Чтение принципиальных электрических схем — Всё о электрике
Правила чтения электрических схем и чертежей
Основными техническими документами для электромонтера и электромонтажника являются чертежи и электрические схемы. Чертеж включает размеры, форму, материал и состав электроустановки. По нему не всегда можно понять функциональную связь между элементами. В ней помогает разобраться электрическая схема, которую необходимо иметь при пользовании чертежами электроустановок.
Чтобы читать электрические схемы, необходимо хорошо знать и помнить: наиболее распространенные условные обозначения обмоток, контактов, трансформаторов, двигателей, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области с которой преимущественно приходится сталкиваться в силу профессии, схемы наиболее распространенных узлов электроустановок, например двигателей, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, свойства последовательного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.
Расчленение схем на простые цепи
Любая электроустановка удовлетворяет определенным условиям действия. Поэтому при чтении схем, во-первых, нужно выявить эти условия, во-вторых – определить, отвечают ли полученные условия задачам, которые должны электроустановкой решаться, в-третьих, следует проверить, не получились ли попутно “лишние” условия, и оценить их последствия.
Для решения этих вопросов пользуются несколькими приемами.
Первый из них состоит в том, что схема электроустановки мысленно расчленяется на простые цепи, которые сначала рассматривают отдельно, а затем в сочетаниях.
Простая цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (двигатель, резистор, лампа, обмотка реле, разряженный конденсатор и т. п.), прямой провод (от источника тока к приемнику), обратный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.). Понятно, что в цепях, не допускающих размыкания, например в цепях трансформаторов тока, контактов нет.
При чтении схемы нужно сначала мысленно расчленить ее на простые цепи, чтобы проверить возможности каждого элемента, а затем рассмотреть их совместное действие.
Реальность схемных решений
Наладчики хорошо знают, что не всегда могут быть осуществлены на деле схемные решения, хотя они не содержат явных ошибок. Иными словами, проектные электрические схемы не всегда реальны.
Поэтому одна из задач чтения электрических схем состоит в том, чтобы проверить, могут ли быть выполнены заданные условия.
Нереальность схемных решений обычно имеет в основном следующие причины:
не хватает энергии для срабатывания аппарата,
в схему проникает “лишняя” энергия, вызывающая непредвиденное срабатывание пли препятствующая своевременному отпусканию электрического аппарата,
не хватает времени для совершения заданных действий,
аппаратом задана уставка, которая не может быть достигнута,
совместно применены аппараты, резко отличающиеся по свойствам,
не учтены коммутационная способность, уровень изоляции аппаратов и проводки, не погашены коммутационные перенапряжения,
не учтены условия, в которых электроустановка будет эксплуатироваться,
при проектировании электроустановки за основу принимается ее рабочее состояние, но не решается вопрос о том, как ее привести в это состояние и в каком состоянии она окажется, например, в результате кратковременного перерыва питания.
Порядок чтения электрических схем и чертежей
Прежде всего, необходимо ознакомиться с наличными чертежами (или составить оглавление, если его нет) и систематизировать чертежи (если этого не сделано в проекте) по назначению.
Чертежи чередуют в таком порядке, чтобы чтение каждого последующего являлось естественным продолжением чтения предыдущего. Затем уясняют принятую систему обозначений и маркировки.
Если она не отражена па чертежах, то ее выясняют и записывают.
На выбранном чертеже читают все надписи, начиная со штампа, затем примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации обязательно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.
Если на чертеже имеются ссылки на другие чертежи, то нужно найти эти чертежи и разобраться в содержании ссылок. Например, в одну схему входит контакт, принадлежащий аппарату, изображенному на другой схеме. Значит, нужно уяснить, что это за аппарат, для чего служит, в каких условиях работает и т. п.
При чтении чертежей, отражающих электропитание, электрическую защиту, управление, сигнализацию и т. п.:
1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько или применено несколько напряжений, то уясняют, чем это вызвано,
2) расчленяют схему па простые цени и, рассматривая их сочетание, устанавливают условия действия. Рассматривать всегда начинают с того аппарата, который нас в данном случае интересует. Например, если не работает двигатель, то нужно найти па схеме его цепь и посмотреть, контакты каких аппаратов в нее входят. Затем находят цепи аппаратов, управляющих этими контактами, и т. д.,
3) строят диаграммы взаимодействия, выясняя с их помощью: последовательность работы во времени, согласованность времени действия аппаратов в пределах данного устройства, согласованность времени действия совместно действующих устройств (например, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого поочередно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают возможные последствия, возможность выхода устройства в рабочее положение из любого состояния, в котором оно могло оказаться, например после ревизии,
4) оценивают последствия вероятных неисправностей: незамыкание контактов поочередно по одному, нарушения изоляции относительно земли поочередно для каждого участка,
5) нарушения изоляции между проводами воздушных линий, выходящих за пределы помещений и т. п.,
5) проверяют схему па отсутствие ложных цепей,
6) оценивают надежность электропитания и режим работы оборудования,
7) проверяют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами (ПУЭ, СНиП и т. п.).
Как читать электронные схемы?
Учимся читать принципиальные электрические схемы
О том, как читать принципиальные схемы я уже рассказывал в первой части. Теперь хотелось бы раскрыть данную тему более полно, чтобы даже у новичка в электронике не возникало вопросов. Итак, поехали. Начнём с электрических соединений.
Не секрет, что в схеме какая-либо радиодеталь, например микросхема может соединяться огромным количеством проводников с другими элементами схемы. Для того чтобы высвободить место на принципиальной схеме и убрать “повторяющиеся соединительные линии” их объединяют в своеобразный “виртуальный” жгут – обозначают групповую линию связи. На схемах
Вот взгляните на пример.
Как видим, такая групповая линия имеет большую толщину, чем другие проводники в схеме.
Чтобы не запутаться, куда какие проводники идут, их нумеруют.
На рисунке я отметил соединительный провод под номером 8. Он соединяет 30 вывод микросхемы DD2 и 8 контакт разъёма XP5. Кроме этого, обратите внимание, куда идёт 4 провод. У разъёма XP5 он соединяется не со 2 контактом разъёма, а с 1, поэтому и указан с правой стороны соединительного проводника. Ко 2-му же контакту разъёма XP5 подключается 5 проводник, который идёт от 33 вывода микросхемы DD2. Отмечу, что соединительные проводники под разными номерами электрически между собой не связаны, и на реальной печатной плате могут быть разнесены по разным частям платы.
Электронная начинка многих приборов состоит из блоков. А, следовательно, для их соединения применяются разъёмные соединения. Вот так на схемах обозначаются разъёмные соединения.
XP1 – это вилка (он же “Папа”), XS1 – это розетка (она же “Мама”). Всё вместе это “Папа-Мама” или разъём X1 (X2).
Также в электронных устройствах могут быть механически связанные элементы. Поясню, о чём идёт речь.
Например, есть переменные резисторы, в которые встроен выключатель. Об одном из таких я рассказывал в статье про переменные резисторы. Вот так они обозначаются на принципиальной схеме. Где SA1 – выключатель, а R1
Ранее такие переменные резисторы очень часто применялись в портативных радиоприёмниках. При повороте ручки регулятора громкости (нашего переменного резистора) сначала замыкались контакты встроенного выключателя. Таким образом, мы включали приёмник и сразу той же ручкой регулировали громкость. Отмечу, что электрического контакта переменный резистор и выключатель не имеют. Они лишь связаны механически.
Такая же ситуация обстоит и с электромагнитными реле. Сама обмотка реле и его контакты не имеют электрического соединения, но механически они связаны. Подаём ток на обмотку реле – контакты замыкаются или размыкаются.
Так как управляющая часть (обмотка реле) и исполнительная (контакты реле) могут быть разнесены на принципиальной схеме, то их связь обозначают пунктирной линией. Иногда пунктирную линию вообще не рисуют, а у контактов просто указывают принадлежность к реле (K1.1) и номер контактной группы (К1.1) и (К1.2).
Ещё довольно наглядный пример – это регулятор громкости стереоусилителя. Для регулировки громкости требуется два переменных резистора. Но регулировать громкость в каждом канале по отдельности нецелесообразно. Поэтому применяются сдвоенные переменные резисторы, где два переменных резистора имеют один регулирующий вал. Вот пример из реальной схемы.
На рисунке я выделил красным две параллельные линии – именно они указывают на механическую связь этих резисторов, а именно на то, что у них один общий регулирующий вал. Возможно, вы уже заметили, что эти резисторы имеют особое позиционное обозначение R4.1 и R4.2. Где R4 – это резистор и его порядковый номер в схеме, а 1 и 2 указывают на секции этого сдвоенного резистора.
Также механическая связь двух и более переменных резисторов может указываться пунктирной линией, а не двумя сплошными.
Отмечу, что электрически эти переменные резисторы не имеют контакта между собой. Их выводы могут быть соединены только в схеме.
Не секрет, что многие узлы радиоаппаратуры чувствительны к воздействию внешних или “соседствующих” электромагнитных полей. Особенно это актуально в приёмопередающей аппаратуре. Чтобы защитить такие узлы от воздействия нежелательных электромагнитных воздействий их помещают в экран, экранируют. Как правило, экран соединяют с общим проводом схемы. На схемах это отображается вот таким образом.
Здесь экранируется контур 1T1, а сам экран изображается штрих-пунктирной линией, который соединён с общим проводом. Экранирующим материалом может быть алюминий, металлический корпус, фольга, медная пластина и т.д.
А вот таким образом обозначают экранированные линии связи. На рисунке в правом нижнем углу показана группа из трёх экранированных проводников.
Похожим образом обозначается и коаксиальный кабель. Вот взгляните на его обозначение.
В реальности экранированый провод (коаксиальный) представляет собой проводник в изоляции, который снаружи покрыт или обмотан экраном из проводящего материала. Это может быть медная оплётка или покрытие из фольги. Экран, как правило, соединяют с общим проводом и тем самым отводят электромагнитные помехи и наводки.
Бывают нередкие случаи, когда в электронном устройстве применяются абсолютно одинаковые элементы и загромождать ими принципиальную схему нецелесообразно. Вот, взгляните на такой пример.
Здесь мы видим, что в схеме присутствуют одинаковые по номиналу и мощности резисторы R8 – R15. Всего 8 штук. Каждый из них соединяет соответствующий вывод микросхемы и четырёхразрядный семисегментный индикатор. Чтобы не указывать эти повторяющиеся резисторы на схеме их просто заменили жирными точками.
Ещё один пример. Схема кроссовера (фильтра) для акустической колонки. Обратите внимание на то, как вместо трёх одинаковых конденсаторов C1 – C3 на схеме указан лишь один конденсатор, а рядом отмечено количество этих конденсаторов. Как видно из схемы, данные конденсаторы необходимо соединить параллельно, чтобы получить общую ёмкость 3 мкФ.
Аналогично и с конденсаторами C6 – C15 (10 мкФ) и C16 – C18 (11,7 мкФ). Их необходимо соединить параллельно и установить на место обозначенных конденсаторов.
Следует отметить, что правила обозначения радиодеталей и элементов на схемах в зарубежной документации несколько иные. Но, человеку, получившему хотя бы базовые знания по данной теме разобраться в них будет гораздо проще.
Учимся читать электросхемы
Многие люди, только начиная свое знакомство с электрикой, задаются вопросом, как читать электрические схемы, какие существуют правила чтения, какие есть условные обозначения и как работает электрическая схема? Об этом и другом далее.
Как научиться читать электрическую схему
Любая радиоаппаратура включает в себя отдельные радиодетали, которые спаяны между собой при помощи определенного способа. Все эти элементы отражаются на электрической схеме условными графическими значениями. Чтобы научиться читать документ, необходимо понимать условное обозначение всех проводниковых элементов электроцепи. Каждая деталь имеет свое графическое обозначение и включает в себя условную конструкцию с характерными особенностями.
Проще всего работать с таким элементом как электронный конденсатор с резисторами, динамиками и другим электрооборудованием с автоматизацией. Как правило, их легко узнать без всякой таблицы с условными обозначениями. Учиться на них проще. Сложнее осуществлять работу с полупроводниками, а именно транзисторами, симисторами и микросхемами. К примеру, каждый биполярный транзистор имеет в себе три вывода, а именно, базу, коллектор и эмиттер. По этой причине необходимы условные изображения и уточняющая информация в виде латинских букв. Изучение их может занять много дней, как и обучение их опознания.
Обратите внимание! Кроме букв на каждой схеме есть цифры. Они говорят о нумерации и технических характеристиках. Стоит указать, что самостоятельно научиться читать документ невозможно, и поэтому нужны уроки и обучающие пособия.
Основные правила
В ответ на вопрос, как читать электросхемы, стоит уточнить, что это нужно делать слева направо, от начала до самого конца. В этом заключается основное правило. Следующее правило заключается в расчленении единого чертежа на небольшие картинки или простые цепи. Она состоит из источника электротока, приемника тока, прямого привода, обратного провода и одного контакта аппарата. Поэтому, начиная изучать документ, нужно разбить его на части. Далее обязательно нужно принимать во внимание все детали, с замечаниями, экспликациями, пояснениями и спецификациями. Если в чертеже находятся ссылки, то нужно изучить и их.
Обратите внимание! Чертежи, которые отражают момент работу электропитания, электрозащиты, управления и сигнализации, должны быть изучены на количество источников питания, взаимодействие, согласованность совместной работы, оценку последствий вероятных неисправностей, нарушение проводной изоляции, проверку схемы с отсутствием ложных цепей, оценку надежности электрического питания, режим работы оборудования и проверку выполнения мер, которые обеспечивают безопасное проведение работ.
Условные обозначения
Согласно нормативным документам, есть стандартные графические условные обозначения в однолинейных и двухлинейных схемах. Далее представлена таблица с подобными символами под названием электрические схемы для начинающих условные обозначения. Стоит указать, что в чертежах используются также цифры и буквы. Подобная маркировка регулируется с помощью нормативных документов, а именно гостов.
Как составлять схему
Составление электрической схемы должно производиться опытным электриком с учетом существующих гостов, поясняющих и уточняющих работу тех или иных проводников. Бывают согласно госту электрические схемы структурными, функциональными, принципиальными, монтажными, общими и объединенными. Сделать любую из приведенного перечня можно, выстраивая простейшие элементы друг с другом.
Описание работы
Если электросхема построена правильно, то и работать она будет исправно. Работает все так. От источника питания идет заряд, который попадает под клеммник в проводник и электромагнитную катушку реле. Через катушку электроток устремляется к контактам. Как только ток попадает в контакты, начинает работать вся сеть, включается диод. Благодаря электродвижущей силе поддерживается первоначальный электроток, и он достигает наибольших значений.
Обратите внимание! Стоит указать, что без электродвижущей самоиндукции поддержание тока в контуре невозможно, поскольку при большом значении амплитуды, радиоэлементы начинают плохо работать. Благодаря этому импульсу, пробиваются полупроводниковые переходы, и выводится аппарат из функционирования. Сегодня диоды уже встраиваются в реле. Это позволяет работать электросхеме правильно.
В целом, в дополнение к теме, как научиться читать электрические принципиальные схемы, стоит отметить, что читать их необходимо с опорой на обучающий материал, в котором указывается информация о том, что значат те или иные условные обозначения. Только после получения полной информации, можно приступать к работе, если производятся соответствующие действия в электропроводке.
{SOURCE}
Чтение принципиальных схем — Всё о электрике
Учимся читать электросхемы
Многие люди, только начиная свое знакомство с электрикой, задаются вопросом, как читать электрические схемы, какие существуют правила чтения, какие есть условные обозначения и как работает электрическая схема? Об этом и другом далее.
Как научиться читать электрическую схему
Любая радиоаппаратура включает в себя отдельные радиодетали, которые спаяны между собой при помощи определенного способа. Все эти элементы отражаются на электрической схеме условными графическими значениями. Чтобы научиться читать документ, необходимо понимать условное обозначение всех проводниковых элементов электроцепи. Каждая деталь имеет свое графическое обозначение и включает в себя условную конструкцию с характерными особенностями.
Проще всего работать с таким элементом как электронный конденсатор с резисторами, динамиками и другим электрооборудованием с автоматизацией. Как правило, их легко узнать без всякой таблицы с условными обозначениями. Учиться на них проще. Сложнее осуществлять работу с полупроводниками, а именно транзисторами, симисторами и микросхемами. К примеру, каждый биполярный транзистор имеет в себе три вывода, а именно, базу, коллектор и эмиттер. По этой причине необходимы условные изображения и уточняющая информация в виде латинских букв. Изучение их может занять много дней, как и обучение их опознания.
Обратите внимание! Кроме букв на каждой схеме есть цифры. Они говорят о нумерации и технических характеристиках. Стоит указать, что самостоятельно научиться читать документ невозможно, и поэтому нужны уроки и обучающие пособия.
Основные правила
В ответ на вопрос, как читать электросхемы, стоит уточнить, что это нужно делать слева направо, от начала до самого конца. В этом заключается основное правило. Следующее правило заключается в расчленении единого чертежа на небольшие картинки или простые цепи. Она состоит из источника электротока, приемника тока, прямого привода, обратного провода и одного контакта аппарата. Поэтому, начиная изучать документ, нужно разбить его на части. Далее обязательно нужно принимать во внимание все детали, с замечаниями, экспликациями, пояснениями и спецификациями. Если в чертеже находятся ссылки, то нужно изучить и их.
Обратите внимание! Чертежи, которые отражают момент работу электропитания, электрозащиты, управления и сигнализации, должны быть изучены на количество источников питания, взаимодействие, согласованность совместной работы, оценку последствий вероятных неисправностей, нарушение проводной изоляции, проверку схемы с отсутствием ложных цепей, оценку надежности электрического питания, режим работы оборудования и проверку выполнения мер, которые обеспечивают безопасное проведение работ.
Условные обозначения
Согласно нормативным документам, есть стандартные графические условные обозначения в однолинейных и двухлинейных схемах. Далее представлена таблица с подобными символами под названием электрические схемы для начинающих условные обозначения. Стоит указать, что в чертежах используются также цифры и буквы. Подобная маркировка регулируется с помощью нормативных документов, а именно гостов.
Как составлять схему
Составление электрической схемы должно производиться опытным электриком с учетом существующих гостов, поясняющих и уточняющих работу тех или иных проводников. Бывают согласно госту электрические схемы структурными, функциональными, принципиальными, монтажными, общими и объединенными. Сделать любую из приведенного перечня можно, выстраивая простейшие элементы друг с другом.
Описание работы
Если электросхема построена правильно, то и работать она будет исправно. Работает все так. От источника питания идет заряд, который попадает под клеммник в проводник и электромагнитную катушку реле. Через катушку электроток устремляется к контактам. Как только ток попадает в контакты, начинает работать вся сеть, включается диод. Благодаря электродвижущей силе поддерживается первоначальный электроток, и он достигает наибольших значений.
Обратите внимание! Стоит указать, что без электродвижущей самоиндукции поддержание тока в контуре невозможно, поскольку при большом значении амплитуды, радиоэлементы начинают плохо работать. Благодаря этому импульсу, пробиваются полупроводниковые переходы, и выводится аппарат из функционирования. Сегодня диоды уже встраиваются в реле. Это позволяет работать электросхеме правильно.
В целом, в дополнение к теме, как научиться читать электрические принципиальные схемы, стоит отметить, что читать их необходимо с опорой на обучающий материал, в котором указывается информация о том, что значат те или иные условные обозначения. Только после получения полной информации, можно приступать к работе, если производятся соответствующие действия в электропроводке.
Правила чтения электрических схем и чертежей
Основными техническими документами для электромонтера и электромонтажника являются чертежи и электрические схемы. Чертеж включает размеры, форму, материал и состав электроустановки. По нему не всегда можно понять функциональную связь между элементами. В ней помогает разобраться электрическая схема, которую необходимо иметь при пользовании чертежами электроустановок.
Чтобы читать электрические схемы, необходимо хорошо знать и помнить: наиболее распространенные условные обозначения обмоток, контактов, трансформаторов, двигателей, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области с которой преимущественно приходится сталкиваться в силу профессии, схемы наиболее распространенных узлов электроустановок, например двигателей, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, свойства последовательного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.
Расчленение схем на простые цепи
Любая электроустановка удовлетворяет определенным условиям действия. Поэтому при чтении схем, во-первых, нужно выявить эти условия, во-вторых – определить, отвечают ли полученные условия задачам, которые должны электроустановкой решаться, в-третьих, следует проверить, не получились ли попутно “лишние” условия, и оценить их последствия.
Для решения этих вопросов пользуются несколькими приемами.
Первый из них состоит в том, что схема электроустановки мысленно расчленяется на простые цепи, которые сначала рассматривают отдельно, а затем в сочетаниях.
Простая цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (двигатель, резистор, лампа, обмотка реле, разряженный конденсатор и т. п.), прямой провод (от источника тока к приемнику), обратный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.). Понятно, что в цепях, не допускающих размыкания, например в цепях трансформаторов тока, контактов нет.
При чтении схемы нужно сначала мысленно расчленить ее на простые цепи, чтобы проверить возможности каждого элемента, а затем рассмотреть их совместное действие.
Реальность схемных решений
Наладчики хорошо знают, что не всегда могут быть осуществлены на деле схемные решения, хотя они не содержат явных ошибок. Иными словами, проектные электрические схемы не всегда реальны.
Поэтому одна из задач чтения электрических схем состоит в том, чтобы проверить, могут ли быть выполнены заданные условия.
Нереальность схемных решений обычно имеет в основном следующие причины:
не хватает энергии для срабатывания аппарата,
в схему проникает “лишняя” энергия, вызывающая непредвиденное срабатывание пли препятствующая своевременному отпусканию электрического аппарата,
не хватает времени для совершения заданных действий,
аппаратом задана уставка, которая не может быть достигнута,
совместно применены аппараты, резко отличающиеся по свойствам,
не учтены коммутационная способность, уровень изоляции аппаратов и проводки, не погашены коммутационные перенапряжения,
не учтены условия, в которых электроустановка будет эксплуатироваться,
при проектировании электроустановки за основу принимается ее рабочее состояние, но не решается вопрос о том, как ее привести в это состояние и в каком состоянии она окажется, например, в результате кратковременного перерыва питания.
Порядок чтения электрических схем и чертежей
Прежде всего, необходимо ознакомиться с наличными чертежами (или составить оглавление, если его нет) и систематизировать чертежи (если этого не сделано в проекте) по назначению.
Чертежи чередуют в таком порядке, чтобы чтение каждого последующего являлось естественным продолжением чтения предыдущего. Затем уясняют принятую систему обозначений и маркировки.
Если она не отражена па чертежах, то ее выясняют и записывают.
На выбранном чертеже читают все надписи, начиная со штампа, затем примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации обязательно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.
Если на чертеже имеются ссылки на другие чертежи, то нужно найти эти чертежи и разобраться в содержании ссылок. Например, в одну схему входит контакт, принадлежащий аппарату, изображенному на другой схеме. Значит, нужно уяснить, что это за аппарат, для чего служит, в каких условиях работает и т. п.
При чтении чертежей, отражающих электропитание, электрическую защиту, управление, сигнализацию и т. п.:
1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько или применено несколько напряжений, то уясняют, чем это вызвано,
2) расчленяют схему па простые цени и, рассматривая их сочетание, устанавливают условия действия. Рассматривать всегда начинают с того аппарата, который нас в данном случае интересует. Например, если не работает двигатель, то нужно найти па схеме его цепь и посмотреть, контакты каких аппаратов в нее входят. Затем находят цепи аппаратов, управляющих этими контактами, и т. д.,
3) строят диаграммы взаимодействия, выясняя с их помощью: последовательность работы во времени, согласованность времени действия аппаратов в пределах данного устройства, согласованность времени действия совместно действующих устройств (например, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого поочередно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают возможные последствия, возможность выхода устройства в рабочее положение из любого состояния, в котором оно могло оказаться, например после ревизии,
4) оценивают последствия вероятных неисправностей: незамыкание контактов поочередно по одному, нарушения изоляции относительно земли поочередно для каждого участка,
5) нарушения изоляции между проводами воздушных линий, выходящих за пределы помещений и т. п.,
5) проверяют схему па отсутствие ложных цепей,
6) оценивают надежность электропитания и режим работы оборудования,
7) проверяют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами (ПУЭ, СНиП и т. п.).
Как читать электрические схемы? Разбор простой схемы
Как читать схемы? В этой статье мы как будем разбирать простую схему и опишем досконально ее работу.
Разбираем принцип работы простой схемы
Итак, идем дальше. С нагрузкой, работой и мощностью мы вроде как разобрались в прошлой статье. Ну а теперь, дорогие мои криворукие друзья, в этой статье мы будем читать схемы и анализировать их, используя прошлые статьи.
От балды я нарисовал схемку. Ее функция – управление 40 Ваттной лампой с помощью 5 Вольт. Давайте же рассмотрим ее подробнее.
На микроконтроллеры эта схема вряд ли подойдет, так как ножка МК не потащит ток, который жрет реле.
Ищем источники питания
Первый вопрос, которым мы должны себе задать: “Чем питается схема и откуда она берет питание? Сколько источников питания имеет? Как вы здесь видите, схема имеет два разных источника питания с напряжением +5 Вольт и +24 Вольта.
Разбираемся с каждым радиоэлементом в схеме
Вспоминаем предназначение каждого радиоэлемента, который встречается в схеме. Пытаемся понять, для чего разработчик его здесь нарисовал.
Сюда мы загоняем или цепляем либо источник питания, либо другой кусок схемы. В нашем случае, на верхний клеммничек мы загоняем +5 Вольт, а нижний, следовательно, ноль. То же самое и +24 Вольта. На верхний клеммник мы загоняем +24 Вольта, а нижний также ноль.
Заземление на корпус.
В принципе называть этот значок землей вроде как бы можно, но не желательно. В схемах так обозначается потенциал в ноль Вольт. От него отсчитываются и измеряются все напряжения в схеме.
Далее видим ключ S, который находится в разомкнутом положении.
Как он действует на электрический ток? Когда он в разомкнутом положении, то ток через него не протекает. Когда он в замкнутом положении, то электрический ток беспрепятственно начинает через него течь.
Он пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока. Для чего он нужен в схеме, объясню ниже.
Катушка электромагнитного реле.
Если на нее подать электрический ток, то она создаст магнитное поле. А раз попахивает магнитом, то к катушке устремятся разного рода железки. На железке находятся контакты ключа 1-2, и они замкнутся между собой. Более подробно про принцип работы электромагнитного реле можно почитать в этой статье.
Подаем на нее напряжение – лампочка горит. Все элементарно и просто.
В основном схемы читаются слева-направо, если, конечно, разработчик хоть немного знает правила оформления схем. Функционируют схемы тоже слева-направо. То есть слева мы загоняем какой-либо сигнал, а справа его снимаем.
Прогнозируем направление электрического тока
Пока ключ S у нас выключен, схема находится в нерабочем состоянии:
Но что случится, если мы замкнем ключ S? Вспоминаем главное правило электрического тока: ток течет от бОльшего потенциала к меньшему, или в народе, от плюса к минусу. Следовательно, после замыкания ключа, наша схема будет выглядеть уже вот так:
Через катушку побежит электрический ток, она притянет за собой контакты 1-2, которые в свою очередь замкнутся и вызовут электрический ток в цепи +24 Вольта. В результате загорится лампочка. Если вы в курсе, что такое диод, то наверняка поймете, что через него электрический ток протекать не будет, так как он пропускает только в одном направлении, а сейчас направление тока для него противоположное.
Итак, для чего нужен диод в этой схеме?
Не стоит забывать свойство индуктивности, которое гласит: при размыкании ключа в катушке образуется ЭДС самоиндукции, которое поддерживает первоначальный ток и может достигать очень больших значений. При чем здесь вообще индуктивность? В схеме значка катушки индуктивности нигде не встречается… но есть катушка реле, которая как раз и представляет из себя индуктивность. Что будет, если мы резко откинем ключик S в исходное положение? Магнитное поле катушки сразу же преобразуется в ЭДС самоиндукции, которая устремится поддержать электрический ток в цепи. И чтобы куда-то девать этот возникший электрический ток, у нас как раз в схеме стоит диод ;-). То есть при выключении картина будет такая:
Получается замкнутый контур катушка реле —-> диод, в котором происходит затухание ЭДС самоиндукции и преобразование ее в тепло на диоде.
А теперь давайте предположим, что у нас в схеме нет диода. При размыкании ключа картина была бы такой:
Между контактами ключа проскочила бы маленькая искра (выделил синим кружочком), так как ЭДС самоиндукции всеми силами пытается поддержать ток в контуре. Эта искорка негативно сказывается на контактах ключа, так как на них остается нагар, который со временем их изнашивает. Но еще не это самое страшное. Так как ЭДС самоиндукции бывает очень большой по амплитуде, то это также негативно сказывается на радиоэлементах, которые могут идти ДО катушки реле.
Этот импульс может с легкостью пробить P-N переходы полупроводников и навредить им вплоть до полного отказа функционирования. В настоящее время диоды уже встроены в самом реле, но еще не во всех экземплярах. Так что не забывайте звонить катушку реле на предмет встроенного диода.
Думаю, теперь всем понятно, как должна работать схема. В этой схеме мы рассмотрели, как ведет себя напряжение. Но электрической ток – это ведь не только напряжение. Если вы не забыли, электрический ток характеризуется такими параметрами, как направленность, напряжение и сила тока. Также не забываем про такие понятия, как мощность, выделяемая на нагрузке, и сопротивление нагрузки. Да-да, это все надо учитывать.
Вычисляем силу тока и мощность
При рассмотрении схем, нам не надо с точностью до копейки вычислять силу тока, мощность и тд. Достаточно приблизительно понять, какая примерно сила тока будет в этой цепи, какая мощность будет выделяться на этом радиоэлементе и тд.
Итак, давайте пробежимся по силе тока в каждой ветви схемы уже при включении ключа S.
Первым делом рассмотрим диод. Так как на катод диода в данном случае идет плюс, следовательно, он будет заперт. То есть в данный момент через него сила тока будет какие-то микроамперы. Можно сказать, почти ничего. То есть он никак не влияет на включенную схему. Но как я уже писал выше, он нужен для того, чтобы гасить скачок ЭДС самоиндукции при выключении схемы.
Катушка реле. Уже интереснее. Катушка реле – это соленоид. Что такое соленоид? Это провод, намотанный на цилиндрический каркас. А у нас провод обладает каким-то сопротивлением, следовательно, можно сказать в данном случае катушка реле – это резистор. Следовательно, сила тока в цепи катушки будет зависеть от того, какой толщиной провода она намотана и из чего сделан провод. Для того, чтобы не мерять каждый раз, есть табличка, которую я спер у своего кореша-конкурента со статьи электромагнитное реле:
Так как катушка реле у нас на 5 Вольт, то получается, что ток через катушку будет около 72 миллиампер, а потребляемая мощность составит 360 милливатт. О чем вообще говорят нам эти цифры? Да о том, что источник питания на 5 Вольт должен как минимум выдавать в нагрузку более 360 милливатт. Ну вот и разобрались с катушкой реле, и заодно с источником питания на 5 Вольт.
Далее, контакты реле 1-2. Какая сила тока будет проходить через них? Лампа у нас 40 Ватт. Следовательно: P=IU, I=P/U=40/24=1,67 Ампер. В принципе нормальная сила тока. Если бы получили какую-либо аномальную силу тока, например, более 100 Ампер, то стоило бы насторожиться. Также не забываем и про питание 24 Вольта, чтобы этот источник питания мог не напрягаясь выдать мощность более, чем 40 Ватт.
Резюме
Схемы читаются слева-направо (бывают редкие исключения).
Определяем, где у схемы питание.
Вспоминаем значение каждого радиоэлемента.
Смотрим направление электрического тока в схеме.
Смотрим, что должно произойти в схеме, если на нее подано питание.
Вычисляем приблизительно силу тока в цепях и мощность, выделяемую на радиоэлементах, для того, чтобы удостовериться, что схема реально будет работать и в ней нет аномальных параметров.
При большом желании можно прогнать схему через симулятор, например через современный Every Circuit, и глянуть различные интересующие нас параметры.
{SOURCE}
Правила чтения электрических схем и чертежей
Чтоб читать электронные схемы, нужно отлично знать и держать в голове распространенные условные обозначения обмоток, контактов, трансформаторов, движков, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области с которой в большей степени приходится сталкиваться в силу профессии, схемы распространенных узлов электроустановок, к примеру движков, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, характеристики поочередного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.
Разбор схем на отдельные цепи
Неважно какая электроустановка удовлетворяет определенным условиям действия. При чтении схем, во-1-х, необходимо выявить эти условия, во-2-х — найти, отвечают ли приобретенные условия задачам, которые должны электроустановкой решаться, в-3-х, следует проверить, не вышли ли попутно «излишние» условия, и оценить их последствия.
Для решения этих вопросов пользуются несколькими приемами.
1-ый из их заключается в том, что схема электроустановки на уровне мыслей расцепляется на обыкновенные цепи, которые поначалу рассматривают раздельно, а потом в сочетаниях.
Обычная цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (движок, резистор, лампа, обмотка реле, разряженный конденсатор и т. п.), прямой провод (от источника тока к приемнику), оборотный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.). Понятно, что в цепях, не допускающих размыкания, к примеру в цепях трансформаторов тока, контактов нет.
При чтении схемы необходимо поначалу на уровне мыслей расцепить ее на обыкновенные цепи, чтоб проверить способности каждого элемента, а потом разглядеть их совместное действие.
Действительность схемных решений
Наладчики отлично знают, что не всегда могут быть осуществлены на самом деле схемные решения, хотя они не содержат очевидных ошибок. Другими словами, проектные электронные схемы не всегда реальны.
Потому одна из задач чтения электронных схем заключается в том, чтоб проверить, могут ли быть выполнены данные условия.
Нереальность схемных решений обычно имеет в главном последующие предпосылки:
не хватает энергии для срабатывания аппарата,
в схему просачивается «лишняя» энергия, вызывающая неожиданное срабатывание пли препятствующая своевременному отпусканию электронного аппарата,
не хватает времени для совершения данных действий,
аппаратом задана уставка, которая не может быть достигнута,
вместе использованы аппараты, резко отличающиеся по свойствам,
не учтены коммутационная способность, уровень изоляции аппаратов и проводки, не погашены коммутационные перенапряжения,
не учтены условия, в каких электроустановка будет эксплуатироваться,
при проектировании электроустановки за базу принимается ее рабочее состояние, но не решается вопрос о том, как ее привести в это состояние и в каком состоянии она окажется, к примеру, в итоге краткосрочного перерыва питания.
Порядок чтения электронных схем и чертежей
Сначала, нужно ознакомиться с наличными чертежами (либо составить оглавление, если его нет) и классифицировать чертежи (если этого не изготовлено в проекте) по предназначению.
Чертежи перемешивают в таком порядке, чтоб чтение каждого следующего являлось естественным продолжением чтения предшествующего. Потом уясняют принятую систему обозначений и маркировки.
Если она не отражена па чертежах, то ее узнают и записывают.
На избранном чертеже читают все надписи, начиная со штампа, потом примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации непременно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.
Если на чертеже имеются ссылки на другие чертежи, то необходимо отыскать эти чертежи и разобраться в содержании ссылок. К примеру, в одну схему заходит контакт, принадлежащий аппарату, изображенному на другой схеме. Означает, необходимо уяснить, что же это все-таки за аппарат, зачем служит, в каких критериях работает и т. п.
При чтении чертежей, отражающих электропитание, электронную защиту, управление, сигнализацию и т. п.:
1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько либо использовано несколько напряжений, то уясняют, чем это вызвано,
2) расчленяют схему па обыкновенные цени и, рассматривая их сочетание, устанавливают условия деяния. Рассматривать всегда начинают с того аппарата, который нас в этом случае интересует. К примеру, если не работает движок, то необходимо отыскать па схеме его цепь и поглядеть, контакты каких аппаратов в нее входят. Потом находят цепи аппаратов, управляющих этими контактами, и т. д.,
3) строят диаграммы взаимодействия, выясняя с помощью их: последовательность работы во времени, согласованность времени деяния аппаратов в границах данного устройства, согласованность времени деяния вместе действующих устройств (к примеру, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого попеременно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают вероятные последствия, возможность выхода устройства в рабочее положение из хоть какого состояния, в каком оно могло оказаться, к примеру после ревизии,
4) оценивают последствия возможных дефектов: незамыкание контактов попеременно по одному, нарушения изоляции относительно земли попеременно для каждого участка,
5) нарушения изоляции меж проводами воздушных линий, выходящих за границы помещений и т. п.,
5) инспектируют схему па отсутствие неверных цепей,
6) оценивают надежность электропитания и режим работы оборудования,
7) инспектируют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами (ПУЭ, СНиП и т. п.).
Методические указания по самостоятельной работе предмета Чтение электросхем
Кировское областное государственное
профессиональное образовательное бюджетное учреждение
«Кировский авиационный техникум»
ОП 15 ЧТЕНИЕ ЭЛЕКТРОСХЕМ
Методические указания для внеаудиторной самостоятельной работы
студентов 3 курса очной формы обучения
по специальности 13.02.10 «Электрические машины и аппараты»
среднего профессионального образования
Печатается по решению Методического совета
КОГПОБУ «Кировский авиационный техникум»
(протокол № 4 от 16.11 2017 г.)
Методические указания к практическим занятиям по дисциплине «Чтение электросхем» для студентов 3 курса очной формы обучения составлены в соответствии с рабочей программой дисциплины, одобренной цикловой комиссией электротехнических специальностей
Протокол № 4 от 16 ноября 2017 г.
Председатель цикловой комиссии электротехнических специальностей
__________ Т.Н. Любчак
Составил: преподаватель КОГПОБУ «Кировский авиационный техникум»
__________ В.П. Бобровский
Редактор:– зав. УМС КОГПОБУ «Кировского авиационного техникума»
__________ С. И., Арасланова
Чтение электросхем: методические указания для внеаудиторной самостоятельной работы по дисциплине «Чтение электросхем» для студентов очной формы обучения по специальности 13.02.10 — «Электрические машины и аппараты», Бобровский В.П; ред. Арасланова С. И. ; КОГПОБУ «Кировский авиационный техникум». — Киров: КАТ, 2017 — 10 с.
Методические указания для внеаудиторной самостоятельной работы по дисциплине «Чтение электросхем» предназначены для работы студентов очной формы обучения на занятии как самостоятельно, так и под руководством преподавателя. Содержат описание практических занятий, охватывающих весь курс дисциплины.
Могут быть полезны преподавателям электротехнических специальностей, работающим в системе среднего профессионального образования.
© КАТ, 2017
Содержание
1 Пояснительная записка…………………………………………………………………………4
2 Тематический план самостоятельной работы по дисциплине…………………………………5 3 Описание заданий для внеаудиторной самостоятельной работы студентов………………….7
3.1 Описание заданий по теме 1.1 Общие сведения о чертежах и схемах электроустановок. Обозначение изделий и конструкторских документов ..……………………………………….7 3.2 Описание заданий по теме 2.2 Примеры условных графических обозначений. Размеры условных графических обозначений …………………………….………………………………7
3.3 Описание заданий по теме 3.1 Позиционные обозначения …………..………………….7
3.4 Описание заданий по теме 3.2. Обозначение цепей ………………………………………7
3.5 Описание заданий по теме 4.4 Схемы управления электрооборудованием силовых электрических цепей ………………………………………………………………………………8
3.6 Описание заданий по теме 4.5. Техника чтения и анализа схем ………………………….8
3.7 Описание заданий по теме 4.6. Кинематические схемы …………………………………..8
3.8 Описание заданий по теме 5.1. Схемы соединения………………..………………………8
3.9 Описание заданий по теме 5.2. Схемы подключения ……………………………………..8
3.10 Описание заданий по теме 6.1. Планы расположения электрооборудования и прокладки электрических сетей ……………………………………………………………………………..9
3.11 Описание заданий по теме 7.1. Конструкторская документация изделий ……………..9
3.12 Описание заданий по теме 7.2. Чертежи электрических жгутов ………………………..9
3.13 Описание заданий по теме 7.3. Чертежи изделий с электрическими обмотками и печатных плат……………………………………………………………………………………..…………..9
3.14 Описание заданий по теме 7.4. Установочные чертежи. Координатная сетка. Изображение отверстий …………………………………………………….…………………………………..9
4 Список литературы ………………………………………………………………………10
1 Пояснительная записка
Самостоятельная работа вне учебной аудитории проводится с целью систематизации и закрепления полученных теоретических знаний и практических умений студентов, углубления и расширения теоретических знаний, формирования умений использования нормативной, справочной и специальной литературы, формирования практических умений и навыков.
На проведение самостоятельной работы студентами вне учебной аудитории отведено программой 36(32) часов.
При контроле самостоятельной работы используются следующие формы:
— текущий контроль усвоения знаний на основе оценки устного ответа на вопрос, сообщения, доклада;
— конспект, выполненный по теме, изучаемой самостоятельно;
— решение ситуационных задач по применению на практике.
Критериями оценок результатов внеаудиторной работы студента являются:
— уровень освоения студентами учебного материала;
— умение студента использовать теоретические знания при выполнении практических задач;
— сформированность обще учебных умений.
Выполнение самостоятельной работы тесно связано со знаниями полученными прн изучении дисциплин «Электротехника», «Физика», «Математика». Знание полученное студентами при выполнении самостоятельной работы поможет лучше студентам усвоить такие дисциплины как «Электроснабжение», «Электропривод», «Техническая эксплуатация и обслуживание электрического и электромеханического оборудования», «Автоматика» и другие специальные дисциплины, окажет существенную помощь при прохождении практики и выполнении курсовых и дипломных проектов.
4
3
Раздел 3 Условные буквенно-цифровые обозначения в электрических схемах
Тема 3.1 Позиционные обозначения
1 Выписать из текста: Отыскание позиции изделия согласно надписям. Привести примеры обозначений.
2
Тема 3.2 Обозначение цепей
1 Составить таблицу: Обозначения вторичных цепей
2
4
Раздел 4 Принципиальные электрические схемы
Тема 4.4 Схемы управления электрооборудованием силовых электрических цепей
1 Изобразить: Принципиальную схему дистанционного управления высоковольтным выключателем с электромагнитным приводом
4
Тема 4.5 Техника чтения и анализа схем
1 Разработать схему анализа и сравнения схем
2
Тема 4.6 Кинематические схемы
1 Выписать из текста: Буквенные коды наиболее распространенных групп элементов
2
5
Раздел 5 Схемы соединения и подключения
Тема 5.1 Схемы соединения
1 Работа с нормативными документами: Способы выполнения схем соединения. Полные схемы соединения. Схемы в виде таблицы
2
Тема 5.2 Схемы подключения
1 Привести пример: Принципиально-монтажных схем
2
6
Раздел 6 Планы расположения электрооборудования и прокладки электрических сетей.
Тема 6.1 Планы расположения электрооборудования и прокладки электрических сетей Схемы соединения
1 Изобразить линии электроснабжения и элементы их конструкций
4
7
Раздел 7 Чертежи электрических изделий и электроустановок
Тема 7.1 Конструкторская документация изделий
1 Создать таблицу соединений
2
Тема 7.2 Чертежи электрических жгутов
1 Изобразить и классифицировать жгут.
2
Тема 7.3 Чертежи изделий с электрическими обмотками и печатных плат
1 Изобразить : УГО чертежей изделий с обмотками
2
2 Составить Таблицу обмоточных данных и сведения о прочистке, пайке, покрытиях
2
Тема 7.4 Установочные чертежи Координатная сетка Изображение отверстий
1 Привести примеры кинематических связей
2
3.1 Описание заданий по теме 1.1 «Общие сведения о чертежах и схемах эл. установок. Обозначение изделий и конструкторских документов»
Задание 1
Формулировка задания: Составить план текста: Обозначение неосновного конструкторского документа
Цель выполнения задания: для овладения знаниями Форма контроля: проверка рабочей тетради.
Критерии оценки: 1) соблюдение последовательности 2) умение выделить главное 3) полнота охвата 4) качество содержания.
Источники информации
Л1 — В.Н. Камнев “Чтение схем и чертежей электроустановок” М., 1986 г. 264с.
Л2 — Каминский Е. А. Практические приемы чтения схем электроустановок. М. 1988. — 368 с.
Л3 — Правила устройств электроустановок. М, НЦ ЭНАС, 2009г
Л4 — ГОСТ 2.702-91 ЕСКД. Правила выполнения электрических схем
Л5 — Гост 2.701-81 схемы (виды и типы. Общие требования 2.702-75 правила выполнения электрических схем)
Л6 — Гетлинг Б.В “ Чтение схем и чертежей электрических установок М. 1977 г.
3.2 Описание заданий по теме 2.2 «Примеры условных графических обозначений. Размеры условных графических обозначений»
Задание 1
Формулировка задания: Графически изобразить: Обозначение электрических машин, трансформаторов, коммутационных устройств.
Цель выполнения задания: овладение новыми знаниями.
Форма контроля: проверка наличия и содержания конспекта..
Критерии оценки: собеседование по изученной теме.
Источники информации
Л5 — Гост 2.701-81 схемы (виды и типы. Общие требования 2.702-75 правила выполнения электрических схем)
3.3 Описание заданий по теме 3.1 «Позиционные обозначения»
Задание 1
Формулировка задания: Выписать из текста: Отыскание позиции изделия согласно надписям. Привести примеры обозначений.
Цель выполнения задания: для овладения знаниями
Форма контроля: проверка рабочей тетради.
Критерии оценки: качество оформления тетради, полнота ответа, точность выполнения.
Источники информации
Л2 — Каминский Е. А. Практические приемы чтения схем электроустановок. М. 1988. — 368 с.
3.4 Описание заданий по теме 3.2 «Обозначение цепей»
Задание1 Формулировка задания: Составить таблицу: Обозначения вторичных цепей.
Цель выполнения задания: овладение новыми знаниями, умение работать с ГОСТами.
Форма контроля: проверка наличия и содержания таблицы.
Критерии оценки: собеседование по изученной теме.
Источники информации
Л4 — ГОСТ 2.702-91 ЕСКД. Правила выполнения электрических схем
3.5 Описание заданий по теме 4.4 «Схемы управления электрооборудованием силовых электрических цепей»
Задание1 Формулировка задания: Изобразить: Принципиальную схему дистанционного управления высоковольтным выключателем с электромагнитным приводом
Цель выполнения задания: формирование умений
Форма контроля: проверка рабочей тетради.
Критерии оценки: правильность выполнения схемы, качество оформления тетради.
Источники информации
Л2 — Каминский Е. А. Практические приемы чтения схем электроустановок. М. 1988. — 368 с.
3.6 Описание заданий по теме 4.5 «Техника чтения и анализа схем»
Задание1 Формулировка задания: Разработать схему анализа и сравнения схем.
Цель выполнения задания: овладение новыми знаниями и их систематизация.
Форма контроля: проверка наличия и содержания конспекта.
Критерии оценки: собеседование по изученной теме.
Источники информации
Л2 — Каминский Е. А. Практические приемы чтения схем электроустановок. М. 1988. — 368 с.
3.7 Описание заданий по теме 4.6 «Кинематические схемы»
Задание1 Формулировка задания: Выписать из текста: Буквенные коды наиболее распространенных групп элементов.
Цель выполнения задания: овладение новыми знаниями.
Форма контроля: проверка наличия и содержания конспекта..
Критерии оценки: собеседование по изученной теме.
Источники информации
Л4 — ГОСТ 2.702-91 ЕСКД. Правила выполнения электрических схем.
3.8 Описание заданий по теме 5.1 «Схемы соединения»
Задание 1
Формулировка задания: Работа с нормативными документами: Способы выполнения схем соединения. Полные схемы соединения. Схемы в виде таблицы Цель выполнения задания: формирование умений.
Форма контроля: проверка рабочей тетради.
Критерии оценки: правильность выполнения схем, качество их оформления.
Источники информации
Л4 — ГОСТ 2.702-91 ЕСКД. Правила выполнения электрических схем.
3.9 Описание заданий по теме 5.2 «Схемы подключения»
Задание1 Формулировка задания: 1 Привести пример: Принципиально-монтажных схем.
Цель выполнения задания: овладение новыми знаниями.
Форма контроля: проверка наличия и содержания схем.
Критерии оценки: собеседование по изученной теме.
Источники информации
Л2 — Каминский Е. А. Практические приемы чтения схем электроустановок. М. 1988. — 368 с.
3.10 Описание заданий по теме 6.1 «Планы расположения электрооборудования и прокладки электрических сетей. Схемы соединения»
Задание1 Формулировка задания: Изобразить линии электроснабжения и элементы их конструкций Цель выполнения задания: формирование умений
Форма контроля: проверка рабочей тетради.
Критерии оценки: правильность произведенных изображений, качество оформления тетради.
Источники информации
Л1 — В.Н. Камнев “Чтение схем и чертежей электроустановок” М., 1986 г. 264с.
3.11 Описание заданий по теме 7.1 «Конструкторская документация изделий»
Задание1 Формулировка задания: Создать таблицу соединений.
Цель выполнения задания: формирование умений.
Форма контроля: проверка наличия и содержания таблицы.
Критерии оценки: собеседование по изученной теме.
Источники информации
Л2 — Каминский Е. А. Практические приемы чтения схем электроустановок. М. 1988. — 368 с.
3.12 Описание заданий по теме 7.2 «Чертежи электрических жгутов»
Задание1 Формулировка задания: Изобразить и классифицировать жгут.
Цель выполнения задания: формирование умений.
Форма контроля: проверка наличия и содержания конспекта..
Критерии оценки: собеседование по изученной теме.
Источники информации
Л1 — В.Н. Камнев “Чтение схем и чертежей электроустановок” М., 1986 г. 264с.
3.13 Описание заданий по теме 7.3. «Чертежи изделий с электрическими обмотками и печатных плат»
Задание 1
Формулировка задания: Изобразить : УГО чертежей изделий с обмотками
Цель выполнения задания: формирование умений.
Форма контроля: проверка изображения УГО.
Критерии оценки: правильность изображения УГО, качество оформления.
Источники информации
Л2 — Каминский Е. А. Практические приемы чтения схем электроустановок. М. 1988. — 368 с.
3.14 Описание заданий по теме 7.4 «Установочные чертежи Координатная сетка Изображение отверстий»
Задание1 Формулировка задания: Привести примеры кинематических связей
Цель выполнения задания: овладение новыми знаниями.
Форма контроля: проверка наличия и содержания реферата.
Критерии оценки: собеседование по изученной теме.
Источники информации
Л1 — В.Н. Камнев “Чтение схем и чертежей электроустановок” М., 1986 г. 264с.
4 Список литературы
Л1 — В.Н. Камнев “Чтение схем и чертежей электроустановок” М., 1986 г. 264с.
Л2 — Каминский Е. А. “Практические приемы чтения схем электроустановок”. М. 1988. — 368 с.
Л3 — Правила устройств электроустановок. М, НЦ ЭНАС, 2009г
Л4 — ГОСТ 2.702-91 “ ЕСКД. Правила выполнения электрических схем”
Л5 — Гост 2.701-81” Cхемы (виды и типы. Общие требования 2.702-75 правила выполнения электрических схем)”
Л6 — Гетлинг Б.В “ Чтение схем и чертежей электрических установок” М. 1977 г.
План урока «Чтение электрических схем»
Предмет: Основы электротехники
Раздел: «Электрические схемы»
Тема: «Правила чтения электрических схем»
Цели:
Ознакомить обучающихся с правилами чтения электрических схем;
Формировать у обучающихся рациональные приемы и способы мышления, развитие познавательной активности, внимания, памяти, речи, культуры учебного труда;
Воспитывать у обучающихся уважения к труду, высокие нравственные качества.
Подготовка к экзамену по вопросу «Электрические схемы»
Тип урока: формирование новых знаний
Методы: беседа, индивидуальная работа обучающихся, компьютерное тестирование, демонстрация макетов.
Оборудование и материалы: презентация, раздаточный материал, интерактивная доска, пульты для тестирования, компьютер, макеты трансформаторов
Литература:
1. Прошин В.М. Электротехника учебник для СПО, 2013 год
2. Л.Д. Рожкова «Электрооборудование электрических станций и подстанций», учебник для СПО, 2014 год
Интернет – ресурсы: http://electricalschool.info/
Структура урока:
1. Организационный момент, сообщение темы – 4 мин.
2. Формирование новых знаний – 25 мин.
3. Закрепление пройденного материала – 12 мин.
4. Заключительная часть – 4 мин.
План урока
1. Организационный момент.
Проверка отсутствующих, готовности к уроку, психологический настрой.
Сообщение темы, целей и плана урока
Тема урока: «Правила чтения электрических схем»
3. Формирование новых знаний.
Чтобы читать электрические схемы, необходимо хорошо знать и помнить: наиболее распространенные условные обозначения обмоток, контактов, трансформаторов, двигателей, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области с которой преимущественно приходится сталкиваться в силу профессии, схемы наиболее распространенных узлов электроустановок, например двигателей, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, свойства последовательного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.
Расчленение схем на простые цепи
Любая электроустановка удовлетворяет определенным условиям действия. Поэтому при чтении схем, во-первых, нужно выявить эти условия, во-вторых — определить, отвечают ли полученные условия задачам, которые должны электроустановкой решаться, в-третьих, следует проверить, не получились ли попутно «лишние» условия, и оценить их последствия.
Для решения этих вопросов пользуются несколькими приемами.
Первый из них состоит в том, что схема электроустановки мысленно расчленяется на простые цепи, которые сначала рассматривают отдельно, а затем в сочетаниях.
Простая цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (двигатель, резистор, лампа, обмотка реле, разряженный конденсатор и т. п.), прямой провод (от источника тока к приемнику), обратный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.). Понятно, что в цепях, не допускающих размыкания, например в цепях трансформаторов тока, контактов нет.
При чтении схемы нужно сначала мысленно расчленить ее на простые цепи, чтобы проверить возможности каждого элемента, а затем рассмотреть их совместное действие.
Порядок чтения электрических схем и чертежей
Прежде всего, необходимо ознакомиться с наличными чертежами (или составить оглавление, если его нет) и систематизировать чертежи (если этого не сделано в проекте) по назначению.
Чертежи чередуют в таком порядке, чтобы чтение каждого последующего являлось естественным продолжением чтения предыдущего. Затем уясняют принятую систему обозначений и маркировки.
Если она не отражена па чертежах, то ее выясняют и записывают.
На выбранном чертеже читают все надписи, начиная со штампа, затем примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации обязательно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.
Если на чертеже имеются ссылки на другие чертежи, то нужно найти эти чертежи и разобраться в содержании ссылок. Например, в одну схему входит контакт, принадлежащий аппарату, изображенному на другой схеме. Значит, нужно уяснить, что это за аппарат, для чего служит, в каких условиях работает и т. п.
При чтении чертежей, отражающих электропитание, электрическую защиту, управление, сигнализацию и т. п.:
1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько или применено несколько напряжений, то уясняют, чем это вызвано,
2) расчленяют схему па простые цени и, рассматривая их сочетание, устанавливают условия действия. Рассматривать всегда начинают с того аппарата, который нас в данном случае интересует. Например, если не работает двигатель, то нужно найти па схеме его цепь и посмотреть, контакты каких аппаратов в нее входят. Затем находят цепи аппаратов, управляющих этими контактами, и т. д.,
3) строят диаграммы взаимодействия, выясняя с их помощью: последовательность работы во времени, согласованность времени действия аппаратов в пределах данного устройства, согласованность времени действия совместно действующих устройств (например, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого поочередно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают возможные последствия, возможность выхода устройства в рабочее положение из любого состояния, в котором оно могло оказаться, например после ревизии,
4) оценивают последствия вероятных неисправностей: незамыкание контактов поочередно по одному, нарушения изоляции относительно земли поочередно для каждого участка,
5) нарушения изоляции между проводами воздушных линий, выходящих за пределы помещений и т. п.,
5) проверяют схему па отсутствие ложных цепей,
6) оценивают надежность электропитания и режим работы оборудования,
7) проверяют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами (ПУЭ, СНиП и т. п.).
Обобщение пройденного материала в ходе фронтальной беседы.
4. Закрепление пройденного материала.
1. Что такое электрическая схема?
2. Что такое питающая сеть?
3. Условные буквенные и графическае обозначения на электрических схемах
4. Порядок чтения электрических схем
5. Заключительная часть.
Подведение итогов урока, выставление оценок за урок.
Чтение электрических схем | Электромонтер по монтажу вторичных цепей
Страница 14 из 45
Прочитать схему электрических соединений — это значит получить все данные об аппаратах, приборах и проводниках, составляющих данную схему, определить их назначение и порядок работы.
Чтение схемы какого-либо устройства начинают с определения ее назначения, записанного в угловом штампе, и знакомятся с примечаниями на чертеже.
Читать схему соединений вторичных цепей нужно после предварительного изучения схемы первичной цепи.
Разбирать схему надо начиная от источников питания (от аккумуляторных батарей, вторичных обмоток трансформаторов напряжения и тока и т.п.).
Схема состоит из нескольких электрически не связанных между собой цепей, поэтому поочередно рассматривают каждую цепь в отдельности. Лучше сначала разобрать схемы цепей, питаемых от вторичных обмоток трансформаторов тока, а затем перейти к цепям тока управления.
Рис. 54. Развернутая схема управления асинхронным короткозамкнутым электродвигателем с торможением противовключением
В качестве примера можно прочитать принципиальную схему управления асинхронным короткозамкнутым электродвигателем с торможением противовключением (рис. 54).
На схеме все элементы аппаратов изображены в положении, когда по ним не протекает ток. Включив линейный рубильник, подают напряжение в цепи управления. Запускают двигатель нажав кнопку «пуск», которая замкнет цепь катушки линейного контактора Л.
Проследим эту цепь: фаза Л2, предохранитель, кнопка «стоп», кнопка «пуск», размыкающие блок-контакты контактора торможения Т, катушка контактора Л, контакты тепловых реле 1РТ и 2РТ, фаза Л3. По цепи пройдет ток, и контактор Л включится. Одновременно замкнутся замыкающие блок- контакты Л и разомкнутся размыкающие блок-контакты Л. Двигатель наберет обороты, и индукционное реле скорости РКС, включенное в цепь катушки контактора торможения Т, замкнет свои контакты.
При отключении двигателя кнопкой «стоп» или автоматически замыкающие блок-контакты Л размыкаются, а размыкающие блок-контакты Л замкнутся и включат в цепь катушку контактора торможения Т. Контактор торможения будет включен до тех пор, пока скорость двигателя не приблизится к нулю и реле РКС разомкнет свои контакты и тем самым разорвет цепь катушки Т.
Можно рассмотреть более сложную принципиальную схему управления, блокировки и сигнализации электропривода трехсекционного конвейера (рис. 55). Блокировка здесь применена для предотвращения завала механизмов транспортируемым материалом в случае остановки первого или второго конвейера.
Схема работает так, что остановка любого из приводных электродвигателей влечет автоматическую остановку всех предыдущих электродвигателей (по ходу движения материала). Для этого в цепь управления магнитного пускателя каждого электродвигателя последовательно включают замыкающие 3 блок-контакты магнитного пускателя последующего электродвигателя.
Рис. 55. Развернутая схема управления, блокировки и сигнализации электропривода трехсекционного конвейера
Таким образом, магнитный пускатель 3К электродвигателя М3 третьего конвейера можно включить только тогда, когда замкнутся блок-контакты 2К3 магнитного пускателя 2К электродвигателя М2. В свою очередь магнитный пускатель 2К может быть включен после включения магнитного пускателя 1К электродвигателя M1 первого конвейера.
В схеме имеется также световая сигнализация положения пускателя, необходимая при диспетчерском управлении конвейерами. В выключенном состоянии каждого магнитного пускателя размыкающие Р контакты 1К2, 2К2, ЗК2 замкнуты и светятся зеленые лампы ЛЗ. При включении любого из магнитных пускателей указанные выше контакты размыкаются и разрывают цепь соответствующей зеленой лампы, а красная лампа ЛK через один из замыкающих 3 блок-контактов (1К1, 2К1, ЗК1) включается.