципиальная схема samsung принципиальная схема зарядного устройства схема ddr
Принципиальная схема
S

Реферат: 911p «Схема» Схема samsung 943
Текст: нет текста в файле


Оригинал
PDF
схема платы питания жк-дисплея

Реферат: ICh5-M принципиальная схема lcd samsung samsung dmb samsung ddr принципиальная схема зарядного устройства samsung hdd схема схема датчика ac ddr схема
Текст: нет текста в файле


Оригинал
PDF
СХЕМА VGA плата

Аннотация: Схема телевизора samsung Схема главной платы телевизора Схема телевизора samsung Схема телевизора samsung
Текст: нет текста в файле


Оригинал
PDF
САМСУНГ 834

Аннотация: b527 EXF-0023-05 конфиденциальная информация samsung SHORT13 SAMSUNG 840 схема samsung 822
Текст: нет текста в файле


Оригинал
PDF
Схема
Samsung

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
Схема клавиатуры и тачпада

Аннотация: Схема сенсорной панели Схема Схема платы модема ЖК-схема платы питания RB5C478 RJ11 4-контактный разъем печатной платы 4.Резистор 7кОм ВА41-00037А К935У
Текст: нет текста в файле


Оригинал
PDF S630 / S670 W48S87-72HTR схема клавиатуры и тачпада схема тачпада Схематические диаграммы схематическая плата модема схема платы питания lcd RB5C478 RJ11 4-контактный разъем для печатной платы 4,7 кОм резистор BA41-00037A K935U
Схема
Схема

Реферат: SHEET30 Samsung P40 samsung 943 «Принципиальные схемы» принципиальной платы
Текст: нет текста в файле


Оригинал
PDF
условные обозначения

Аннотация: Навигатор проекта ispLEVER с использованием иерархии в схеме интерфейса VHDL Design lpc
Текст: нет текста в файле


Оригинал
PDF
2008 — КОД VHDL К ИНТЕРФЕЙСУ ШИНЫ LPC

Аннотация: условные обозначения FD1S3IX LCMXO256C TQFP100 простой проект vhdl
Текст: нет текста в файле


Оригинал
PDF
Схема
Samsung

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
самсунг

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
Схема карты PCI

Аннотация: s850 pc card memory schematic s820 schematic s820
Текст: нет текста в файле


Оригинал
PDF S820 / S850 схема карты pci s850 схема памяти карты ПК схема s820 s820
6143

Реферат: Схема телефонного интерфейса Схема входа SPDIF Схема подключения монитора аудиоустройства Электронная схема WM8350 Eh21
Текст: нет текста в файле


Оригинал
PDF 6143-EV1-REV3 WM8350 6143 схема телефонного интерфейса ввод spdif схематический принципиальная схема аудиоустройства схема монитора электронная схема Eh21
2005 — Полный отчет по счетчику объекта

Аннотация: решетчатая логика Полный отчет по счетчику объектов с использованием семисегментного дисплея LC4256V Руководство по проектированию ABEL Руководство по проектированию ABEL-HDL Справочное руководство ABEL-HDL
Текст: нет текста в файле


Оригинал
PDF
Схема
светодиодная лампа samsung

Аннотация: samsung p28 Samsung 546 схема платы питания жк-дисплея СХЕМА Плата VGA Схема платы жк-контроллера Схема самсунг жк-дисплей samsung GFX 49 жк-схемы samsung северный мост
Текст: нет текста в файле


Оригинал
PDF
схема

Аннотация: принципиальная электронная схема D-10 D-12 D-16 D-18 конструкция LXD9784
Текст: нет текста в файле


Оригинал
PDF LXD9784 схематический схемы электронная схема D-10 D-12 D-16 D-18 дизайн
Поворотные переключатели

Аннотация: Ползунковые переключатели EG1218 EG1206A EG1206 EG1205A EG1205 EG1201A EG1201 EG-2215
Текст: нет текста в файле


Оригинал
PDF 500 В постоянного тока EG4319 EG4319A Поворотные переключатели Ползунковые переключатели EG1218 EG1206A EG1206 EG1205A EG1205 EG1201A EG1201 EG-2215
2008 — WM8741

Аннотация: WM8741-6060-DS28-EV2-REV1 wolfson microelectronics wm8741 схема WM8741-6060-DS28EV2-REV1 DS28 Eh21
Текст: нет текста в файле


Оригинал
PDF WM8741-6060-DS28-EV2-REV1 WM8741 WM8741-6060-DS28-EV2-REVдля WM8741 WM8741-6060-DS28-EV2-REV1 wolfson microelectronics wm8741 схематический WM8741-6060-DS28EV2-REV1 DS28 Eh21
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF EG1206A EG1206 EG4319 EG4319A
2009-6220-EV1-REV1

Аннотация: Принципиальная схема аудиоустройства Eh21 6220e WM8993
Текст: нет текста в файле


Оригинал
PDF 6220-EV1-REV1 WM8993 2009бл 6220-EV1-REV1 WM8993 принципиальная схема аудиоустройства Eh21 6220e
Поворотные переключатели

Аннотация: eg1271a EG2210A EG2201B EG2201A EG2201 EG1271 EG1206A EG1206 TACT SWITCH лист данных
Текст: нет текста в файле


Оригинал
PDF EG1206A EG1206 EG4319 EG4319A Поворотные переключатели eg1271a EG2210A EG2201B EG2201A EG2201 EG1271 EG1206A EG1206 Техническое описание TACT SWITCH
1997 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF EPE6087A EPE6165S EPE6173S EPE6046S EPE6062S EPE6065S EPE6141S EPE6172AS EPE6174 EPE6177
dffeas

Аннотация: техническое описание конечного автомата Verilog code обработка изображений, фильтрация, серия RTL, ИБП, схематическая диаграмма QII51013-7, управление станком, карта Карна, схема счетчика FLIPFLOP SCHEMATIC
Текст: нет текста в файле


Оригинал
PDF QII51013-7 dffeas таблица конечного автомата код Verilog обработка изображений, фильтрация серия RTL принципиальная схема ИБП Органы управления станком карта Карно СХЕМА ФЛИПФЛОПА принципиальная схема счетчика
2009 — серия RTL

Аннотация: принципиальная схема TTL OR Gates UG685
Текст: нет текста в файле


Оригинал
PDF UG685 серия RTL схематический схема TTL OR Gates UG685

pc% 20power% 20supply% 20unit% 20circuit% 20 Диаграмма и примечания по применению

LTN150XG-L05

Абстракция: ZD600 c828 * npn W316 bag c836 LTN150XG R756 BA59-01664A 1608 F 100nF cpu fan sepa
Текст: нет текста в файле


Оригинал
PDF BA31-00025A BA31-00026A BA39-00527A BA39-00528A BA39-00533A BA39-00540A BA41-00568A BA41-00569A BA42-00161A BA42-00162A LTN150XG-L05 ZD600 c828 * npn W316 сумка c836 LTN150XG R756 BA59-01664A 1608 F 100 нФ вентилятор процессора сепа
RTL8192

Аннотация: RTL819 abc c789 100 мкФ 10p MEC1308-NU tps51620 BA59-02570A w192 RTL-8192 BA41-01100A AF82801
Текст: нет текста в файле


Оригинал
PDF BA68-10150B BA81-06661A BA81-06662A BA81-06663A BA59-02348A BA43-00207A BA69-40003A BA44-00242A BA81-07036A BA42-00235A RTL8192 RTL819 abc c789 100 мкФ 10p MEC1308-NU tps51620 BA59-02570A w192 RTL-8192 BA41-01100A AF82801
2003 — C486CA17

Аннотация: C482 154772 C48-Type STM-16 GR-253-CORE D2526 C486 C484 N1155
Текст: нет текста в файле


Оригинал
PDF C48-Тип) C48-Тип 24-контактный OC-48 DS02-278-1 C486CA17 C482 154772 СТМ-16 GR-253-CORE D2526 C486 C484 N1155
2002 — C482

Аннотация: C484 C486 D2526 GR-253-CORE STM-16
Текст: нет текста в файле


Оригинал
PDF C48-Тип) C48-Тип 24-контактный OC-48 СТМ-16 DS02-278OCN-1 DS02-278OCN) C482 C484 C486 D2526 GR-253-CORE СТМ-16
HAINAN2

Аннотация: LTN141W R5538 MX25L8005 C327 W70 HED5 T60H928 VK-2120 BA6400 C557
Текст: нет текста в файле


Оригинал
PDF 9000CPS NP303-LD155-GQ LFM-48 СУПАНУКЕ-20 MMBD7000LT1 200 мА BA97-02658A BA99-00100L BA99-07565A HAINAN2 LTN141W R5538 MX25L8005 C327 W70 HED5 T60H928 ВК-2120 BA6400 C557
HED55XXU12

Абстракция: R643 68F smd код ba731 C753 c649 BA68-01297A H8 SOT-23 bav99 кубнкм BA43-00151A
Текст: нет текста в файле


Оригинал
PDF DV-W28EA DW-224E-C CD-224E-N L02514A001 130/410 мм HED55XXU12 R643 68F код smd ba731 C753 c649 BA68-01297A H8 СОТ-23 bav99 кубнкм BA43-00151A
2003 — C486

Аннотация: Схема лазерного передатчика C482 ic 192 ttl GR-253-CORE D2526 C484YD33 C484 C482CD53 STM-16
Текст: нет текста в файле


Оригинал
PDF C48-Тип) C48-Тип 24-контактный OC-48ation DS02-278-3 DS02-278-1 C486 C482 принципиальная схема лазерного передатчика ic 192 ttl GR-253-CORE D2526 C484YD33 C484 C482CD53 СТМ-16
LEXAN 121r — 21051

Аннотация: lexan 121r 21051 u574 B568 Dell 90w-AC адаптер B552 ffc B591 12505hs14 BA42-00141A BA41-00497A
Текст: нет текста в файле


Оригинал
PDF BA31-00024A BA39-00474A BA39-00493A S / 80 ГБ WLAN-802 L50000 L35мм L228мм LEXAN 121r — 21051 lexan 121r 21051 u574 B568 Адаптер переменного тока Dell 90 Вт B552 ffc B591 12505hs14 BA42-00141A BA41-00497A
samsung R540 сервис

Резюме: 2402-001144 10029a AR2413 LTM170EX R40PLUS C547 smd HP100-C30N-N15 M170EU01 BA99-10026A
Текст: нет текста в файле


Оригинал
PDF BA99-10026A ADA10 SE-1013) SE-1007) BA81-03413A сервис samsung R540 2402-001144 10029a AR2413 LTM170EX R40PLUS C547 smd HP100-C30N-N15 M170EU01
LE82PM965

Абстракция: NH82801HB 216PWAVA12FG Q51-5 Q533 le82pm BA39-00621A NH82801HBM NP303 HED5
Текст: нет текста в файле


Оригинал
PDF 9000CPS NP303-LD155-GQ LFM-48 LFM-48X Д25-45ум BA97-02556G BA97-02600A BA97-02601A BA97-02611A LE82PM965 NH82801HB 216PWAVA12FG Q51-5 Q533 le82pm BA39-00621A NH82801HBM NP303 HED5
S202DS2

Аннотация: S202DS4 S102DS2 SHARP S202DS4 s201s01 s201s02 SHARP S201S02 S202DS4 SHARP IS1621 pc111ys
Текст: нет текста в файле


Оригинал
PDF BS100D BR100C BS100G1 BS120R BR120 BS521 BR520 GA100T802MZ GA100T802MZ1 S202DS2 S202DS4 S102DS2 SHARP S202DS4 s201s01 s201s02 SHARP S201S02 S202DS4 SHARP IS1621 pc111ys
2003 — 100Б5

Аннотация: PC-10-1000B3 PC-10-120B1 PC-10-440B2 PC-10-90B53 DPC-20-220814
Текст: нет текста в файле


Оригинал
PDF E73539 E80130 LR68051-2 115/230 В 100B5 ПК-10-1000Б3 ПК-10-120Б1 PC-10-440B2 PC-10-90B53 DPC-20-220814
1997 — Дизайн электронной доски объявлений с клавиатурой ПК

Реферат: Руководство по проектированию системы ПК 98 Intel microsoft PC99 домашний кинотеатр для удаленного устройства
Текст: нет текста в файле


Оригинал
PDF
2002 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF C48-Тип) C48-Тип 24-контактный OC-48 СТМ-16 DS02-278OCN DS00-071OPTO)
ПОРОН-Hh58

Абстракция: BA42-00163A BA42-00133A l565 HD3 94V-0 4P SOT323 SMD RA15 T60H928 AUO b513 E802
Текст: нет текста в файле


Оригинал
PDF BA31-00032A BA39-00570A BA39-00584A BA41-00596A BA42-00133A BA42-00150A BA43-00156A BA44-00162A BA44-00174A BA44-00205A ПОРОН-Hh58 BA42-00163A l565 HD3 94V-0 4П СОТ323 SMD RA15 T60H928 AUO b513 E802
1998 — V25ter

Аннотация: TIA-695
Текст: нет текста в файле


Оригинал
PDF 98-совместимый Win32 V25ter TIA-695
C3604BD-F

Аннотация: LTN150XG-L05-G ul1571 провод LTN150PG-L03 LTN150XG-L05 LTN150XG 2203-006090 SLB9635TT12 bga nvidia BA59-01751A
Текст: нет текста в файле


Оригинал
PDF K4J52324QC 512 Мбит 8x2Mx32Bit HYB18H512321AFL C3604BD-F LTN150XG-L05-G ul1571 провод LTN150PG-L03 LTN150XG-L05 LTN150XG 2203-006090 SLB9635TT12 bga nvidia BA59-01751A
2001 — микроконтроллер avr

Аннотация: AT90S1200
Текст: нет текста в файле


Оригинал
PDF 0856C микроконтроллер avr AT90S1200
инструкция по установке bmep-5t

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


OCR сканирование
PDF 000pH.03 мая 99
2008 — ПК16-260

Реферат: Трансформатор ПК-34-25 230В 12В 500мА ПК-10-2400 ПК-10-120 ПК-10-1000 DPC-56-420 DPC-40-110 dpc-34-125 Трансформатор сигналов DPC-24-50 115 / 230 В
Текст: нет текста в файле


Оригинал
PDF E66312 E63829 115/230 В 10-комн. 24-комн. PC16-260 ПК-34-25 трансформатор 230V 12V 500mA ПК-10-2400 ПК-10-120 ПК-10-1000 DPC-56-420 DPC-40-110 dpc-34-125 Трансформатор сигнала ДПК-24-50 115 / 230в
1999 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 03 мая 99
1997 — трансформатор 230В на 12В 500мА

Аннотация: PC-34-125 51265 DPC-10-90 трансформатор 230V 12V 500mA PC12010 PC16-260 трансформатор 230v на 60v Трансформаторы DPC-28-160 230v 12v 500ma
Текст: нет текста в файле


Оригинал
PDF 1500VRMS 115/230 В E63829) 115/230 В ПК-10-90 ПК-10-120 ПК-10-440 ПК-10-1000 ПК-10-2400 10-комн. трансформатор 230В на 12В 500мА ПК-34-125 51265 DPC-10-90 трансформатор 230V 12V 500mA PC12010 PC16-260 трансформатор 230в на 60в DPC-28-160 трансформаторы 230v 12v 500ma
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF KS82C388 KS82C388)
2007 — пк-24-450

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF E73539 E80130 LR68051-2 115/230 В LT2007 pc-24-450

Блок питания компьютера 350 Вт Принципиальная схема

Загрузить Компьютерный блок питания 350 Вт Рис. .Блок питания atx, схема дата создания: Электронная схема блока питания smps мощностью до 350Вт, см. Принципиальную схему здесь >>.

Сделай сам DIY Схема стереоусилителя 30 Вт … от s-media-cache-ak0.pinimg.com Коммутационные блоки Atx с dr b2002 (с пометкой 2002), at2005 (2005) и его. Это может быть специализированный. Сделайте инвертор от 12 В до 220 В 200 Вт, простая принципиальная схема (используйте трансформатор 12 0 12).

Принципиальные схемы наглядно расставлены по компаниям-производителям и функциональному устройству блоков питания.

Блок питания Atx, дата создания схемы: Более 350 принципиальных схем отличного качества. В этих источниках питания используются биполярные переходные транзисторы (bjt) типа npn. Электронная схема блока питания smps мощностью до 350Вт, см. Принципиальную схему здесь >>.

Источник: www.powerstream.com

Это не компьютерный блок питания.

Источник: elektrotanya.com

На приведенной ниже схеме показана частичная схема блока питания atx мощностью 450 Вт.

Источник: jestineyong.com

То же явление можно найти в блоке питания at / atx компьютерного блока питания.

Источник: s-media-cache-ak0.pinimg.com

В данном устройстве используется схема питания с фиксированным напряжением (или с автоматическим выбором напряжения).

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.