Site Loader

Содержание

IGBT транзисторы. Устройство и работа. Параметры и применение

В настоящее время в электронике имеют большую популярность IGBT транзисторы. Если расшифровать эту аббревиатуру с английского языка, то это биполярный транзистор с изолированным затвором. Он применяется в виде электронного мощного ключа для систем управления приводами механизмов, в источниках питания.

IGBT транзисторы

Этот силовой транзистор сочетает в себе свойства биполярного и полевого транзистора. Он управляется путем подачи напряжения на затвор, изолированный от цепи. Характерным свойством этого транзистора является низкая величина мощности управления, которая применяется для переключений мощных силовых цепей.

Наибольшей популярностью пользуются IGBT в силовых цепях преобразователей частоты и электродвигателей переменного тока мощностью до 1 мегаватта. По вольтамперным свойствам эти транзисторы аналогичны биполярным моделям полупроводников, но качество и чистота коммутации у них намного больше.

Современные технологии изготовления дают возможность оптимизировать транзисторы по функциональным характеристикам. Уже разработаны полупроводники, способные работать при большем напряжении и величине тока.

Основные параметры
  • Управляющее напряжение – это разность потенциалов, способная управлять работой затвора.
  • Наибольший допустимый ток.
  • Напряжение пробоя между эмиттером и коллектором.
  • Ток отсечки эмиттер-коллектор.
  • Напряжение насыщения эмиттер-коллектор.
  • Входная емкость.
  • Выходная емкость.
  • Паразитная индуктивность.
  • Период задержки подключения.
  • Период задержки выключения.
  • Внутреннее сопротивление.

В регуляторах скорости применяются IGBT транзисторы с рабочей частотой в несколько десятков кГц.

Достоинства
  • Простая параллельная схема.
  • Отсутствие потерь.
  • Повышенная плотность тока.
  • Устойчивость к замыканиям.
  • Малые потери в открытом виде.
  • Возможность функционирования при повышенной температуре (выше 100 градусов).
  • Эксплуатация с высоким напряжением (выше 1 кВ) и мощностями (более 5 кВт).
При проектировании схем подключения с транзисторами нужно иметь ввиду, что существует ограничение по наибольшему току. Для этого применяют некоторые способы:
  • Правильный подбор тока защиты.
  • Выбор сопротивления затвора.
  • Использование обходных путей коммутации.
Устройство и работа

Внутреннее устройство IGBT транзисторов включает в себя каскад двух электронных ключей, управляющих конечным выходом.

 

Принцип действия транзистора заключается в двух этапах:
  • При подаче напряжения положительного потенциала между истоком и затвором полевой транзистор открывается, появляется n-канал между стоком и истоком.
  • Начинается движение заряженных электронов из n-области в р-область, вследствие чего открывается биполярный транзистор. В результате этого от эмиттера к коллектору протекает электрический ток.

 

IGBT транзисторы служат для приближения токов замыкания к безопасному значению. Они ограничивают напряжение затвора следующими методами:
  • С помощью привязки к определенному значению напряжения. Это достигается тогда, когда драйвер затвора имеет постоянное напряжение. Главным способом является добавление в схему диода, имеющего малое падение напряжения (диод Шоттки). Значительный эффект получается путем уменьшения индуктивности цепи затвора и питания.
  • Ограничение значения напряжения затвора путем использования стабилитрона в схеме затвора и эмиттера. Неплохая эффективность получается за счет установки диодов к дополнительным клеммам модуля. Диоды применяются с малым разбросом и температурной зависимостью.
  • Подключение в цепь отрицательной обратной связи эмиттера. Такой способ доступен, когда подключен эмиттер драйвера затвора к клеммам эмиттера модуля.
Сфера использования

IGBT транзисторы чаще всего работают в сетях высокого напряжения до 6,5 киловольт для надежной и безопасной работы электроустановок в аварийном режиме при коротких замыканиях.

Вышеперечисленные свойства транзисторов дают возможность использовать их в частотно-регулируемых приводах, инверторах, импульсных регуляторах тока, а также в сварочных аппаратах.

Также IGBT применяются в системах мощных приводов управления электровозов, троллейбусов. Это повышает КПД и создает повышенную плавность хода.

Силовые транзисторы широко используются в цепях высокого напряжения. Они входят в состав схем посудомоечных машин, бытовых кондиционеров, автомобильного зажигания, блоков питания телекоммуникационного оборудования.

Проверка исправности

IGBT транзисторы проверяются в случаях ревизии при неисправностях электрического устройства. Проверку проводят с помощью мультитестера путем прозвонки электродов эмиттера и коллектора в двух направлениях, чтобы проверить отсутствие замыкания. Емкость входа эмиттер-затвор необходимо зарядить отрицательным напряжением. Это делается кратковременным касанием щупа мультиметра «СОМ» затвора и щупа «V/Ω/f» эмиттера.

Чтобы произвести проверку, нужно убедиться, работает ли в нормальном режиме транзистор. Для этого зарядим емкость на входе эмиттер-затвор положительным полюсом.  Это делается коротким касанием щупа «V/Ω/f» затвора, а щупа «СОМ» эмиттера. Контролируется разность потенциалов эмиттера и коллектора, которая не должна превышать 1,5 вольта. Если напряжения тестера не хватит для открывания транзистора, то входную емкость можно зарядить от питания напряжением до 15 вольт.

Условное обозначение
Транзисторы имеют комбинированную структуру, то и обозначения у них соответствующие:

IGBT модули

Силовые транзисторы производятся не только в виде отдельных полупроводников, но и в виде модулей. Такие модули входят в состав частотных преобразователей для управления электромоторами.

Схема преобразователя частоты имеет технологичность изготовления выше, если в состав входят модули IGBT транзисторов. На изображенном модуле выполнен мост из двух силовых транзисторов.

IGBT транзисторы нормально функционируют при рабочей частоте до 50 кГц. Если частоту повышать, то повышаются и потери. Свои возможности силовые транзисторы проявляют максимально при напряжении выше 400 В. Поэтому такие транзисторы часто встречаются в мощных электрических приборах высокого напряжения, а также в промышленном оборудовании.

Из истории возникновения

Полевые транзисторы стали появляться в 1973 году. Затем разработали составной транзистор, который оснастили управляемым транзистором с помощью полевого полупроводника с затвором.

Первые силовые транзисторы имели недостатки, выражавшиеся в медленном переключении, низкой надежностью. После 90 годов и по настоящее время эти недостатки устранены. Силовые полупроводники имеют повышенное входное сопротивление, малый уровень управляющей мощности, малый показатель остаточного напряжения.

Сейчас существуют модели транзисторов, способных коммутировать ток до нескольких сотен ампер, с рабочим напряжением в тысячи вольт.

Похожие темы:

Транзистор IGBT-принцип работы, структура, основные характеристики

Силовой транзистор IGBT управляется с помощью напряжения, подаваемого на управляемый электрод-«затвор», который изолирован от силовой цепи. Полное название прибора: биполярный транзистор с изолированным затвором.

Характерная черта для этого транзистора – очень малое значение управляющей мощности, использованной для коммутационных операций существенных токовых значений силовых цепей.

Рис. №1. Эффективность использования технологий на основе мощных IGBT-транзисторов

Преобладающее значение приобрело его использование в цепях силового предназначения для частотных преобразователей, для двигателей переменного тока, мощность, которых может доходить до 1 МВт. По своим вольтамперным характеристикам он считается аналогом биполярному транзистору, однако качественные энергетические показатели и чистота коммутационных действий намного выше, чем качество работы других полупроводниковых элементов.

Постоянно совершенствующиеся технологии позволяют улучшить качественные характеристики транзисторов. Созданы элементы, рассчитанные на большую величину напряжения, выше 3 кВ и большие значения тока до нескольких сотен ампер.

Основные характеристики мощных IGBT-транзисторов

 

  • Напряжение управления – это разрешенная проводимость, которая отпирает или запирает прибор.
  • Открытое проводящее состояние характеризуется падением напряжения, определяемым пороговым напряжением и внутренним сопротивлением, величина максимально допустимого тока.

Для применения в конструкции регуляторов скорости используются транзисторы, рассчитанные на рабочие частоты в пределах до нескольких десятков килогерц.

Преимущества IGBT транзисторов

  • Высокая плотность тока.
  • Практически отсутствие потерь статического и динамического типа.
  • Отсутствие управляющего тока позволяет не прибегать к использованию гальванически изолированных схем для работы и управления с применением дискретных элементов и предоставляет возможность создания интегральных схем – драйверов.
  • Стойкость к воздействию короткого замыкания.
  • Относительная простота параллельного соединения.

При разработке схем включения с транзисторами IGBT необходимо обращать внимание на ограничение значения максимального тока. Для этой цели используются следующие методы – это: правильный выбор параметров тока защиты и подбор резистора затвора Rg, а также применение цепей, которые формируют траекторию переключения.

Структура IGBT

Закрытое состояние прибора характеризуется напряжением, приложенным к области n-, она находится между коллектором и эмиттером. Проводящий канал появляется при воздействии на затвор положительно заряженного потенциала в p-области, он обозначается как пунктирная линия. Ток из балласта идет из области n- (с минусом) в область n+. При этом происходит открытие МОП-транзистора, что делает возможным открытие биполярного транзистора с p-n-p перехода транзистора.

Рис. №2. Структура транзистора IGBT.

Эквивалентом структуре транзистора IGBT можно считать схему подключения транзистора, где n-канальный полевой транзистор выполнит роль промежуточного звена (динамического сопротивления), уменьшаемого в открытом состоянии IGBT. Он пропускает через базовую область биполярного транзистора с p-n-p-переходом, при этом происходит уменьшение остаточного напряжения в области n-. Опасность для схемы может представлять так называемый «паразитный биполярный транзистор», он может перейти в открытое состояние, называемое эффектом защелкивания, что влечет потерю управляемости.

Рис. №3. Схема включения транзистора IGBT

эквивалентная структуре транзистора.

Применение IGBT-транзистора

Одной из важных сфер использования солового транзистора – это использование в сетях с напряжением 6,5 кВ для создания безопасной и гарантированно надежной работы электроустановок в режиме короткого замыкания.

Для ограничения токов к. з. и приближению их к величине, которая не приведет к повреждениям оборудования. Они выполняют ограничение напряжения на затворе до уровня, не превышающем U = 15,3В. Это достигается с помощью применения следующих мер:

  1. Ограничение величины напряжения на затворе с помощью привязки к фиксированному уровню напряжения. Это возможно в том случае, если драйвер затвора обладает источником стабильного напряжения. Основной способ -добавление в схему диода с малым падением напряжения, например, диод Шотки. Высокая эффективность меры достигается снижением индуктивности цепи между клеммами источника и затвора.
  2. Ограничение значения напряжения на затворе с помощью присоединения в цепь между эмиттером и затвором — стабилитрона. Эффективность метода достигается максимально приближенным монтажом диодов к вспомогательным клеммам модуля. Для этой цели должны использоваться диоды с очень маленьким температурным дрейфом и разбросом, примером могут служить диоды ограничивающие переходные напряжения (диоды типа: 1,5КЕ6,8Са и 1,5КЕ7,5СА двунаправленные).
  3. Включение в схему отрицательной эмиттерной обратной связи. Этот метод возможен после подключения эмиттера драйвера затвора к основным клеммам эмиттера модуля. Эмиттерная связь обратного действия способствует эффективному ограничению напряжения на затворе.

Примеры расчета IGBT-транзистора

Выбор транзистора производится по следующим условиям, например, для преобразователей напряжения с резонансным контуром.

  • Транзистор должен переключался при значении нулевого тока.
  • Форма токовой синусоиды относительно силовых ключей должна быть аналогична к собственной частоте контура и составляет 100 кГц.
  • Амплитуда тока должна соответствовать средней мощности, например, как 40 А к 2000 Вт.
  • Определение максимального значения напряжения и максимальной частоты переключения транзисторов при условии, что плечи транзисторов должны работать в противофазе.

Для подбора драйвера IGBT транзистора руководствуются параметрами управления затвора, необходимого для коммутирования отпиранием и запиранием силового полупроводника. Для определения мощности управления нужно знать величину заряда затвора Q gate, частоту коммутации (fin) и реальный замеренный размах напряжения на выходе драйвера ΔVgate

 

Формула заряда затвора:

где время интегрирования должно не превышать время на управление выходных напряжений драйвера до их окончательных показателей, или при достижении выходного токового значения драйвера близкого к нулю.

Выбор максимальной величины тока управления  затвором определяется по упрощенной формуле:

Зависит от осцилляции величины тока на выходе. Если осцилляция тока управления затвором есть, то значение пикового тока должно быть очень большим, а его величина должна определяться исключительно с помощью измерения.

Не менее важны условия учета размаха выходного напряжения. Наихудший случай – это максимальное значение размаха на затворе, измеряется по реально существующей схеме.

Необходим учет максимальной рабочей температуры, руководствуются значением характерным для условия естественной конверсии без использования принудительного охлаждения.

Максимальная частота коммутации, она должна быть максимально-допустимая. На выбор оказывает влияние результирующая выходная мощность и рассеиваемая мощность резистора, используемого в цепи затвора.

Максимальный ток управления зависит от величины пикового тока, который может протекать через реальный контур управления затвором без появления осцилляций.

Проверка мощных IGBT-транзисторов

Проверка силового транзистора возникает при необходимости ревизии сгоревшего транзистора, например, при ремонте сгоревшего сварочного аппарата или с целью подбора пары для устройства, с тем, чтобы убедится, что это не «перемаркер». Проверку осуществляем с помощью мультиметра: прозваниваем вывода коллектора и эмиттера в обоих направлениях, так мы убедимся в отсутствии короткого замыкания. Входную емкость затвор-эмиттер заряжаем отрицательным напряжением. Осуществляется с помощью кратковременного и одновременного прикосновения щупом «СОМ» мультиметра затвора и щупом от гнезда «V/Ω/f» — эмиттера.

Рис. №4. Проверка транзистора IGBT.

Для проверки необходимо убедиться в рабочей функциональности транзистора. Заряжаем емкость на входе затвор-эмитер положительным напряжением. Это можно сделать, коротко прикоснувшись щупом мультиметра «V/Ω/f» — затвора, к щупу«СОМ» — эмиттера. Проверяем напряжение между коллектором и змиттером, оно должно быть не больше 1,5В, меньшая величина напряжения характерна для низковольтных транзисторов. Если напряжения мультиметра не хватает для открытия и проверки транзистора, входная емкость может заряжаться от источника постоянного напряжения со значением до 15 в.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

Что такое IGBT-транзисторы

Транзистор, полупроводниковый триод — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов.

IGBT-транзистор (сокращение от англоязычного Insulated-gate bipolar transistor) или биполярный транзистор с изолированным затвором (сокращенно БТИЗ) — представляет собой полупроводниковый прибор с тремя выводами, сочетающий внутри одного корпуса силовой биполярный транзистор и управляющий им полевой транзистор.

IGBT-транзисторы являются на сегодняшний день основными компонентами силовой электроники (мощные инверторы, импульсные блоки питания, частотные преобразователи и т.д.), где они выполняют функцию мощных электронных ключей, коммутирующих токи на частотах измеряемых десятками и сотнями килогерц. Транзисторы данного типа выпускаются как в виде отдельных компонентов, так и в виде специализированных силовых модулей (сборок) для управления трехфазными цепями.

То что IGBT-транзистор включает в себя транзисторы сразу двух типов (включенных по каскадной схеме), позволяет объединить достоинства двух технологий внутри одного полупроводникового прибора.

Биполярный транзистор в качестве силового позволяет получить большее рабочее напряжение, при этом сопротивление канала в открытом состоянии оказывается пропорционально току в первой степени, а не квадрату тока как у обычных полевых транзисторов. А то что в качестве управляющего транзистора используется именно полевой транзистор — сводит затраты мощности на управление ключом к минимуму.

Названия электродов характеризуют структуру IGBT-транзистора: управляющий электрод именуется затвором (как у полевого транзистора), а электроды силового канала — коллектором и эмиттером (как у транзистора биполярного).

Немного истории

Исторически биполярные транзисторы использовались наравне с тиристорами в качестве силовых электронных ключей до 90-х годов. Но недостатки биполярных транзисторов были всегда очевидны: большой ток базы, медленное запирание и от этого перегрев кристалла, сильная зависимость основных параметров от температуры, ограниченное напряжение насыщения коллектор-эмиттер.

Появившиеся позже полевые транзисторы (структуры МОП) сразу изменили ситуацию в лучшую сторону: управление напряжением уже не требует столь больших токов, параметры ключа слабо зависят от температуры, рабочее напряжение транзистора не ограничено снизу, низкое сопротивление силового канала в открытом состоянии расширяет диапазон рабочих токов, частота переключения легко может достигать сотен килогерц, кроме того примечательна способность полевых транзисторов выдерживать сильные динамические нагрузки при высоких рабочих напряжениях.

Поскольку управление полевым транзистором реализуется значительно проще и получается по мощности существенно легче чем биполярным, да к тому же внутри имеется ограничительный диод, — транзисторы с полевым управлением сразу завоевали популярность в схемах импульсных преобразователей напряжения, работающих на высоких частотах, а также в акустических усилителях класса D.

Владимир Дьяконов

Первый силовой полевой транзистор был разработан Виктором Бачуриным еще в Советском Союзе, в 1973 году, после чего он был исследован под руководством ученого Владимира Дьяконова. Исследования группы Дьяконова относительно ключевых свойств силового полевого транзистора привели к разработке в 1977 году составного транзисторного ключа, внутри которого биполярный транзистор управлялся посредством полевого с изолированным затвором.

Ученые показали эффективность такого подхода, когда токовые свойства силовой части определяются биполярным транзистором, а управляющие параметры — полевым. Причем насыщение биполярного транзистора исключается, а значит и задержка при выключении сокращается. Это — важное достоинство любого силового ключа.

На полупроводниковый прибор нового типа советскими учеными было получено авторское свидетельство №757051 «Побистор». Это была первая структура, содержащая в одном корпусе мощный биполярный транзистор, поверх которого находился управляющий полевой транзистор с изолированным затвором.

Что касается промышленного внедрения, то уже в 1983 году фирмой Intarnational Rectifier был запатентован первый IGBT-транзистор. А спустя два года был разработан IGBT-транзистор с плоской структурой и более высоким рабочим напряжением. Это сделали одновременно в лабораториях двух компаний — General Electric и RCA.

Первые версии биполярных транзисторов с изолированным затвором имели один серьезный недостаток — медленное переключение. Название IGBT было принято в 90-е, когда были созданы уже второе и третье поколение IGBT-транзисторов. Тогда уже этих недостатков не стало.

Отличительные преимущества IGBT-транзисторов

По сравнению с обычными полевыми транзисторами, IGBT-транзисторы обладают более высоким входным сопротивлением и более низким уровнем мощности, которая тратится на управление затвором.

В отличие от биполярных транзисторов — здесь более низкое остаточное напряжение во включенном состоянии. Потери в открытом состоянии, даже при больших рабочих напряжениях и токах, достаточно малы. При этом проводимость как у биполярного транзистора, а управляется ключ напряжением.

Диапазон рабочих напряжений коллектор-эмиттер у большинства широко доступных моделей варьируется от десятков вольт до 1200 и более вольт, при этом токи могут доходить до 1000 и более ампер. Есть сборки на сотни и тысячи вольт по напряжению и на токи в сотни ампер.

Считается, что для рабочих напряжений до 500 вольт лучше подходят полевые транзисторы, а для напряжений более 500 вольт и токов больше 10 ампер — IGBT-транзисторы, так как на более низких напряжениях крайне важно меньшее сопротивление канала в открытом состоянии.

Применение IGBT-транзисторов

Главное применение IGBT-транзисторы находят в инверторах, импульсных преобразователях напряжения и частотных преобразователях (пример — полумостовой модуль SKM 300GB063D, 400А, 600В) — там, где имеют место высокое напряжение и значительные мощности.

Сварочные инверторы — отдельная важная область применения IGBT-транзисторов: большой ток, мощность более 5 кВт и частоты до 50 кГц (IRG4PC50UD – классика жанра, 27А, 600В, до 40 кГц).

Не обойтись без IGBT и на городском электрcтранспорте: с тиристорами тяговые двигатели показывают более низкий КПД чем с IGBT, к тому же с IGBT достигается более плавный ход и хорошее сочетание с системами рекуперативного торможения даже на высоких скоростях.

Нет ничего лучше чем IGBT, когда требуется коммутировать на высоких напряжениях (более 1000 В) или управлять частотно-регулируемым приводом (частоты до 20 кГц).

На некоторых схемах IGBT и MOSFET транзисторы полностью взаимозаменяемы, так как их цоколевка схожа, а принципы управления идентичны. Затворы в том и в другом случае представляют собой емкость до единиц нанофарад, с перезарядкой у удержанием заряда на которой легко справляется драйвер, устанавливаемый на любой подобной схеме, и обеспечивающий адекватное управление.

Ранее ЭлектроВести писали, что немецкие инженеры разработали полевой транзистор на основе оксида галлия с пробивным напряжением 1,8 кВ и рекордной добротностью — 155 МВт на квадратный сантиметр. Такие показатели приближают элемент к теоретическому лимиту оксида галлия.

По материалам: electrik.info.

2.4.2.3 Igbt — биполярный транзистор с изолированным затвором

Рассматриваемый транзистор обычно называют, ис­пользуя именно аббревиатуру, IGBT — от английского Insulated Gate Bipolar Transistor.

IGBT гибридный полупроводниковый прибор. В IGBT совмещены два способа управления электрическим током, один из которых характерен для полевых транзисторов (уп­равление электрическим полем), а второй — для биполяр­ных (управление инжекцией носителей электричества).

Ранее предпринимались попытки (и довольно успеш­ные) механического объединения структур полевого и биполярного транзистора в одной полупроводниковой пластине. В результате были созданы так называемые ком­бинированные транзисторы. Но только органическое объединение этих структур, реализованное в IGBT, дало действительно значительный эффект.

Создание IGBT можно рассматривать как поучитель­ный пример творчества в электронике.

Устройство IGBT. Основой при создании IGBT послу­жил силовой МДП-транзистор.

Обычно в IGBT используется структура МДП-транзи-стора с индуцированным каналом «-типа. Учитывая, что конкретно такой транзистор не рассматривался, изобра­зим его схему включения (рис. 1.161).

Дадим схематическое изображение структуры силово­го ДМДП-транзистора указанного типа (рис. 1.162).

Эта структура, как и приводимая ниже эквивалентная схема, естественно, подобны структуре и схеме, описан­ным при изучении силового ДМДП-транзистора с кана­лом р-типа.

Изобразим эквивалентную схему силового транзисто­ра (рис. 1.163).

Теперь перейдем непосредственно к изучению ICjBT. Структура этого транзистора отличается от структуры ДМДП-транзистора дополнительным слоем полупровод­ника р-типа (рис. 1.164).

Обратим внимание на то, что для обозначения элект­родов IGBT принято использовать термины «эмиттер», «коллектор» и «затвор».

Добавление слоя р-типа приводит к образованию вто­рой структуры биполярного транзистора (типа р-п-р). Та­ким образом, в IGBT имеется две биполярные структу­ры — типа п-р-п и типа р-п-р.

Изобразим эквивалентную схему IGBT (рис. 1.165).

Названия выводов IGBT могут представляться несколь­ко непривычными (особенно это относится к коллектору, так как фактически он подключен к эмиттеру транзисто­ра р-п-р). И тем не менее эти названия общеприняты.

Через RMod обозначено сопротивление нижнего слоя n-типа, который является слоем базы для транзистора типа р-п-р. При изменении тока, проходящего через этот слой, сопротивление Ямод изменяется (модулируется).

Дадим условное графическое обозначение IGBT (рис 1.166).

Изобразим схему включения IGBT (рис. 1.167).

Эта схема с общим эмиттером. Именно она использу­ется на практике.

Основные физические процессы. В нормальных услови­ях работы транзистор Т2 типа п-р-п заперт и практически не оказывает влияния на работу IGBT. Вообще транзис­тор Т2 рассматривается как паразитный (как и для струк­туры силового полевого транзистора).

Главную роль играют транзисторы T1, и Т3.

Основное назначение дополнительного р-n-перехода (который является эмиттерным переходом для транзисто­ра Т3) состоит в инжекции дырок в нижний слой и-типа. Инжекция значительно уменьшает сопротивление этого слоя. В результате напряжение икэ между коллектором и эмиттером IGBT в открытом состоянии значительно уменьшается по сравнению с соответствующим полевым транзистором.

Именно меньшее напряжение в открытом состоянии является основным преимуществом IGBT по сравнению с полевым транзистором.

Уменьшение напряжения приводит к пропорциональ­ному снижению мощности, рассеиваемой транзистором.

Преимущество IGBT особенно заметно при коммута­ции больших напряжений (около тысячи вольт и более), так как высоковольтные полевые транзисторы имеют по­вышенное значение сопротивления цепи сток—исток в от­крытом состоянии.

Однако инжекция дырок приводит к возникновению объемного заряда неравновесных носителей электричества в базе транзистора типа р-п-р (т. е. в нижнем слое л-типа). Это явление рассмотрено выше при изучении диода. Яв­ление накопления заряда имеет следствием уменьшение быстродействия IGBT по сравнению с полевым транзис­тором. Такова плата за снижение напряжения в открытом состоянии.

Легко заметить, что биполярные транзисторы Т2 и T3 образуют рассмотренную выше эквивалентную схему тиристора (часто говорят о тиристорной структуре). Эта схе­ма может находиться в двух устойчивых состояниях: во включенном и выключенном.

В аварийном для IGBT режиме работы схема на тран­зисторах Т2 и Т3 может включиться и после этого IGBT становится неуправляемым и может выйти из строя.

Эффект включения транзисторов Т2 и Т3 называют триггерным. Он обычно проявляется при выключении IGBT. Разработчики IGBT прилагают все усилия для борь­бы с этим эффектом.

Современные IGBT настолько защищены от триггерного эффекта, что их допустимо моделировать, используя эквивалентную схему, не содержащую паразитный тран­зистор типа п-р-п (рис. 1.168).

Характеристики IGBT. Обратимся к выходным харак­теристикам IGBT для схемы с общим эмиттером. Выход­ной характеристикой называют зависимость тока коллек­тора iK от напряжения между коллектором и эмиттером икэ при заданном напряжении между затвором и эмиттером Uзэ , т.е. зависимость вида

iк = f (Uкэ)\ Uкэ = const ,

где f — некоторая функция.

Вначале дадим общий типичный вид выходных харак­теристик (рис. 1.169) без учета ограничения по максималь­но допустимой мощности (т. е. для импульсов тока огра­ниченной длительности).

Теперь изобразим выходные характеристики в области малых напряжений икэ (рис. 1.170).

Из рисунка следует, что ток коллектора начинает замет­но расти после некоторого (в доли вольта) порогового зна­чения напряжения икэ . Это объясняется наличием р-п-перехода в области коллектора IGBT.

Передаточной характеристикой называют зависимость вида

ic = f (Uзэ)\ Uкэ = const ,

где f— некоторая функция.

Изобразим передаточную характеристику (рис. 1.171).

На рисунке указано пороговое напряжение изэпорог. IGBT характеризуется также крутизной передаточной характеристики S:

S = diк / duзэ Uзэ — заданно

Uзэ = const

Высокая теплостойкость IGBT. Как и полевой транзи­стор, IGBT обладает достоинствами, позволяющими гово­рить о его тепловой устойчивости.

Область безопасной работы IGBT подобна области бе­зопасной работы силового полевого транзистора (рассмот­рена выше).

IGBT устойчив к короткому замыканию нагрузки. Если после возникновения режима короткого замыкания транзистор своевременно выключить, он не потеряет работо­способность.

2.4.2.4 SIT — транзистор со статической индукцией

Аббревиатура SIT соответствует английскому названию транзистора — Static Induction Transistor.

По существу SIT — полевой транзистор с управляющим р-п-переходом. Однако он имеет своеобразное устройство и, вследствие этого, своеобразные характеристики.

Производятся SIT как с каналом n-типа, так и с кана­лом p-типа.

Для SIT используются уже рассмотренные условные графические обозначения полевых транзисторов с управ­ляющим переходом.

Как и силовой МДП-транзистор, SIT является много­канальным и имеет вертикальную структуру.

Устройство SIT. Дадим схематическое изображение структуры SIT с каналом л-типа (рис. 1.172).

На рис. 1.172, а представлен вид спереди, а на рис. 1.172, б — вид сбоку.

Области полупроводника p-типа имеют форму цилин­дров, диаметр которых составляет единицы микрометров и более. Эта система цилиндров играет роль затвора. Каж­дый цилиндр подсоединен к электроду затвора (на рис. 1.172, а электрод затвора условно не показан).

Пунктиром обозначены области p-n-переходов.

Реально число каналов может составлять тысячи.

Обычно SIT используется в схеме с общим истоком (рис. 1.173).

Характерной особенностью SIT является очень малая длина каналов (которая сравнима с диаметром цилиндров).

Физические процессы в SIT достаточно сложны. В от­дельных моментах они подобны физическим процессам в изученном полевом транзисторе с управляющим перехо­дом.

При увеличении запирающего напряжения ит облас­ти р-п-переходов расширяются. В этом отношении SIT имеет общие черты с «обычным» полевым транзистором.

Однако влияние напряжения иси на ток iс для SIT име­ет другой характер по сравнению с «обычным» полевым транзистором.

Для транзистора с «обычным» каналом, как это было показано выше, увеличение напряжения иси приводит к тому, что канал перекрывается в области стока. После это­го дальнейшее увеличение напряжения иси незначительно изменяет ток ic. При этом рабочая точка, характеризую­щая состояние транзистора, оказывается в области насы­щения.

Падение напряжения в каждом канале SIT, вызванное протеканием тока стока, невелико благодаря очень малой длине каналов. Оно достаточно слабо влияет на расшире­ние областей р-n-переходов. Поэтому увеличение напря­жения иси не сопровождается уменьшением скорости ро­ста тока ic (т. е. выходная характеристика при увеличении напряжения иси не становится более пологой).

Более того, при увеличении напряжения иси уменьша­ется напряженность электрического поля в области исто­ка и затвора, тормозящего электроны при их движении от истока к стоку. Это приводит к тому, что увеличение на­пряжения иси сопровождается увеличением скорости рос­та тока стока (т. е. выходная характеристика при увеличе­нии напряжения иси становится более крутой).

Характеристики. Изобразим типичные выходные ха­рактеристики SIT (рис. 1.174).

Такие вольт-амперные характеристики типичны и для электроламповых триодов. Поэтому их называют триодными. Внутреннее дифференциальное сопротивление Rcu диф, соответствующее таким характеристикам, невелико.

Изобразим стокозатворную характеристику (рис. 1.175).

Стокозатворные характеристики SIT отличаются про­тяженными линейными участками. Эта особенность ха­рактеристик и малое внутреннее сопротивление хорошо соответствуют требованиям, предъявляемым к транзисто­ру со стороны усилителей мощности звуковых частот вы-

сокого качества (класса HiFi — High Fidelity). Поэтому SIT широко используется в этих усилителях.

SIT широко применяется и в других устройствах сило­вой электроники. При этом он обычно работает в ключе­вом режиме.

Биполярный режим SIT. Если напряжение ит становит­ся отрицательным, управляющий p-n-переход открывается и SIT переходит в режим работы, подобный режиму ра­боты биполярного транзистора. В этом режиме затвор игра­ет роль базы. Достоинством биполярного режима является малое напряжение между стоком и истоком в открытом со­стоянии. Но ток затвора при этом значителен. Кроме того, быстродействие транзистора в этом режиме существенно уменьшается из-за явления накопления и рассасывания чаряда неравновесных носителей электричества.

принцип работы, разновидности полупроводников, основные параметры силовых компонентов

Биполярные транзисторы с изолированным затвором широко используются в силовой электронике. Это надежные и недорогие компоненты, управляющиеся путем подачи напряжения на изолированный от цепи элемент. IGBT — транзистор, принцип работы которого чрезвычайно прост. Используется он в инверторах, системах управления электроприводами и импульсных источниках питания.

История появления

Первые полевые транзисторы были разработаны в 1973 году, а уже спустя 6 лет появились управляемые биполярные модели, в которых использовался изолированный затвор. По мере совершенствования технологии существенно улучшились показатели экономичности и качества работы таких элементов, а с развитием силовой электроники и автоматических систем управления они получили широкое распространение, встречаясь сегодня практически в каждом электроприборе.

Сегодня используются электронные компоненты второго поколения, которые способны коммутировать электроток в диапазоне до нескольких сотен Ампер. Рабочее напряжение у IGBT — транзисторов колеблется от сотен до тысячи Вольт. Совершенствующие технологии изготовления электротехники позволяют выполнять качественные транзисторы, обеспечивающие стабильную работу электроприборов и блоков питания.

Основные характеристики

Принцип работы транзисторов и их характеристики будут напрямую зависеть от типа устройства и его конструкции. К основным параметрам полупроводников можно отнести следующее:

  • Максимально допустимый ток.
  • Показатель управляющего напряжения.
  • Внутреннее сопротивление.
  • Период задержки подключения и выключения.
  • Паразитная индуктивность.
  • Входная и выходная емкость.
  • Напряжение насыщения у эмиттера и коллектора.
  • Ток отсечки эмиттера.
  • Напряжение пробоя коллектора и эмиттера.

Широкое распространение получили сегодня мощные IGBT транзисторы, которые применяются в блоках питания инверторов. Такие устройства одновременно сочетают мощность, высокую точность работы и минимум паразитной индуктивности. В регуляторах скорости применяются IGBT с частотой в десятки тысяч кГц, что позволяет обеспечить максимально возможную точность работы приборов.

Преимущества и недостатки

Сегодня в продаже можно подобрать различные модели полупроводников, которые будут отличаться своими показателями рабочей частоты, емкостью и рядом других характеристик. Популярность IGBT транзисторов обусловлена их отличными параметрами, характеристиками и многочисленными преимуществами:

  • Возможность эксплуатации с высокой мощностью и повышенным напряжением.
  • Работа при высокой температуре.
  • Минимальные потери тока в открытом виде.
  • Устойчивость к короткому замыканию.
  • Повышенная плотность.
  • Практически полное отсутствие потерь.
  • Простая параллельная схема.

К недостаткам IGBT относят их высокую стоимость, что приводит к некоторому увеличению расходов на изготовление электроприборов и мощных блоков питания. При планировании схемы подключения с транзисторами этого типа необходимо учитывать имеющиеся ограничения по показателю максимально допустимого тока. Чтобы решить такие проблемы, можно использовать следующие конструктивные решения:

  • Использование обходного пути коммутации.
  • Выбор сопротивления затвора.
  • Правильный подбор показателей тока защиты.

Электросхемы устройств должны разрабатывать исключительно профессионалы, что позволит обеспечить правильность работы техники, отсутствие коротких замыканий и других проблем с электроприборами. При наличии качественной схемы подключения, реализовать ее не составит труда, выполнив своими руками силовой блок, питание и различные устройства.

Устройство и принцип работы

Внутреннее устройство IGBT транзистора состоит из двух каскадных электронных ключей, которые управляют конечным выходом. В каждом конкретном случае, в зависимости от мощности и других показателей, конструкция прибора может различаться, включая дополнительные затворы и иные элементы, которые улучшают показатели мощности и допустимого напряжения, обеспечивая возможность работы при температурах свыше 100 градусов.

Полупроводники IGBT типа имеют стандартизированную комбинированную структуру и следующие обозначения:

  • К — коллектор.
  • Э — эмиттер.
  • З — затвор.

Принцип работы транзистора чрезвычайно прост. Как только на него подается напряжение положительного потенциала, в затворе и истоке полевого транзистора открывается n-канал, в результате чего происходит движение заряженных электронов. Это возбуждает действие биполярного транзистора, после чего от эмиттера напрямую к коллектору начинает протекать электрический ток.

Основным назначением IGBT транзисторов является их приближение к безопасному значению токов замыкания. Такие токи могут ограничивать напряжение затвора различными методами.

Привязкой к установленному показателю напряжения. Драйвер затвора должен иметь постоянные параметры, что достигается за счёт добавления в схему устройства диода Шоттки. Тем самым обеспечивается уменьшение индуктивности в цепи питания и затвора.

Показатели напряжения ограничиваются за счёт наличия стабилитрона в схеме эмиттера и затвора. Отличная эффективность таких IGBT транзисторов достигается за счёт установки к клеммам модуля дополнительных диодов. Используемые компоненты должны иметь высокую температурную независимость и малый разброс.

В цепь может включаться эмиттер с отрицательной обратной связью. Подобное возможно в тех случаях, когда драйвер затвора подключён к клеммам модуля.

Правильный выбор типа транзистора позволит обеспечить стабильность работы блоков питания и других электроприборов. Только в таком случае можно гарантировать полностью безопасную работу электроустановок при коротких замыканиях и в аварийных режимах эксплуатации техники.

Сфера использования

Сегодня IGBT транзисторы применяются в сетях с показателем напряжения до 6,5 кВт, обеспечивая при этом безопасную и надежную работу электрооборудования. Имеется возможность использования инвертора, частотно регулируемых приводов, сварочных аппаратов и импульсных регуляторов тока.

Сверхмощные разновидности IGBT используются в мощных приводах управления троллейбусов и электровозов. Их применение позволяет повысить КПД, обеспечив максимально возможную плавность хода техники, оперативно управляя выходом электродвигателей на их полную мощность. Силовые транзисторы применяются в цепях с высоким напряжением. Они используются в схемах бытовых кондиционеров, посудомоечных машин, блоков питания в телекоммуникационном оборудовании и в автомобильном зажигании.

Проверка исправности

Ревизия и тестирование IGBT полупроводников выполняется при наличии неисправностей электрических устройств. Такую проверку проводят с использованием мультитестера, прозванивая коллекторы и электроды с эмиттером в двух направлениях. Это позволит установить работоспособность транзистора и исключит отсутствие замыкания. При проверке необходимо отрицательно зарядить вход затвора, используя щупы мультиметров типа COM .

Для проверки правильности работы транзистора на входе и выходе затвора заряжают ёмкость положительным полюсом. Выполняется такая зарядка за счёт кратковременного касания щупом затвора, после чего проверяется разность потенциала коллектора и эмиттера. Данные потенциалов не должны иметь расхождение более 1,5 Вольта. Если тестируется мощный IGBT, а тестера не будет хватать для положительного заряда, на затвор подают напряжение питания до 15 Вольт.

Мощные модули

Силовые транзисторы изготавливаются не только отдельными полупроводниками, но и уже собранными готовыми к использованию модулями. Такие приспособления входят в состав мощных частотных преобразователей в управлении электромоторами. В каждом конкретном случае схема и принцип работы модуля будут различаться в зависимости от его типа и предназначения. Чаще всего в таких устройствах используется мост, выполненный на основе двух силовых транзисторов.

Стабильная работа IGBT обеспечивается при частоте 150 килогерц. При повышении рабочей частоты могут увеличиваться потери, что отрицательно сказывается на стабильности электроприборов. Силовые транзисторы все свои преимущества и возможности проявляют при использовании с напряжением более 400 Вольт. Поэтому такие полупроводники чаще всего применяют в промышленном оборудовании и электроприборах высокого напряжения.

Структура, эквивалентная схема и графическое обозначение биполярных транзисторов с изолированным затвором (IGBT), принцип действия, преимущества и недостатки

⇐ ПредыдущаяСтр 11 из 21Следующая ⇒

Структура IGBT

Биполярный транзистор с изолированным затвором (IGBT — Insulated Gate Bipolar Transistors) — полностью управляемый полупроводниковый прибор, в основе которого трёхслойная структура. Его включение и выключение осуществляются подачей и снятием положительного напряжения между затвором и истоком. На рис.1 приведено условное обозначение IGBT.

рис. 1. Условное обозначение IGBT рис. 2. Схема соединения транзисторов в единой структуре IGBT

IGBT являются продуктом развития технологии силовых транзисторов со структурой металл-оксид-полупроводник, управляемых электрическим полем (MOSFET-Metal-Oxid-Semiconductor-Field-Effect-Transistor) и сочетают в себе два транзистора в одной полупроводниковой структуре: биполярный (образующий силовой канал) и полевой (образующий канал управления). Эквивалентная схема включения двух транзисторов приведена на рис. 2. Прибор введён в силовую цепь выводами биполярного транзистора E (эмиттер) и C (коллектор), а в цепь управления — выводом G (затвор).

Таким образом, IGBT имеет три внешних вывода: эмиттер, коллектор, затвор. Соединения эмиттера и стока (D), базы и истока (S) являются внутренними. Сочетание двух приборов в одной структуре позволило объединить достоинства полевых и биполярных транзисторов: высокое входное сопротивление с высокой токовой нагрузкой и малым сопротивлением во включённом состоянии.-«-переход является последовательным диодом, блокирующим внутренний диод МОП-транзистора.

МОП-транзисторы имеют довольно большое сопротивление rDS(ON) при номинальном напряжении выше 500 В. По этой причине сильно возрастают потери проводимости по сравнению с биполярными транзисторами с тем же номинальным напряжением. К тому же потери проводимости МОП-транзистора возрастают с ростом температуры в связи с увеличением сопротивления в открытом состоянии.

Слой р+ в IGBT инжектирует неосновные носители заряда в эпитаксиальный обеднённый слой n—, что улучшает проводимость области дрейфа и—. Этот эффект подобен эффекту, возникающему в биполярных транзисторах. Такая модуляция проводимости слоем р+ способствует тому, что падение напряжения на транзисторе в открытом состоянии относительно постоянно во всей области рабочих напряжений.

Рис. 7.32. Эквивалентная схема, учитывающая паразитные элементы внутри IGBT

Р-n-р-транзистор в IGBT полностью не насыщается, поэтому падение напряжения на нём в открытом состоянии никогда не бывает ниже падения напряжения на одном диоде и в типичных случаях составляет 1.0…3.0 В. Время запирания у IG ВТ намного лучше, чему биполярного транзистора, потому что в данном случае отсутствует накопление заряда, вызванное эффектом насыщения. Поток электронов в IGBT прекращается сразу же, как только снимается напряжение с затвора, но ток в дрейфовой области продолжает течь, пока не рекомбинируют все дырки. Базовый переход р-л-р-транзистора не имеет внешнего подключения, поэтому нет возможности создавать отрицательный ток базы, чтобы выводить из дрейфовой области неосновные носители заряда в процессе запирания. Вследствие этого при запирании возникает небольшой остаточный ток.

достоинства IGBT
1. при использовании на рабочее напряжение свыше 300v IGBT — дешевле
2. IGBT — имеют более высокую крутизну — нужно меньше энергии для их открывания/закрывания
3. IGBT-имеют меньше значение паразитных емкостей
4. IGBT-более радиационностойкие

недостатки IGBT
1. MOSFET — в открытом состоянии как резистор, который может быть очень маленьким, например, 1mOhm и при токе в 100А через него рассеиваемая мощность будет всего 10Watt, на IGBT при таком токе падение напряжения будет минимум 2v поэтому рассеиваемая мощность будет 200Watt.-сравни 10W и 200W
2. IGBT — может работать только в импульсном режиме включено/выключено и не может работать в линейном режиме как MOSFET
3. IGBT — имеет более высокие коммутационные потери чем MOSFET и не может работать на таких же высоких частотах как MOSFET
4. IGBT — менее надёжен— менее устойчив к перегрузкам по току и напряжению по сравнению с MOSFET, -при перегрузках по току и в случае лавинного пробоя в IGBT выделяется большая мощность при меньшем размере кристала и следовательно меньшим запасом теплоёмкости, не все IGBT в отличие от MOSFET могут работать в режиме лавинного пробоя(ораничения выходного напряжения), IGBT — более подвержены к выходу из строя из-за термоциклирования, IGBT — менее помехоустойчивые.

Поиск по сайту:

IGBT силовые транзисторы International Rectifier шестого поколения

Известно, что биполярные транзисторы с изолированным затвором (IGBT — Insulated Gate Bipolar Transistor) обладают преимуществами легкого управления полевыми МОП-транзисторами и низкими потерями проводимости, характерными для биполярных транзисторов. На рис. 1 показана эквивалентная схема IGBT-транзистора.

Рис. 1. IGBT можно представить как комбинацию биполярного p_n_p транзистора и MOSFET

Традиционно IGBT используют в тех случаях, где необходимо работать с высокими токами и напряжениями. IGBT-транзисторы в настоящее время выпускают десятки производителей. Среди них — Infineon Technologies, Semikron, International Rectifier, Fairchild Semiconductor, Toshiba, Hitachi, MITSUBISHI, FUJI, IXYS, Power Integration, Dynex Semiconductor и другие.

В конце 1980-х годов было создано первое поколение IGBT-транзисторов, а уже в начале 1990-х появились второе и третье. Прогресс в технологии IGBT шел по линии увеличения рабочих напряжений и токов, а также повышения эффективности преобразования за счет снижения потерь мощности на кристалле как в статическом, так и в динамическом режимах. Происходило и удешевление приборов. К настоящему времени и для серийного производства уже используются технологии четвертого, пятого и шестого поколений IGBT-транзисторов. Следует отметить, что нумерация поколений достаточно условна и у разных фирм может отличаться.

 

Развитие технологии IGBT-транзисторов фирмой IR

Компания International Rectifier является признанным лидером в разработке и производстве высококачественных силовых полупроводниковых приборов. Диапазон продукции IR достаточно широк и объединяет в себе различные направления. Это и дискретные устройства (биполярные транзисторы с изолированным затвором (IGBT), мощные полевые транзисторы (MOSFET) и модульные сборки на основе кристаллов дискретных элементов, а также ИМС для управления энергосберегающими источниками света, силовые ИМС для электронных балластов люминесцентных ламп и ламп высокого давления, микросхемы драйверов IGBT и MOSFET, включая высоковольтные микросхемы HVIC, продукты на базе интегрированной платформы IMotion и цифровые контроллеры для управления электроприводом, продукты платформы SupIRBuck, микроэлектронные твердотельные реле. В настоящий момент фирма выпускает широкую номенклатуру IGBT, для производства которых используются технологии 4-го (4 PT IGBT), 5-го (5 Non-PT IGBT) и 6-го поколений (DS Trench IGBT). Для первых двух технологий в полевом транзисторе используется планарный затвор, а в последнем (DS Trench) — вертикальный. Собственно, структуры приборов для данных технологий разработаны уже давно и используются производителями на протяжении многих лет. Все дело в нюансах, которые дают возможность производителю реализовать те или иные преимущества технологии. И цена производства кристалла имеет не последнее значение. На рис. 2 показана эволюция технологии IGBT-транзисторов фирмы IR.

Рис. 2. Эволюция технологии IGBT-транзисторов в IR

Новые транзисторы оптимизированы для работы на частотах переключения до 20 кГц, и для снижения энергии потерь на проводимости и переключении в них использована Trench-технология. Эти IGBT с антипараллельным ультрабыстрым диодом имеют энергию переключения ETS и более низкое напряжение насыщения коллектор-эмиттер VCE(on), чем IGBT PT и NPT типа. Кроме того, ультрабыстрый диод с мягким восстановлением дополнительно повышает эффективность преобразования и снижает уровень генерируемых помех.

 

Технология с вертикальным затвором

Для данного типа технологии затвор полевого транзистора сформирован в виде глубокой канавки (trench gate) на подложке (рис. 2). При изготовлении Trench-FS (Field Stop) транзисторов используется буферный n+ слой в основании подложки. В сочетании с модифицированной конструкцией эмиттера структура затвора позволяет оптимизировать распределение носителей в области подложки и уменьшить напряжение насыщения транзисторов Trench-FS на 30% по сравнению с транзисторами, созданными по технологии NPT. Уменьшается почти на 70% и площадь кристалла, обеспечивается большая плотность тока транзистора.

Технология Trench немного сложнее и дороже, чем NPT. Однако уменьшение размера кристалла Trench-FS снижает его удельную себестоимость, что в итоге позволяет уравнять цены на готовую продукцию по отношению к аналогичным приборам, производимым по другим технологиям. Кроме того, благодаря снижению энергии потерь, при равноценной площади кристалла существенно возрастает ток транзистора (до 60%).

У вертикального затвора, в отличие от пла-нарного, отсутствуют горизонтальные пути протекания тока. Ток течет к коллектору по кратчайшему пути, что обеспечивает снижение потерь на проводимость. Trench IGBT имеют самый низкий уровень статических и динамических потерь среди IGBT, производимых компанией. У новых Trench IGBT благодаря уменьшению длины «хвоста» обеспечивается более плавная траектория переключения, чем у NPT IGBT. «Хвостом» (tail current) называется остаточный ток коллектора биполярного транзистора IGBT, возникающий из-за рассасывания носителей в области базы после запирания транзистора. Благодаря этому энергия выключения стала на 10-20% ниже, чем у NPT IGBT.

 

Линейка 600 В IGBT-транзисторов Trench 6-го поколения

Семейство 600-вольтовых Trench IGBT в первую очередь ориентировано на использование в UPS-источниках и преобразователях солнечной энергии мощностью до 3 кВт. Силовые приборы этого семейства могут также служить эффективной заменой аналогичных IGBT-транзисторов в системах управления приводом компрессоров в холодильниках, индукционных системах нагрева, а также в приводах мощных вентиляторов. Приборы позволяют на 30% снизить мощность рассеивания по сравнению с IGBT других типов. Компания разработала линейку из 8 приборов в корпусах TO-220TO-247, с рабочим напряжением 600 В и токами 4-48 А.

Для всех типов данных транзисторов используются кристаллы толщиной 70 мкм. Гарантированное время выдержки режима короткого замыкания — не менее 5 мкс для всех типов линейки.

Все корпусированные приборы выполнены по схеме Co-Pack (имеют встроенный антипараллельный ультрабыстрый диод). Основные технические характеристики приведены в таблице 1.

Таблица 1. Основные параметры 600 В IGBT-транзисторов 6-го поколения Trench

Тип транзистора

 

Корпус

 

Imax (25 °С), A

 

Imax

(100 °C), A

 

Vce (175 °C), В

 

Ets (175 °C), мкДж

 

Rth(j-c), °C/Вт

 

Мощность, кВт

IRGC4059B IRGB4059D

 

 

 

 

 

 

б/корп. ТО-220

8

4

2,2

210

2,7

0,8

IRGC4045B IRGB4045D

12

6

2,14

329

1,94

1,0

IRGC4060B IRGB4060D

16

8

1,95

405

1,51

1,2

IRGC4064B IRGB4064D

20

10

2,00

415

1,49

1,3

IRGC4056B IRGB4056D

24

12

1,97

540

1,07

1,5

IRGC4061B IRGB4061D

36

18

2,5

855

0,73

2,0

IRGC4062B IRGB4062D IRGP4062D

б/корп. ТО-220 TO-247

 

48

 

24

 

2,04

 

1260

 

0,6

 

2,5

IRGC4063B IRGB4063D

б/корп. ТО-220

96

48

2,10

3210

0,45

4,0

 

Система обозначений для IGBT-транзисторов Trench

Для ранее разработанных IGBT-транзисторов использовалась следующая система обозначений (рис. 3).

Рис. 3. Первая система обозначений для транзисторов IGBT IR

В данной системе обозначений присутствует суффикс, определяющий подкласс по быстродействию прибора (таблица 2).

Таблица 2. Классификация транзисторов IGBT IR по быстродействию

Параметры/подкласс

Standard

Fast

Ultrafast

Vce, В

1,3

1,5

1,9

Энергия переключения, мДж/A·мм2

0,54

0,16

0,055

Потери проводимости, Вт (при 50% постоянного тока)

0,625

0,75

0,95

В процессе разработки новых приборов возникла необходимость введения добавочных суффиксов, определяющих дополнительные параметры транзисторов, поэтому система обозначений была изменена (рис. 4). Эта система, в частности, использовалась для маркировки 600 В Trench IGBT.

Рис. 4. Система обозначений для 600 В Trench IGBTтранзисторов

После разработки технологии 1200 В Trench IGBT (Gen 6.3+) фирма ввела новую систему обозначений для новых IGBT-транзисторов 4-го и 6-го поколений, которая показана на рис. 5. Для ранее разработанных 600 В транзисторов пока сохраняется маркировка, приведенная на рис. 4.

Рис. 5. Система обозначений для поколения Gen 6.3+

 

 

Преимущества транзисторов по технологии Trench

Напряжение в открытом состоянии Uce на 30% ниже аналогичного параметра для транзисторов 4-го и 5-го поколений и обеспечивает меньше рассеяние энергии на кристалле и нагрев, повышается эффективность преобразования энергии. Меньшая емкость затвора обеспечивает большее быстродействие, упрощает управление транзистором и снижает уровень динамических потерь.

Квадратная (Square) форма зоны допустимых режимов безопасной работы обеспечивает большую надежность прибора при работе с критическими токами и напряжениями. Незначительный остаточный ток выключения и малые потери выключения (EOFF) позволяют транзисторам работать на более высоких частотах. На рис. 6 показаны сравнительные характеристики допустимой рассеиваемой мощности на кристалле для транзисторов Trench и IGBT-транзисторов с планарным затвором.

Рис. 6. Зависимость рассеиваемой мощности от среднеквадратичного выходного тока

Более высокая допустимая температура кристалла (175 °С) обеспечивает расширение диапазона рабочих температур и повышает надежность прибора. Температура радиатора при аналогичных режимах работы у транзистора Trench будет ниже. Меньшие размеры корпуса транзисторов Trench в сочетании с сокращением размеров радиатора позволяют ужать печатную плату.

Параметры транзисторов 6-го поколения обеспечивают более эффективное преобразование энергии и могут быть рекомендованы в качестве замены транзисторов 4-го и 5-го поколений соответствующей мощности, а также аналогичных транзисторов других производителей.

Технология с вертикальным затвором стала разрабатываться компанией International Rectifier уже тогда, когда на рынке получили широкое распространение Trench IGBT других производителей, в том числе и ведущих в данном секторе фирм — Infineon и Toshiba. Поэтому в процессе разработки линейки нового поколения IGBT-транзисторов перед специалистами IR стояла сложная задача достижения высоких параметров в сочетании с низкой ценой, что позволило бы обеспечить конкурентоспособность продукции на рынке.

Таблица 3. Рекомендуемая замена транзисторов 4-го и 5-го поколений на транзисторы Trench

Ic (Tc=100 °C, Vge = 15 В), А

Trench IGBT 6Gen

NPT IGBT 5Gen

PT IGBT 4Gen

4

IRGB4059D-PBF

IRGB4B60KD1

IRG4BC10SD IRG4BC15MD

TO-220

IRGB4B60KD

IRG4BC15UD IRG4BC10KD

6

IRGB4045D-PBF

IRGB8B60KD

IRG4BC20SD

IRG4BC20FD

IRG4BC20MD

IRG4BC20UD

IRG4BC20KD

TO-220

8

IRGB4060D-PBF

TO-220

10

IRGB4064D-PBF

TO-220

IRGB10B60KD

IRGB15B60KD

IRGP20B60PD

IRG4BC30SD

IRG4BC30FD

IRG4BC30MD

IRG4BC30UD

IRG4BC30KD

IRG4PC40UD

IRG4PC40W

12

IRGB4056D-PBF

TO-220

18

IRGB4061D-PBF

TO-220

24

IRGB4062D-PBF

TO-220

IRGP35B60PD

IRG4PC40UD

IRG4PC50UD

IRG4PC50W

IRG4PC40WD

48

IRGB4063D-PBF

TO-220

IRGP35B60PD

IRGP50B60PD

IRG4PC50UD IRG4PC60

 

Сравнение параметров IGBT-транзисторов 6-го поколения IR с аналогичными Trench IGBT-транзисторами Infineon и Toshiba показало, что по комплексу качеств они не уступают конкурентам, а по отдельным характеристикам даже превосходят их.

Однако следует признать тот факт, что по некоторым параметрам IGBT-транзисторы Infineon сохранили превосходство над транзисторами IR. Проверка по методике International Rectifier показала, что напряжение Uce в открытом состоянии для отдельных типов транзисторов Trench IGBT фирмы Infineon меньше на 30%, чем у аналогичных по мощности транзисторов IR. Быстродействие транзисторов IR оказалось немного хуже, чем у транзисторов Infineon, но намного лучше, чем у Trench IGBT фирмы Toshiba.

Таблица 4. Сравнение ключевых параметров IGBT-транзисторов по технологии Trench от разных производителей

 

FGA25N120FTD Fairchild

IKW25N120T2 Infineon

IRG7Ph52UDPBF IR

Technology

FS Trench

 

 

Vce(on) (10 A), В

1,5

1,5

1,40

Vce(on) (20 A), В

1,8

1,8

1,75

Eoff (10 A, 600 В), мкДж

700

800

550

Eoff (20 A, 600 В), мкДж

1150

1700

950

Rth(j-c), °C/Вт

0,4

0,43

0,38

В настоящее время фирма Infineon является лидером в разработке IGBT-технологий, и проигрыш International Rectifier носит скорее временный характер. В планах разработчиков в ближайшее время достичь уровня Uсе и обеспечить быстродействие не хуже, чем у Infineon. В таблице 5 приведены аналоги транзисторов IR и Infineon для выбора альтернативной замены.

Таблица 5. Аналоги транзисторов Infineon и IR

Транзисторы Infineon

Транзисторы IR

Близость аналогов

Корпус

SKP04N60, IKP04N60T

IRGB4059TRPPBF

Прямая замена

ТО-220

SKP06N60, IKP06N60T

IRGB4045TRPPBF

Прямая замена

ТО-220

IKA10N60T

IRGB4060TRPPBF

ТО-220

SKP10N60, IKA10N60T

IRGB4064TRPPBF

Близкая замена

ТО-220

IKW50N60

IRGB4063TRPPBF

Близкая замена

ТО-247

 

1200-вольтовые Trench IGBT

Первые члены этого модельного ряда транзисторов были представлены на рынке в начале 2009 г. В таблице 6 приведены параметры линейки IGBT-транзисторов IR с рабочим напряжением 1200 В.

Таблица 6. Параметры транзисторов 1200 В IGBT по технологии Trench-FS

Тип

Vce(on), В

Ic (100 °C), А

Tsc, мкс

Частота, КГц

Исполнение

Co-Pack/Single switch

Корпус

IRG7Ph40K10D

2,2

10

10

4–20

Встроенный диод

TO-247

IRG7Ph40K10

2,2

10

10

4–20

Только ключ

TO-247

IRG7PSH73K10

2,2

90

10

 

Только ключ

TO-247

IRG7Ph45UD

1,9

20

0

 

Встроенный диод

TO-247

IRG7Ph52UD

1,8

30

0

5–40

Встроенный диод

TO-247

IRG7Ph56UD

1,8

40

0

 

Встроенный диод

TO-247

IRG7PSH50UD

1,8

50

0

 

Встроенный диод

Super TO-247

 

Области применения 600 и 1200 В IGBT-транзисторов 6-го поколения

Применение Trench IGBT-транзисторов позволяет повысить эффективность работы силовых модулей в различных приложениях. Области применения Trench IGBT:

  • АС/DC, DC/AC-преобразователи;
  • инверторы солнечных батарей;
  • системы индукционного нагрева;
  • преобразователи напряжений в гибридных автомобилях;
  • электропривод в стиральных машинах;
  • электронный балласт в модуле управления ксеноновым светом автомобильных фар;
  • управление компрессором холодильника;
  • формирователь высокого напряжения в микроволновых печах;
  • электропривод компрессоров кондиционера;
  • инверторы сварочных аппаратов.

В таблице 7 приведены требования, предъявляемые к параметрам IGBT-транзисторов для различных приложений.

Таблица 7. Требования к параметрам IGBT-транзисторов для различных секторов применения

 

Область применения

 

Сектора

Напряжение питания, В

Напряжение в преобразователях Sw, В

 

Частота, КГц

Низкое Vce

Малые дин. потери Ets

Tsc, мкс

Поколение IGBT

Электроприводы

Промышленный сектор

240

600

4–16

 

 

10

5; 6.2; 6.2i

480

1200

 

 

 

10

5; 6.7K

Бытовой сектор

110

330

3

да

 

2

6

230

600

 

 

 

 

6.2; 6.8; 4F

Гибридные автомобили

240

600

20

да

 

6

 

480

1200

 

 

 

6

6.8

Корректоры мощности (PFC)

 

 

600

20, 40, 80

 

да

5W; 6.2

 

 

900

20, 40

 

да

4W; 6.7U

Источники бесперебойного питания (UPS)

 

230

600

 

 

 

6.2

 

480

900

 

 

 

6.7U

Сварочные инверторы

 

 

600

20

 

да

5; 6.2

 

 

600

100

да

 

4S

 

 

1200

20

 

да

5; 6.7U

 

 

1200

100

да

 

4S

Инверторы солнечных батарей

 

 

600

20

 

да

5, 6.2

 

 

600

50/60

да

 

4S

 

 

1200

20

 

да

5; 6.7

 

 

1200

50/60

да

 

4S

Индукционный нагрев

 

 

600

>20

да

 

6.2

 

 

1200

>20

да

 

6.7U

 

Драйверы плазменных панелей

 

 

330

>20

да

да

6.0; 6.5

 

 

600

>20

да

да

6.5

Управление освещением

Электронный балласт для ксенонового автосвета

 

12

 

600

 

<400

 

да

 

 

 

4S; 6.8S

Источники питания

Мостового типа

400

600

>20

 

да

5; 6.2

800

1200

>20

 

да

5; 6.3

Ниже будут более подробно рассмотрены примеры использования Trench IGBT, обеспечивающие эффективность готового устройства.

Инвертор 220 В для солнечных батарей

В настоящее время солнечные батареи нашли активное применение как источник электроэнергии, объемы их продаж год от года неуклонно растут. Солнечные батареи образованы из модулей солнечных фотоэлементов, обеспечивающих напряжение от 12 до 100 В и рабочие токи до нескольких десятков ампер. В промышленных применениях (например, опреснители морской воды) используются солнечные батареи с выходным напряжением от 24 до 100 В и мощностью в несколько киловатт. Схема преобразования солнечной энергии такова: солнечная батарея—буферный аккумулятор—инвертор (DC/AC-конвертор) 220/380 В—промышленная установка, питающаяся от сети 220/380 В. На рис. 7 показана структура DC/AC-инвертора для солнечных батарей.

Рис. 7. Структура инвертора для питания от солнечных батарей

А на рис. 8 приведен конкретный пример реализации инвертора мощностью 500 Вт с использованием силовых элементов IR, в том числе и Trench IGBT-транзисторов 6-го поколения, обеспечивающих более высокую эффективность преобразования солнечной энергии.

Рис. 8. Инвертор для солнечной батареи мощностью 500 Вт

В схеме используются микросхемы и дискретные транзисторы IR:

  • 600 В Trench IGBT-транзистор IRGB4056DPBF;
  • 100 В DirectFET транзисторы, IRF6644;
  • генератор для управления мостовой схемой IR2086S;
  • 600 В микросхема полумостового драйвера IRS2184S.

Для синтеза 50 Гц используется частота ШИМ 20 кГц.

На рис. 9 показана демо-плата инвертора, собранного по данной схеме. Размер платы около 100×40 мм.

Рис. 9. Демо-плата 500 Вт 220 В инвертора для солнечной батареи

Управление электроприводом

На рис. 10 показана типовая схема управления асинхронным электродвигателем. Модуль управления может быть использован в стиральных машинах, компрессорах холодильников или кондиционеров. В качестве силовых ключей в схеме используются Trench IGBT-транзисторы.

Рис 10. Типовая схема интеллектуального привода для асинхронного двигателя мощностью от 250 Вт до 2 кВт

Драйверы плазменных матричных панелей

Для управления поджигом и гашением разряда в пикселях матричной плазменной панели требуется формирование высоковольтных сигналов сложной формы. IGBT-транзисторы идеально подходят в качестве ключевых элементов для реализации гибридных многовыходных драйверов в плазменной панели. Матричная система пикселей плазменной панели с точки зрения управления представляет собой емкостную нагрузку. Ключевые приборы для таких устройств должны быстро включаться, обеспечивать высокие импульсные токи и иметь низкое падение напряжения в открытом состоянии.

На рис. 11 показана структура плазменной панели.

Рис. 11. Структура плазменной панели

На рис. 12 показана схема управления пикселем плазменной панели.

Рис. 12. Схема управления одним пикселем в плазменной панели на базе IGBT-ключей

Схема обеспечивает синтез сигналов сложной формы с большим диапазоном напряжений (от -150 до +400 В) и импульсных токов.

 

Заключение

В первую очередь транзисторы Trench IGBT могут использоваться в качестве альтернативной замены аналогичных приборов, ранее разработанных компанией International Rectifier, обеспечивая увеличение эффективности преобразования энергии и снижение цены готового устройства.

Транзисторы Trench IGBT могут с успехом заменять все равноценные по мощности типы транзисторов 4-го и 5-го поколений IGBT, если только значение параметра SCSOA спецификации — 5 uS окажется приемлемым для данных применений. Во всех случаях при замене будет обеспечена лучшая эффективность преобразования, а также большая плотность мощности. Транзисторы 6-го поколения IGBT IR могут использоваться и в качестве недорогой альтернативы аналогичным приборам, выпускаемым другими производителями. Поколение Trench IGBT позволяет сбалансировать потери на переключениях и проводимости и использовать биполярные транзисторы с изолированным затвором в области высоких частот вместо полевых МОП-транзисторов, одновременно обеспечивая высокий КПД. Преимущества IGBT-транзисторов 6-го поколения позволят им потеснить, а по мере совершенствования технологии IGBT и вовсе заменить полевые МОП-транзисторы в импульсных источниках питания.

Литература
  1. Транзисторы Trench IGBT шестого поколения. Башкиров В. // Новости электроники. 2007. № 7.
  2. Силовые IGBT-модули Infineon Technologies. Анатолий Б. // Силовая электроника. 2008. № 2.
  3. IGBT или MOSFET? Проблема выбора. Евгений Д. // Электронные компоненты. 2000. № 1.
  4. Выбор ключевых транзисторов для преобразователей с жестким переключением. Александр П. // Современная электроника. 2004. № 4.
  5. Транзисторы IGBT. Новинки от компании International Rectifier. Волошанская Е. // Электроника: НТБ. 2005. № 5.
  6. AC TIG Welding: Output Inverter Design Basics. Roccaro A., Filippo R., Salato M. Application Notes AN-1045
  7. IGBT Characteristics. Application Note AN-983.
IGBT-транзистор

— основы, характеристики, схема переключения и приложения

IGBT — это сокращенная форма биполярного транзистора с изолированным затвором , комбинация биполярного переходного транзистора (BJT) и Металлооксидный полевой транзистор (MOS-FET) . Это полупроводниковое устройство, используемое для переключения связанных приложений.

Поскольку IGBT представляет собой комбинацию полевого МОП-транзистора и транзистора , он имеет преимущества обоих транзисторов и полевого МОП-транзистора.MOSFET имеет преимущества высокой скорости переключения с высоким импедансом, а с другой стороны, BJT имеет преимущество в высоком усилении и низком напряжении насыщения, оба присутствуют в транзисторе IGBT. IGBT — это полупроводник с регулируемым напряжением , который обеспечивает большие токи коллектора-эмиттера с почти нулевым током затвора.

Как уже говорилось, IGBT имеет преимущества как MOSFET, так и BJT, IGBT имеет такой же изолированный затвор, как и типичные MOSFET, и такие же выходные характеристики передачи. Хотя BJT является устройством с управлением по току, но для IGBT управление зависит от MOSFET, поэтому это устройство с управлением напряжением, эквивалентное стандартным MOSFET.

Схема эквивалента

IGBT и символ

На изображении выше показана эквивалентная схема IGBT. Такая же структура схемы используется в транзисторе Дарлингтона, где два транзистора соединены одинаковым образом. Как мы можем видеть на изображении выше, IGBT объединяет два устройства, N-канальный MOSFET и PNP-транзистор . N-канальный MOSFET управляет PNP-транзистором. Выводы стандартного BJT включают коллектор, эмиттер, базу, а стандартный вывод MOSFET включает затвор, сток и исток.Но в случае контактов IGBT транзистора , это Gate , который поступает от N-канального MOSFET, а Collector и Emitter исходят от PNP-транзистора.

В транзисторе PNP коллектор и эмиттер являются проводящими путями, а когда IGBT включен, они проводят ток через него. Этот путь контролируется N-канальным MOSFET.

В случае BJT, мы вычисляем коэффициент усиления, который обозначается как Beta ( ), путем деления выходного тока на входной.

  β = выходной ток / входной ток  

Но, как мы знаем, полевой МОП-транзистор не является устройством, управляемым током; это устройство, управляемое напряжением, входной ток через затвор полевого МОП-транзистора отсутствует. Таким образом, та же формула, которая применяется для расчета усиления BJT, не применима для технологии MOSFET. Затвор полевого МОП-транзистора изолирован от пути прохождения тока. Напряжение затвора полевого МОП-транзистора изменило проводимость выходного тока. Таким образом, коэффициент усиления представляет собой отношение изменений выходного напряжения к изменениям входного напряжения.Это верно для IGBT. Коэффициент усиления IGBT — это отношение изменений выходного тока к изменениям входного напряжения затвора .

Из-за возможности высокого тока большой ток BJT контролируется напряжением затвора MOSFET.

На изображении выше показан символ IGBT . Как мы видим, символ включает в себя коллектор-эмиттерную часть транзистора и затворную часть полевого МОП-транзистора. Эти три терминала показаны как Gate, Collector и Emitter.

В проводящем или включенном режиме « ON » ток протекает от коллектора к эмиттеру . То же самое происходит с транзистором BJT. Но в случае с IGBT вместо базы стоит Gate. Разница между напряжением затвора и эмиттера называется Vge , а разница напряжений между коллектором и эмиттером называется Vce .

Ток эмиттера (Ie) почти такой же, как ток коллектора (Ic) , Ie = Ic .Поскольку ток в коллекторе и эмиттере относительно одинаков, у Vce очень низкий ток.

Узнайте больше о BJT и MOSFET здесь.

Приложения IGBT:

IGBT в основном используется в приложениях, связанных с питанием. Стандартные силовые BJT обладают очень медленным откликом, тогда как MOSFET подходит для приложений с быстрым переключением, но MOSFET — дорогостоящий выбор там, где требуется более высокий номинальный ток. IGBT подходит для замены силовых BJT и силовых MOSFET .

Кроме того, IGBT предлагает более низкое сопротивление включения по сравнению с BJT, и благодаря этому свойству IGBT является термически эффективным в приложениях, связанных с высокой мощностью.

IGBT широко применяются в области электроники. Из-за низкого сопротивления , очень высокого номинального тока, высокой скорости переключения, привода с нулевым затвором, IGBT используются в системах управления двигателями большой мощности, инверторах, импульсных источниках питания с областями высокочастотного преобразования.

На приведенном выше изображении показано базовое приложение переключения, использующее IGBT. RL представляет собой резистивную нагрузку, подключенную через эмиттер IGBT к земле. Разница напряжений на нагрузке обозначается как VRL . Нагрузка также может быть индуктивной. А справа показана другая схема. Нагрузка подключается к коллектору, а резистор для защиты по току подключается к эмиттеру. В обоих случаях ток будет течь от коллектора к эмиттеру.

В случае BJT нам необходимо обеспечить постоянный ток через базу BJT.Но в случае IGBT, как и MOSFET, нам необходимо обеспечить постоянное напряжение на затворе, и насыщение поддерживается в постоянном состоянии.

В левом случае разность напряжений VIN , которая представляет собой разность потенциалов входа (затвора) с землей / VSS, управляет выходным током, протекающим от коллектора к эмиттеру. Разница напряжений между VCC и GND практически одинакова на нагрузке.

В правой цепи ток, протекающий через нагрузку, зависит от напряжения, деленного на значение RS .

  I  RL2  = V  IN  / R  S   

Биполярный транзистор с изолированным затвором (IGBT) может быть переключен « ВКЛ. » и « ВЫКЛ. » путем активации затвора. Если мы сделаем затвор более положительным, подав напряжение на затвор, эмиттер IGBT будет поддерживать IGBT в состоянии « ON », и если мы сделаем затвор отрицательным или нулевым нажатием, IGBT останется в состоянии « OFF ». Это то же самое, что и переключение BJT и MOSFET.

Кривая I-V IGBT и передаточные характеристики

На приведенном выше изображении показаны ВАХ в зависимости от разного напряжения затвора или Вge . Ось X обозначает напряжение коллектора-эмиттера или Vce , а ось Y обозначает ток коллектора . В выключенном состоянии ток, протекающий через коллектор и напряжение затвора, составляет ноль . Когда мы меняем Vge или напряжение затвора, устройство переходит в активную область.Стабильное и постоянное напряжение на затворе обеспечивает непрерывный и стабильный ток через коллектор. Увеличение на Vge пропорционально увеличивает ток коллектора, Vge3> Vge2> Vge3 . BV — напряжение пробоя IGBT.

Эта кривая почти идентична кривой передачи I-V BJT, но здесь показано Vge , потому что IGBT — это устройство, управляемое напряжением.

На изображении выше показана передаточная характеристика IGBT.Он практически идентичен PMOSFET . IGBT перейдет в состояние « ON » после того, как Vge превысит пороговое значение в зависимости от спецификации IGBT.

Вот сравнительная таблица, которая даст нам четкое представление о разнице между IGBT и POWER BJT и Power MOSFET .

Характеристики устройства

IGBT

Силовой полевой МОП-транзистор

ПИТАНИЕ BJT

Номинальное напряжение

Более 1 кВ (очень высокое)

Менее 1 кВ (высокое)

Менее 1 кВ (высокое)

Текущий рейтинг

Более 500 А (высокий)

Менее 200 А (высокий)

Менее 500 А (высокий)

Устройство ввода

Напряжение, Вге, 4-8В

Напряжение, Вгс, 3-10В

Ток, hfe, 20-200

Входное сопротивление

Высокая

Высокая

Низкий

Выходное сопротивление

Низкий

Средний

Низкий

Скорость переключения

Средний

Быстро (нС)

Медленно (США)

Стоимость

ВЫСОКИЙ

Средний

Низкий

В следующем видео мы увидим схему переключения транзистора IGBT .

Что такое IGBT — работа, работа, приложения и различные типы IGBT

Самыми популярными и часто используемыми силовыми электронными переключателями являются биполярный транзистор BJT и полевой МОП-транзистор. Мы уже подробно обсудили работу BJT и MOSFET, а также то, как они используются в схемах. Но оба этих компонента имели некоторые ограничения для использования в приложениях с очень высоким током. Итак, мы переместили еще одно популярное силовое электронное коммутационное устройство, называемое IGBT.Вы можете думать о IGBT как о слиянии BJT и MOSFET, эти компоненты имеют входные характеристики BJT и выходные характеристики MOSFET. В этой статье мы познакомимся с основами IGBT , с тем, как они работают и как использовать их в схемах.

Что такое IGBT?

IGBT — это сокращенная форма биполярного транзистора с изолированным затвором . Это трехконтактное полупроводниковое переключающее устройство, которое можно использовать для быстрого переключения с высокой эффективностью во многих типах электронных устройств.Эти устройства в основном используются в усилителях для переключения / обработки сложных волновых паттернов с широтно-импульсной модуляцией (ШИМ). Типичный символ IGBT вместе с его изображением показан ниже.

Как упоминалось ранее, IGBT представляет собой смесь BJT и MOSFET. Символ IGBT также представляет собой то же самое, поскольку вы можете видеть, что сторона входа представляет собой полевой МОП-транзистор с выводом затвора, а сторона вывода представляет собой BJT с коллектором и эмиттером.Коллектор и Эмиттер являются выводами проводимости, а затвор — это контрольный вывод , с помощью которого управляется операция переключения.

Внутренняя структура IGBT IGBT

может быть сконструирован с эквивалентной схемой, состоящей из двух транзисторов и MOSFET, поскольку IGBT обладает выходом из указанной ниже комбинации транзистора PNP, транзистора NPN и MOSFET. IGBT сочетает в себе низкое напряжение насыщения транзистора с высоким входным сопротивлением и скоростью переключения полевого МОП-транзистора.Результат, полученный в результате этой комбинации, обеспечивает характеристики переключения и проводимости биполярного транзистора, но напряжение регулируется как полевой МОП-транзистор.

Поскольку IGBT представляет собой комбинацию MOSFET и BJT, они также называются разными именами. различных имен IGBT — это транзистор с изолированным затвором (IGT), транзистор с изолированным затвором и оксидом металла (MOSIGT), полевой транзистор с модулированным усилением (GEMFET), полевой транзистор с кондуктивной модуляцией (COMFET).

Работа IGBT

IGBT имеет три вывода, прикрепленных к трем различным металлическим слоям, металлический слой вывода затвора изолирован от полупроводников слоем диоксида кремния (SIO2). БТИЗ состоит из 4 слоев полупроводника, соединенных между собой. Слой ближе к коллектору — это слой подложки p + , выше, это слой n- , еще один p-слой находится ближе к эмиттеру, а внутри p-слоя у нас есть n + слоев .Соединение между слоем p + и n-слоем называется переходом J2, а соединение между n-слоем и p-слоем называется переходом J1. Структура IGBT показана на рисунке ниже.

Чтобы понять работу IGBT , рассмотрим источник напряжения V G , подключенный к клемме затвора по отношению к эмиттеру. Рассмотрим другой источник напряжения V CC , подключенный между эмиттером и коллектором, где коллектор остается положительным по отношению к эмиттеру.Благодаря источнику напряжения V CC переход J1 будет смещен в прямом направлении, тогда как переход J2 будет смещен в обратном направлении. Поскольку J2 имеет обратное смещение, ток не будет протекать внутри IGBT (от коллектора к эмиттеру).

Сначала учтите, что на клемму Gate не подается напряжение, на этом этапе IGBT будет в непроводящем состоянии. Теперь, если мы увеличим приложенное напряжение затвора, из-за эффекта емкости на слое SiO2 отрицательные ионы будут накапливаться на верхней стороне слоя, а положительные ионы будут накапливаться на нижней стороне слоя SiO2.Это вызовет вставку отрицательно заряженных носителей в p-область, чем выше приложенное напряжение V G , тем больше вставка отрицательно заряженных носителей. Это приведет к образованию канала между переходом J2, который позволяет протекать току от коллектора к эмиттеру . Прохождение тока представлено как путь тока на рисунке, когда прикладываемое напряжение затвора V G увеличивается, величина тока, протекающего от коллектора к эмиттеру, также увеличивается.

Типы IGBT

IGBT классифицируется как два типа на основе буферного слоя n +, IGBT, которые имеют буферный слой n +, называются Punch through IGBT (PT-IGBT) , IGBT, которые не имеют буферного слоя n +, называются без пробивки на сквозной IGBT (NPT-IGBT).

Исходя из своих характеристик, NPT-IGBT и PT-IGBT называются симметричными и несимметричными IGBT. Симметричные IGBT — это те, которые имеют одинаковое прямое и обратное напряжение пробоя.Асимметричные IGBT — это те, у которых напряжение обратного пробоя меньше, чем напряжение прямого пробоя. Симметричные IGBT в основном используются в цепях переменного тока, тогда как асимметричные IGBT в основном используются в цепях постоянного тока, поскольку им не нужно поддерживать напряжение в обратном направлении.

Разница между пробивкой через IGBT (PT-IGBT) и без пробивки через IGBT (NPT-IGBT)

Пробивка через IGBT (PT-IGBT)

Без дырокола — IGBT (NPT — IGBT)

Они менее устойчивы к отказу при коротком замыкании и имеют меньшую термостойкость

Они более надежны при отказе от короткого замыкания и обладают большей термической стабильностью.

Коллектор представляет собой сильно легированный слой P +

Коллектор представляет собой слаболегированный P-слой.

Он имеет небольшой положительный температурный коэффициент напряжения в открытом состоянии, поэтому параллельная работа требует большой осторожности и внимания.

Температурный коэффициент напряжения в открытом состоянии строго положительный, поэтому параллельная работа проста.

Потери при выключении более чувствительны к температуре, поэтому они значительно увеличиваются при более высокой температуре.

Потеря выключения менее чувствительна к температуре, поэтому она останется неизменной с температурой.

Работа IGBT как цепи

Поскольку IGBT представляет собой комбинацию BJT и MOSFET, давайте рассмотрим их работу в виде принципиальной схемы.На приведенной ниже диаграмме показана внутренняя схема IGBT , которая включает два BJT, один MOSFET и JFET. Контакты затвора, коллектора и эмиттера IGBT отмечены ниже.

Коллектор транзистора PNP соединен с транзистором NPN через JFET, JFET соединяет коллектор транзистора PNP и базу транзистора PNP. Эти транзисторы скомпонованы таким образом, чтобы образовать паразитный тиристор, созданный для создания контура отрицательной обратной связи .Резистор RB помещается так, чтобы закоротить выводы базы и эмиттера NPN-транзистора, чтобы гарантировать, что тиристор не защелкивается, что приводит к защелкиванию IGBT. Используемый здесь JFET будет обозначать структуру тока между любыми двумя ячейками IGBT, позволяет использовать MOSFET и поддерживает большую часть напряжения.

Характеристики переключения IGBT

IGBT — это устройство , управляемое напряжением, , поэтому ему требуется только небольшое напряжение на затвор, чтобы оставаться в состоянии проводимости.А поскольку это однонаправленные устройства, они могут переключать ток только в прямом направлении, то есть от коллектора к эмиттеру. Типичная схема переключения IGBT показана ниже, напряжение затвора V G подается на вывод затвора для переключения двигателя (M) с напряжения питания V +. Резистор Rs примерно используется для ограничения тока через двигатель.

Входные характеристики IGBT можно понять из приведенного ниже графика. Первоначально, когда на вывод затвора не подается напряжение, IGBT находится в выключенном состоянии, и ток не течет через вывод коллектора.Когда напряжение, приложенное к выводу затвора, превышает пороговое напряжение , IGBT начинает проводить, и ток коллектора I G начинает течь между выводами коллектора и эмиттера. Коллекторный ток увеличивается относительно напряжения затвора, как показано на графике ниже.

Выходные характеристики IGBT имеют три ступени. Первоначально, когда напряжение затвора V GE равно нулю, устройство находится в выключенном состоянии, это называется областью отсечки .Когда V GE увеличивается и если оно меньше, чем пороговое напряжение , то через устройство будет протекать небольшой ток утечки, но устройство все еще будет в области отсечки. Когда напряжение V GE превышает пороговое значение, устройство переходит в активную область , и ток начинает течь через устройство. Протекание тока будет увеличиваться с увеличением напряжения V GE , как показано на графике выше.

Приложения IGBT БТИЗ

используются в различных приложениях, таких как приводы двигателей переменного и постоянного тока, нерегулируемые источники питания (ИБП), импульсные источники питания (SMPS), управление тяговыми двигателями и индукционный нагрев, инверторы, используемые для объединения полевых транзисторов с изолированным затвором для управления вход и биполярный силовой транзистор в качестве переключателя в одном устройстве и т. д.

Пакеты IGBT

GBT доступны в разных типах пакетов с разными названиями от разных компаний.Например, Infineon Technologies предлагает пакеты для сквозного монтажа и для поверхностного монтажа. Пакет сквозного типа включает TO-262, TO-251, TO-273, TO-274, TO-220, TO-220-3 FP, TO-247, TO-247AD. В комплект для поверхностного монтажа входят ТО-263, ТО-252.

Обозначение IGBT, схема, характеристики, конструктивная схема

Биполярный транзистор IGBT полной формы с изолированным затвором. IGBT — это устройство переключения полупроводников. MOSFET и BJT — наиболее часто используемые электронные полупроводниковые устройства. IGBT разработан с характеристиками как MOSFET, так и BJT, или мы можем сказать, что IGBT — это комбинация MOSFET и BJT.IGBT — это трехконтактное устройство, способное пропускать большой ток и обеспечивать очень высокую скорость переключения. Хотя IGBT не может обеспечить скорость переключения, как BJT и MOSFET. BJT и MOSFET — это устройства с низким током, но они обеспечивают высокую скорость переключения.

Символ IGBT

Здесь вы можете увидеть символ IGBT ниже.

Вы можете видеть, что IGBT имеет три терминала с именами — Gate (G), Emitter (E) и Collector (C). Его символ показывает, что это биполярный переходной транзистор, но его затвор изолирован от основной цепи.

Эквивалентная схема IGBT

Как я уже говорил ранее, IGBT представляет собой комбинацию BJT и MOSFET. В эквивалентной схеме вы можете увидеть то же самое.

Вы можете видеть, что клемма базы PNP-транзистора соединена с клеммой коллектора N-канального MOSFET. Выводы эмиттера как BJT, так и MOSFET соединены вместе.

Внутренняя конструкция IGBT

Здесь вы можете увидеть внутреннюю конструктивную схему IGBT ниже.

IGBT — это четырехуровневое устройство (P-N-P-N).Область тела, дрейфовый слой, инжекционный слой и металлический слой показаны на рисунке выше. Вы можете видеть, что металлический слой клеммы затвора изолирован от полупроводников металлическим слоем диоксида кремния (SiO2). Две клеммы эмиттера соединены вместе. Здесь вы видите два перекрестка. Соединение между P-подложкой и n-слоем называется переходом 2 (J2), а соединение между P-слоем и n-слоем называется переходом 1 (J1).

Читайте также:

Характеристики IGBT

Здесь вы можете увидеть диаграмму характеристик переключения IGBT.

Ось X представляет ток коллектора (Ic), а ось Y представляет напряжение коллектора-эмиттера (VCE). На приведенной выше диаграмме мы можем увидеть выходную характеристику IGBT.

Когда напряжение затвора (VGE) равно нулю, устройство находится в выключенном состоянии, это называется областью отсечки.

Когда напряжение затвора увеличивается, но ниже порогового напряжения, будет небольшой ток утечки, но тогда также устройство будет в области отсечки.

Когда напряжение затвора превышает пороговое значение, устройство включается и переходит в активную область.В этой активной области ток будет течь через устройство, и ток можно увеличить, увеличив напряжение затвора.

Когда устройство переходит в область насыщения, ток будет постоянным и не будет увеличиваться даже при увеличении напряжения затвора.

Преимущества IGBT

1. IGBT или биполярный транзистор с изолированным затвором обеспечивает очень высокий КПД.

2. IGBT может работать с очень высокой скоростью переключения.

3. IGBT может работать с большими токами, напряжением и мощностью.

4. Поскольку затвор изолирован, он обеспечивает электробезопасность при работе с высоким напряжением.

Читайте также:

Спасибо, что посетили сайт. продолжайте посещать для получения дополнительных обновлений. Основы IGBT-транзистора

| Контур X, код

IGBT или биполярный транзистор с изолированным затвором — это тип транзистора. Это сильноточный и высоковольтный прибор, представляющий собой тиристор. IGBT сочетает в себе достоинства металлооксидного полевого транзистора (MOSFET) и биполярного переходного транзистора (BJT).

Введение

Условное обозначение IGBT показано ниже:

Символы IGBT похожи на BJT намеренно. Как и BJT, на выходе IGBT ток от коллектора до эмиттера. Однако изолированный затвор этого устройства означает, что входной ток на затворе почти равен нулю. Очень маленький ток пропорционален очень высокому импедансу. Таким образом, нагрузка не влияет на схему управления, подключенную к затвору этого транзистора.Биполярный транзистор с изолированным затвором также превосходит BJT (в некоторых приложениях) с точки зрения скорости переключения.

Поскольку IGBT — это устройство, управляемое напряжением, он похож на MOSFET. Его основным преимуществом перед полевыми МОП-транзисторами является способность выдерживать напряжение между коллектором и эмиттером более 200 В. Такой транзистор также имеет меньшее напряжение насыщения, чем MOSFET.

Эксплуатация

Эквивалентная схема ниже лучше всего описывает работу IGBT:

Как видно, полевой МОП-транзистор находится на входе биполярного транзистора с изолированным затвором, а биполярный транзистор — на выходе.Когда на затвор подается достаточное напряжение, ток будет течь от коллектора к эмиттеру.

Приложения

IGBT часто поставляются в виде модулей. Фактически такие модули представляют собой твердотельные реле. Приложения IGBT включают драйверы двигателей, индукционные нагреватели и источники питания.

Модуль IGBT выглядит так:

Ниже приведен пример принципиальной схемы цепи драйвера двигателя:

Обратите внимание, что схематическая диаграмма выше аналогична H-мосту, но только с использованием биполярных транзисторов с изолированным затвором.Преимущество использования этого H-моста IGBT — более высокое рабочее напряжение и ток.

Учебное пособие по схемам IGBT биполярного транзистора с изолированным затвором


Рис. 1

by Lewis Loflin

См. Также Управление двигателем постоянного тока с H-мостом высокого напряжения на базе IGBT.

Недавно я обнаружил преимущества использования биполярных транзисторов с изолированным затвором (IGBT) по сравнению с MOSFET. На самом деле у меня было несколько дней, оставшихся после ремонта плазменного резака, и я решил их использовать.Это особенно верно при использовании с оптопарами фотоэлектрического МОП-транзистора, такими как VOM1271.

См. Схемы драйверов фотоэлектрических МОП-транзисторов VOM1271.

Процитируем два источника о преимуществах IGBT:

По сравнению с IGBT, силовой MOSFET имеет преимущества более высокой скорости коммутации и большей эффективности при работе при низких напряжениях. … IGBT сочетает в себе простые характеристики управления затвором, присущие полевому МОП-транзистору, с высокой силой тока и низким напряжением насыщения биполярного транзистора.

А:

Основными преимуществами использования биполярного транзистора с изолированным затвором по сравнению с другими типами транзисторных устройств являются его высокое напряжение, низкое сопротивление в открытом состоянии, простота управления, относительно быстрая скорость переключения и в сочетании с нулевым током управления затвором, что делает его хорошим выбором для умеренных скорость, высокое напряжение …

Рис. 1 Основная теория построения IGBT в виде N-канального MOSFET и PNP-транзистора.


Рис. 2a

IXGh35N100 — это те, которые я использовал в своих тестовых схемах.Мои были извлечены из инверторной платы плазменного резака, о которой я расскажу ниже.

Помимо возможности высокого напряжения, некоторые из них имеют «максимальный номинальный ток коллектора Ic (макс.), Превышающий 100A».

Символ IGBT находится слева.

В IXGh35N100 нет внутренних диодов маховика.


Рис. 2b

На рис. 2b показан БТИЗ с внутренними диодами маховика. FGA25N120 рассчитан на 1200 В, 25 А. Напряжение C-E sat при 25 А составляет 2,0 В.

Важным фактором является напряжение насыщения коллектор-эмиттер.В цепях индукционного нагрева используются следующие элементы.

FGPF4633 рассчитан на 330 В, напряжение C-E 1,55 В при 70 А.

IHW20N120R3 1200 В 20 А 1,48 В.


Рис. 3

Пример схемы инвертора IGBT от 12 В до 120 В переменного тока.


Рис.4

Инверторные устройства плазменной резки

Раньше ремонтировал портативные плазменные резаки этого типа. Цитата из Википедии:

Плазменные резаки с инвертором

преобразуют сетевое питание в постоянный ток, который подается на высокочастотный транзисторный инвертор в диапазоне от 10 кГц до примерно 200 кГц.Более высокие частоты переключения позволяют использовать трансформатор меньшего размера, что приводит к уменьшению габаритов и веса.

Первоначально используемые транзисторы были MOSFET, но теперь все чаще используются IGBT. При использовании параллельно подключенных полевых МОП-транзисторов, если один из транзисторов активируется преждевременно, это может привести к каскадному отказу одной четверти инвертора. Более позднее изобретение, IGBT, не подвержено этому режиму отказа. IGBT обычно можно найти в сильноточных машинах, где невозможно параллельное соединение достаточного количества MOSFET-транзисторов.


Рис. 5

Рис. 5 использует IGBT для отключения 170 В постоянного тока для высокочастотного трансформатора. Это используется в микроволновых печах Panasonic.

Более высокая частота позволяет использовать меньшие (более дешевые) трансформаторы. Это также снижает вес. D701, D701, C703 и C704 образуют удвоитель напряжения. R701 — это высоковольтный резистор для сброса напряжения.

Поскольку я мог использовать ту же установку для тестирования IGBT, что и n-канальные MOSFET, я протестировал те, что были у меня.

IGBT, по крайней мере, те, которые у меня есть, не должны использоваться, если это не цепь очень высокого напряжения.Они имеют высокое падение напряжения (Vce ~ 2 В) с низковольтными h-мостовыми схемами и лучше подходят для переключения на более высокое напряжение.

См. Тестовые силовые МОП-транзисторы, результаты IGBT, наблюдения

Вывод: IGBT не работают напрямую с микроконтроллерами 3,3 В и 5 В, такими как Arduino. Для включения требуется минимум 7 вольт. Высокое напряжение от 1,5 до 2 В может привести к потере энергии.

IGBT

отличаются от полевых МОП-транзисторов как положительным потоком, так и потоком электронов, который может передавать большую мощность даже при 2 В Vce на нагрузку.Они действительно предназначены для коммутации высокого напряжения.

Устройство * Vce * Vce (sat) * Ic Ic 10V Vce
h30R1202 1200V 1.4822 20322 1.4822 90A
IXGh35N100A 1000V 3.5V 50A 3.4A 1.96V
IXGh2539 ** 1000V??? 3.7A 1.68V

* из спецификации.
** данные не найдены.


Оптическая развязка управления двигателем H-моста YouTube
Оптическая развязка управления двигателем с Н-мостом

Теория оптопары и схемы YouTube
Драйверы оптоизолированных транзисторов для микроконтроллеров

All NPN Transistor H-Bridge Motor Control YouTube
Управление двигателем с H-мостом на всех NPN транзисторах

Учебное пособие по широтно-импульсной модуляции YouTube
Учебное пособие по широтно-импульсной модуляции

PIC12F683 Микроконтроллер и схемы YouTube
Микроконтроллер PIC12F683 и схемы

Базовая структура

и ее преимущества

Биполярный транзистор с изолированным затвором

Термин IGBT — это сокращенная форма биполярного транзистора с изолированным затвором, это трехконтактное полупроводниковое устройство с огромной биполярной токоведущей способностью.Многие разработчики думают, что IGBT имеет биполярное устройство CMOS i / p и биполярную o / p характеристику, управляемую напряжением. Таким образом, это устройство спроектировано так, чтобы использовать преимущества как BJT, так и MOSFET устройств в виде монолита. Он сочетает в себе лучшие качества обоих для достижения характеристик оптимального устройства.

Это устройство подходит для нескольких приложений, таких как использование в силовой электронике, в частности, в ШИМ (широтно-импульсная модуляция), ИБП (источники бесперебойного питания), SMPS (импульсные источники питания) и других силовых цепях.Это увеличивает эффективность, динамические характеристики и снижает уровень слышимого шума. Он аналогичным образом устанавливается в цепи преобразователя резонансного режима. Оптимизированный IGBT доступен как для низких потерь переключения, так и для низких потерь проводимости.

Что такое IGBT?

IGBT (биполярный транзистор с изолированным затвором) представляет собой трехконтактный электронный компонент, который называется эмиттером, коллектором и затвором. Два из его выводов, а именно коллектор и эмиттер, связаны с трактом проводимости, а оставшийся вывод «G» связан с его управлением.Суммарное усиление, достигаемое IGBT, представляет собой соотношение между его входным и выходным сигналами. Для обычного BJT величина усиления почти равна отношению тока o / p к току i / p, которое называется бета-коэффициентом.

Символ IGBT

Для полевого МОП-транзистора (металлооксидного полупроводникового полевого транзистора) отсутствует ток i / p, поскольку вывод затвора изолирован от основного токоведущего канала. Таким образом, усиление полевого транзистора равно усилению полевого транзистора, равному отношению изменения тока o / p к изменению i / pv. Тогда IGBT можно рассматривать как силовой BJT, а базовый ток этого транзистора равен обеспечивается полевым МОП-транзистором.IGBT в основном используется в схемах усилителя слабого сигнала, таких как BJT или MOSFET. Когда транзистор объединяет более низкие потери проводимости BJT и MOSFET, получается идеальный твердотельный переключатель, который идеально подходит для различных приложений силовой электроники.

IGBT просто переключается в положение «ВКЛ» и «ВЫКЛ» путем срабатывания и отключения клеммы затвора. Постоянный + Ve сигнал напряжения i / p на «G» и «E» будет удерживать устройство в состоянии «ON», в то время как вычитание i / p-сигнала заставит его выключить, как BJT или MOSFET. .

Базовая структура IGBT

Базовая структура N-канального IGBT показана ниже. Эта структура очевидна, поскольку поперечное сечение кремния IGBT почти равно поперечному сечению вертикального силового MOSFET, за исключением инжектирующего слоя P +. Он имеет ту же структуру MOS gate & P-wells с областями источника N +. В следующей структуре слой N +, расположенный вверху, называется источником, а нижний слой — стоком или коллектором.

Базовая структура N-канального БТИЗ

БТИЗ с паразитным тиристором включает 4-слойные структуры NPN.Есть некоторые IGB, которые изготавливаются без буферного слоя N +, называемые NPT IGBTS без пробивки), тогда как некоторые IGBT изготавливаются с буферным слоем N +, называемые PT IGBT (punch through). Производительность устройства может значительно увеличиться за счет наличия буферного слоя. IGBT работает быстрее, чем силовой BJT, чем силовой MOSFET.

Принципиальная схема IGBT

На основе базовой структуры IGBT можно нарисовать простую схему с использованием транзисторов PNP и NPN, JFET, OSFET, которая показана на рисунке ниже.Коллекторный вывод NPN-транзистора соединен с базовым выводом PNP через JFET-транзистор. Эти транзисторы обозначают паразитный тиристор, который создает регенеративную цепь обратной связи. Резистор RB означает замыкание выводов база-эмиттер NPN-транзистора, чтобы гарантировать, что тиристор не защелкнется, что приведет к защелкиванию IGBT.

Принципиальная схема IGBT

JFET-транзистор означает построение тока b / n любых двух соседних ячеек IGBT.Он позволяет использовать полевой МОП-транзистор и поддерживает большую часть напряжения. Ниже показан символ схемы для IGBT, который состоит из трех выводов, а именно эмиттера, затвора и коллектора. Поведение при переключении IGBT

Поведение при переключении IGBT

Эти устройства в основном используются в качестве переключателей, например, в преобразователях частоты и прерывателях, Вариант диода является наиболее важным, потому что, когда переключение IGBT выключено, ток определяется нагрузкой, которая во многих случаях является индуктивной.

Путем подключения соответствующих диодов допускается протекание тока. Когда этот транзистор снова включается, ток, протекающий в диоде, сначала работает как короткое замыкание. Напряжение можно заблокировать, сняв сохраненное напряжение. Это выглядит как добавленный к току нагрузки избыточный ток, который называется током обратного восстановления диода «Irr». Максимум Irr возникает (di / dt = 0), когда количество внезапных напряжений через IGBT и диод соответствует напряжению питания. Когда IGBT включен, ток изменяется, что приводит к возникновению точки перенапряжения из-за изменения тока в зависимых индуктивностях, согласующегося с ∆VCE = Lσ × di / d

NPT-IGBT и PT-IGBT

NPT и PT-IGBT разработаны IXYS Corporation.Физическая конструкция БТИЗ NPT и PT показана ниже. Структура PT состоит из дополнительного буферного слоя, который выполняет две функции: 1) Отказ можно избежать путем сквозного действия, поскольку этот слой контролирует расширение области истощения при приложенном высоком напряжении. 2) .Ток отказа может быть уменьшен, когда он отключается, и сокращает время спада IGBT, потому что отверстия, вставленные коллектором P +, не полностью рекомбинируют в этом слое.

NPT-IGBT и PT-IGBT

Основы NPT-IGBT, IXYS Corporation 4 IXAN0063 и Abdus Sattar имеют одинаковое напряжение пробоя, и они применимы для приложений переменного тока.PT-IGBT имеют меньшее напряжение пробоя, и это актуально для цепей постоянного тока, где эти устройства не являются необходимыми для поддержки напряжения в обратном направлении.

Разница между NPT-IGBT и PT-IGBT

Это устройство, управляемое напряжением, и ему требуется небольшое напряжение на клемме затвора, чтобы поддерживать проводимость через устройство.

Это однонаправленное устройство, потому что оно может изменять ток только в прямом направлении, то есть от коллектора к эмиттеру.

Разница между NPT-IGBT и PT-IGBT

Принцип работы BJT очень похож на N-канальный MOSFET.Основное различие заключается в том, что ток, существующий в проводящем канале, когда ток подается через устройство в его включенном состоянии, очень мал в IGBT, по этой причине номинальные токи высоки при согласовании с MOSFET.

Преимущества и недостатки IGBT

Основными преимуществами IGBT по сравнению с различными типами транзисторов являются низкое сопротивление в открытом состоянии, высокая емкость по напряжению, быстрая скорость переключения, простота управления и соединение с нулевым током управления затвором создает хороший вариант для разумного скорость и различные высоковольтные приложения, такие как PWM, SMPS, регулирование скорости, преобразователь переменного тока в постоянный, питаемый от солнечной батареи, и приложения преобразователя частоты, которые работают с сотнями кГц.

Основные недостатки: Скорость переключения ниже для Power MOSFET и выше для BJT. Коллекторный ток, следующий из-за неосновных носителей заряда, приводит к низкой скорости выключения. 2. Существует вероятность защелкивания из-за внутренней структуры тиристора PNPN.

Таким образом, речь идет о работе IGBT и приложениях IGBT. Мы заметили, что IGBT — это полупроводниковое переключающее устройство, которое имеет характеристику o / p, как у BJT, но управляется как MOSFET.Мы считаем, что вы лучше понимаете эту концепцию. Кроме того, любые сомнения относительно приложений IGBT или электрических и электронных проектов, пожалуйста, дайте свой отзыв, комментируя в разделе комментариев ниже. Вот вам вопрос, в чем разница между BJT, MOSFET и IGBT?

Авторы фотографий:

IGBT: Часто задаваемые вопросы (FAQ)

Компании начинают осознавать потенциал новых рынков и возможности получения дохода в дальнейшем, поскольку они исследуют более комплексную модель «кремний для обслуживания», которая охватывает центр обработки данных к подвижному краю.В частности, с сокращением ASP (средние цены продажи) и все более непомерно высокими затратами на проектирование на все более низких узлах многие компании ищут новые источники дохода в широком диапазоне вертикалей, включая Интернет вещей (IoT).

Однако с учетом того, что количество установок Интернета вещей, как ожидается, будет увеличиваться примерно на 15–20% ежегодно до 2020 года, безопасность в настоящее время воспринимается как серьезная возможность, так и серьезная проблема для полупроводниковой промышленности.

Помимо услуг, концепция оборудования с открытым исходным кодом (OSH) и построения микросхем из разукрупненных, предварительно проверенных чиплетов начинает набирать обороты, поскольку компании стремятся сократить расходы и сократить время вывода на рынок гетерогенных конструкций.

Конкретные стратегии для раскрытия всего потенциала кремния и услуг, несомненно, будут различаться, поэтому для нас важно исследовать будущее, в котором полупроводниковые компании, а также различные отрасли, организации и правительственные учреждения будут играть открытую и совместную роль в помогая устойчиво монетизировать как микросхемы, так и услуги.

В 2016 и 2017 годах продолжались быстрые приобретения и консолидация отрасли:

  • Компания Analog Devices приобрела Linear Technology
  • Infineon приобрела International Rectifier
  • Компания ROHM приобрела Powervation
  • .
  • Renesas приобрела Intersil

Крупные производители полупроводников позиционируют себя, чтобы лучше конкурировать в нескольких вертикалях, включая облачные вычисления, искусственный интеллект (AI) и беспилотные автомобили.Согласно KPMG, многие компании все чаще рассматривают слияния и поглощения (M&A) как единственный способ стимулировать рост реальной выручки, делая новый акцент на вопросе «производить или покупать», при этом многие выбирают ответ «покупать».

В то же время расходы на разработку микросхем продолжали расти и существенно влияли на количество разработок в усовершенствованных узлах. В частности, общее количество запусков SoC с расширенной производительностью многоядерных процессоров в первый раз практически не изменилось и выросло лишь незначительно за последние пять лет.Хотя цены на дизайн неуклонно растут с 40 нм, аналитиков больше всего беспокоит увеличение стоимости дизайна на 7 и 5 нм.

Рич Вавжиняк, старший аналитик Semico Research, подтверждает, что начало проектирования, превышающее 10 нм, будет сдерживаться ростом затрат на разработку. Хотя общее количество проектов, которые переносятся на новые узлы, может не сильно отличаться от предыдущих обновлений геометрии процесса, Вавжиняк говорит, что сроки для таких переходов большинством компаний будут более продолжительными.

Совершенно очевидно, что необходимы новые модели как для НИОКР, так и для доходов, поскольку усиление консолидации отрасли и ослабление АСП в долгосрочной перспективе невозможно. Именно поэтому отрасль стремится к Интернету вещей для создания дополнительных потоков доходов, и аналитики McKinsey Global Institute (MGI) оценивают, что IoT может иметь ежегодный экономический эффект от 3,9 до 11,1 триллиона долларов к 2025 году по нескольким вертикалям. Однако с учетом того, что количество установок Интернета вещей, как ожидается, будет увеличиваться примерно на 15–20% в год до 2020 года, безопасность считается как серьезной возможностью, так и проблемой для полупроводниковых компаний.

Таким образом, MGI рекомендует создавать решения безопасности, которые позволяют компаниям, производящим полупроводники, расширяться в смежные области бизнеса и разрабатывать новые бизнес-модели. Например, компании могут помочь в создании предложений по комплексной безопасности, которые необходимы для успеха Интернета вещей. В идеале, по мнению MGI, отрасль должна играть ведущую роль при разработке таких предложений, чтобы гарантировать, что они получат свою справедливую долю в цепочке создания стоимости.

С нашей точки зрения, решения для сквозной безопасности Интернета вещей, развернутые как платформа как услуга (PaaS), имеют решающее значение для помощи полупроводниковым компаниям в получении возобновляемых доходов от реализации конкретных услуг.Для клиентов PaaS предлагает простой способ безопасной разработки, запуска и управления приложениями и устройствами без сложностей, связанных с построением и обслуживанием сложной инфраструктуры.

Такие решения безопасности, которые также могут использовать аппаратный корень доверия, должны поддерживать идентификацию устройства и взаимную аутентификацию (верификацию), регулярные проверки аттестации, безопасные обновления устройств по беспроводной сети (OTA), аварийное восстановление и ключ управление, а также вывод из эксплуатации и переназначение ключей для лучшего управления устройствами и смягчения различных атак, включая распределенный отказ в обслуживании (DDoS).

Умные города

Недоступные микросхемы — такие как микросхемы, встроенные в инфраструктуру интеллектуального города Интернета вещей — могут предложить полупроводниковым компаниям возможность реализовать долгосрочную модель PaaS «кремний для обслуживания». Действительно, инфраструктура будущего умного города почти наверняка будет спроектирована с использованием микросхем в труднодоступных местах, включая подземные водопроводные трубы, воздуховоды для кондиционирования воздуха, а также под улицами и на парковках.

Интеллектуальное уличное освещение, отзывчивые вывески и маячки Bluetooth нового поколения также требуют перспективных решений, чтобы избежать постоянного физического обслуживания и обновлений.Следовательно, микросхема, обеспечивающая питание инфраструктуры умного города, должна поддерживать безопасную конфигурацию функций в полевых условиях, а также различные услуги на основе PaaS, такие как расширенная аналитика, предупреждения о профилактическом обслуживании, алгоритмы самообучения и интеллектуальное проактивное взаимодействие с клиентами.

Умные дома

Прогнозируется, что к 2020 году глобальный рынок умного дома достигнет стоимости не менее 40 миллиардов долларов. По данным Markets and Markets, рост пространства умного дома можно объяснить множеством факторов, в том числе значительными достижениями в секторе Интернета вещей; возрастающие требования к удобству, безопасности и защищенности потребителей; более выраженная потребность в энергосберегающих решениях с низким уровнем выбросов углерода.Однако, как мы уже обсуждали ранее, крайне важно обеспечить реализацию безопасности Интернета вещей на этапе проектирования продукта, чтобы предотвратить использование злоумышленниками устройств умного дома и прерывание обслуживания.

В дополнение к потенциально прибыльным возможностям кибербезопасности для полупроводниковых компаний, устройства умного дома обещают создать повторяющиеся потоки доходов для поддержки устойчивой модели «кремний для обслуживания». В качестве примера Кристопер Дин из MarketingInsider выделяет популярные устройства Echo от Amazon.Поскольку уже продано не менее 15 миллионов Echo, пользователи Echo, скорее всего, станут активными потребителями Amazon, используя устройство для отслеживания списков желаний и поиска товаров, которые им впоследствии предлагается купить. Между тем, Nest использует данные термостата в качестве платформы для предложения услуг по управлению энергопотреблением коммунальным компаниям в Соединенных Штатах, при этом компании платят за значимую и действенную информацию о клиентах по подписке.

Автомобильная промышленность

По данным IC Insights, в период с 2016 по 2021 год продажи микросхем для автомобильных систем и Интернета вещей будут расти на 70% быстрее, чем общие доходы от IC.В частности, продажи интегральных схем для автомобилей и других транспортных средств, по прогнозам, вырастут с 22,9 млрд долларов в 2016 году до 42,9 млрд долларов в 2021 году, а доходы от функциональности Интернета вещей увеличатся с 18,4 млрд долларов в 2016 году до 34,2 млрд долларов в 2021 году.

Прогнозируемый рост продаж автомобильных микросхем неудивителен, поскольку современные автомобили по сути представляют собой сеть сетей, оснащенных рядом встроенных методов и возможностей связи. Однако это означает, что автомобили теперь более уязвимы для кибератак, чем когда-либо прежде.

Потенциальные уязвимости системы безопасности включают незащищенную связь между транспортными средствами, несанкционированный сбор информации о водителе или пассажирах, захват контроля над критически важными системами, такими как тормоза или акселераторы, перехват данных транспортного средства, вмешательство в работу сторонних ключей и изменение избыточного кода. обновления прошивки по воздуху (OTA). Что касается последнего, производители автомобилей сейчас сосредоточены на предоставлении безопасных OTA-обновлений для различных систем, при этом глобальный рынок автомобильных OTA-обновлений, по прогнозам, будет расти со среднегодовым темпом роста 18.2% с 2017 по 2022 год и достигнет 3,89 миллиарда долларов к 2022 году.

Производители автомобилей также работают над тем, чтобы в цепочке поставок транспортных средств не было украденных и контрафактных компонентов. Тем не менее, широкий спектр устройств с серого рынка все еще можно найти для питания дорогостоящих модулей, таких как бортовые информационно-развлекательные системы и фары, а также в критически важных системах безопасности, включая модули подушек безопасности, тормозные модули и органы управления трансмиссией. Таким образом, защита периферийных устройств и компонентов транспортных средств от несанкционированного доступа путем внедрения ряда многоуровневых аппаратных и программных решений безопасности стала приоритетной задачей для ряда производителей автомобилей.

Помимо внедрения многоуровневых решений безопасности, полупроводниковая промышленность явно выиграет от внедрения подхода IoT «как услуга» в автомобильном секторе. Например, компании могут развернуть сенсорные автомобильные системы, которые заблаговременно обнаруживают потенциальные проблемы и неисправности. Это решение, которое в наиболее оптимальной конфигурации сочетает в себе микросхемы и услуги, может быть продано как аппаратный и программный продукт или развернуто как услуга с ежемесячной или ежегодной абонентской платой.

Медицина и здравоохранение

Имплантированные медицинские устройства с длительным сроком службы, несомненно, потребуют от полупроводниковой промышленности высокой степени готовности к будущему, чтобы избежать частых физических обновлений и технического обслуживания. Срихари Яманур, специалист по дизайну в области исследований и разработок в Stellartech Research Corp., отмечает, что медицинские устройства в конечном итоге будут адаптированы для удовлетворения потребностей отдельных пациентов, что приведет к расширению применения точной медицины.

Кроме того, ожидается, что отрасль медицинского страхования будет использовать машинное обучение для оптимизации и снижения стоимости медицинского обслуживания, в то время как цифровые медицинские устройства также будут использоваться страховой отраслью для выявления пациентов из группы риска и оказания помощи.Поэтому медицинские устройства, особенно имплантируемые модели, должны быть спроектированы таким образом, чтобы поддерживать «модель перехода от кремния к услугам» через конфигурацию функций на месте и безопасные обновления OTA, а также услуги на основе PaaS, включая сбор и анализ соответствующих данных; проактивное обслуживание, продвинутые алгоритмы; и интуитивно понятный интерфейс как для пациентов, так и для врачей.

Аппаратное обеспечение с открытым исходным кодом и дезагрегированные чиплеты

Наряду с услугами, оборудование с открытым исходным кодом, предлагаемое такими организациями и компаниями, как RISC-V и SiFive, начало положительно влиять на индустрию полупроводников, поощряя инновации, сокращая затраты на разработку и ускоряя вывод продукта на рынок.

Успех программного обеспечения с открытым исходным кодом — в отличие от закрытого, огороженного сада — продолжает создавать важный прецедент для полупроводниковой промышленности. Столкнувшись с непомерно высокими затратами на разработку, ряд компаний предпочитают избегать ненужных сборщиков дорожных сборов, уделяя больше внимания архитектуре с открытым исходным кодом, поскольку они работают над созданием новых потоков доходов, ориентированных на услуги.

Помимо аппаратного обеспечения с открытым исходным кодом, концепция построения кремния из предварительно проверенных чиплетов начинает набирать обороты, поскольку полупроводниковая промышленность движется к снижению затрат и сокращению времени вывода на рынок гетерогенных конструкций.По словам Энн Стефора Мутчлер из Semiconductor Engineering, концепция чиплета некоторое время находилась в стадии разработки, хотя исторически она воспринималась как потенциальное направление будущего, а не реальное решение в тени убывающего закона Мура. Это восприятие начинает меняться по мере увеличения сложности конструкции, особенно в усовершенствованных узлах (10/7 нм), а также по мере объединения новых рынков, требующих частично настраиваемых решений.

Концепция предварительно проверенных чиплетов вызвала интерес U.Агентство перспективных исследовательских проектов S. Defense (DARPA), которое недавно развернуло свою программу общей гетерогенной интеграции и стратегий повторного использования IP (CHIPS). В сотрудничестве с полупроводниковой промышленностью успешная реализация CHIPS позволила бы увидеть ряд IP-блоков, подсистем и микросхем, объединенных на переходнике в корпусе, подобном 2.5D.

Инициатива CHIPS заняла центральное место в августе 2017 года, когда участники из военного, коммерческого и академического секторов собрались в штаб-квартире DARPA на официальном стартовом совещании по программе Агентства по стратегии общей гетерогенной интеграции и повторного использования интеллектуальной собственности (ИС).

Как сообщил на конференции д-р Дэниел Грин из DARPA, программа направлена ​​на разработку новой технологической структуры, в которой различные функции и блоки интеллектуальной собственности, в том числе хранение данных, вычисления, обработка сигналов, а также управление формой и потоком данных — можно разделить на небольшие чиплеты. Затем их можно смешивать, сопоставлять и комбинировать на промежуточном элементе, что-то вроде соединения частей головоломки. Фактически, говорит Грин, вся обычная печатная плата с множеством различных, но полноразмерных микросхем может в конечном итоге быть уменьшена до гораздо меньшего промежуточного устройства, на котором размещается кучка, но гораздо меньших микросхем.

Согласно DARPA, конкретные технологии, которые могут возникнуть в результате инициативы CHIPS, включают компактную замену целых печатных плат, сверхширокополосные радиочастотные (РЧ) системы и системы быстрого обучения для извлечения интересной и действенной информации из гораздо больших объемов обычных данных. .

Возможно, неудивительно, что полупроводниковая промышленность уже рассматривает дезагрегированный подход в виде микросхем SerDes и специализированных маломощных интерфейсов «кристалл-кристалл» для конкретных приложений.Безусловно, жизнеспособное разделение кремниевых компонентов может быть достигнуто путем перемещения высокоскоростных интерфейсов, таких как SerDes, на отдельные кристаллы в виде микросхем SerDes, смещения IP аналогового датчика на отдельные аналоговые микросхемы и реализации перехода кристалла с очень низким энергопотреблением и малой задержкой. die интерфейсы через MCM или через переходник с использованием технологии 2.5D.

Помимо использования заведомо исправной матрицы для SerDes в более зрелых узлах (N-1) или наоборот, ожидается, что дезагрегация упростит создание нескольких SKU при оптимизации затрат и снижении риска.Точнее, дезагрегирование приведет к разбивке SoC на более высокопроизводительные и меньшие матрицы и позволит компаниям создавать определенные конструкции с несколькими вариантами. Действительно, интерфейсы «от кристалла к кристаллу» могут более легко адаптироваться к различным приложениям, связанным с памятью, логикой и аналоговыми технологиями. Кроме того, для интерфейсов «от кристалла к кристаллу» не требуется согласованной скорости линии / передачи и количества дорожек, в то время как FEC может потребоваться или не потребоваться в зависимости от требований к задержке.

Следует отметить, что несколько компаний активно занимаются агрегацией SoC / ASIC для коммутаторов и других систем.Точно так же полупроводниковая промышленность разрабатывает ASIC с интерфейсами «кристалл-кристалл» на ведущих узлах FinFET, в то время как по крайней мере один серверный чип следующего поколения разрабатывается с дезагрегированным вводом-выводом на отдельном кристалле.

Заключение

За последние пять лет полупроводниковая промышленность столкнулась с множеством сложных проблем. К ним относятся увеличение затрат на разработку, размытие ASP, насыщение рынка и повышенная, но неустойчивая деятельность по слияниям и поглощениям. В течение 2018 года полупроводниковая промышленность продолжает стремиться к возвращению к стабильности и органическому росту в рамках параметров новой бизнес-парадигмы, одновременно жизнеспособной и основанной на сотрудничестве.В этом контексте компании, производящие полупроводники, осознают потенциал новых рынков и возможности получения дохода в дальнейшем, поскольку они исследуют более комплексную модель «кремний для обслуживания», которая охватывает центр обработки данных и мобильную периферию.

Сюда входят решения для сквозной безопасности IoT и услуги на основе PaaS, такие как конфигурация функций на месте, расширенная аналитика, предупреждения о профилактическом обслуживании, алгоритмы самообучения и интеллектуальное упреждающее взаимодействие с клиентами. Помимо услуг, концепция аппаратного обеспечения с открытым исходным кодом и построения микросхем из разукрупненных, предварительно проверенных чиплетов начинает набирать обороты, поскольку компании переходят к сокращению затрат и сокращению времени вывода на рынок гетерогенных конструкций.

Конкретные стратегии раскрытия всего потенциала полупроводников, несомненно, будут различаться, поэтому для нас важно исследовать будущее, в котором отрасль, наряду с различными исследовательскими организациями и государственными учреждениями, будет играть открытую и совместную роль в содействии устойчивой монетизации и кремний, и сервисы.

Для получения дополнительной информации по этой теме посетите сайт Rambus.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *