Схемы NE555. Разнообразие простых схем на NE555
Микросхема NE555 представляет собой аналоговую интегральную схему, являющуюся универсальным таймером, то есть устройством, предназначенным для формирования (генерирования) одиночных или повторяющихся импульсов со стабильными характеристиками во времени. Микросхема NE555 широко применима в технологиях построения реле времени, генераторов, модуляторов, пороговых устройств и других функциональных узлов электронной техники. На основании данной микросхемы были построены устройства широтно-импульсного регулирования, приборы восстановления искаженного цифрового сигнала, импульсные преобразователи напряжения и др.
Микросхема впервые была выпущена в 1971 году компанией Signetics. Сдвоенная версия NE555 производится с обозначением 556, а счетверенная — 558.
Топология микросхемы NE555 состоит из 2 диодов, 23 транзисторов и 16 резисторов. Выходной ток микросхемы равен 200 мА , в то время как ток ее потребления всего на 3 мА больше.
Блок-схема микросхемы NE555
Назначение выводов микросхемы NE555
№ вывода | Обозначение | Альтер- | Назначение | Описание |
Общий провод, минус питания | ||||
В том случае, если напряжение на этом выходе достигает уровня ниже 1/2 от CTRL, на выходе микросхемы (вывод 3) появляется напряжение высокого уровня и начинается отсчёт времени. | ||||
Q или без | На этом выводе формируется одно из двух напряжений, примерно соответствующих низкому уровню — 0.25В и высокому уровню V CC — 1,7В, в зависимости от состояния таймера. Время переключения с одного уровня на другой происходит примерно за 100 нс. | |||
Сброс (разрешение запуска) | При подаче на этот вход напряжения менее 0,7 В выход микросхемы принудительно переходит в состояние низкого уровня (переключается на GND). Это происходит независимо от состояния других входов, то есть данный вход имеет наивысший приоритет. Другими словами, высокий уровень напряжения на данном входе (более 0,7 В) разрешает запуск таймера, в противном случае запуск запрещён. | |||
Управление (контроль делителя) | Подключен напрямую к внутреннему делителю напряжения. При отсутствии внешнего сигнала имеет напряжение 2/3 от V CC. Определяет пороги останова и запуска. | |||
Когда напряжение на этом выводе превышает напряжение на выводе CTRL, на выходе устанавливается напряжение низкого уровня, интервал заканчивается. Останов возможен, если на вход TRIG не поступает сигнал запуска, так как вход TRIG имеет приоритет над THR (исключение — микросхема КР1006ВИ1). | ||||
? или ¤ | Выход типа «открытый коллектор», обычно используется для разрядки времязадающего конденсатора между интервалами. Состояния этого выхода повторяют состояния основного выхода OUT, поэтому возможно их параллельное соединение для увеличения нагрузочной способности таймера по втекающему току. | |||
Плюс питания. |
Режимы работы микросхемы NE555
Моностабильный генератор
Входной сигнал низкого уровня на входе INPUT (вывод 2) производит переключение таймера микросхемы в режим отсчёта времени, при этом на выходе микросхемы (OUTPUT – вывод 3) наблюдается высокий уровень сигнала. Данное положение таймера длится заданный промежуток времени, который равен t=1,1*R*C
. Далее таймер возвращается в стабильное состояние, определяющее низкий уровень сигнала на выходе микросхемы (OUTPUT – вывод 3).
Астабильный генератор
Напряжение на выходе микросхемы (OUTPUT – вывод 3) периодически изменяется. Таким образом, на выходе микросхемы наблюдается сигнал в виде меандра, который может быть описан следующими уравнениями:
Длительность низкого уровня: t2=ln2*R2*C2 = 0,693*R2*C2
Период: T=ln2*(R1+2*R2)*C = 0,693*(R1+2*R2)*C
Частота: f=1/(ln2*(R1+2*R2)*C)
Эта статья посвящена микросхеме, сохраняющей популярность уже более 30 лет и имеющей множество клонов. Встречайте — таймер NE555 (он же — LM555, LC555, SE555, HA555, а также
множество других, есть даже советский аналог — КР1006ВИ1). Такую популярность этой микросхеме обеспечили простота, дешивизна, широкий диапазон напряжений питания (4,5-18В), высокая точность и стабильность (температурный дрейф 0,005% / o С, дрейф от напряжения питания — менее 0,1% / Вольт), ну и конечно же, самое главное, — широчайшие возможности применения.
Но, обо всём по порядку. Начнём мы с того, как эта микросхема устроена.
Итак, функциональная схема таймера показана на рисунке 1.
Ноги :
1. GND — земля/общий провод.
2. Trigger — инвертирующий вход компаратора, ответственного за установку триггера. Когда напряжение на этой ноге становится меньше 1/3 Vcc (то есть меньше, чем напряжение на неинвертирующем входе компаратора) — на вход SET триггера поступает логическая 1. Если при этом отсутствуют сигналы сброса на входах Reset, то триггер установится (на его выходе появится логический 0, так как выход инвертированный).
3. Output — выход таймера. На этом выводе присутствует инвертированный сигнал с выхода триггера, то есть когда триггер взведён (на его выходе ноль) — на выводе Output высокий уровень, когда триггер сброшен — на этом выводе низкий уровень.
4. Reset — сброс. Если этот вход подтянуть к низкому уровню, триггер сбрасывается (на его выходе устанавливается 1, а на выходе таймера низкий уровень).
5. Control — контроль/управление. Этот вывод позволяет изменять порог срабатывания компаратора, управляющего сбросом триггера. Если вывод 5 не задействован, то этот порог определяется внутренним делителем напряжения на резисторах и равен 2/3 Vcc. Вывод Control можно использовать, например, для организации обратной связи по току или напряжению (об этом я позднее расскажу).
6. Threshold — порог. Когда напряжение на этом выводе становится выше порогового (которое при незадействованном выводе 5, как вы помните, равно 2/3 Vcc) — происходит сброс триггера и на выходе таймера устанавливается низкий уровень.
7. Discharge — разряд. На этом выходе 555-й таймер имеет транзистор с открытым коллектором. Когда триггер сброшен — этот транзистор открыт и на выходе 7 присутствует низкий уровень, когда триггер установлен — транзистор закрыт и вывод 7 находится в Z-состоянии. (Почему эта нога называется «разряд» вы скоро поймёте.)
8. Vcc — напряжение питания.
Далее, давайте рассмотрим, в чём же основная идея использования этого таймера. Для этого добавим к нашей схеме пару элементов внешней обвязки (смотрим рисунок 2). 4-ю и 5-ю ноги мы пока не будем использовать, поэтому будем считать, что 4-я нога у нас гвоздём прибита к напряжению питания, а 5-я просто болтается в воздухе (с ней и так ничего не будет).
Итак, пусть изначально у нас на второй ноге присутствует высокий уровень. После включения наш триггер сброшен, на выходе триггера высокий уровень, на выходе таймера низкий уровень, на 7-й ноге тоже низкий уровень (транзистор внутри микрухи открыт).
Чтобы произошло переключение триггера — необходимо подать на вторую ногу уровень ниже 1/3 Vcc (тогда переключится компаратор и сформирует высокий уровень на входе Set нашего триггера). Пока уровень на 2-й ноге остаётся выше 1/3 Vcc — наш таймер находится в стабильном состоянии и никаких переключений не происходит.
Ну что ж, — давайте кратковременно подадим на 2-ю ногу низкий уровень (на землю её коротнём, да и всё) и посмотрим что будет происходить.
Как только уровень на 2-й ноге упадёт ниже 1/3 Vcc — у нас сработает компаратор, подключенный к устанавливающему входу триггера (S), что, соответственно, вызовет установку триггера.
На выходе триггера появится ноль (поскольку выход триггера инвертирован), при этом на выходе таймера (3-я нога) установится высокий уровень. Кроме этого транзистор на 7-й ноге закроется и 7-я нога перейдёт в Z-состояние.
При этом через резистор Rt начнёт заряжаться конденсатор Ct (поскольку он больше не замкнут на землю через 7-ю ногу микрухи).
Как только уровень на 6-й ноге поднимется выше 2/3 Vcc — сработает компаратор, подключенный ко входу R2 нашего триггера, что приведёт к сбросу триггера и возврату схемы в первоначальное состояние.
Вот мы и рассмотрели работу схемы, называемой одновибратором или моностабильным мультивибратором, короче говоря, устройства, формирующего единичный импульс.
Как нам теперь узнать длительность этого импульса? Очень просто, — для этого достаточно посчитать, за какое время конденсатор Ct зарядится от 0 до 2/3 Vcc через резистор Rt от постоянного напряжения Vcc.
Сначала решим эту задачку в общем виде. Пусть у нас конденсатор заряжается через резистор R напряжением Vп от начального уровня U 0 .
Тебе не нужен контроллер, говорили они. Делай все на таймерах NE555, говорили они. Ну я и сделал — похоже, только чтобы убедиться, что получается конструкция, потрясающая по своему сокрушительному воздействию на мою неокрепшую психику.
Обзор, если этот текст можно так назвать, будет не слишком длинным. Поскольку в нем лишь констатация моего полного и безоговорочного провала в сборке элементарных схем и демонстрация того, что по крайней мере шесть из двадцати чипов вполне себе работоспособны.
Еще обратите внимание: похоже, магазин недавно изменил правила, поскольку теперь у них минимальный заказ с бесплатной доставкой — от $6, а если меньше, то за доставку возьмут $1,5. Когда я покупал, то списали только стоимость покупки, то есть $0,59, и все.
В двух блистерах ровно двадцать штук. С одной стороны каждый блистер замотан скотчем, с другой закрыт резиновой пробкой:
Вообще, изначально таймеры я покупал, чтобы сделать простенький генератор для поиска короткого замыкания в проводке — знакомые заинтересовались. Суть прибора, если я правильно понял, в том, что цепь до КЗ представляет собой антенну, сигнал от которой можно послушать с обычным СВ/ДВ приемником.
Где писк прекратился — примерно там и замыкание. Вот так это выглядит на практике у товарища, по стопам которого я и планировал идти:
Но потом знакомые с потребностью решили, что им все не так уж и нужно. Или еще что-то решили, а я настаивать не стал. И огорчаться тоже: вы же видели, сколько стоят таймеры (чуть больше половины доллара за 20 штук) — какое огорчение?
Обычные DIP8:
Поэтому решил поразвлекаться другим способом и посмотрел, что вообще делают из NE555. А делают, как выяснилось, массу всего. Всяческие сигнализации, индикаторы напряжения, указатели пропущенных импульсов. В общем, я впечатлился.
Ну а так как все описывают примерно одно и то же, то вот вам пара ссылок РадиоКота: и . Схемы — во второй.
Предполагается, что популярность NE555 объясняется тем, что это проверенная годами (точнее — уже 45 годами) конструкция, которая обескураживающе просто конфигурируется и довольно точно соблюдает характеристики вне зависимости от питающего напряжения, которое может быть в диапазоне от 4,5В до 16В у обычной версии (но есть варианты). То есть, напряжение гуляет, а частота — скорее стабильна, чем нет.
Фактически, чтобы таймер заработал, нужна пара деталей и любой подходящий источник питания — очень привлекательно, чтобы сделать какую-нибудь фиговину без особых хлопот.
Как по мне, так с микроконтроллером хлопот еще меньше, но в комментариях к рассказу про «Пищаль» я получил и потерял покой. Понял, что должен попробовать хотя бы для того, чтобы успокоиться.
Итак, идея была проста — таймер кормления котов. Которые, потеряв всякий стыд, стали требовать еду чуть ли не каждые полчаса, а съедая по три сухаря, довольные расходились. По мнению ветеринара это не очень полезно (а по нашему — еще и чрезвычайно хлопотно), поэтому необходимо было вернуть им режим питания на место. Ну как на место: кормить хотя бы не чаще, чем раз в пять-шесть часов.
Следить по часам, конечно, не сложно. Однако, во-первых, ситуацию осложняет тот факт, что если днем кормление по часам еще более-менее проходит, то ночью — уже не совсем, поскольку у одного кота, скажем так, сложный характер. Именно — он идет и скребет когтями по батарее, и даже если бы я решил не обращать внимания на данный сомнительного качества музыкальный эксперимент, соседей жалко.
То есть, ночью надо вставать и снова засекать время, а в полубессознательном состоянии это немного затруднительно.
Во-вторых, не все коты такие скандальные, поэтому некоторые просто не приходят вместе с тем вот возмутителем спокойствия. И получается, что интервалы у всех разные, а по справедливости неплохо было бы покормить через установленное время и тех, кто пропустил внеочередной прием пищи.
Поэтому я придумал сделать кучку независимых таймеров на фиксированное время — по одному на кота. И чтобы вот так: пришел кот, выдаешь ему еду, нажимаешь на кнопку, загорелась лампочка. Как лампочка погасла, кота снова можно покормить.
Как несложно догадаться, это один из основных вариантов работы таймера. Называть его можно по-разному: можно калькой из — моностабильный, можно — одновибратором, можно — ждущим мультивибратором.
Суть от этого не меняется: от NE555 требуется, по сути, выдать только один импульс требуемой продолжительности.
Поэтому за основу я взял схему таймера из :
Но немного упростил ее, избавившись от подстроечного резистора (поскольку у меня фиксированный интервал) и второго светодиода — за ненадобностью. Заодно поменял номиналы времязадающей цепочки, сверившись все с той же документацией, которая сообщает, что для расчета примерной длительности импульса следует воспользоваться формулой y t = 1.1RC.
Поиграв с шрифтами номиналами деталек, имеющихся в бутике Чип-и-Дип установил, что для устраивающего всех пятичасового интервала вполне подойдут конденсатор емкостью 3300 мкФ и резистор 5,1 МОм:
T = 1,1*0,0033*5100000 = 18513 сек = 5,14 час.
Реальность, однако оказалась немного не совпадающей с теорией. Собранный по этой схеме и с этими номиналами таймер и после пяти часов продолжал работать. Терпения дождаться окончания его работы у меня не хватило, поэтому я предположил, что NE555 не очень хорошо работает с большими номиналами.
Беглое гугление показало, что таки да — это возможно, однако проблем не должно было быть (теоретически) при сопротивлении вплоть до 20 МОм при напряжении питания 15 В. Поэтому я продолжил эксперименты и выяснил, что в моем случае формула получается примерно такая:
И оказался очень себе признателен, что купил не только 5,1 МОм, но и на всякий случай ближайшие номиналы — 4,7 МОм и 3,9 МОм. Последний по счастью как раз и подошел для необходимого интервала.
С этими номиналами (3300 мкФ и 3,9 МОм) я и собрал блок таймеров с лампочками и кнопочками. Все соединил общей линией питания, больше у них точек соприкосновения нет (ну, по крайней мере, старался, чтобы не было). А так как собирал внавес, то на каждом шаге проверял себя мультиметром и был почти спокоен, когда запускал первый из таймеров.
Получилось вот так (я предупреждал в самом начале):
Включился он как и положено, поэтому я распаял оставшиеся кнопочки и лампочки, включил. Понажимал на кнопочки. Светодиоды включились точно так, как и должны были: нажимаешь кнопку — включился, и так все.
И тут я совершил большую ошибку. Не сделал еще несколько тестовых запусков, а просто огорчился, что не очень хорошо припаял провода к кнопкам, и решил их перепаять. Поэтому я пока не знаю, что именно случилось: то ли изначально сделал что-то не так, то ли что-то успел испортить в момент перепайки проводов.
Но вышло смешно. При повторном включении (с перепаянными проводами) сразу же загорелись три светодиода. А нажатие на кнопки выявило полный хаос: нажимаешь на одну кнопку — загорается ее светодиод (т.е., по идее, включается таймер), нажимаешь другую — первый светодиод гаснет, загорается второй. И так далее.
Опытным путем выяснил, что существует некоторая комбинация нажатий кнопок, при которой зажигаются все светодиоды. Но пока руки не доходят проверить схему на предмет коротких замыканий там, где их не должно быть.
Бонус-трек — играем в сапера:
Подводя итог хочу сказать, что с таймерами развлекся. На практике проверил, что покупать их в Китае можно — приходят рабочие.
И хотя кототаймер сделать не смог, бонусом получил головоломку «Зажги все лампочки». И заодно понимание того, что NE555 — явно не для меня. И вот почему:
Минимальное напряжение питания 4,5В
— большой потребляемый ток
Разумеется, эти недостатки можно побороть заказом CMOS-версии чипа, которая гораздо более экономична и работает, начиная с 1,5В. Но обычные стоят $0,59 за двадцать штук, а CMOS — уже около $10. То есть примерно вдвое дороже контроллера, а если применять в конструкции два и более таймеров, то выгода вообще пропадает.
Так что всем спасибо, я возвращаюсь к ATmega328p, на котором, очевидно, и буду делать таймер кормления.
Ps. А теперь можно я тоже напишу про экранчик от ITEAD Studio? Меня, между прочим, совесть мучает, поскольку, с одной стороны, здесь уже этих экранов было выше крыши, а с другой — надо же выполнять обещание.
Планирую купить +19 Добавить в избранное Обзор понравился +38 +67Сразу стоит отметить при описании микросхемы NE 555, что она выпускается как в стандартной ТТЛ логике, так и КМОП, поэтому она может работать в широком диапазоне напряжений и использована во многих типах устройств в качестве генератора тактовых импульсов или универсального таймера. Микросхема может генерировать как одиночные, так повторяющиеся импульсы, что зависит от принципиальной схемы включения и выбора конкретного режима работы.
Разрабатывался первый вариант ИС еще в 1971 году знаменитой на то время компанией Signetics. По своим характеристикам и функциональным возможностям она является широко востребованной, свидетельством чего является ее активное применение в устройствах управления скоростью вращения двигателей и тиристорных регуляторах мощности.
Также, ее можно использовать для конструирования унифицированного генератора импульсов с регулируемой выходной частотой последовательностью импульсов. Для подробного описания характеристик микросхемы смотрите на ne 555 datasheet. В нем указаны не только основные характеристики, но также представлены диаграммы работы. А в этом описании ne 555 предоставим общую информацию, достаточную для разработки электронных устройств своими руками.
Предыстория создания ИС
В 70 гг. компания Signetics попала под влияние кризиса и вынуждена была сократить численность своего персонала как минимум на 50%, в число которых попал и разработчик представленной схемы. Поэтому она была создана буквально на коленках в гаражных условиях, а за основу была взята им же разработанная NE 566. Платформа будущей ИС уже состояла из основных, необходимых для работы функциональных блоков:
Существуют на ne 555 схемы включения разного типа для работы микросхемы достаточно было наличие внешней RC-цепи, которая являлась времязадающей. И внутренний делитель напряжения , пропорционально которому формировалась амплитуда выходного сигнала. После некоторого времени и внесения небольших доработок, в частности, замена встроенного генератора стабильного тока для зарядки внутреннего конденсатора на резистор, она поступила в серию.
Что касается структуры таймера, то в ней содержалось:
- 23 транзистора;
- 16 резисторов;
- 2 диода.
Аналоги микросхемы
Универсальный таймер вскоре обзавелся функциональными аналогами, которыми стали советские микросхемы из серии КР:
- 1006ВИ1;
- 1008ВИ1;
- 1087ВИ2;
- 1087ВИ3.
Также, микросхема ne555 аналог имеет, например, КР10006ВИ1, то стоит учесть тот факт, что вход сброса R по отношению к установке имеет приоритет. Этот момент почему-то упущен в техническом описании МС, что является немаловажным фактом при построении электронных схем. В других микросхемах выводы имеют приоритет вплоть до наоборот S над R.
Все выше представленные аналоги таймеров построены на стандартной ТТЛ-логике. Если захотите спроектировать устройства на ne555 с более экономичными показателями, то лучше применить МС из серии КМОП. Таковыми являются устройства:
- ICM 7555 IPA ;
- GLC 555;
- КР1441ВИ1.
Характеристики микросхемы
Функциональная схема представленной микросхемы достаточно проста и состоит из следующих блоков:
- делителя напряжения, который сравнивает сигнал на входе с двумя опорными уровнями;
- 2 высокоточных компараторов на высокий и на низкий уровень сигналов;
- триггера со встроенными RS -входами и дополнительным сбросом, выходной транзистор средней мощности биполярный или полевой в зависимости от технологии.
Также, аппаратно в конструкции микросхемы предусмотрен усилитель мощности, повышающий нагрузочную способность устройства и ее качество работы.
Микросхема является универсальной, как ни посмотри, со всех сторон. Например, базовая версия NE 555 рассчитана на напряжение питания в пределах от 4,5 до 16,5 В, что весьма упрощает процесс конструирования многих схем, так как отпадает необходимость придерживаться конкретной величины питания.
Но если необходимо запитать генератор импульсов от пониженного уровня порядка 2–3 В, то лучше использовать схемы на КМОП-логике. Они не только могут свободно функционировать на низком напряжении, но и обладают повышенными показателями устойчивости к помехам и нестабильности питания.
Также, выпускаются модификации устройств с повышенным порогом питающего напряжения, который может достигать 18 В. Эти МС могут применяться в импульсных устройствах и генераторах.
Согласно информации, которую предоставляет западный на ne555 datasheet потребляемый ток устройством зависит от величины входного импульса. Если она лежит на номинальном уровне порядка 5 В, то величина тока составляет не более 6 мА. Но если напряжение вырастет до 15В, то ток также растет до 15мА. Обычно устройства разрабатывают своими руками на средний показатель тока, который оставляет порядка 10 мА, что говорит о напряжении питания в пределах от 9 до 12 В. Но это характерно для ТТЛ-логики.
Микросхемы, сконструированные на основе КМОП-транзисторов, потребляют еще меньше – 100-200 мкА, что их делает еще более экономичными. Но максимальное значение потребляемого тока не превышает 100 мА. Если у вас она берет больше этого значения, это означает что устройство неисправно и требует замены.
Некоторые проблемы и особенности работы с микросхемой
8-пиновый корпус – идея хорошая, но из-за этого форм-фактора возникают некоторые трудности при работе с таймером. А именно, он лишен возможности независимого сравнения сигналов верхнего и нижнего порогов, что довольно часто требуется в устройствах преобразования, например, тех же АЦП. Чтобы реализовать такую возможность радиолюбители прибегают к использованию другой серии устройств, например, NE 521 или устанавливают на вход элементы 3И-НЕ, если это целесообразно.
В биполярных устройствах присутствует такой недостаток, как импульсный ток при включении и выключении, величина которого может достигать 400 мА, что может стать причиной пробоя выходного транзистора или других элементов схемы, в которую она была впаяна. Причиной такого явления является сквозной ток выходного каскада, возникающий из-за тех же высоких импульсов по питанию.
Чтобы устранить проблему, рекомендуется использовать специальный блокирующий конденсатор, подключаемый на входы 5 и общий (мину питания) емкостью порядка 0,01–0,1 мкФ. Благодаря заряду его обкладок внутренне напряжение в МС, поступающее на выходной каскад , сглаживается, что и исключает вероятность возникновения пробоя. Также он защитит внутренний делитель от помех извне, которые могут вызвать ложное срабатывание.
Также, как и в случае со многими другими микросхемами с ТТЛ-логикой, NE 555 рекомендуется шунтировать гасящим конденсатором с керамическим обкладками емкостью 1 мкФ.
Назначение и расположение выводов микросхемы
NE 555 в базовом исполнении имеет 8-выводной корпус DIP, но также выпускаются иные модификации, являющиеся аналогами. Поэтому ориентировать исключительно этого описания при построении устройств своими руками на ее основе не стоит. К каждой микросхеме необходимо просматривать свой даташит.
Схемное обозначение устройства отображается в виде надписи «G 1/ GN». В зарубежных справочниках эту надпись можно расшифровать как генератор одиночных и серий импульсов. Что касается расположения выводов и их назначения, то все однотипные МС являются стандартизированными и могут быть взаимозаменяемы без внесения каких-либо доработок.
В таблице ниже представлено расположение выводов в стандартном корпусе МС:
Режимы работы и применение микросхемы
Самой простой схемной реализацией, применяемой в различный цифровых устройствах, является одновибратор. На примере этой схемы можно также увидеть типовое включение с использованием гасящего и шунтирующего конденсаторов. Именно в таком исполнении наиболее чаще применяется эта микросхема. А работает она следующим образом:
По приходу сигнала с низким уровнем на вход МС под номером 2 начинает работать таймер в режиме счета времени. При этом на выходе устройства устанавливается высокий уровень на протяжении всей длительности временного промежутка . Это время можно устанавливать самостоятельно, подобрав необходимые внешние компоненты, которыми выступают резистор и конденсатор, подключаемые к плюсу питания и выводу под номером 6.
Определяется временная задержка по стандартной формуле с учетом корректирующей константы: t =1,1 RC. По окончании счета (разряда конденсатор) таймер возвращается в исходное состояние. А выходной сигнал изменяется на противоположный. Итак до следующего прихода входного импульса низкого уровня.
При этом, если на входе присутствует низкий уровень, то на выходе высокий. А при подаче импульса на вход сброса триггера таймер останавливает свой счет и уровень сигнала на выходе изменяется на противоположный.
Режим независимого генератора
Чтобы включить микросхему в режиме мультивибратора, имеется схема, показанная на рисунке ниже. Здесь так же все просто, как и в предыдущем варианте, но имеются некоторые особенности расчета элементом и характеристик последовательности выходного сигнала. Чтобы задать определенную частоту смены выходного сигнала и последующее переключение в противоположное устойчивое состояние, потребуется выводы 2 и 6 объединить и установить еще один резистор в делить, уменьшив ток заряда конденсатора, но при этом связав входной сигнал с входом установки триггера. А чтобы рассчитать параметры используемых элементом, необходимо будет воспользоваться следующими простыми формулами расчета:
Изменение скважности выходного импульса
Нередко требуется применение микросхемы 555 с возможностью установки скважности выходного сигнала. Например, сделать ее больше 2, то для этого потребуется образовать дополнительную цепь между 7 и 6 выводами , подключив к ним диод. При этом анодный вывод контактирует с выводом 7 МС. Такое включение дополнительного компонента шунтирует резистор R 2, обеспечивая цепь заряда конденсатора через R 1. Тогда при расчете длительности высокого уровня сигнала на выходе будет происходить по формуле без учета R 2.
В обратном цикле разрядный ток будет протекать через R 2, а R 1 уже не участвует в процессе. И определяется по формуле, которая указывалась выше без изменений.
Часть первая. Теоретическая.
Наверное нет такого радиолюбителя, который не использовал бы в своей практике эту замечательную микросхему. Ну а уж слышали о ней так точно все.
Её история началась в 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер» (The IC Time Machine ).
На тот момент это была единственная «таймерная» микросхема доступная массовому потребителю. Сразу после поступления в продажу микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.
За прошедшие 35 лет практически каждый уважающий себя производитель полупроводников считал свои долгом выпустить свою версию этой микросхемы, в том числе и по более современным техпроцессам. Например, компания Motorola выпускает CMOS версию MC1455. Но при всем при этом в функциональности и расположении выводов никаких различий у всех этих версий нет. Все они полные аналоги друг друга.
Наши отечественные производители тоже не остались в стороне и выпускают эту микросхему под названием КР1006ВИ1.
А вот список заморских производителей, которые выпускают таймер 555 и их коммерческие обозначения:
Производитель | Название микросхемы |
Texas Instruments |
В некоторых случаях указано два названия. Это означает, что выпускается две версии микросхемы — гражданская, для коммерческого применения и военная. Военная версия отличается большей точностью, широким диапазоном рабочих температур и выпускается в металлическом или керамическом корпусе. Ну и дороже, разумеется.
Начнем с корпуса и выводов.
Микросхема выпускается в двух типах корпусов — пластиковом DIP и круглом металлическом. Правда, в металлическом корпусе она все же выпускалась — сейчас остались только DIP-корпуса. Но на случай, если вам вдруг достанется такое счастье, привожу оба рисунка корпуса. Назначения выводов одинаковые в обоих корпусах. Помимо стандартных, выпускается еще две разновидности микросхем — 556 и 558. 556 — это сдвоенная версия таймера, 558 — счетверенная.
Функциональная схема таймера показана на рисунке прямо над этим предложением.
Микросхема содержит около 20 транзисторов, 15 резисторов, 2 диода. Состав и количество компонентов могут несущественно меняться в зависимости от производителя. Выходной ток может достигать 200 мА, потребляемый — на 3- 6 мА больше. Напряжение питания может изменяться от 4,5 до 18 вольт. При этом точность таймера практически не зависит от изменения напряжения питания и составляет 1% от расчетного. Дрейф составляет 0,1%/вольт, а температурный дрейф — 0,005%/С.
Теперь мы посмотрим на принципиальную схему таймера и перемоем ему кости, вернее ноги — какой вывод для чего нужен и что все это значит.
Итак, выводы:
1. Земля. Особо комментировать тут нечего — вывод, который подключается к минусу питания и к общему проводу схемы.
2. Запуск. Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, см. функциональную схему) и конденсатором С — это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.
3. Выход. Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий — высокий уровень происходит приблизительно за 100 нс.
4. Сброс. При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и в Африке reset. Входное напряжение не зависит от величины напряжения питания — это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод настоятельно рекомендуется подключить к плюсу питания, пока в нем нет необходимости.
5. Контроль. Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.
6. Останов. Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние (Мяу! Тихой паники?! ) низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.
7. Разряд. Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.
8. Плюс питания. Как и в случае с выводом 1 особо ничего не скажешь. Напряжение питания таймера может находиться в пределах 4,5-16 вольт. У военных версий микросхемы верхний диапазон находится на уровне 18 вольт.
Итак, предположим, что мы подали питание на микросхему. Вход находится в состоянии высокого уровня, на выходе — низкий уровень, конденсатор С разряжен. Все спокойно, все спят. И тут БАХ — мы подаем серию прямоугольных импульсов на вход таймера. Что происходит?
Первый же импульс низкого уровня переключает выход таймера в состояние высокого уровня. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резистор R. Все то время пока конденсатор заряжается, выход таймера остается во включенном состоянии — на нем сохраняется высокий уровень напряжения. Как только конденсатор зарядится до 2/3 напряжения питания, выход микросхемы выключается и на нем появляется низкий уровень. Транзистор T6 открывается и конденсатор С разряжается.
Однако есть два нюанса, которые показаны на графике пунктирными линиями.
Первый — если после окончания заряда конденсатора на входе сохраняется низкий уровень напряжения — в таком случае выход остается активным — на нем сохраняется высокий уровень до тех пор, пока на входе не появится высокий уровень. Второй — если мы активируем вход Сброс напряжением низкого уровня. В этом случае выход сразу же выключится, не смотря на то, что конденсатор все еще заряжается.
Так, лирическую часть закончили — перейдем к суровым цифрам и расчетам. Как же нам определить время, на которое будет включаться таймер и номиналы RC цепочки, необходимые для задания этого времени? Время, за которое конденсатор заряжается до 63,2% (2/3) напряжения питания называется временной константой, обозначим её буковкой t. Вычисляется это время потрясающей по своей сложности формулой. Вот она: t = R*C , где R — сопротивление резистора в МегаОм-ах, С — емкость конденсатора в микроФарад-ах. Время получается в секундах.
К формуле мы еще вернемся, когда будем подробно рассматривать режимы работы таймера. А сейчас пока посмотрим на простенький тестер для этой микросхемы, который запросто скажет вам — работает ваш экземпляр таймера или нет.
Если после включения питания мигают оба светодиода — значит все хорошо и микросхема во вполне рабочем состоянии. Если же хотя бы один из диодов не горит или наоборот — горит постоянно, значит такую микросхемы можно спустить в унитаз с чистой совестью или вернуть назад продавцу, если вы её только что купили. Напряжение питания — 9 вольт. Например, от батареи «Крона».
Теперь рассмотрим режимы работы этой микросхемы.
Собственно говоря, режимов у нее две штуки. Первый — моностабильный мультивибратор . Моностабильный — потому что стабильное состояние у такого мультивибратора одно — выключен. А во включенное состояние мы его переводим временно, подав на вход таймера какой-либо сигнал. Как уже отмечалось выше, время, на которое мультивибратор переходит в активное состояние, определяется RC цепочкой. Эти свойства могут быть использованы в самых разнообразных схемах. Для запуска чего-либо на определенное время или наоборот — для формирования паузы на заданное время.
Второй режим — это генератор импульсов. Микросхема может выдавать последовательность прямоугольных импульсов, параметры которых определяются все той же RC цепочкой.
Начнем сначала, то есть с первого режима.
Схема включения микросхемы показана на рисунке. RC цепочка включена между плюсом и минусом питания. К соединению резистора и конденсатора подключен вывод 6 — Останов. Это вход компаратора №1. Сюда же подключен вывод 7 — Разряд. Входной импульс подается на вывод 2 — Запуск. Это вход компаратора №2. Совершенно простецкая схема — один резистор и один конденсатор — куда уж проще? Для повышения помехоустойчивости можно подключить вывод 5 на общий провод через конденсатор емкостью 10нФ.
Итак, в исходном состоянии, на выходе таймера низкий уровень — около нуля вольт, конденсатор разряжен и заряжаться не хочет, поскольку открыт транзистор Т6. Это состояние стабильное, оно может продолжаться неопределенно долгое время. При поступлении на вход импульса низкого уровня, срабатывает компаратор №2 и переключает внутренний триггер таймера. В результате на выходе устанавливается высокий уровень напряжения. Транзистор Т6 закрывается и начинает заряжаться конденсатор С через резистор R. Все то время, пока он заряжается, на выходе таймера сохраняется высокий уровень. Таймер не реагирует ни на какие внешние раздражители, буде они поступают на вывод 2. То есть, после срабатывания таймера от первого импульса дальнейшие импульсы не оказывают никакого действия на состояние таймера — это очень важно. Так, что там у нас происходит то? А, да — заряжается конденсатор. Когда он зарядится до напряжения 2/3Vпит, сработает компаратор №1 и в свою очередь переключит внутренний триггер. В результате на выходе установится низкий уровень напряжения, и схема вернется в свое исходное, стабильное состояние. Транзистор Т6 откроется и разрядит конденсатор С.
Время, на которое таймер, так сказать «выходит из себя», может быть от одной миллисекунды до сотен секунд.
Считается оно так: T=1.1*R*C
Теоретически, пределов по длительности импульсов нет — как по минимальной длительности, так и по максимальной. Однако, есть некоторые практические ограничения, которые обойти можно, но сначала стоит задуматься — нужно ли это делать и не проще ли выбрать другое схемное решение.
Перейдем ко второму режиму.
В эту схему добавлен еще один резистор. Входы обоих компараторов соединены и подключены к соединению резистора R2 и конденсатора. Вывод 7 включен между резисторами. Конденсатор заряжается через резисторы R1 и R2.
Теперь посмотрим, что же произойдет, когда мы подадим питание на схему. В исходном состоянии конденсатор разряжен и на входах обоих компараторов низкий уровень напряжения, близкий к нулю. Компаратор №2 переключает внутренний триггер и устанавливает на выходе таймера высокий уровень. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резисторы R1 и R2.
Когда напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1 в свою очередь переключает триггер и выключает выход таймер — напряжение на выходе становится близким к нулю. Транзистор Т6 открывается и конденсатор начинает разряжаться через резистор R2. Как только напряжение на конденсаторе опустится до 1/3 напряжения питания, компаратор №2 опять переключит триггер и на выходе микросхемы снова появится высокий уровень. Транзистор Т6 закроется и конденсатор снова начнет заряжаться…
Короче говоря, на выходе мы получаем последовательность прямоугольных импульсов. Частота импульсов, как вы вероятно уже догадались, зависит от величин C, R1 и R2. Определяется она по формуле:
Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. t = t1+t2 .
Частота и период — понятия обратные друг другу и зависимость между ними следующая:
f = 1/t .
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C ;
t2 = 0.693R2C ;
Ну, с теоретической частью вроде бы покончили. В следующей части рассмотрим конкретные примеры включения таймера 555 в различных схемах и для самого разнообразного использования.
Схема включения NE555 и простой ШИМ регулятор на чипе 555
В этой инструкции я покажу, как создать простой ШИМ регулятор (широтно-импульсную модуляцию) из чипа 555, таймера и некоторых других компонентов. Всё очень просто, и схема включения NE555 хорошо работает для контроля светодиодов, лампочек, сервомоторов или двигателей постоянного тока.
Мой ШИМ регулятор на 555 может лишь изменять коэффициент заполнения с 10% до 90%.
Шаг 1: Что такое ШИМ
Широтно-импульсная модуляция (ШИМ) сигнала или источника питания включает в себя модуляцию его рабочего цикла, чтобы либо передавать информацию по каналу связи, либо управлять посылаемой мощностью. Самый простой способ генерации сигнала ШИМ требует только пилообразного или треугольного сигнала (легко генерируемого с использованием простого осциллятора) и компаратора.
Когда значение опорного сигнала (зеленый синусоидальной волны на рисунке 2) больше, чем сигнал модуляции (синий), ШИМ сигнал (пурпурный) находится в высоком состоянии, в противном случае она находится в низком состоянии. Но в моем ШИМ я не буду использовать компаратор.
Шаг 2: Типы ШИМ
Существует три типа ШИМ:
- Центр пульсации может быть зафиксирован в середине временного окна, и оба края импульса перемещаются для сжатия или расширения ширины.
- Передняя кромка пульсации может удерживаться у передней кромки временного окна, а хвостовая кромка будет модулироваться.
- Хвостовая кромка пульсации может быть зафиксирована, а передняя кромка будет модулироваться.
Три типа сигналов ШИМ (синий): модуляция передней кромки (верхняя строка), модуляция задней кромки (средняя строка) и пульсация в середине (обе кромки модулируются, нижняя строка). Зеленые линии — это пилообразные сигналы, используемые для генерации сигналов ШИМ с использованием метода пересечения.
Шаг 3: Как нам поможет ШИМ?
Питание:
Шим может использоваться для уменьшения общего количества энергии, подаваемой на LOAD, без потерь, обычно возникающих при ограничении источника питания резистивным средством. Это связано с тем, что средняя подаваемая мощность пропорциональна циклу модуляции.
При достаточно высокой скорости модуляции пассивные электронные фильтры могут использоваться для сглаживания последовательности импульсов и восстановления среднего аналогового сигнала.
Высокочастотные системы управления мощностью при помощи ШИМ легко реализуются с использованием полупроводниковых переключателей. Дискретные состояния включения/выключения модуляции используются для управления состоянием переключателя (переключателей), которые соответственно управляют напряжением. Основным преимуществом этой системы является то, что переключатели либо выключены и не имеют ток, либо включены и (в идеале) не имеют потерь напряжения вокруг них. Произведение тока и напряжение в любое заданное время определяет мощноость, рассеиваемую переключателем, таким образом (в идеале), мощность вообще не рассеивается.
На самом деле, полупроводниковые переключатели не являются идеальными, но на них все же возможно построить контроллеры высокой эффективности.
ШИМ также часто используется для управления подачи электроэнергии на другое устройство, например, при управлении скоростью электродвигателей, регулирования громкости аудиоусилителей класса D или регулировании яркости источников света и многих других приложений силовой электроники. Например, световые диммеры для домашнего использования используют определенный тип управления ШИМ.
Домашние световые диммеры обычно включают в себя электронные схемы, которые подавляют ток в определенных частях каждого цикла напряжения сети переменного тока. Регулировка яркости света, испускаемого источником света, — это просто вопрос настройки напряжения (или фазы) в цикле переменного тока, в котором диммер начинает подавать электрический ток на источник света (например, с помощью электронного переключателя, такого как симистор ). В этом случае рабочий цикл ШИМ определяется частотой сетевого напряжения (50 Гц или 60 Гц в зависимости от страны). Эти довольно простые типы диммеров могут эффективно использоваться с инертными (или относительно медленно реагирующими) источниками света, такими как лампы накаливания, например, для которых дополнительная модуляция в подаваемой электрической энергии, вызванная диммером, вызывает лишь незначительные дополнительные колебания в испускаемый свет.
Однако некоторые другие источники света, такие как светодиоды, очень быстро включаются и выключаются и, по-видимому, мерцают, если они поставляются с низким напряжением. Воспроизводимые эффекты мерцания от таких источников быстрого реагирования могут быть уменьшены за счет увеличения частоты ШИМ. Если флуктуации света достаточно быстры, зрительная система человека больше не может их фиксировать, и глаз воспринимает среднюю интенсивность времени без мерцания (см. Порог слияния фликкера).
Регулирование напряжения:
ШИМ также используется в эффективных регуляторах напряжения. Путем переключения напряжения на нагрузку с соответствующим рабочим циклом выход будет приближать напряжение на желаемом уровне. Шум переключения обычно фильтруется индуктором и конденсатором.
Один метод измеряет выходное напряжение. Когда он ниже желаемого напряжения, он включает переключатель. Когда выходное напряжение выше желаемого напряжения, оно отключает переключатель.
Регуляторы частоты вращения вентиляторов для компьютеров обычно используют ШИМ, так как она намного эффективнее по сравнению с потенциометром.
ШИМ иногда используется в синтезе звука, в частности в субтрактивном синтезе, поскольку она дает звуковой эффект, подобный хору или слегка расстроенным осцилляторам, которые играют вместе. (На самом деле PWM эквивалентна разности двух пилообразных волн.) Отношение между высоким и низким уровнем обычно модулируется низкочастотным генератором или LFO.
Популярным стал новый класс аудиоусилителей, основанный на принципе ШИМ. Называемые «усилители класса D», эти усилители создают эквивалент ШИМ аналогового входного сигнала, который подается на громкоговоритель через подходящую фильтрующую сеть для блокировки несущей и восстановления исходного аудиосигнала. Эти усилители характеризуются очень хорошими показателями эффективности (около 90%) и компактными размерами / малым весом для больших выходных мощностей.
Исторически сложилось, что грубая форма ШИМ используется для воспроизведения цифрового звука PCM на динамике ПК, который способен воспроизводить только два уровня звука. Тщательно определяя длительность импульсов и полагаясь на физические свойства фильтрации динамика (ограниченный частотный отклик, самоиндуктивность и т. д.), можно получить приблизительное воспроизведение образцов моно PCM, хотя и при очень низком качестве, и с очень разными результатами между реализациями.
В более поздние времена был введен метод цифрового кодирования прямого потока Digital Stream, который использует обобщенную форму широтно-импульсной модуляции, называемую модуляцией плотности импульса, при достаточно высокой частоте дискретизации (как правило, порядка МГц) для покрытия всех акустических частот с достаточной точностью. Этот метод используется в формате SACD, а воспроизведение кодированного аудиосигнала по существу аналогично методу, используемому в усилителях класса D.
Динамик: Используя ШИМ, можно модулировать дугу (плазму), и если она находится в диапазоне слуха, ее можно использовать в качестве динамика. Такой динамик используется в звуковой системе Hi-Fi в качестве высокочастотного динамика.
Круто, не так ли?
Шаг 4: Необходимые компоненты
Это простая схема с одним чипом, поэтому вам не понадобится много компонентов
- NE555, LM555 или 7555 (cmos)
- Рекомендую использовать два диода 1n4148, но подойдут и диоды серии 1n40xx
- Потенциометр 100К
- Зеленый конденсатор 100nf
- Керамический конденсатор 220pf
- Печатная плата
- Полупроводниковый транзистор
Шаг 5: Построение устройства
Просто следуйте диаграмме и поместите все детали на макет. Проверьте дважды расположение каждого компонента перед тем, как включить устройство. Если вы хотите эффективно управлять и контролировать яркость источника света или двигатель, вы можете поставить на его выход только силовой транзистор, но если вы хотите лишь управлять источником света или двигателем, тогда рекомендуется поставить ёмкий конденсатор, например, 2200uf. Если поставить этот конденсатор и включить мотор на нагрузке в 40%, то двигатель будет на 60% эффективнее на той же скорости и крутящем моменте.
Здесь есть два видео, на которых показано, как работает моя ШИМ. На первом вы можете видеть, что вентилятор начинает вращаться на 90% рабочем цикле. На втором вы можете видеть, что светодиоды мигают, а вентилятор работает на 80%.
ФайлыСхемы пороговых устройств на микросхеме 555. Применение выхода Output. Устройство с функцией задержки включения
Таймер NE555 является, пожалуй, самой популярной интегральной микросхемой своего времени. Несмотря на то, что он был разработан более 40 лет назад (в 1972 году) он до сих пор выпускается многими производителями. В этой статье, постараемся подробно осветить вопросы описания и применения таймера NE555.
Умные соединения компаратора, сбрасываемый триггер и инвертирующий усилитель в одной монолитной интегральной микросхеме, наряду с несколькими другими элементами породили почти бессмертные схемы устройств, которые сегодня используется многими радиолюбителями.
555 Таймер был разработан американской компанией Signetics в 1972 году и зарегистрирован на мировом рынке. Два года спустя той же компании был разработана микросхема с обозначением 556, которая объединила в себе два отдельных таймера NE555 имеющих только общие выводы по питанию. Еще позже были разработаны микросхемы 557, 558 и 559 с применением до четырех таймеров NE555 в одном корпусе. Но позже они были сняты с производства и почти забыты.
Интегральная микросхема NE555 разрабатывалась в качестве таймера и содержит в себе комбинацию аналоговых и цифровых элементов в одном кристалле. Выпускается в различном исполнении, начиная от классического DIP корпуса стандартного и SOIC для SMD монтажа и до миниатюрного корпуса версии SSOP или SOT23-5. (Цены на таймер NE555)
Таймер NE555, кроме стандартного исполнения производиться так же в маломощном CMOS исполнении. Схема электропитания NE555 составляет от 4,5 до 15 вольт (18 вольт максимум), а CMOS вариант использует питание от 3 вольт. Максимальная выходная нагрузка выхода для NE555 200мА, у версии маломощного таймера только 20 мА при 9 вольт.
Стабильность работы стандартной версии 555 сильно зависит от качества источника питания. Это не так сильно сказывается в простых схемах с применением таймера, однако, в более сложных конструкциях, желательно устанавливать буферный конденсатор по цепи питания емкостью 100 мкф.
Основные характеристики интегрального таймера NE555
- Максимальная частота более чем 500 кГц.
- Длина одного импульса от 1 мсек до часа.
- Может работать в режиме моностабильного мультвибратора.
- Высокий выходной ток (до 200 мА)
- Регулируемая скважность импульса (отношение периода импульса к его длительности).
- Совместимость с TTL уровнями.
- Температурная стабильность 0,005% на 1 градус Цельсия.
Микросхема NE555 в своем составе содержит чуть более 20 транзисторов и 10 резисторов. На следующем рисунке приводится структурная схема таймера от Philips Semiconductors.
В следующей таблице перечислены основные свойства NE555
Назначение выводов таймера NE555
№2 — Запуск (триггер)
Триггер переключается, если на этом выводе напряжение упадет ниже 1/3 напряжения питания. Данный вывод имеет высокое входное сопротивление, более 2 мОм. В нестабильном режиме используется для контроля напряжения на времязадающем конденсаторе, в бистабильном режиме к нему подключается элемент коммутации, например, кнопка.
№4 – Сброс
Если напряжение на этом выводе ниже 0,7 вольт, то происходит сброс внутреннего компаратора. В случае неиспользования, на данный вывод таймера NE555 необходимо подать напряжение питания. Сопротивление вывода составляет около 10 кОм.
№5 — Контроль
Может использоваться для регулировки длительности импульсов на выходе путем подачи напряжения 2/3 от напряжения питания. Если это вывод не используется, то его желательно подключить к минусу источника питания через конденсатор 0,01 мкф.
№6 — Стоп (компаратор)
Останавливает функционирование таймера, если напряжение на этом выводе будет выше 2/3 напряжения питания. Вывод имеет высокое входное сопротивление, более 10 мОм. Он обычно используется для измерения напряжения на времязадающем конденсаторе.
№7 — Разряд
Вывод через внутренний транзистор подключается к «земле», когда внутренний триггер находится в активном состоянии. Вывод (открытый коллектор) используется в основном для разряда времязадающего конденсатора.
№3 – Выход
Микросхема NE555 имеет всего один выход с током до 200 мА. Это значительно больше, чем у обычных интегральных микросхем. Вывод способен управлять, например, светодиодами (с токоограничивающим резистором), небольшими лампочками, пьезоэлектрическим преобразователем, динамиком (с конденсатором), электромагнитным реле (с защитным диодом) или даже маломощными двигателями постоянного тока. Если требуется более высокий выходной ток, то можно подключить подходящий транзистор в качестве усилителя.
Таймер NE555 — схема включения
Способность вывода 3 таймера NE555 создавать как высокий уровень напряжения, так и низкий (практически 0 вольт) позволяет управлять нагрузкой подключенной как к минусу питания, так и к плюсу. Как пример, подключение светодиодов. Это, конечно, не является обязательным требованием, и нагрузка (светодиод) может быть подключен либо к минусу, либо плюсу питания.
Если таймер NE555 работает в нестабильном состоянии (режим генератора), то к выходу его можно подключить динамик. Он подключается после разделительного конденсатора (например, 100 мкф) и должен иметь сопротивление не менее 64 Ом из-за ограниченного максимального тока нагрузки выхода таймера. Конденсатор предназначен для отделения постоянной составляющей сигнала и проводит только аудиосигнал.
Динамик с сопротивлением катушки ниже чем 64 Ом можно подключить либо через конденсатор с меньшей емкостью (реактивное сопротивление), являющегося дополнительным сопротивлением либо с помощью усилителя. Усилитель также может быть использован для подключения более мощного громкоговорителя.
Как и все интегральных микросхемы, выход таймера NE555 управляющий индуктивной нагрузкой (реле) должен быть защищена от скачков повышенного напряжения, созданное в в момент отключения. Диод (например, 1N4148) всегда подключается параллельно к катушке реле в обратном направлении.
Однако, для микросхемы NE555 требуется второй диод, включенный последовательно с катушкой реле. Он ограничивает низкое напряжение, которое находится на выходе 3 таймера и предотвращает возбуждение реле небольшим током.
Таким диодом может быть, например, 1N4001 (1N4148 диод не подходит) либо светодиод.
(скачено: 3 612)
В предыдущей заметке, посвященной электронике, мы познакомились с довольно простой интегральной схемой, счетчиком 4026 . Чип, о котором речь пойдет в этом посте, существенно интереснее, как минимум, потому что он может выполнять не одну-единственную функцию, а сразу несколько. Более того, с его помощью мы наконец-то научимся не только мигать светодиодами, но и генерировать звуки. Название чипа — таймер 555.
Как работает таймер 555
Я видел разные объяснения того, как работает данная микросхема. Но лучшее, как мне кажется, приводится во всей той же книге Чарьза Платта . Платт предлагает представить, что внутри микросхемы как бы спрятан виртуальный переключатель:
Ножки 1 и 8 просто подключаются к питанию. Про ножку 5 (control) можно пока забыть, потому что она редко используется и обычно подключается к земле. Притом, через конденсатор небольшой емкости, чтобы предотвратить помехи. Зачем она на самом деле нужна, будет объяснено чуть позже.
Упомянутый переключатель изображен на картинке зеленым цветом. В исходном состоянии он подключает выходы 3 и 7 к земле. Когда напряжение на ножке 2 (trigger) падает до 1/3 напряжения питания, это замечает компаратор A (тоже виртуальный, понятное дело) и опускает переключатель вниз. В этом состоянии выход 3 становится подключен к плюсу, а выход 7 разомкнут. Когда напряжение на ножке 6 (threshold) вырастает до 2/3 напряжения питания, это замечает компаратор B и поднимает переключатель вверх. Собственно, ножка 5 (control) нужна для того, чтобы вместо 2/3 выбирать какое-то другое значение. Наконец, понизив напряжение на ножке 4 (reset), можно вернуть микросхему в исходное состояние.
Чтобы понять, почему же таймер 555 называется «таймером», рассмотрим три режима его работы.
Моностабильный режим (monostable mode)
Также иногда называется режимом одновибратора. Ниже изображена схема использования чипа в этом режиме:
Заметьте, что, как это часто бывает, расположение ножек чипа на схеме не совпадает с их физическим расположением. На этой и следующих схемах не указано напряжение источника питания, так как его можно менять в некотором диапазоне. Лично я проверял работоспособность схем при напряжении от 3 до 6 В. На всех схемах есть конденсатор емкостью 100 мкФ, подключенный параллельно нагрузке. Как нам с вами уже известно, он играет роль сглаживающего фильтра . На двух схемах из трех ножка 5 (control) подключена к керамическому конденсатору на 100 нФ. Почему так сделано, уже было рассказано выше. Это что общего у всех схем. Теперь поговорим о различиях.
Fun fact! Согласно спецификации, таймер 555 не рассчитан на работу при напряжении менее 4.5 В. Однако на практике он не так уж плохо работает и при напряжении 3 В.
Итак, что здесь происходит. В исходном состоянии светодиод не горит. При нажатии на кнопку, подключенную к ножке 2 (trigger), светодиод загорается примерно на 2.5 секунды, а затем гаснет. Если в то время, когда светодиод горит, нажать на кнопку, подключенную к ножке 4 (reset), светодиод тут же погаснет, до истечения времени.
Как это работает? Обратите внимание на правую часть схемы. В начальный момент времени вывод 7 подключен к минусу, поэтому ток идет через резистор прямо на него, не доходя до конденсатора внизу схемы. Вывод 3 (out) также подключен к минусу, поэтому ток через светодиод не идет и, соответственно, он не горит. При нажатии на копку, подключенную к выводу 2 (trigger), вывод 7 начинает ни к чему не вести, а вывод 3 подключается к плюсу. В итоге ток идет на светодиод и он зажигается. Кроме того, начинает заряжаться конденсатор внизу схемы. Когда конденсатор достигает 2/3 напряжения питания, таймер видит это через вывод 6 (threshold) и возвращает чип в исходное состояние. В итоге светодиод гаснет, а конденсатор полностью разряжается. Пользователь может преждевременно вернуть чип в исходное состояние, нажав вторую кнопку.
Время, в течение которого светодиод горит, можно регулировать при помощи емкости конденсатора и сопротивления резистора по следующей формуле:
>>> import math
>>> R = 100 * 1000
>>> C = 22 / 1000 / 1000
>>> T = math.log(3) * R * C
>>> T
2.4169470350698417
Здесь R — сопротивление резистора в омах, C — емкость конденсатора в фарадах, а T — время горения светодиода в секундах. Учтите однако, что на практике характеристики всех элементов определяются с некоторой погрешностью. Для резисторов, например, она типично составляет либо 5% (золотая полоска), либо 10% (серебряная полоска).
Автоколебательный режим (astable mode)
Соответствующая схема:
Что здесь происходит? Светодиод просто мигает с частотой около 3-х раз в секунду. Никаких кнопок или иного интерактива не предусмотрено.
Как это работает. Благодаря тому, что изначально вывод 7 (discharge) подает низкое напряжение и подключен к выводу 2 (trigger) через резистор сопротивлением 10 кОм, чип тут же переключается в свое «нижнее» состояние. Светодиод загорается, а конденсатор внизу схемы начинает заряжаться через два резистора справа. Когда напряжение на конденсаторе достигает 2/3 полного напряжения, чип видит это через вывод 6 (threshold) и переключается в «верхнее» состояние. Конденсатор начинает разряжаться через вывод 7 (discharge), но делает это медленнее, чем в предыдущей схеме, так как на сей раз он разряжается через резистор сопротивлением 10 кОм. Когда напряжение на конденсаторе падает до 1/3 полного напряжения, чип видит это через вывод 2 (trigger). В результате он снова переходит в «нижнее» состояние и процесс повторяется.
То, как будет мигать светодиод, можно определить по формулам:
>>> import math
>>> C = 22 / 1000 / 1000
>>> R1 = 1 * 1000
>>> R2 = 10 * 1000
>>> H = math.log(2) * C * (R1 + R2)
>>> H
0.16774161769550675
>>> L = math.log(2) * C * R2
>>> L
0.15249237972318797
>>> F = 1 / (H + L)
>>> F
3.1227165387207
Здесь F — частота миганий в герцах, H — время в секундах, в течение которого светодиод горит, а L — время в секундах, в течение которого светодиод не горит. Интересно, что параллельно с резистором R2 можно подключить диод, тем самым заставив конденсатор заряжаться только через R1, а разряжаться, как и раньше, через R2. Таким образом, можно добиться полной независимости времени H от времени L и наоборот.
Fun fact! Подключив в этой схеме вместо светодиода динамик или пьезо-пищалку, а также выбрав C равным 100 нФ или 47 нФ, можно насладиться звуком с частотой 687 Гц или 1462 Гц соответственно. На самом деле, это далеко не чистый звук определенной частоты, так как чип 555 генерирует прямоугольный сигнал, а для чистого звука нужна синусоида. Почувствовать разницу между прямоугольным и синусоидальным сигналом проще всего в Audacity, сказав Generate → Tone. Заметьте, что можно регулировать R2, а следовательно и частоту звука, заменив соответствующий резистор на потенциометр. Кроме того, резистор, подключенный последовательно с динамиком или пьезо-пищалкой, можно также заменить на потенциометр и регулировать с его помощью громкость. Наконец, к выводу 5 (control) вместо конденсатора также можно подключить потенциометр и с его помощью более тонко подогнать частоту сигнала.
Бистабильный режим (bistable mode)
И, наконец, схема бистабильного режима:
Что происходит. Изначально светодиод не горит. При нажатии на кнопку, подключенную к ножке 2 (trigger) он загорается и горит бесконечно долго. При нажатии на другую кнопку, подключенную к ножке 4 (reset), светодиод гаснет. То есть, получилось что-то вроде кнопок «включить» и «выключить».
Как это работает. Режим похож на моностабильный (первый рассмотренный), только нет никакого конденсатора, который мог бы вернуть чип из «нижнего» состояния обратно в «верхний». Вместо этого вывод 6 (threshold) подключен напрямую к земле, а выводы 5 (control) и 7 (discharge) вообще ни к чему не подключены. В данном случае это нормально, так как подача любого сигнала на эти выводы все равно будет игнорироваться. В общем и целом, это тот же моностабильный режим, только чип не меняет свое состояние автоматически. Изменить состояние может только пользователь, явно подав низкое напряжение на вывод 2 (trigger) или 4 (reset).
Заключение
Согласитесь, это было не так уж и сложно! На следующем фото изображены все описанные выше режимы, собранные на макетной плате:
Слева направо — моностабильный, автоколебательный и бистабильный режимы. Вариант, где автоколебательный режим используется с динамиком и двумя потенциометрами, выглядит куда более впечатляюще, но менее наглядно, поэтому здесь я его не привожу.
Исходники приведенных выше схем, созданных в gschem, вы найдете . Кое-какие дополнительные сведения можно найти в статье 555 timer IC на Википедии, а также далее по ссылкам.
Как всегда, буду рад вашим вопросам и дополнениям. А часто ли вам приходится использовать таймер 555?
Fun fact! Есть энтузиасты, которые делают на таймере 555 совершенно сумасшедшие вещи. Например, при сильном желании на его основе можно делать операционные усилители или логические вентили, а следовательно, теоретически, и целые процессоры. Подробности можно найти, например, в посте You Know You Can Do That with a 555 на сайте hackaday.com.
Дополнение: Вас также могут заинтересовать посты
Микросхема интегрального таймера NE555 — это настоящий прорыв в области электроники. Она была создана в 1972 году сотрудником компании Signetics Гансом Р. Камензиндом. Изобретение не утратило своей актуальности и по сегодняшний день. Позднее устройство стало основой таймеров с удвоенной (IN556N) и счетверенной конфигурацией (IN558N).
Без сомнения, детище электронщика позволило занять ему свою видную нишу в истории технических изобретений. По уровню продаж данное устройство с момента своего появления превзошло любое другое. На второй год существования микросхема 555 стала самой покупаемой деталью.
Лидерство сохранялось и во все последующие годы. Микросхема 555, применение которой возрастало с каждым годом, продавалась очень хорошо. К примеру, в 2003 году было реализовано более чем 1 миллиард экземпляров. Конфигурация самого агрегата за это время не изменилась. Она существует свыше 40 лет.
Появление устройства стало неожиданностью для самого создателя. Камензинд преследовал цель сделать гибкую в использовании ИС, но, что она окажется столь многофункциональной, он не ожидал. Изначально она употреблялась как таймер или же Микросхема 555, применение которой увеличивалось быстрыми темпами, сегодня используется от игрушек для детей до космических кораблей.
Устройство отличает выносливость, поскольку оно построено на основе биполярной технологии, и для применения его в космосе специально предпринимать ничего не требуется. Только испытательные работы проводятся с особой строгостью. Так, при тесте схемы NE 555 для ряда приложений создаются индивидуальные пробные спецификации. При производстве схем не существует никаких различий, но подходы при выходном контроле заметно разнятся.
Появление схемы в отечественной электронике
Первое упоминание об инновации в советской литературе по радиотехнике появилось в 1975 году. Статью об изобретении опубликовали в журнале «Электроника». Микросхема 555, аналог которой был создан советскими электронщиками в конце 80-х годов прошлого столетия, в отечественной радиоэлектронике получила название КР1006ВИ1.
В производстве эту деталь употребляли при сборке видеомагнитофонов «Электроника ВМ12». Но это был не единственный аналог, так как многие производители во всем мире создавали подобное устройство. Все агрегаты имеют обячный корпус DIP8, а также корпус малых размеров SOIC8.
Технические характеристики схемы
Микросхема 555, графическое изображение которой представлено ниже, включает в себя 20 транзисторов. На блок-схеме устройства находятся 3 резистора с сопротивлением 5кОм. Отсюда и название прибора «555».
Основными техническими характеристиками изделия являются:
- напряжение питания 4,5-18В;
- максимальный показатель тока на выходе 200 мА;
- потребляемая энергия составляет до 206 мА.
Если его рассмотреть на выход, то это цифровое устройство. Он может находиться в двух положениях — низком (0В) и высоком (от 4,5 до 15 В). В зависимости от блока питания может показатель достигать и 18 В.
Для чего нужно устройство?
NE 555 микросхема — унифицированное устройство с широким спектром применения. Его часто используют при сборке различных схем, и это только придает изделию популярность. Соответственно, повышается уровень спроса потребителя. Такая известность вызвала падение цены на таймер, что радует многих мастеров.
Внутреннее строение таймера 555
Что же заставляет это устройство функционировать? Каждый из выводов агрегата подсоединен к цепи, содержащей 20 транзисторов, 2 диода и 15 резисторов.
Удвоенный формат модели
Следует отметить, что NE 555 (микросхема) выпускается в удвоенном формате под названием 556. Она содержит два свободных IC.
Таймер 555 оснащен 8 контактами, тогда как модель 556 содержит 14 контактов.
Режимы работы устройства
Микросхема 555 обладает тремя режимами работы:
- Моностабильный режим микросхемы 555. Он работает как одноразовый односторонний. Во время функционирования выбрасывается импульс заданной длины как ответ на вход триггера при нажимании кнопки. Выход пребывает в низком напряжении до включения триггера. Отсюда он и получил название ждущий (моностабильный). Такой принцип функционирования сохраняет устройство в бездействии до включения. Режим обеспечивает включение таймеров, переключателей, сенсорных переключателей, делителей частоты и др.
- Нестабильный режим является автономной функцией устройства. Он позволяет схеме пребывать в генераторном режиме. Напряжение в выходе изменчиво: то низкое, то высокое. Эта схема применима при надобности задавания устройству толчков прерывистого характера (при недолговременном включении и выключении агрегата). Режим используется при включении ламп на светодиодах, функционирует в логической схеме часов и др.
- Бистабильный режим, или же триггер Шмидта. Понятно, что он работает по системе триггера при отсутствии конденсатора и обладает двумя устойчивыми состояниями, высоким и низким. Низкий показатель триггера переходит в высокий. При сбрасывании низкого напряжения система устремляется к низкому состоянию. Эта схема применима в сфере железнодорожного строительства.
Выводы таймера 555
Генератор микросхема 555 включает восемь выводов:
- Вывод 1 (земля). Он подсоединен к минусовой стороне питания (общий провод схемы).
- Вывод 2 (триггер). Он подает высокое напряжение на время (все зависит от и конденсатора). Эта конфигурация и является моностабильной. Вывод 2 контролирует вывод 6. Если напряжение в обоих низкое, то на выходе оно будет высоким. В противном случае, при высоком напряжении в выводе 6 и низком в выводе 2, выход на таймере будет низким.
- Вывод 3 (выход). Выходы 3 и 7 располагаются в фазе. Подавая высокое напряжение с показателем примерно 2 В и низкое с 0,5 В будет получаться до 200 мА.
- Вывод 4 (сброс). Подача напряжения на этот выход низка, несмотря на режим работы таймера 555. Во избежание случайных сбросов, следует производить подключение этого выхода к плюсовой стороне при использовании.
- Вывод 5 (контроль). Он открывает доступ к Это вывод в российской электронике не применяется, но при его подключении можно достичь широких возможностей управления устройством 555.
- Вывод 6 (остановка). Входит в компаратор 1. Он противоположен выводу 2, применим для остановки устройства. При этом получается низкое напряжение. Это вывод может принимать синусоидальные и прямоугольные импульсы.
- Вывод 7 (разряд). Он подсоединяется к транзисторному коллектору Т6, а эмиттер последнего заземлен. При открытом транзисторе конденсатор разряжается до его закрытия.
- Вывод 8 (плюсовая сторона питания), которая составляет от 4,5 до 18 В.
Применение выхода Output
Выход 3 (Output) может пребывать в двух состояниях:
- Осуществляется подключение цифрового выхода прямо к входу другого драйвера на цифровой основе. Цифровой выход может осуществлять управление другими устройствами при посредстве нескольких дополнительных составляющих (напряжение источника питания равно 0 В).
- Показатель напряжения во втором состоянии высок (Vcc на источнике питания).
Возможности агрегата
- При понижении напряжения в Output ток направляется через устройство и осуществляет его подключение. Это и есть понижение, так как ток производится из Vcc и проходит сквозь агрегат до 0 В.
- При возрастании Output ток, проходя через прибор, обеспечивает его включение. Этот процесс можно назвать источником текущих. Электроэнергия в этом случае производится от таймера и идет через прибор до 0 В.
Возрастание и понижение могут функционировать вместе. Таким образом достигается поочередное включение и выключение прибора. Такой принцип применим при функционировании ламп на светодиодах, реле, двигателей, электромагнитов. К минусам такого свойства можно отнести то, что прибор надо подключать к Output разными способами, так как выход 3 может выступать как в роли потребителя, так и в роли источника тока до 200 мА. Используемый блок питания дожжен подать достаточный ток для обоих устройств и таймера 555.
Микросхема LM555
Микросхема 555 Даташит (LM555) обладает широкими функциональными возможностями.
Она используется от генераторов прямоугольных импульсов с изменяемым показателем скважности и реле и задержкой срабатывания до сложных конфигураций ШИМ генераторов. Микросхема 555 цоколевка и внутреннее строение отражены на рисунке.
Уровень точности приспособления равен 1% от расчетного показателя, что является оптимальным. На такой агрегат, как NE 555 микросхема даташит, не воздействуют температурные условия окружающей среды.
Аналоги микросхемы NE555
Микросхема 555, аналог которой в России был назван КР1006ВИ1, представляет интегральное устройство.
Среди рабочих блоков следует выделить RS-триггер (DD1), компараторы (DA1 и DA2), на выходе, основанный на двухтактной системе и дополняющий транзистор VT3. Назначение последнего заключается в сбросе задающего время конденсатора при использовании агрегата в роли генератора. Сбрасывание триггера происходит при подаче логической единицы (Юпит/2…Юпит) на входы R.
В случае сброса триггера на выходе устройства (вывод 3) будет наблюдаться низкий показатель напряжения (транзистор VT2 открыт).
Уникальность схемы 555
При функциональной схеме устройства очень трудно понять, в чем же заключается ее необычность. Оригинальность устройства состоит в том, что оно обладает особым управлением триггера, а именно формирует управляющие сигналы. Их создание происходит на компараторах DA1 и DA2 (на один из входов, на который подано опорное напряжение). Для формирования управляющих сигналов на входах триггера (выходах компараторов) следует получить сигналы с высоким напряжением.
Как произвести запуск устройства?
Чтобы запустить таймер, на выход 2 надо подать напряжение с показателем от 0 до 1/3 Юпит. Этот сигнал способствует срабатыванию триггера, и при выходе создается сигнал с высоким напряжением. Сигнал выше предельного показателя не вызовет каких-либо изменений в схеме, так как опорное напряжение для компаратора равно DA2 и составляет 1/3 Юпит.
Остановить таймер можно при сбрасывании триггера. С этой целью напряжение на выходе 6 должно превышать показатель 2/3 Юпит (опорное напряжение для компаратора DA1 составляет 2/3 Юпит). При сбросе установится сигнал с низким напряжением и разряд конденсатора, задающего время.
Регулировать опорное напряжение можно посредством подключения дополнительного сопротивления или источника питания к выводу агрегата.
В последнее время среди владельцев автомобилей стало модным сматывать на спидометре пройденный машиной километраж.
Многие интересуются, подмотка спидометра на 555 микросхеме выполнима ли самостоятельно?
Эта процедура не представляет особой трудности. Для его изготовления используется микросхема 555, которая может функционировать в качестве Отдельные составляющие схемы можно брать с показателями, отклоняющимися на 10-15 % от расчетных значений.
Тебе не нужен контроллер, говорили они. Делай все на таймерах NE555, говорили они. Ну я и сделал — похоже, только чтобы убедиться, что получается конструкция, потрясающая по своему сокрушительному воздействию на мою неокрепшую психику.
Обзор, если этот текст можно так назвать, будет не слишком длинным. Поскольку в нем лишь констатация моего полного и безоговорочного провала в сборке элементарных схем и демонстрация того, что по крайней мере шесть из двадцати чипов вполне себе работоспособны.
Еще обратите внимание: похоже, магазин недавно изменил правила, поскольку теперь у них минимальный заказ с бесплатной доставкой — от $6, а если меньше, то за доставку возьмут $1,5. Когда я покупал, то списали только стоимость покупки, то есть $0,59, и все.
В двух блистерах ровно двадцать штук. С одной стороны каждый блистер замотан скотчем, с другой закрыт резиновой пробкой:
Вообще, изначально таймеры я покупал, чтобы сделать простенький генератор для поиска короткого замыкания в проводке — знакомые заинтересовались. Суть прибора, если я правильно понял, в том, что цепь до КЗ представляет собой антенну, сигнал от которой можно послушать с обычным СВ/ДВ приемником.
Где писк прекратился — примерно там и замыкание. Вот так это выглядит на практике у товарища, по стопам которого я и планировал идти:
Но потом знакомые с потребностью решили, что им все не так уж и нужно. Или еще что-то решили, а я настаивать не стал. И огорчаться тоже: вы же видели, сколько стоят таймеры (чуть больше половины доллара за 20 штук) — какое огорчение?
Обычные DIP8:
Поэтому решил поразвлекаться другим способом и посмотрел, что вообще делают из NE555. А делают, как выяснилось, массу всего. Всяческие сигнализации, индикаторы напряжения, указатели пропущенных импульсов. В общем, я впечатлился.
Ну а так как все описывают примерно одно и то же, то вот вам пара ссылок РадиоКота: и . Схемы — во второй.
Предполагается, что популярность NE555 объясняется тем, что это проверенная годами (точнее — уже 45 годами) конструкция, которая обескураживающе просто конфигурируется и довольно точно соблюдает характеристики вне зависимости от питающего напряжения, которое может быть в диапазоне от 4,5В до 16В у обычной версии (но есть варианты). То есть, напряжение гуляет, а частота — скорее стабильна, чем нет.
Фактически, чтобы таймер заработал, нужна пара деталей и любой подходящий источник питания — очень привлекательно, чтобы сделать какую-нибудь фиговину без особых хлопот.
Как по мне, так с микроконтроллером хлопот еще меньше, но в комментариях к рассказу про «Пищаль» я получил и потерял покой. Понял, что должен попробовать хотя бы для того, чтобы успокоиться.
Итак, идея была проста — таймер кормления котов. Которые, потеряв всякий стыд, стали требовать еду чуть ли не каждые полчаса, а съедая по три сухаря, довольные расходились. По мнению ветеринара это не очень полезно (а по нашему — еще и чрезвычайно хлопотно), поэтому необходимо было вернуть им режим питания на место. Ну как на место: кормить хотя бы не чаще, чем раз в пять-шесть часов.
Следить по часам, конечно, не сложно. Однако, во-первых, ситуацию осложняет тот факт, что если днем кормление по часам еще более-менее проходит, то ночью — уже не совсем, поскольку у одного кота, скажем так, сложный характер. Именно — он идет и скребет когтями по батарее, и даже если бы я решил не обращать внимания на данный сомнительного качества музыкальный эксперимент, соседей жалко.
То есть, ночью надо вставать и снова засекать время, а в полубессознательном состоянии это немного затруднительно.
Во-вторых, не все коты такие скандальные, поэтому некоторые просто не приходят вместе с тем вот возмутителем спокойствия. И получается, что интервалы у всех разные, а по справедливости неплохо было бы покормить через установленное время и тех, кто пропустил внеочередной прием пищи.
Поэтому я придумал сделать кучку независимых таймеров на фиксированное время — по одному на кота. И чтобы вот так: пришел кот, выдаешь ему еду, нажимаешь на кнопку, загорелась лампочка. Как лампочка погасла, кота снова можно покормить.
Как несложно догадаться, это один из основных вариантов работы таймера. Называть его можно по-разному: можно калькой из — моностабильный, можно — одновибратором, можно — ждущим мультивибратором.
Суть от этого не меняется: от NE555 требуется, по сути, выдать только один импульс требуемой продолжительности.
Поэтому за основу я взял схему таймера из :
Но немного упростил ее, избавившись от подстроечного резистора (поскольку у меня фиксированный интервал) и второго светодиода — за ненадобностью. Заодно поменял номиналы времязадающей цепочки, сверившись все с той же документацией, которая сообщает, что для расчета примерной длительности импульса следует воспользоваться формулой y t = 1.1RC.
Поиграв с шрифтами номиналами деталек, имеющихся в бутике Чип-и-Дип установил, что для устраивающего всех пятичасового интервала вполне подойдут конденсатор емкостью 3300 мкФ и резистор 5,1 МОм:
T = 1,1*0,0033*5100000 = 18513 сек = 5,14 час.
Реальность, однако оказалась немного не совпадающей с теорией. Собранный по этой схеме и с этими номиналами таймер и после пяти часов продолжал работать. Терпения дождаться окончания его работы у меня не хватило, поэтому я предположил, что NE555 не очень хорошо работает с большими номиналами.
Беглое гугление показало, что таки да — это возможно, однако проблем не должно было быть (теоретически) при сопротивлении вплоть до 20 МОм при напряжении питания 15 В. Поэтому я продолжил эксперименты и выяснил, что в моем случае формула получается примерно такая:
И оказался очень себе признателен, что купил не только 5,1 МОм, но и на всякий случай ближайшие номиналы — 4,7 МОм и 3,9 МОм. Последний по счастью как раз и подошел для необходимого интервала.
С этими номиналами (3300 мкФ и 3,9 МОм) я и собрал блок таймеров с лампочками и кнопочками. Все соединил общей линией питания, больше у них точек соприкосновения нет (ну, по крайней мере, старался, чтобы не было). А так как собирал внавес, то на каждом шаге проверял себя мультиметром и был почти спокоен, когда запускал первый из таймеров.
Получилось вот так (я предупреждал в самом начале):
Включился он как и положено, поэтому я распаял оставшиеся кнопочки и лампочки, включил. Понажимал на кнопочки. Светодиоды включились точно так, как и должны были: нажимаешь кнопку — включился, и так все.
И тут я совершил большую ошибку. Не сделал еще несколько тестовых запусков, а просто огорчился, что не очень хорошо припаял провода к кнопкам, и решил их перепаять. Поэтому я пока не знаю, что именно случилось: то ли изначально сделал что-то не так, то ли что-то успел испортить в момент перепайки проводов.
Но вышло смешно. При повторном включении (с перепаянными проводами) сразу же загорелись три светодиода. А нажатие на кнопки выявило полный хаос: нажимаешь на одну кнопку — загорается ее светодиод (т.е., по идее, включается таймер), нажимаешь другую — первый светодиод гаснет, загорается второй. И так далее.
Опытным путем выяснил, что существует некоторая комбинация нажатий кнопок, при которой зажигаются все светодиоды. Но пока руки не доходят проверить схему на предмет коротких замыканий там, где их не должно быть.
Бонус-трек — играем в сапера:
Подводя итог хочу сказать, что с таймерами развлекся. На практике проверил, что покупать их в Китае можно — приходят рабочие.
И хотя кототаймер сделать не смог, бонусом получил головоломку «Зажги все лампочки». И заодно понимание того, что NE555 — явно не для меня. И вот почему:
Минимальное напряжение питания 4,5В
— большой потребляемый ток
Разумеется, эти недостатки можно побороть заказом CMOS-версии чипа, которая гораздо более экономична и работает, начиная с 1,5В. Но обычные стоят $0,59 за двадцать штук, а CMOS — уже около $10. То есть примерно вдвое дороже контроллера, а если применять в конструкции два и более таймеров, то выгода вообще пропадает.
Так что всем спасибо, я возвращаюсь к ATmega328p, на котором, очевидно, и буду делать таймер кормления.
Ps. А теперь можно я тоже напишу про экранчик от ITEAD Studio? Меня, между прочим, совесть мучает, поскольку, с одной стороны, здесь уже этих экранов было выше крыши, а с другой — надо же выполнять обещание.
Планирую купить +19 Добавить в избранное Обзор понравился +38 +67Электронные интегральные схемы — такая отрасль нашей науки и техники, возможности которой еще далеко не исчерпаны. Видимо, это и есть ростки того самого искусственного интеллекта, о котором так много уже сказано. Причем, если наш природный интеллект строится на элементах — нейронах — которые можно назвать электронно-химическими, то созданные руками человека интегральные схемы в природе не встречаются. Это чистое изобретение человеческого разума. Оно получено в результате долгой работы по совершенствованию самых обыкновенных электроприборов, которые понадобились людям сразу после открытия электричества — выключателей, резисторов, конденсаторов, полупроводниковых приборов. Совершенствование шло как в направлении усложнения схем, так и в стремлении уместить большое количество элементов на ограниченной площади или в ограниченном объеме. А также создать из все тех же схемных примитивов нечто универсальное, долгоиграющее и омниполезное.
Таймер NE555
История изобретения этого таймера показывает, что настоящие шедевры делаются не всегда в самые лучшие для изобретателей времена, и часто даже в совершенно не высокотехнологичных условиях. Ганс Камензинд в свои 33 года кроме служебных обязанностей имел мечту. Это не всегда бывает по вкусу начальству, и ему пришлось уволиться. Свой шедевр он придумал, сидя в гараже в 1971 году, а через год микросхема на восьми ножках бойко пошла в производство и продажу. Схема простая и, как оказалась, полезная. Быть может, не последнюю роль в удаче сыграло и название, которое толком и объяснить не могут: почему NE — от названия фирмы Signetics? Почему 555 — потому что им полюбилась пятерка? Таймер? — да, но не такой, как обычные. Те, что всегда только безостановочно тикают импульсами, а этот может выдать очень точный интервал времени, и не в каких-то привычных в импульсной технике микросекундах, а в достаточно ощутимом интервале: взять и включить лампочку на несколько секунд.
Схема, как часто и все гениальное, оказалась на стыке двух техник: импульсной и аналоговой.
Аналоговые — операционные усилители — усиливают сигнал до нужного стандарта (2 на входах (двухпороговый компаратор) и 1 на выходе). А в середине работает импульсный RS-триггер, который может как генерировать импульсы (мультивибратор), так и выдавать одиночный импульс заданной протяженности (одновибратор).
И все очень легко регулируется — практически, соотношением параметров двух резисторов и одной емкости, подключенных к микросхеме на входах, а также подачей других сигналов на входы.
Видимо, схема имеет какое-то неуловимо удачное соотношение простоты управления и простоты конструкции, что в сочетании с неожиданным многообразием работы элементов и придало ей популярности на протяжении стольких лет. Потому что перечисленные свойства, как следствие, выразились в совсем даже невысокой стоимости и в применимости в разных схемах — и ширпотребовских, и профессиональных. Они хороши для использования в детских игрушках, реле времени, кодовых замках, космических аппаратах. А ежегодные продажи исчисляются до сих пор миллиардами штук по всему миру. Причем за все время схема не претерпела практически никаких изменений. По какой причине слово «эволюция» под рисунком выше и взято в кавычки. Таймер 555 выпускают многие фирмы по всему миру. Известны и отечественные аналоги NE555 — микросхема КР1006ВИ1 и ее КМОП вариант КР1441ВИ1.
Функциональная схема и описание прибора
Функционально таймер состоит из 5 компонентов. Выводов у схемы больше, чем внутренних блоков, что и говорит о возможной гибкости включения в различные схемные решения с участием данной микросхемы.
Входной внутренний делитель напряжения задает опорные напряжения для двух компараторов — верхнего и нижнего. RS-триггер принимает их сигналы и формирует выходной сигнал, который отправляет на усилитель мощности. Еще имеется дополнительный транзистор с выведенным наружу коллектором, который используется для подключения внешней времязадающей цепочки.
Выводы схемы расположены одинаково, независимо от исполнения микросхемы
Описание выводов схемы
Приведенный ниже даташит содержит выводы и подаваемые на них сигналы, откуда становится немного понятной работа микросхемы. Хотя очень многое зависит от ее подключения.
| Минусовой общий вывод питания | Плюсовой вывод питания – 8 | |
| Вход компаратора №2 (нижнего). Сигнал низкого уровня – аналоговый или импульсный. | Таймер срабатывает на сигнал (аналоговый или импульсный) низкого уровня (порог – 1/3 Vпит) | На 3 выводе появляется выходной сигнал высокого уровня |
| Выходной сигнал (высокий уровень) зависит от питания: Vпит – 1,7 В Низкий уровень (нет сигнала) – примерно 0,25 В | Временная характеристика выходного сигнала определяется внешней времязадающей цепочкой, состоящей из резистора (или резисторов) и емкости. | |
| Срабатывает по сигналу низкого уровня (≤ 0,7 В) | Немедленный сброс выходного сигнала | Входной сигнал не зависит от напряжения питания |
| Управление опорным напряжением компаратора №1 | Величина напряжения управляет длительностью выходных импульсов (одновибратор) или их частотой (мультивибратор). | |
| Сбрасывающий сигнал высокого уровня – аналоговый или импульсный | ||
| Цепь разряда времязадающего конденсатора С | ||
| Плюсовой провод питания | Vпит = от 4,5 В до 18 В | Минусовой – 1 |
Применение: варианты подключения NE555 (или NE555 аналогов)
Одновибратор
Емкость С и резистор R задают длительность импульса t, выдаваемого схемой в ответ на сигнал по входу Input (вывод 2). Напряжение питания влияет не на длительность, а на амплитуду выходного сигнала. При выдаче импульса изменение входного сигнала схемой не воспринимается. Через время t схема выдает задний фронт выходного сигнала и возвращается в исходное состояние, после чего готова снова реагировать на входной сигнал. Таким образом, она может выделять информативные всплески (низкого уровня) на фоне помех, так как сигнал на входе в общем случае аналоговый. Может работать как антидребезговая схема.
Генератор импульсов (мультивибратор)
Мультивибратору не нужно подавать на вход никаких сигналов, он начинает работать сразу после включения питания.
Разряженный в начале конденсатор С задает на вход низкий уровень, отчего таймер срабатывает, выдавая на выход высокий потенциал. Его длительность определяется зарядкой конденсатора C через резисторы R1 и R2. Далее происходит разрядка C через R2 и вход 7, что и определяет длительность паузы на таймере. После этого все повторяется, и на выходе получаются импульсы заданной напряжением питания амплитуды и длительностями t 1 и t 2 , то есть частотой f
и скважностью S = T/t 1 . Скважность в данном простейшем подключении более 2 быть не может, так как время импульса t 1 всегда > времени паузы t 2 .
555 напряжение питания. Схемы NE555
В предыдущей заметке, посвященной электронике, мы познакомились с довольно простой интегральной схемой, счетчиком 4026 . Чип, о котором речь пойдет в этом посте, существенно интереснее, как минимум, потому что он может выполнять не одну-единственную функцию, а сразу несколько. Более того, с его помощью мы наконец-то научимся не только мигать светодиодами, но и генерировать звуки. Название чипа — таймер 555.
Как работает таймер 555
Я видел разные объяснения того, как работает данная микросхема. Но лучшее, как мне кажется, приводится во всей той же книге Чарьза Платта . Платт предлагает представить, что внутри микросхемы как бы спрятан виртуальный переключатель:
Ножки 1 и 8 просто подключаются к питанию. Про ножку 5 (control) можно пока забыть, потому что она редко используется и обычно подключается к земле. Притом, через конденсатор небольшой емкости, чтобы предотвратить помехи. Зачем она на самом деле нужна, будет объяснено чуть позже.
Упомянутый переключатель изображен на картинке зеленым цветом. В исходном состоянии он подключает выходы 3 и 7 к земле. Когда напряжение на ножке 2 (trigger) падает до 1/3 напряжения питания, это замечает компаратор A (тоже виртуальный, понятное дело) и опускает переключатель вниз. В этом состоянии выход 3 становится подключен к плюсу, а выход 7 разомкнут. Когда напряжение на ножке 6 (threshold) вырастает до 2/3 напряжения питания, это замечает компаратор B и поднимает переключатель вверх. Собственно, ножка 5 (control) нужна для того, чтобы вместо 2/3 выбирать какое-то другое значение. Наконец, понизив напряжение на ножке 4 (reset), можно вернуть микросхему в исходное состояние.
Чтобы понять, почему же таймер 555 называется «таймером», рассмотрим три режима его работы.
Моностабильный режим (monostable mode)
Также иногда называется режимом одновибратора. Ниже изображена схема использования чипа в этом режиме:
Заметьте, что, как это часто бывает, расположение ножек чипа на схеме не совпадает с их физическим расположением. На этой и следующих схемах не указано напряжение источника питания, так как его можно менять в некотором диапазоне. Лично я проверял работоспособность схем при напряжении от 3 до 6 В. На всех схемах есть конденсатор емкостью 100 мкФ, подключенный параллельно нагрузке. Как нам с вами уже известно, он играет роль сглаживающего фильтра . На двух схемах из трех ножка 5 (control) подключена к керамическому конденсатору на 100 нФ. Почему так сделано, уже было рассказано выше. Это что общего у всех схем. Теперь поговорим о различиях.
Fun fact! Согласно спецификации, таймер 555 не рассчитан на работу при напряжении менее 4.5 В. Однако на практике он не так уж плохо работает и при напряжении 3 В.
Итак, что здесь происходит. В исходном состоянии светодиод не горит. При нажатии на кнопку, подключенную к ножке 2 (trigger), светодиод загорается примерно на 2.5 секунды, а затем гаснет. Если в то время, когда светодиод горит, нажать на кнопку, подключенную к ножке 4 (reset), светодиод тут же погаснет, до истечения времени.
Как это работает? Обратите внимание на правую часть схемы. В начальный момент времени вывод 7 подключен к минусу, поэтому ток идет через резистор прямо на него, не доходя до конденсатора внизу схемы. Вывод 3 (out) также подключен к минусу, поэтому ток через светодиод не идет и, соответственно, он не горит. При нажатии на копку, подключенную к выводу 2 (trigger), вывод 7 начинает ни к чему не вести, а вывод 3 подключается к плюсу. В итоге ток идет на светодиод и он зажигается. Кроме того, начинает заряжаться конденсатор внизу схемы. Когда конденсатор достигает 2/3 напряжения питания, таймер видит это через вывод 6 (threshold) и возвращает чип в исходное состояние. В итоге светодиод гаснет, а конденсатор полностью разряжается. Пользователь может преждевременно вернуть чип в исходное состояние, нажав вторую кнопку.
Время, в течение которого светодиод горит, можно регулировать при помощи емкости конденсатора и сопротивления резистора по следующей формуле:
>>> import math
>>> R = 100 * 1000
>>> C = 22 / 1000 / 1000
>>> T = math.log(3) * R * C
>>> T
2.4169470350698417
Здесь R — сопротивление резистора в омах, C — емкость конденсатора в фарадах, а T — время горения светодиода в секундах. Учтите однако, что на практике характеристики всех элементов определяются с некоторой погрешностью. Для резисторов, например, она типично составляет либо 5% (золотая полоска), либо 10% (серебряная полоска).
Автоколебательный режим (astable mode)
Соответствующая схема:
Что здесь происходит? Светодиод просто мигает с частотой около 3-х раз в секунду. Никаких кнопок или иного интерактива не предусмотрено.
Как это работает. Благодаря тому, что изначально вывод 7 (discharge) подает низкое напряжение и подключен к выводу 2 (trigger) через резистор сопротивлением 10 кОм, чип тут же переключается в свое «нижнее» состояние. Светодиод загорается, а конденсатор внизу схемы начинает заряжаться через два резистора справа. Когда напряжение на конденсаторе достигает 2/3 полного напряжения, чип видит это через вывод 6 (threshold) и переключается в «верхнее» состояние. Конденсатор начинает разряжаться через вывод 7 (discharge), но делает это медленнее, чем в предыдущей схеме, так как на сей раз он разряжается через резистор сопротивлением 10 кОм. Когда напряжение на конденсаторе падает до 1/3 полного напряжения, чип видит это через вывод 2 (trigger). В результате он снова переходит в «нижнее» состояние и процесс повторяется.
То, как будет мигать светодиод, можно определить по формулам:
>>> import math
>>> C = 22 / 1000 / 1000
>>> R1 = 1 * 1000
>>> R2 = 10 * 1000
>>> H = math.log(2) * C * (R1 + R2)
>>> H
0.16774161769550675
>>> L = math.log(2) * C * R2
>>> L
0.15249237972318797
>>> F = 1 / (H + L)
>>> F
3.1227165387207
Здесь F — частота миганий в герцах, H — время в секундах, в течение которого светодиод горит, а L — время в секундах, в течение которого светодиод не горит. Интересно, что параллельно с резистором R2 можно подключить диод, тем самым заставив конденсатор заряжаться только через R1, а разряжаться, как и раньше, через R2. Таким образом, можно добиться полной независимости времени H от времени L и наоборот.
Fun fact! Подключив в этой схеме вместо светодиода динамик или пьезо-пищалку, а также выбрав C равным 100 нФ или 47 нФ, можно насладиться звуком с частотой 687 Гц или 1462 Гц соответственно. На самом деле, это далеко не чистый звук определенной частоты, так как чип 555 генерирует прямоугольный сигнал, а для чистого звука нужна синусоида. Почувствовать разницу между прямоугольным и синусоидальным сигналом проще всего в Audacity, сказав Generate → Tone. Заметьте, что можно регулировать R2, а следовательно и частоту звука, заменив соответствующий резистор на потенциометр. Кроме того, резистор, подключенный последовательно с динамиком или пьезо-пищалкой, можно также заменить на потенциометр и регулировать с его помощью громкость. Наконец, к выводу 5 (control) вместо конденсатора также можно подключить потенциометр и с его помощью более тонко подогнать частоту сигнала.
Бистабильный режим (bistable mode)
И, наконец, схема бистабильного режима:
Что происходит. Изначально светодиод не горит. При нажатии на кнопку, подключенную к ножке 2 (trigger) он загорается и горит бесконечно долго. При нажатии на другую кнопку, подключенную к ножке 4 (reset), светодиод гаснет. То есть, получилось что-то вроде кнопок «включить» и «выключить».
Как это работает. Режим похож на моностабильный (первый рассмотренный), только нет никакого конденсатора, который мог бы вернуть чип из «нижнего» состояния обратно в «верхний». Вместо этого вывод 6 (threshold) подключен напрямую к земле, а выводы 5 (control) и 7 (discharge) вообще ни к чему не подключены. В данном случае это нормально, так как подача любого сигнала на эти выводы все равно будет игнорироваться. В общем и целом, это тот же моностабильный режим, только чип не меняет свое состояние автоматически. Изменить состояние может только пользователь, явно подав низкое напряжение на вывод 2 (trigger) или 4 (reset).
Заключение
Согласитесь, это было не так уж и сложно! На следующем фото изображены все описанные выше режимы, собранные на макетной плате:
Слева направо — моностабильный, автоколебательный и бистабильный режимы. Вариант, где автоколебательный режим используется с динамиком и двумя потенциометрами, выглядит куда более впечатляюще, но менее наглядно, поэтому здесь я его не привожу.
Исходники приведенных выше схем, созданных в gschem, вы найдете . Кое-какие дополнительные сведения можно найти в статье 555 timer IC на Википедии, а также далее по ссылкам.
Как всегда, буду рад вашим вопросам и дополнениям. А часто ли вам приходится использовать таймер 555?
Fun fact! Есть энтузиасты, которые делают на таймере 555 совершенно сумасшедшие вещи. Например, при сильном желании на его основе можно делать операционные усилители или логические вентили, а следовательно, теоретически, и целые процессоры. Подробности можно найти, например, в посте You Know You Can Do That with a 555 на сайте hackaday.com.
Дополнение: Вас также могут заинтересовать посты
Таймер NE555 является, пожалуй, самой популярной интегральной микросхемой своего времени. Несмотря на то, что он был разработан более 40 лет назад (в 1972 году) он до сих пор выпускается многими производителями. В этой статье, постараемся подробно осветить вопросы описания и применения таймера NE555.
Умные соединения компаратора, сбрасываемый триггер и инвертирующий усилитель в одной монолитной интегральной микросхеме, наряду с несколькими другими элементами породили почти бессмертные схемы устройств, которые сегодня используется многими радиолюбителями.
555 Таймер был разработан американской компанией Signetics в 1972 году и зарегистрирован на мировом рынке. Два года спустя той же компании был разработана микросхема с обозначением 556, которая объединила в себе два отдельных таймера NE555 имеющих только общие выводы по питанию. Еще позже были разработаны микросхемы 557, 558 и 559 с применением до четырех таймеров NE555 в одном корпусе. Но позже они были сняты с производства и почти забыты.
Интегральная микросхема NE555 разрабатывалась в качестве таймера и содержит в себе комбинацию аналоговых и цифровых элементов в одном кристалле. Выпускается в различном исполнении, начиная от классического DIP корпуса стандартного и SOIC для SMD монтажа и до миниатюрного корпуса версии SSOP или SOT23-5. (Цены на таймер NE555)
Таймер NE555, кроме стандартного исполнения производиться так же в маломощном CMOS исполнении. Схема электропитания NE555 составляет от 4,5 до 15 вольт (18 вольт максимум), а CMOS вариант использует питание от 3 вольт. Максимальная выходная нагрузка выхода для NE555 200мА, у версии маломощного таймера только 20 мА при 9 вольт.
Стабильность работы стандартной версии 555 сильно зависит от качества источника питания. Это не так сильно сказывается в простых схемах с применением таймера, однако, в более сложных конструкциях, желательно устанавливать буферный конденсатор по цепи питания емкостью 100 мкф.
Основные характеристики интегрального таймера NE555
- Максимальная частота более чем 500 кГц.
- Длина одного импульса от 1 мсек до часа.
- Может работать в режиме моностабильного мультвибратора.
- Высокий выходной ток (до 200 мА)
- Регулируемая скважность импульса (отношение периода импульса к его длительности).
- Совместимость с TTL уровнями.
- Температурная стабильность 0,005% на 1 градус Цельсия.
Микросхема NE555 в своем составе содержит чуть более 20 транзисторов и 10 резисторов. На следующем рисунке приводится структурная схема таймера от Philips Semiconductors.
В следующей таблице перечислены основные свойства NE555
Назначение выводов таймера NE555
№2 — Запуск (триггер)
Триггер переключается, если на этом выводе напряжение упадет ниже 1/3 напряжения питания. Данный вывод имеет высокое входное сопротивление, более 2 мОм. В нестабильном режиме используется для контроля напряжения на времязадающем конденсаторе, в бистабильном режиме к нему подключается элемент коммутации, например, кнопка.
№4 – Сброс
Если напряжение на этом выводе ниже 0,7 вольт, то происходит сброс внутреннего компаратора. В случае неиспользования, на данный вывод таймера NE555 необходимо подать напряжение питания. Сопротивление вывода составляет около 10 кОм.
№5 — Контроль
Может использоваться для регулировки длительности импульсов на выходе путем подачи напряжения 2/3 от напряжения питания. Если это вывод не используется, то его желательно подключить к минусу источника питания через конденсатор 0,01 мкф.
№6 — Стоп (компаратор)
Останавливает функционирование таймера, если напряжение на этом выводе будет выше 2/3 напряжения питания. Вывод имеет высокое входное сопротивление, более 10 мОм. Он обычно используется для измерения напряжения на времязадающем конденсаторе.
№7 — Разряд
Вывод через внутренний транзистор подключается к «земле», когда внутренний триггер находится в активном состоянии. Вывод (открытый коллектор) используется в основном для разряда времязадающего конденсатора.
№3 – Выход
Микросхема NE555 имеет всего один выход с током до 200 мА. Это значительно больше, чем у обычных интегральных микросхем. Вывод способен управлять, например, светодиодами (с токоограничивающим резистором), небольшими лампочками, пьезоэлектрическим преобразователем, динамиком (с конденсатором), электромагнитным реле (с защитным диодом) или даже маломощными двигателями постоянного тока. Если требуется более высокий выходной ток, то можно подключить подходящий транзистор в качестве усилителя.
Таймер NE555 — схема включения
Способность вывода 3 таймера NE555 создавать как высокий уровень напряжения, так и низкий (практически 0 вольт) позволяет управлять нагрузкой подключенной как к минусу питания, так и к плюсу. Как пример, подключение светодиодов. Это, конечно, не является обязательным требованием, и нагрузка (светодиод) может быть подключен либо к минусу, либо плюсу питания.
Если таймер NE555 работает в нестабильном состоянии (режим генератора), то к выходу его можно подключить динамик. Он подключается после разделительного конденсатора (например, 100 мкф) и должен иметь сопротивление не менее 64 Ом из-за ограниченного максимального тока нагрузки выхода таймера. Конденсатор предназначен для отделения постоянной составляющей сигнала и проводит только аудиосигнал.
Динамик с сопротивлением катушки ниже чем 64 Ом можно подключить либо через конденсатор с меньшей емкостью (реактивное сопротивление), являющегося дополнительным сопротивлением либо с помощью усилителя. Усилитель также может быть использован для подключения более мощного громкоговорителя.
Как и все интегральных микросхемы, выход таймера NE555 управляющий индуктивной нагрузкой (реле) должен быть защищена от скачков повышенного напряжения, созданное в в момент отключения. Диод (например, 1N4148) всегда подключается параллельно к катушке реле в обратном направлении.
Однако, для микросхемы NE555 требуется второй диод, включенный последовательно с катушкой реле. Он ограничивает низкое напряжение, которое находится на выходе 3 таймера и предотвращает возбуждение реле небольшим током.
Таким диодом может быть, например, 1N4001 (1N4148 диод не подходит) либо светодиод.
(скачено: 3 612)
Микросхема таймер NE555 включает около 20 транзисторов, 15 резисторов, 2 диода. Выходной ток 200 мА, ток потребления примерно на 3 мА больше. Напряжение питания от 4,5 до 18 вольт. Точность таймера не зависит от изменения напряжения питания и составляет не более 1% от расчетного значения.
Datasheet микросхемы NE555, а также калькулятор для расчета обвязки можно скачать в конце статьи.
Назначение выводов:
Вывод №1 — Земля.
Вывод подключается к минусу питания или к общему проводу схемы.
Вывод №2 — Запуск.
Этот вывод является одним из входов №2. При подаче на этот вход импульса низкого уровня, который должно быть не более 1/3 напряжения питания, происходит запуск таймера и на выводе №3 появляется напряжение высокого уровня на время, которое задается внешним сопротивлением Ra+Rb и конденсатором С. Данный режим работы называется — режим моностабильного . Импульс, подаваемый на вывод №2, может быть как прямоугольным, так и синусоидным и по длительности он должен быть меньше чем время заряда конденсатора С.
Вывод №3 — Выход.
Высокий уровень равен напряжению питания минус 1,7 Вольта. Низкий уровень равен примерно 0,25 вольта. Время переключения с одного уровня на другой происходит примерно за 100 нс.
Вывод №4 — Сброс.
При подаче на этот вывод напряжения низкого уровня (не более 0,7в) произойдет сброс таймера и на выходе его установится напряжение низкого уровня. Если в схеме нет необходимости в режиме сброса, то данный вывод необходимо подключить к плюсу питания.
Вывод №5 — Контроль.
Обычно, этот вывод не используется. Однако его применение может значительно расширить функциональность таймера. При подаче напряжения на этот вывод можно управлять длительностью выходных импульсов таймера, а значит отказаться от RC времязадающей цепочки. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в и до напряжения питания. Соответственно на выходе получится FM модулированный сигнал.
Если этот вывод не используется, то его лучше подключить через 0,01мкФ к общему проводу.
Вывод №6 — Стоп.
Этот вывод является одним из входов компаратора №1. При подаче на этот вывод импульса высокого уровня (не менее 2/3 напряжения питания), работа таймера останавливается, и на выходе таймера устанавливается напряжение низкого уровня. Как и на вывод №2, на этот вывод можно подавать импульсы как прямоугольные, так и синусоидные.
Вывод №7 — Разряд.
Этот вывод соединен с коллектором транзистора Т1, эмиттер которого соединен с общим проводом. При открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор закрыт, когда на выходе таймера высокий уровень и открыт, когда на выходе низкий уровень.
Вывод №8 — Питание.
Напряжение питания таймера составляет от 4,5 до16 вольт.
Таймер может работать в двух режимах: моностабильный мультивибратор и генератор прямоугольных импульсов.
1. Моностабильный мультивибратор.
Моностабильный означает, что стабильное состояние у таймера только одно, когда он выключен. Во включенное состояние его можно перевести временно, подав на вход таймера какой-либо сигнал. Время нахождения таймера в активном режиме определяется RC цепочкой.
В начальном состоянии, на выходе таймера (вывод №3) низкий уровень — примерно 0,25 вольт, транзистор Т1 открыт и соответственно конденсатор разряжен. Это состояние таймера стабильное. При поступлении на вход (вывод №2) импульса низкого уровня, включается компаратор №2, который переключает триггер таймера, и как результат на выходе таймера устанавливается высокий уровень. Транзистор Т1 закрывается и через резистор R начинает заряжаться конденсатор С. И пока заряжается конденсатор С на выходе таймера сохраняется высокий уровень. За это время изменения сигнала на входе (вывод №2) не вызовут никакое воздействие на таймер. После того как напряжение на конденсаторе С достигнет 2/3 напряжения питания, включается компаратор №1 и тем самым переключает триггер. В результате на выходе (вывод №3) установится низкий уровень, и таймер восстановит исходное, стабильное состояние. Транзистор Т1 откроется и разрядит конденсатор С.
2. Генератор прямоугольных импульсов.
Таймер генерирует последовательность прямоугольных импульсов определяемых RC цепочкой.
В начальном состоянии конденсатор С разряжен и на входах обоих компараторов низкий уровень, близкий к нулю. Компаратор №2 переключает внутренний триггер и как следствие этого на выходе таймера (вывод №3) устанавливается высокий уровень. Транзистор Т1 закрывается и конденсатор С начинает заряжаться через цепочку резисторов R1 и R2.
Когда, в результате зарядки, напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1 переключает триггер, который в свою очередь устанавливает низкий уровень на выходе таймера (вывод №3). Транзистор Т1 открывается и через резистор R2 начинает разряжаться конденсатор С. Как только напряжение на конденсаторе достигнет 1/3 напряжения питания, компаратор №2 снова переключит триггер и на выходе таймера (вывод №3) снова появится высокий уровень. Транзистор Т1 закроется и конденсатор С снова начнет заряжаться.
Теория и практика применения таймера 555. Часть первая.
Часть первая. Теоретическая.Наверное нет такого радиолюбителя (Мяу, и его кота! — Здесь и далее прим. Кота), который не использовал бы в своей практике эту замечательную микросхему. Ну а уж слышали о ней так точно все.
Её история началась в 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер» (The IC Time Machine ).
На тот момент это была единственная «таймерная» микросхема доступная массовому потребителю. Сразу после поступления в продажу микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.
За прошедшие 35 лет практически каждый уважающий себя производитель полупроводников считал свои долгом выпустить свою версию этой микросхемы, в том числе и по более современным техпроцессам. Например, компания Motorola выпускает CMOS версию MC1455. Но при всем при этом в функциональности и расположении выводов никаких различий у всех этих версий нет. Все они полные аналоги друг друга.
Наши отечественные производители тоже не остались в стороне и выпускают эту микросхему под названием КР1006ВИ1.
А вот список заморских производителей, которые выпускают таймер 555 и их коммерческие обозначения:
Производитель | Название микросхемы |
Texas Instruments |
В некоторых случаях указано два названия. Это означает, что выпускается две версии микросхемы — гражданская, для коммерческого применения и военная. Военная версия отличается большей точностью, широким диапазоном рабочих температур и выпускается в металлическом или керамическом корпусе. Ну и дороже, разумеется.
Начнем с корпуса и выводов.
Микросхема выпускается в двух типах корпусов — пластиковом DIP и круглом металлическом. Правда, в металлическом корпусе она все же выпускалась — сейчас остались только DIP-корпуса. Но на случай, если вам вдруг достанется такое счастье, привожу оба рисунка корпуса. Назначения выводов одинаковые в обоих корпусах. Помимо стандартных, выпускается еще две разновидности микросхем — 556 и 558. 556 — это сдвоенная версия таймера, 558 — счетверенная.
Функциональная схема таймера показана на рисунке прямо над этим предложением.
Микросхема содержит около 20 транзисторов, 15 резисторов, 2 диода. Состав и количество компонентов могут несущественно меняться в зависимости от производителя.
Выходной ток может достигать 200 мА, потребляемый — на 3- 6 мА больше. Напряжение питания может изменяться от 4,5 до 18 вольт. При этом точность таймера практически не зависит от изменения напряжения питания и составляет 1% от расчетного. Дрейф составляет 0,1%/вольт, а температурный дрейф — 0,005%/С.
Теперь мы посмотрим на принципиальную схему таймера и перемоем ему кости, вернее ноги — какой вывод для чего нужен и что все это значит.
Итак, выводы (Мяу! Это он про ноги… ):
1. Земля. Особо комментировать тут нечего — вывод, который подключается к минусу питания и к общему проводу схемы.
2. Запуск. Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, см. функциональную схему) и конденсатором С — это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.
3. Выход. Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий — высокий уровень происходит приблизительно за 100 нс.
4. Сброс. При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и в Африке reset. Входное напряжение не зависит от величины напряжения питания — это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод настоятельно рекомендуется подключить к плюсу питания, пока в нем нет необходимости.
5. Контроль. Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.
6. Останов. Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние (Мяу! Тихой паники?! ) низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.
7. Разряд. Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.
8. Плюс питания. Как и в случае с выводом 1 особо ничего не скажешь. Напряжение питания таймера может находиться в пределах 4,5-16 вольт. У военных версий микросхемы верхний диапазон находится на уровне 18 вольт.
Итак, предположим, что мы подали питание на микросхему. Вход находится в состоянии высокого уровня, на выходе — низкий уровень, конденсатор С разряжен. Все спокойно, все спят. И тут БАХ — мы подаем серию прямоугольных импульсов на вход таймера. Что происходит?
Первый же импульс низкого уровня переключает выход таймера в состояние высокого уровня. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резистор R. Все то время пока конденсатор заряжается, выход таймера остается во включенном состоянии — на нем сохраняется высокий уровень напряжения. Как только конденсатор зарядится до 2/3 напряжения питания, выход микросхемы выключается и на нем появляется низкий уровень. Транзистор T6 открывается и конденсатор С разряжается.
Однако есть два нюанса, которые показаны на графике пунктирными линиями.
Первый — если после окончания заряда конденсатора на входе сохраняется низкий уровень напряжения — в таком случае выход остается активным — на нем сохраняется высокий уровень до тех пор, пока на входе не появится высокий уровень. Второй — если мы активируем вход Сброс напряжением низкого уровня. В этом случае выход сразу же выключится, не смотря на то, что конденсатор все еще заряжается.
Так, лирическую часть закончили — перейдем к суровым цифрам и расчетам. Как же нам определить время, на которое будет включаться таймер и номиналы RC цепочки, необходимые для задания этого времени?
Время, за которое конденсатор заряжается до 63,2% (2/3) напряжения питания называется временной константой, обозначим её буковкой t. Вычисляется это время потрясающей по своей сложности формулой.
Вот она: t = R*C , где R — сопротивление резистора в МегаОм-ах, С — емкость конденсатора в микроФарад-ах. Время получается в секундах.
К формуле мы еще вернемся, когда будем подробно рассматривать режимы работы таймера. А сейчас пока посмотрим на простенький тестер для этой микросхемы, который запросто скажет вам — работает ваш экземпляр таймера или нет.
Если после включения питания мигают оба светодиода — значит все хорошо и микросхема во вполне рабочем состоянии. Если же хотя бы один из диодов не горит или наоборот — горит постоянно, значит такую микросхемы можно спустить в унитаз с чистой совестью или вернуть назад продавцу, если вы её только что купили. Напряжение питания — 9 вольт. Например, от батареи «Крона».
Теперь рассмотрим режимы работы этой микросхемы.
Собственно говоря, режимов у нее две штуки. Первый — моностабильный мультивибратор . Моностабильный — потому что стабильное состояние у такого мультивибратора одно — выключен. А во включенное состояние мы его переводим временно, подав на вход таймера какой-либо сигнал. Как уже отмечалось выше, время, на которое мультивибратор переходит в активное состояние, определяется RC цепочкой. Эти свойства могут быть использованы в самых разнообразных схемах. Для запуска чего-либо на определенное время или наоборот — для формирования паузы на заданное время.
Второй режим — это генератор импульсов. Микросхема может выдавать последовательность прямоугольных импульсов, параметры которых определяются все той же RC цепочкой. (Мяу! Хочу цепочку. На хвост. Ну или браслетик. Антистатический. )
Все-таки Кот у нас — зануда.
Начнем сначала, то есть с первого режима.
Схема включения микросхемы показана на рисунке. RC цепочка включена между плюсом и минусом питания. К соединению резистора и конденсатора подключен вывод 6 — Останов. Это вход компаратора №1. Сюда же подключен вывод 7 — Разряд. Входной импульс подается на вывод 2 — Запуск. Это вход компаратора №2. Совершенно простецкая схема — один резистор и один конденсатор — куда уж проще? Для повышения помехоустойчивости можно подключить вывод 5 на общий провод через конденсатор емкостью 10нФ.
Итак, в исходном состоянии, на выходе таймера низкий уровень — около нуля вольт, конденсатор разряжен и заряжаться не хочет, поскольку открыт транзистор Т6. Это состояние стабильное, оно может продолжаться неопределенно долгое время.
При поступлении на вход импульса низкого уровня, срабатывает компаратор №2 и переключает внутренний триггер таймера. В результате на выходе устанавливается высокий уровень напряжения. Транзистор Т6 закрывается и начинает заряжаться конденсатор С через резистор R. Все то время, пока он заряжается, на выходе таймера сохраняется высокий уровень. Таймер не реагирует ни на какие внешние раздражители, буде они поступают на вывод 2. То есть, после срабатывания таймера от первого импульса дальнейшие импульсы не оказывают никакого действия на состояние таймера — это очень важно.
Так, что там у нас происходит то? А, да — заряжается конденсатор. Когда он зарядится до напряжения 2/3Vпит, сработает компаратор №1 и в свою очередь переключит внутренний триггер. В результате на выходе установится низкий уровень напряжения, и схема вернется в свое исходное, стабильное состояние. Транзистор Т6 откроется и разрядит конденсатор С.
Перейдем ко второму режиму.
В эту схему добавлен еще один резистор. Входы обоих компараторов соединены и подключены к соединению резистора R2 и конденсатора. Вывод 7 включен между резисторами. Конденсатор заряжается через резисторы R1 и R2.
Теперь посмотрим, что же произойдет, когда мы подадим питание на схему. В исходном состоянии конденсатор разряжен и на входах обоих компараторов низкий уровень напряжения, близкий к нулю. Компаратор №2 переключает внутренний триггер и устанавливает на выходе таймера высокий уровень. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резисторы R1 и R2.
Когда напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1 в свою очередь переключает триггер и выключает выход таймер — напряжение на выходе становится близким к нулю. Транзистор Т6 открывается и конденсатор начинает разряжаться через резистор R2. Как только напряжение на конденсаторе опустится до 1/3 напряжения питания, компаратор №2 опять переключит триггер и на выходе микросхемы снова появится высокий уровень. Транзистор Т6 закроется и конденсатор снова начнет заряжаться… фууу, чет у меня голова закружилась уже.
Короче говоря, в результате всего этого шаманства, на выходе мы получаем последовательность прямоугольных импульсов.
Частота импульсов, как вы вероятно уже догадались, зависит от величин C, R1 и R2.
Определяется она по формуле:
Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. t = t1+t2 .
Частота и период — понятия обратные друг другу и зависимость между ними следующая:
f = 1/t .
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C ;
t2 = 0.693R2C ;
Ну, с теоретической частью вроде бы покончили. В следующей части рассмотрим конкретные примеры включения таймера 555 в различных схемах и для самого разнообразного использования.
Если у вас еще остались вопросы — их можно задать .
Как вам эта статья? |
Теория и практика применения таймера 555.Часть вторая.
Часть вторая. Практическая.В этой части мы продолжим ездить по вашим мозгам на таймере 555, однако уже с практической точки зрения — рассмотрим конкретные схемы включения микросхемы.
Итак,
Схема 1:
Эта штуковина начинает работать (пищать) если по каким-то причинам станет вдруг темно. То есть, на фоторезистор LDR1 перестанет попадать свет или световой поток уменьшится до некоего критического уровня.
Эта схема предназначена для раздражения слухового нерва в том случае, если напряжение на входе «Контроль» упадет ниже 9 вольт.
Простейший вид узла сигнализации. Если датчик S2 замкнется, на выходе таймера появится высокий уровень и останется таковым, даже если датчик вернется в исходное состояние. Вернуть низкий уровень на выход микросхемы можно кнопкой «Сброс».
Аналогична Схеме 1, правда можно подстраивать частоту тона пищания резистором R2.
Метроном. Издает мерное тикание, чтобы начинающие музыканты не сбивались с ритма, ну или хорошо спали. Частота тиков подстраивается резистором R1.
10-минутный таймер. Запускается нажатием на кнопку «Сброс-запуск», при этом загорается светодиод HL2, например — зеленый. По истечении временного интервала, загорится светодиод HL1, например — красный. Интервал можно подстроить резистором R4.
Триггер Шмидта. Полезная вещь, если вам необходимо получить прямоугольные импульсы из синусоидального сигнала, даже искаженного и зашумленного.
Генератор повышенной точности и стабильности. Частота подстраивается резистором R1. Диоды — любые германиевые. Можно также применить диоды Шоттки.
Детектор пропущенных импульсов. Может пригодиться. Транзистор можно заменить на отечественный КТ3107.
Твухтональная сирена. Занятная схема для экспериментов с включением двух таймеров сразу.
Ну пока все.
Вопросы, как обычно, складываем
Схемы NE555. Таймер на микросхеме NE555 (включения и выключения)
При современном развитии электроники в Китае, купить, кажется, можно все, что душе угодно: начиная от домашних кинотеатров и компьютеров и заканчивая такими простейшими изделиями, как электрические розетки и вилки.
Где-то между ними находятся , мигающие елочные гирлянды, часы с термометрами, регуляторы мощности, терморегуляторы, фотореле и многое другое. Как говорил великий сатирик Аркадий Райкин в монологе про дефицит: «Пусть все будет, но пусть чего-то не хватает!» В общем, не хватает как раз того, что входит в «репертуар» простых радиолюбительских конструкций.
Несмотря на такую конкуренцию со стороны китайской промышленности, интерес самодеятельных конструкторов к этим простым конструкциям не потерян до сих пор. Они продолжают разрабатываться и в ряде случаев находят достойное применение в устройствах малой домашней автоматизации. Многие из этих устройств появились на свет благодаря (отечественный аналог КР1006ВИ1).
Это уже упомянутые фотореле, различные простые системы сигнализации, преобразователи напряжения, ШИМ — регуляторы двигателей постоянного тока и многое другое. Далее будут описаны несколько практических конструкций, доступных для повторения в домашних условиях.
Фотореле на таймере 555
Фотореле, показанное на рисунке 1, предназначено для управления освещением.
Рисунок 1.
Алгоритм управления традиционный: вечером при снижении освещенности лампочка включается. Выключение лампочки происходит утром, когда освещенность достигнет нормального уровня. Схема состоит из трех узлов: измеритель освещенности, узел включения нагрузки и блок питания. Описание работы схемы лучше начать задом — наперед, — блок питания, узел включения нагрузки и измеритель освещенности.
Блок питания
В подобных конструкциях, как раз тот самый случай, когда резонно применить, нарушая все рекомендации техники безопасности, блок питания, не имеющий гальванической развязки от сети. На вопрос, почему такое возможно, ответ будет таков: после настройки устройства никто в него не полезет, все будет находиться в изолирующем корпусе.
Наружных регулировок тоже не предвидится, после настройки останется только закрыть крышку и повесить готовое на место, пусть себе работает. Конечно, если есть необходимость, то единственную настройку «чувствительность», можно вывести наружу при помощи длинной пластмассовой трубки.
В процессе настройки безопасность можно обеспечить двумя путями. Либо воспользоваться развязывающим трансформатором () либо запитать устройство от лабораторного блока питания. При этом сетевое напряжение и лампочку можно не подключать, а срабатывание фотоэлемента контролировать по светодиоду LED1.
Схема блока питания достаточно проста. Она представляет мостовой выпрямитель Br1 с гасящим конденсатором C2 на переменное напряжение не менее 400В. Резистор R5 предназначен для сглаживания броска тока через конденсатор C14 (500,0мкФ * 50В) при включении устройства, а также «по совместительству» является предохранителем.
Стабилитрон D1 предназначен для стабилизации напряжения на C14. В качестве стабилитрона подойдет 1N4467 или 1N5022A. Для выпрямителя Br1 вполне подойдут диоды 1N4407 или любой маломощный мост, с обратным напряжением 400В и выпрямленным током не менее 500мА.
Конденсатор C2 следует зашунтировать резистором сопротивлением около 1МОм (на схеме не показан), чтобы после отключения устройства не «щелкало» током: убить, конечно, не убьет, но все же достаточно чувствительно и неприятно.
Узел включения нагрузки
Выполнен с применением специализированной микросхемы КР1182ПМ1А, которая позволяет сделать немало полезных устройств. В данном случае она используется для управления симистором КУ208Г. Лучшие результаты дает импортный «аналог» BT139 — 600: ток нагрузки 16А при обратном напряжении 600В, а ток управляющего электрода намного меньше, чем у КУ208Г (иногда КУ208Г приходится подбирать по этому показателю). BT139 способен выдерживать импульсные перегрузки до 240А, что делает его исключительно надежным при работе в различных устройствах.
Если BT139 установлен на радиаторе, то коммутируемая мощность может достигать 1КВт, без радиатора допустимо управление нагрузкой до 400Вт. В том случае, когда мощность лампочки не превышает 150Вт, можно вполне обойтись без симистора. Для этого правый по схеме вывод лампы La1 следует присоединить непосредственно в выводам 14, 15 микросхемы, а резистор R3 и симистор T1 из схемы исключить.
Поехали дальше. Микросхема КР1182ПМ1А управляется через выводы 5 и 6: когда они замкнуты лампа погашена. Тут может быть обычный контактный выключатель, правда, работающий наоборот, — выключатель замкнут, а лампа погашена. Так намного проще запомнить эту «логику».
Если этот контакт разомкнуть, то начинает заряжаться конденсатор C13 и, по мере возрастания напряжения на нем, плавно возрастает яркость свечения лампы. Для ламп накаливания это очень актуально, поскольку увеличивает срок их службы.
Подбором резистора R4 можно регулировать степень заряда конденсатора C13 и яркость свечения лампы. В случае использования энергосберегающих ламп конденсатор C13 можно не ставить, как собственно и саму КР1182ПМ1А. Но об этом будет сказано ниже.
Теперь приближаемся к главному. Вместо реле, просто из стремления избавиться от контактов, управление было поручено транзисторному оптрону АОТ128, который с успехом можно заменить импортным «аналогом» 4N35, правда, при такой замене номинал резистора R6 следует увеличить до 800КОм…1МОм, поскольку при 100КОм импортный 4N35 работать не будет. Проверено практикой!
Если транзистор оптрона будет открыт, его переход К-Э, подобно контакту, замкнет выводы 5 и 6 микросхемы КР1182ПМ1А и лампа будет выключена. Чтобы открыть этот транзистор требуется засветить светодиод оптрона. В общем, получается все наоборот: светодиод погашен, а лампа светит.
На основе 555 получается очень просто. Для этого достаточно на входы таймера подключить соединенные последовательно фоторезистор LDR1 и подстроечный резистор R7, с его помощью настраивается порог срабатывания фотореле. Гистерезис переключения (темно — светло) обеспечивается самим таймером, его . Помните, эти «волшебные» цифры 1/3U и 2/3U?
Если фотодатчик находится в темноте, его сопротивление велико, поэтому напряжение на резисторе R7 низкое, что приводит к тому, что на выходе таймера (вывод 3) устанавливается высокий уровень и светодиод оптрона погашен, а транзистор закрыт. Следовательно, лампочка будет включена, как было написано ранее в подзаголовке «Узел включения нагрузки».
В случае освещения фотодатчика его сопротивление становится маленьким, порядка нескольких КОм, поэтому напряжение на резисторе R7 возрастает до 2/3U, и на выходе таймера появляется низкий уровень напряжения, — светодиод оптрона засветился, а лампа-нагрузка погасла.
Вот тут кто-то может скажет: «Сложновато будет!». Но почти всегда все можно упростить до предела. Если предполагается зажигать энергосберегающие лампы, то плавное включение не требуется, и можно использовать обычное реле. А кто сказал, что только лампы и только включать?
Если реле имеет несколько контактов, то можно делать что душе угодно, и не только включать, но и выключать. Такая схема показана на рисунке 2 и в особых комментариях не нуждается. Реле подбирается из условий, чтобы ток катушки был не более 200мА при рабочем напряжении 12В.
Рисунок 2.
Схемы предварительной установки
В некоторых случаях требуется что-либо включать с некоторой задержкой относительно включения питания устройства. Например, сначала подать напряжение на логические микросхемы, и через некоторое время питание выходных каскадов.
Такие задержки реализуются на таймере 555 достаточно просто. Схемы таких задержек и временные диаграммы работы показаны на рисунках 3 и 4. Пунктирной линией показаны напряжения источника питания, а сплошной на выходе микросхемы.
Рисунок 3. После включения питания на выходе с задержкой появляется высокий уровень.
Рисунок 4. После включения питания на выходе с задержкой появляется низкий уровень.
Чаще всего такие «установщики» используются как составные части более сложных схем.
Устройства сигнализации на таймере 555
Схема сигнализатора представляет собой , с которым мы уже давно познакомились.
Рисунок 5.
В емкость с водой, например, бассейн погружены два электрода. Пока они находятся в воде, сопротивление между ними невелико (вода хороший проводник), поэтому конденсатор C1 зашунтирован, напряжение на нем близко к нулю. Также нулевое напряжение на входе таймера (выводы 2 и 6), следовательно на выходе (вывод 3) установится высокий уровень, генератор не работает.
Если уровень воды почему-то упадет и электроды окажутся в воздухе, сопротивление между ними увеличится, в идеале просто обрыв, и конденсатор C1 шунтироваться не будет. Поэтому наш мультивибратор заработает, — на выходе появятся импульсы.
Частота этих импульсов зависит от нашей фантазии и от параметров RC цепи: это будет либо мигающая лампочка, либо противный писк динамика. Попутно с этим можно включить долив воды. Чтобы избежать перелива и вовремя отключить насос к устройству необходимо добавить еще один электрод и подобную же схему. Тут уже читателю можно поэкспериментировать.
Рисунке 6.
При нажатии на концевой выключатель S2 на выходе таймера появляется напряжение высокого уровня, и останется таковым даже если S2 отпустить и больше не удерживать. Из этого состояния устройство можно вывести только нажатием на кнопку «Сброс».
Пока на этом остановимся, может кому потребуется время, чтобы взять паяльник и попробовать спаять рассмотренные устройства, исследовать, как они работают, хотя бы поэкспериментировать с параметрами RC цепей. Послушать, как пищит динамик или мигает светодиод, сравнить, что дают расчеты, намного ли практические результаты отличаются от расчетных.
Микросхема интегрального таймера NE555 — это настоящий прорыв в области электроники. Она была создана в 1972 году сотрудником компании Signetics Гансом Р. Камензиндом. Изобретение не утратило своей актуальности и по сегодняшний день. Позднее устройство стало основой таймеров с удвоенной (IN556N) и счетверенной конфигурацией (IN558N).
Без сомнения, детище электронщика позволило занять ему свою видную нишу в истории технических изобретений. По уровню продаж данное устройство с момента своего появления превзошло любое другое. На второй год существования микросхема 555 стала самой покупаемой деталью.
Лидерство сохранялось и во все последующие годы. Микросхема 555, применение которой возрастало с каждым годом, продавалась очень хорошо. К примеру, в 2003 году было реализовано более чем 1 миллиард экземпляров. Конфигурация самого агрегата за это время не изменилась. Она существует свыше 40 лет.
Появление устройства стало неожиданностью для самого создателя. Камензинд преследовал цель сделать гибкую в использовании ИС, но, что она окажется столь многофункциональной, он не ожидал. Изначально она употреблялась как таймер или же Микросхема 555, применение которой увеличивалось быстрыми темпами, сегодня используется от игрушек для детей до космических кораблей.
Устройство отличает выносливость, поскольку оно построено на основе биполярной технологии, и для применения его в космосе специально предпринимать ничего не требуется. Только испытательные работы проводятся с особой строгостью. Так, при тесте схемы NE 555 для ряда приложений создаются индивидуальные пробные спецификации. При производстве схем не существует никаких различий, но подходы при выходном контроле заметно разнятся.
Появление схемы в отечественной электронике
Первое упоминание об инновации в советской литературе по радиотехнике появилось в 1975 году. Статью об изобретении опубликовали в журнале «Электроника». Микросхема 555, аналог которой был создан советскими электронщиками в конце 80-х годов прошлого столетия, в отечественной радиоэлектронике получила название КР1006ВИ1.
В производстве эту деталь употребляли при сборке видеомагнитофонов «Электроника ВМ12». Но это был не единственный аналог, так как многие производители во всем мире создавали подобное устройство. Все агрегаты имеют обячный корпус DIP8, а также корпус малых размеров SOIC8.
Технические характеристики схемы
Микросхема 555, графическое изображение которой представлено ниже, включает в себя 20 транзисторов. На блок-схеме устройства находятся 3 резистора с сопротивлением 5кОм. Отсюда и название прибора «555».
Основными техническими характеристиками изделия являются:
- напряжение питания 4,5-18В;
- максимальный показатель тока на выходе 200 мА;
- потребляемая энергия составляет до 206 мА.
Если его рассмотреть на выход, то это цифровое устройство. Он может находиться в двух положениях — низком (0В) и высоком (от 4,5 до 15 В). В зависимости от блока питания может показатель достигать и 18 В.
Для чего нужно устройство?
NE 555 микросхема — унифицированное устройство с широким спектром применения. Его часто используют при сборке различных схем, и это только придает изделию популярность. Соответственно, повышается уровень спроса потребителя. Такая известность вызвала падение цены на таймер, что радует многих мастеров.
Внутреннее строение таймера 555
Что же заставляет это устройство функционировать? Каждый из выводов агрегата подсоединен к цепи, содержащей 20 транзисторов, 2 диода и 15 резисторов.
Удвоенный формат модели
Следует отметить, что NE 555 (микросхема) выпускается в удвоенном формате под названием 556. Она содержит два свободных IC.
Таймер 555 оснащен 8 контактами, тогда как модель 556 содержит 14 контактов.
Режимы работы устройства
Микросхема 555 обладает тремя режимами работы:
- Моностабильный режим микросхемы 555. Он работает как одноразовый односторонний. Во время функционирования выбрасывается импульс заданной длины как ответ на вход триггера при нажимании кнопки. Выход пребывает в низком напряжении до включения триггера. Отсюда он и получил название ждущий (моностабильный). Такой принцип функционирования сохраняет устройство в бездействии до включения. Режим обеспечивает включение таймеров, переключателей, сенсорных переключателей, делителей частоты и др.
- Нестабильный режим является автономной функцией устройства. Он позволяет схеме пребывать в генераторном режиме. Напряжение в выходе изменчиво: то низкое, то высокое. Эта схема применима при надобности задавания устройству толчков прерывистого характера (при недолговременном включении и выключении агрегата). Режим используется при включении ламп на светодиодах, функционирует в логической схеме часов и др.
- Бистабильный режим, или же триггер Шмидта. Понятно, что он работает по системе триггера при отсутствии конденсатора и обладает двумя устойчивыми состояниями, высоким и низким. Низкий показатель триггера переходит в высокий. При сбрасывании низкого напряжения система устремляется к низкому состоянию. Эта схема применима в сфере железнодорожного строительства.
Выводы таймера 555
Генератор микросхема 555 включает восемь выводов:
- Вывод 1 (земля). Он подсоединен к минусовой стороне питания (общий провод схемы).
- Вывод 2 (триггер). Он подает высокое напряжение на время (все зависит от и конденсатора). Эта конфигурация и является моностабильной. Вывод 2 контролирует вывод 6. Если напряжение в обоих низкое, то на выходе оно будет высоким. В противном случае, при высоком напряжении в выводе 6 и низком в выводе 2, выход на таймере будет низким.
- Вывод 3 (выход). Выходы 3 и 7 располагаются в фазе. Подавая высокое напряжение с показателем примерно 2 В и низкое с 0,5 В будет получаться до 200 мА.
- Вывод 4 (сброс). Подача напряжения на этот выход низка, несмотря на режим работы таймера 555. Во избежание случайных сбросов, следует производить подключение этого выхода к плюсовой стороне при использовании.
- Вывод 5 (контроль). Он открывает доступ к Это вывод в российской электронике не применяется, но при его подключении можно достичь широких возможностей управления устройством 555.
- Вывод 6 (остановка). Входит в компаратор 1. Он противоположен выводу 2, применим для остановки устройства. При этом получается низкое напряжение. Это вывод может принимать синусоидальные и прямоугольные импульсы.
- Вывод 7 (разряд). Он подсоединяется к транзисторному коллектору Т6, а эмиттер последнего заземлен. При открытом транзисторе конденсатор разряжается до его закрытия.
- Вывод 8 (плюсовая сторона питания), которая составляет от 4,5 до 18 В.
Применение выхода Output
Выход 3 (Output) может пребывать в двух состояниях:
- Осуществляется подключение цифрового выхода прямо к входу другого драйвера на цифровой основе. Цифровой выход может осуществлять управление другими устройствами при посредстве нескольких дополнительных составляющих (напряжение источника питания равно 0 В).
- Показатель напряжения во втором состоянии высок (Vcc на источнике питания).
Возможности агрегата
- При понижении напряжения в Output ток направляется через устройство и осуществляет его подключение. Это и есть понижение, так как ток производится из Vcc и проходит сквозь агрегат до 0 В.
- При возрастании Output ток, проходя через прибор, обеспечивает его включение. Этот процесс можно назвать источником текущих. Электроэнергия в этом случае производится от таймера и идет через прибор до 0 В.
Возрастание и понижение могут функционировать вместе. Таким образом достигается поочередное включение и выключение прибора. Такой принцип применим при функционировании ламп на светодиодах, реле, двигателей, электромагнитов. К минусам такого свойства можно отнести то, что прибор надо подключать к Output разными способами, так как выход 3 может выступать как в роли потребителя, так и в роли источника тока до 200 мА. Используемый блок питания дожжен подать достаточный ток для обоих устройств и таймера 555.
Микросхема LM555
Микросхема 555 Даташит (LM555) обладает широкими функциональными возможностями.
Она используется от генераторов прямоугольных импульсов с изменяемым показателем скважности и реле и задержкой срабатывания до сложных конфигураций ШИМ генераторов. Микросхема 555 цоколевка и внутреннее строение отражены на рисунке.
Уровень точности приспособления равен 1% от расчетного показателя, что является оптимальным. На такой агрегат, как NE 555 микросхема даташит, не воздействуют температурные условия окружающей среды.
Аналоги микросхемы NE555
Микросхема 555, аналог которой в России был назван КР1006ВИ1, представляет интегральное устройство.
Среди рабочих блоков следует выделить RS-триггер (DD1), компараторы (DA1 и DA2), на выходе, основанный на двухтактной системе и дополняющий транзистор VT3. Назначение последнего заключается в сбросе задающего время конденсатора при использовании агрегата в роли генератора. Сбрасывание триггера происходит при подаче логической единицы (Юпит/2…Юпит) на входы R.
В случае сброса триггера на выходе устройства (вывод 3) будет наблюдаться низкий показатель напряжения (транзистор VT2 открыт).
Уникальность схемы 555
При функциональной схеме устройства очень трудно понять, в чем же заключается ее необычность. Оригинальность устройства состоит в том, что оно обладает особым управлением триггера, а именно формирует управляющие сигналы. Их создание происходит на компараторах DA1 и DA2 (на один из входов, на который подано опорное напряжение). Для формирования управляющих сигналов на входах триггера (выходах компараторов) следует получить сигналы с высоким напряжением.
Как произвести запуск устройства?
Чтобы запустить таймер, на выход 2 надо подать напряжение с показателем от 0 до 1/3 Юпит. Этот сигнал способствует срабатыванию триггера, и при выходе создается сигнал с высоким напряжением. Сигнал выше предельного показателя не вызовет каких-либо изменений в схеме, так как опорное напряжение для компаратора равно DA2 и составляет 1/3 Юпит.
Остановить таймер можно при сбрасывании триггера. С этой целью напряжение на выходе 6 должно превышать показатель 2/3 Юпит (опорное напряжение для компаратора DA1 составляет 2/3 Юпит). При сбросе установится сигнал с низким напряжением и разряд конденсатора, задающего время.
Регулировать опорное напряжение можно посредством подключения дополнительного сопротивления или источника питания к выводу агрегата.
В последнее время среди владельцев автомобилей стало модным сматывать на спидометре пройденный машиной километраж.
Многие интересуются, подмотка спидометра на 555 микросхеме выполнима ли самостоятельно?
Эта процедура не представляет особой трудности. Для его изготовления используется микросхема 555, которая может функционировать в качестве Отдельные составляющие схемы можно брать с показателями, отклоняющимися на 10-15 % от расчетных значений.
Тебе не нужен контроллер, говорили они. Делай все на таймерах NE555, говорили они. Ну я и сделал — похоже, только чтобы убедиться, что получается конструкция, потрясающая по своему сокрушительному воздействию на мою неокрепшую психику.
Обзор, если этот текст можно так назвать, будет не слишком длинным. Поскольку в нем лишь констатация моего полного и безоговорочного провала в сборке элементарных схем и демонстрация того, что по крайней мере шесть из двадцати чипов вполне себе работоспособны.
Еще обратите внимание: похоже, магазин недавно изменил правила, поскольку теперь у них минимальный заказ с бесплатной доставкой — от $6, а если меньше, то за доставку возьмут $1,5. Когда я покупал, то списали только стоимость покупки, то есть $0,59, и все.
В двух блистерах ровно двадцать штук. С одной стороны каждый блистер замотан скотчем, с другой закрыт резиновой пробкой:
Вообще, изначально таймеры я покупал, чтобы сделать простенький генератор для поиска короткого замыкания в проводке — знакомые заинтересовались. Суть прибора, если я правильно понял, в том, что цепь до КЗ представляет собой антенну, сигнал от которой можно послушать с обычным СВ/ДВ приемником.
Где писк прекратился — примерно там и замыкание. Вот так это выглядит на практике у товарища, по стопам которого я и планировал идти:
Но потом знакомые с потребностью решили, что им все не так уж и нужно. Или еще что-то решили, а я настаивать не стал. И огорчаться тоже: вы же видели, сколько стоят таймеры (чуть больше половины доллара за 20 штук) — какое огорчение?
Обычные DIP8:
Поэтому решил поразвлекаться другим способом и посмотрел, что вообще делают из NE555. А делают, как выяснилось, массу всего. Всяческие сигнализации, индикаторы напряжения, указатели пропущенных импульсов. В общем, я впечатлился.
Ну а так как все описывают примерно одно и то же, то вот вам пара ссылок РадиоКота: и . Схемы — во второй.
Предполагается, что популярность NE555 объясняется тем, что это проверенная годами (точнее — уже 45 годами) конструкция, которая обескураживающе просто конфигурируется и довольно точно соблюдает характеристики вне зависимости от питающего напряжения, которое может быть в диапазоне от 4,5В до 16В у обычной версии (но есть варианты). То есть, напряжение гуляет, а частота — скорее стабильна, чем нет.
Фактически, чтобы таймер заработал, нужна пара деталей и любой подходящий источник питания — очень привлекательно, чтобы сделать какую-нибудь фиговину без особых хлопот.
Как по мне, так с микроконтроллером хлопот еще меньше, но в комментариях к рассказу про «Пищаль» я получил и потерял покой. Понял, что должен попробовать хотя бы для того, чтобы успокоиться.
Итак, идея была проста — таймер кормления котов. Которые, потеряв всякий стыд, стали требовать еду чуть ли не каждые полчаса, а съедая по три сухаря, довольные расходились. По мнению ветеринара это не очень полезно (а по нашему — еще и чрезвычайно хлопотно), поэтому необходимо было вернуть им режим питания на место. Ну как на место: кормить хотя бы не чаще, чем раз в пять-шесть часов.
Следить по часам, конечно, не сложно. Однако, во-первых, ситуацию осложняет тот факт, что если днем кормление по часам еще более-менее проходит, то ночью — уже не совсем, поскольку у одного кота, скажем так, сложный характер. Именно — он идет и скребет когтями по батарее, и даже если бы я решил не обращать внимания на данный сомнительного качества музыкальный эксперимент, соседей жалко.
То есть, ночью надо вставать и снова засекать время, а в полубессознательном состоянии это немного затруднительно.
Во-вторых, не все коты такие скандальные, поэтому некоторые просто не приходят вместе с тем вот возмутителем спокойствия. И получается, что интервалы у всех разные, а по справедливости неплохо было бы покормить через установленное время и тех, кто пропустил внеочередной прием пищи.
Поэтому я придумал сделать кучку независимых таймеров на фиксированное время — по одному на кота. И чтобы вот так: пришел кот, выдаешь ему еду, нажимаешь на кнопку, загорелась лампочка. Как лампочка погасла, кота снова можно покормить.
Как несложно догадаться, это один из основных вариантов работы таймера. Называть его можно по-разному: можно калькой из — моностабильный, можно — одновибратором, можно — ждущим мультивибратором.
Суть от этого не меняется: от NE555 требуется, по сути, выдать только один импульс требуемой продолжительности.
Поэтому за основу я взял схему таймера из :
Но немного упростил ее, избавившись от подстроечного резистора (поскольку у меня фиксированный интервал) и второго светодиода — за ненадобностью. Заодно поменял номиналы времязадающей цепочки, сверившись все с той же документацией, которая сообщает, что для расчета примерной длительности импульса следует воспользоваться формулой y t = 1.1RC.
Поиграв с шрифтами номиналами деталек, имеющихся в бутике Чип-и-Дип установил, что для устраивающего всех пятичасового интервала вполне подойдут конденсатор емкостью 3300 мкФ и резистор 5,1 МОм:
T = 1,1*0,0033*5100000 = 18513 сек = 5,14 час.
Реальность, однако оказалась немного не совпадающей с теорией. Собранный по этой схеме и с этими номиналами таймер и после пяти часов продолжал работать. Терпения дождаться окончания его работы у меня не хватило, поэтому я предположил, что NE555 не очень хорошо работает с большими номиналами.
Беглое гугление показало, что таки да — это возможно, однако проблем не должно было быть (теоретически) при сопротивлении вплоть до 20 МОм при напряжении питания 15 В. Поэтому я продолжил эксперименты и выяснил, что в моем случае формула получается примерно такая:
И оказался очень себе признателен, что купил не только 5,1 МОм, но и на всякий случай ближайшие номиналы — 4,7 МОм и 3,9 МОм. Последний по счастью как раз и подошел для необходимого интервала.
С этими номиналами (3300 мкФ и 3,9 МОм) я и собрал блок таймеров с лампочками и кнопочками. Все соединил общей линией питания, больше у них точек соприкосновения нет (ну, по крайней мере, старался, чтобы не было). А так как собирал внавес, то на каждом шаге проверял себя мультиметром и был почти спокоен, когда запускал первый из таймеров.
Получилось вот так (я предупреждал в самом начале):
Включился он как и положено, поэтому я распаял оставшиеся кнопочки и лампочки, включил. Понажимал на кнопочки. Светодиоды включились точно так, как и должны были: нажимаешь кнопку — включился, и так все.
И тут я совершил большую ошибку. Не сделал еще несколько тестовых запусков, а просто огорчился, что не очень хорошо припаял провода к кнопкам, и решил их перепаять. Поэтому я пока не знаю, что именно случилось: то ли изначально сделал что-то не так, то ли что-то успел испортить в момент перепайки проводов.
Но вышло смешно. При повторном включении (с перепаянными проводами) сразу же загорелись три светодиода. А нажатие на кнопки выявило полный хаос: нажимаешь на одну кнопку — загорается ее светодиод (т.е., по идее, включается таймер), нажимаешь другую — первый светодиод гаснет, загорается второй. И так далее.
Опытным путем выяснил, что существует некоторая комбинация нажатий кнопок, при которой зажигаются все светодиоды. Но пока руки не доходят проверить схему на предмет коротких замыканий там, где их не должно быть.
Бонус-трек — играем в сапера:
Подводя итог хочу сказать, что с таймерами развлекся. На практике проверил, что покупать их в Китае можно — приходят рабочие.
И хотя кототаймер сделать не смог, бонусом получил головоломку «Зажги все лампочки». И заодно понимание того, что NE555 — явно не для меня. И вот почему:
Минимальное напряжение питания 4,5В
— большой потребляемый ток
Разумеется, эти недостатки можно побороть заказом CMOS-версии чипа, которая гораздо более экономична и работает, начиная с 1,5В. Но обычные стоят $0,59 за двадцать штук, а CMOS — уже около $10. То есть примерно вдвое дороже контроллера, а если применять в конструкции два и более таймеров, то выгода вообще пропадает.
Так что всем спасибо, я возвращаюсь к ATmega328p, на котором, очевидно, и буду делать таймер кормления.
Ps. А теперь можно я тоже напишу про экранчик от ITEAD Studio? Меня, между прочим, совесть мучает, поскольку, с одной стороны, здесь уже этих экранов было выше крыши, а с другой — надо же выполнять обещание.
Планирую купить +19 Добавить в избранное Обзор понравился +38 +67История создания очень популярной микросхемы и описание ее внутреннего устройства
Одной из легенд электроники является микросхема интегрального таймера NE555 . Разработана она была в далеком 1972 году. Таким долгожительством может гордиться далеко не каждая микросхема и даже не каждый транзистор. Так что же такого особенного в этой микросхеме, имеющей в своей маркировке три пятерки?
Серийный выпуск микросхемы NE555 начала компания Signetics ровно через год после того, как ее разработал Ганс Р. Камензинд . Самым удивительным в этой истории было то, что на тот момент времени Камензинд был практически безработным: он уволился из компании PR Mallory, но устроиться никуда не успел. По сути дела это была «домашняя заготовка».
Микросхема увидела свет и получила столь большую известность и популярность благодаря стараниям менеджера фирмы Signetics Арта Фьюри бывшего, конечно, приятелем Камензинда. Раньше он работал в фирме General Electric, поэтому знал рынок электроники, что там требуется, и чем можно привлечь внимание потенциального покупателя.
По воспоминаниям Камензинда А. Фьюри был настоящим энтузиастом и любителем своего дела. Дома у него была целая лаборатория, заполненная радиокомпонентами, где он и проводил различные исследования и опыты. Это давало возможность накапливать огромный практический опыт и углублять теоретические познания.
В то время продукция фирмы Signetics именовалась в виде «5**», и опытный, обладавший сверхъестественным чутьем в вопросах рынка электроники А. Фьюри, решил, что маркировка 555 (три пятерки) будет для новой микросхемы как нельзя кстати. И он не ошибся: микросхема пошла просто нарасхват, она стала, пожалуй, самой массовой за всю историю создания микросхем. Самое интересное, что свою актуальность микросхема не утратила и по сей день.
Несколько позднее в маркировке микросхемы появились две буквы, она стала называться NE555. Но поскольку в те времена в системе патентования существовала полная неразбериха, то интегральный таймер бросились выпускать все, кому не лень, естественно, поставив перед тремя пятерками другие (читай свои) буквы. Позднее на базе таймера 555 были разработаны сдвоенные (IN556N) и счетверенные (IN558N) таймеры, естественно, в более многовыводных корпусах. Но за основу был взят все тот же NE555.
Рис. 1. Интегральный таймер NE555
555 в СССР
Первое описание 555 в отечественной радиотехнической литературе появилось уже в 1975 году в журнале «Электроника». Авторы статьи отмечали тот факт, что эта микросхема будет пользоваться не меньшей популярностью, чем широко известные уже в то время операционные усилители. И они нисколько не ошиблись. Микросхема позволяла создавать очень простые конструкции, причем, практически все они начинали работать сразу, без мучительной наладки. А ведь известно, что повторяемость конструкции в домашних условиях возрастает пропорционально квадрату ее «простоты».
В Советском Союзе в конце 80 — х годов был разработан полный аналог 555, получивший название КР1006ВИ1 . Первое промышленное применение отечественного аналога было в видеомагнитофоне «Электроника ВМ12».
Внутреннее устройство микросхемы NE555
Прежде, чем схватиться за паяльник и начать сборку конструкции на интегральном таймере, давайте сначала разберемся, что там внутри и как все это работает. После этого понять, как работает конкретная практическая схема, будет намного проще.
Внутри интегрального таймера содержится свыше двадцати , соединение которых показано на рисунке —
Как видно, принципиальная схема достаточно сложна, и приведена здесь лишь для общей информации. Ведь все равно в нее паяльником не влезешь, отремонтировать ее не удастся. Собственно говоря, именно так выглядят изнутри и все другие микросхемы, как цифровые, так и аналоговые (см. — ). Уж такова технология производства интегральных схем. Разобраться в логике работы устройства в целом по такой схеме тоже не удастся, поэтому ниже показана функциональная схема и приводится ее описание.
Технические данные
Но, перед тем как разбираться с логикой работы микросхемы, наверно, следует привести ее электрические параметры. Диапазон питающих напряжений достаточно широк 4,5…18В, а выходной ток может достигать 200мА, что позволяет использовать в качестве нагрузки даже маломощные реле. Сама же микросхема потребляет совсем немного: к току нагрузки добавляется всего 3…6мА. При этом точность собственно таймера от питающего напряжения практически не зависит, — всего 1 процент от расчетного значения. Дрейф составляет всего 0,1%/вольт. Также невелик и температурный дрейф — всего 0, 005%/°C. Как видно, все достаточно стабильно.
Функциональная схема NE555 (КР1006ВИ1)
Как было сказано выше, в СССР сделали аналог буржуйской NE555 и назвали его КР1006ВИ1. Аналог получился очень даже удачный, ничуть не хуже оригинала, поэтому использовать его можно, без всяких опасений и сомнений. На рисунке 3 показана функциональная схема интегрального таймера КР1006ВИ1. Она же полностью соответствует микросхеме NE555.
Рисунок 3. Функциональная схема интегрального таймера КР1006ВИ1
Сама микросхема не так уж и велика, — выпускается в восьмивыводном корпусе DIP8, а также в малогабаритном SOIC8. Последнее говорит о том, что 555 может использоваться для SMD — монтажа, другими словами интерес к ней у разработчиков сохранился до сих пор.
Внутри микросхемы элементов тоже немного. Основным является DD1. При подаче логической единицы на вход R триггер сбрасывается в ноль, а при подаче логической единицы на вход S, естественно, устанавливается в единицу. Для формирования управляющих сигналов на RS — входах служит , о которой будет рассказано несколько позже.
Физические уровни логической единицы зависят, конечно, от используемого напряжения питания и практически составляют от Uпит/2 почти до полного Uпит. Примерно такое же соотношение наблюдается и у логических микросхем структуры КМОП. Логический же ноль находится, как обычно, в пределах 0…0,4В. Но эти уровни находятся внутри микросхемы, о них можно только догадываться, но руками их не пощупать, глазами не увидеть.
Выходной каскад
Для увеличения нагрузочной способности микросхемы, к выходу триггера подключен мощный выходной каскад на транзисторах VT1, VT2.
Если RS — триггер сброшен, то на выходе (вывод 3) присутствует напряжение логического нуля, т.е. открыт транзистор VT2. В случае, когда триггер установлен на выходе также уровень логической единицы.
Выходной каскад выполнен по двухтактной схеме, что позволяет подключать нагрузку между выходом и общим проводом (выводы 3,1) или шиной питания (выводы 3,8).
Небольшое замечание по выходному каскаду. При ремонте и наладке устройств на цифровых микросхемах одним из методов проверки схемы является подача на входы и выходы микросхем сигнала низкого уровня. Как правило, это делается замыканием на общий провод этих самых входов и выходов с помощью швейной иголки, при этом, не принося никакого вреда микросхемам.
В некоторых схемах питание NE555 составляет 5В, поэтому создается впечатление, что это тоже цифровая логика и с ней тоже можно обходиться достаточно вольно. Но на самом деле это не так. В случае с микросхемой 555, точнее с ее двухтактным выходом, такие «опыты» делать нельзя: если выходной транзистор VT1 в этот момент окажется в открытом состоянии, то получится короткое замыкание и транзистор просто сгорит. А уж если питающее напряжение будет близко к максимальному, то плачевный финал просто неизбежен.
Дополнительный транзистор (вывод 7)
Кроме упомянутых транзисторов имеется еще транзистор VT3. Коллектор этого транзистора соединен с выводом микросхемы 7 «Разрядка». Его назначение разряжать времязадающий конденсатор при использовании микросхемы в качестве генератора импульсов. Разряд конденсатора происходит в момент сброса триггера DD1. Если вспомнить описание триггера, то на инверсном выходе (обозначен на схеме кружком) в этот момент имеется логическая единица, приводящая к открыванию транзистора VT3.
О сигнале сброс (вывод 4)
Сбросить триггер можно в любой момент, — у сигнала «сброс» высокий приоритет. Для этого существует специальный вход R (вывод 4), обозначенный на рисунке как Uсбр. Как можно понять из рисунка сброс произойдет, если на 4 вывод подать импульс низкого уровня, не более 0,7В. При этом на выходе микросхемы (вывод 3) появится напряжение низкого уровня.
В тех случаях, когда этим входом не пользуются, на него подают уровень логической единицы, чтобы избавиться от импульсных помех. Проще всего это сделать, подключив вывод 4 напрямую к шине питания. Ни в коем случае нельзя оставлять его, что называется, в «воздухе». Потом долго придется удивляться и раздумывать, а почему же схема работает столь нестабильно?
Замечания о триггере «вообще»
Чтобы не запутаться совсем, в каком состоянии находится триггер, следует напомнить о том, что в рассуждениях о триггере всегда принимается во внимание состояние его прямого выхода. Уж, если сказано, что триггер «установлен», то на прямом выходе состояние логической единицы. Если говорят, что триггер «сброшен», — на прямом выходе непременно состояние логического нуля.
На инверсном выходе (отмечен маленьким кружком) все будет с точностью до наоборот, поэтому, часто выход триггера называют парафазным. Чтобы не перепутать все еще раз, об этом больше говорить не будем.
Тот, кто внимательно дочитал вот до этого места, может спросить: «Позвольте, ведь это же просто триггер с мощным транзисторным каскадом на выходе. А где же собственно сам таймер?» И будет прав, поскольку до таймера дело еще и не дошло. Чтобы получился таймер его отец — создатель Ганс Р. Камензинд изобрел оригинальный способ управления этим триггером. Вся хитрость этого способа заключается в формировании сигналов управления.
Формирование сигналов на RS — входах триггера
Итак, что же у нас получилось? Всем делом внутри таймера заправляет триггер DD1: если он установлен в единицу, — на выходе микросхемы напряжение высокого уровня, а если сброшен, то на выводе 3 низкий уровень и вдобавок открыт транзистор VT3. Назначение этого транзистора — разряд времязадающего конденсатора в схеме, например, генератора импульсов.
Управление триггером DD1 осуществляется с помощью компараторов DA1 и DA2. Для того, чтобы управлять работой триггера на выходах компараторов нужно получить сигналы R и S высокого уровня. На один из входов каждого компаратора подано опорное напряжение, которое формируется прецизионным делителем на резисторах R1…R3. Сопротивление резисторов одинаково, поэтому поданное на них напряжение делится на 3 равные части.
Формирование сигналов управления триггером
Запуск таймера
На прямой вход компаратора DA2 подано опорное напряжение величиной 1/3U, а внешнее напряжение запуска таймера Uзап через вывод 2 подано на инверсный вход компаратора. Для того, чтобы воздействовать на вход S триггера DD1 на выходе этого компаратора необходимо получить высокий уровень. Это возможно в том случае, если напряжение Uзап будет находиться в пределах 0…1/3U.
Даже кратковременный импульс такого напряжения вызовет срабатывание триггера DD1 и появление на выходе таймера напряжения высокого уровня. Если на вход Uзап воздействовать напряжением выше 1/3U и вплоть до напряжения питания, то никаких изменений на выходе микросхемы не произойдет.
Останов таймера
Для останова таймера надо просто сбросить внутренний триггер DD1, а для этого на выходе компаратора DA1 сформировать сигнал R высокого уровня. Компаратор DA1 включен несколько иначе, чем DA2. Опорное напряжение величиной 2/3U подано на инвертирующий вход, а управляющий сигнал «Порог срабатывания» Uпор подан на прямой вход.
При таком включении высокий уровень на выходе компаратора DA1 возникнет лишь тогда, когда напряжение Uпор на прямом входе превысит опорное напряжение 2/3U на инвертирующем. В этом случае произойдет сброс триггера DD1, а на выходе микросхемы (вывод 3) установится сигнал низкого уровня. Также произойдет открывание «разрядного» транзистора VT3, который и разрядит времязадающий конденсатор.
Если входное напряжение находится в пределах 1/3U…2/3U, не сработает ни один из компараторов, изменение состояния на выходе таймера не произойдет. В цифровой технике такое напряжение называется «серый уровень». Если просто соединить выводы 2 и 6, то получится компаратор с уровнями срабатывания 1/3U и 2/3U. И даже без единой дополнительной детали!
Изменение опорного напряжения
Вывод 5, обозначенный на рисунке как Uобр, предназначен для контроля опорного напряжения или его изменения с помощью дополнительных резисторов. Также на этот вход возможна подача управляющего напряжения, благодаря чему возможно получения частотно или фазо модулированного сигнала. Но чаще этот вывод не используется, а для уменьшения влияния помех соединяется с общим проводом через конденсатор небольшой емкости.
Питание микросхемы осуществляется через выводы 1 — GND, 2 +U.
Вот собственно описание интегрального таймера NE555. На таймере собрано множество всяких схем, которые будут рассмотрены в следующих статьях.
Борис Аладышкин
Продолжение статьи:
Электронные интегральные схемы — такая отрасль нашей науки и техники, возможности которой еще далеко не исчерпаны. Видимо, это и есть ростки того самого искусственного интеллекта, о котором так много уже сказано. Причем, если наш природный интеллект строится на элементах — нейронах — которые можно назвать электронно-химическими, то созданные руками человека интегральные схемы в природе не встречаются. Это чистое изобретение человеческого разума. Оно получено в результате долгой работы по совершенствованию самых обыкновенных электроприборов, которые понадобились людям сразу после открытия электричества — выключателей, резисторов, конденсаторов, полупроводниковых приборов. Совершенствование шло как в направлении усложнения схем, так и в стремлении уместить большое количество элементов на ограниченной площади или в ограниченном объеме. А также создать из все тех же схемных примитивов нечто универсальное, долгоиграющее и омниполезное.
Таймер NE555
История изобретения этого таймера показывает, что настоящие шедевры делаются не всегда в самые лучшие для изобретателей времена, и часто даже в совершенно не высокотехнологичных условиях. Ганс Камензинд в свои 33 года кроме служебных обязанностей имел мечту. Это не всегда бывает по вкусу начальству, и ему пришлось уволиться. Свой шедевр он придумал, сидя в гараже в 1971 году, а через год микросхема на восьми ножках бойко пошла в производство и продажу. Схема простая и, как оказалась, полезная. Быть может, не последнюю роль в удаче сыграло и название, которое толком и объяснить не могут: почему NE — от названия фирмы Signetics? Почему 555 — потому что им полюбилась пятерка? Таймер? — да, но не такой, как обычные. Те, что всегда только безостановочно тикают импульсами, а этот может выдать очень точный интервал времени, и не в каких-то привычных в импульсной технике микросекундах, а в достаточно ощутимом интервале: взять и включить лампочку на несколько секунд.
Схема, как часто и все гениальное, оказалась на стыке двух техник: импульсной и аналоговой.
Аналоговые — операционные усилители — усиливают сигнал до нужного стандарта (2 на входах (двухпороговый компаратор) и 1 на выходе). А в середине работает импульсный RS-триггер, который может как генерировать импульсы (мультивибратор), так и выдавать одиночный импульс заданной протяженности (одновибратор).
И все очень легко регулируется — практически, соотношением параметров двух резисторов и одной емкости, подключенных к микросхеме на входах, а также подачей других сигналов на входы.
Видимо, схема имеет какое-то неуловимо удачное соотношение простоты управления и простоты конструкции, что в сочетании с неожиданным многообразием работы элементов и придало ей популярности на протяжении стольких лет. Потому что перечисленные свойства, как следствие, выразились в совсем даже невысокой стоимости и в применимости в разных схемах — и ширпотребовских, и профессиональных. Они хороши для использования в детских игрушках, реле времени, кодовых замках, космических аппаратах. А ежегодные продажи исчисляются до сих пор миллиардами штук по всему миру. Причем за все время схема не претерпела практически никаких изменений. По какой причине слово «эволюция» под рисунком выше и взято в кавычки. Таймер 555 выпускают многие фирмы по всему миру. Известны и отечественные аналоги NE555 — микросхема КР1006ВИ1 и ее КМОП вариант КР1441ВИ1.
Функциональная схема и описание прибора
Функционально таймер состоит из 5 компонентов. Выводов у схемы больше, чем внутренних блоков, что и говорит о возможной гибкости включения в различные схемные решения с участием данной микросхемы.
Входной внутренний делитель напряжения задает опорные напряжения для двух компараторов — верхнего и нижнего. RS-триггер принимает их сигналы и формирует выходной сигнал, который отправляет на усилитель мощности. Еще имеется дополнительный транзистор с выведенным наружу коллектором, который используется для подключения внешней времязадающей цепочки.
Выводы схемы расположены одинаково, независимо от исполнения микросхемы
Описание выводов схемы
Приведенный ниже даташит содержит выводы и подаваемые на них сигналы, откуда становится немного понятной работа микросхемы. Хотя очень многое зависит от ее подключения.
| Минусовой общий вывод питания | Плюсовой вывод питания – 8 | |
| Вход компаратора №2 (нижнего). Сигнал низкого уровня – аналоговый или импульсный. | Таймер срабатывает на сигнал (аналоговый или импульсный) низкого уровня (порог – 1/3 Vпит) | На 3 выводе появляется выходной сигнал высокого уровня |
| Выходной сигнал (высокий уровень) зависит от питания: Vпит – 1,7 В Низкий уровень (нет сигнала) – примерно 0,25 В | Временная характеристика выходного сигнала определяется внешней времязадающей цепочкой, состоящей из резистора (или резисторов) и емкости. | |
| Срабатывает по сигналу низкого уровня (≤ 0,7 В) | Немедленный сброс выходного сигнала | Входной сигнал не зависит от напряжения питания |
| Управление опорным напряжением компаратора №1 | Величина напряжения управляет длительностью выходных импульсов (одновибратор) или их частотой (мультивибратор). | |
| Сбрасывающий сигнал высокого уровня – аналоговый или импульсный | ||
| Цепь разряда времязадающего конденсатора С | ||
| Плюсовой провод питания | Vпит = от 4,5 В до 18 В | Минусовой – 1 |
Применение: варианты подключения NE555 (или NE555 аналогов)
Одновибратор
Емкость С и резистор R задают длительность импульса t, выдаваемого схемой в ответ на сигнал по входу Input (вывод 2). Напряжение питания влияет не на длительность, а на амплитуду выходного сигнала. При выдаче импульса изменение входного сигнала схемой не воспринимается. Через время t схема выдает задний фронт выходного сигнала и возвращается в исходное состояние, после чего готова снова реагировать на входной сигнал. Таким образом, она может выделять информативные всплески (низкого уровня) на фоне помех, так как сигнал на входе в общем случае аналоговый. Может работать как антидребезговая схема.
Генератор импульсов (мультивибратор)
Мультивибратору не нужно подавать на вход никаких сигналов, он начинает работать сразу после включения питания.
Разряженный в начале конденсатор С задает на вход низкий уровень, отчего таймер срабатывает, выдавая на выход высокий потенциал. Его длительность определяется зарядкой конденсатора C через резисторы R1 и R2. Далее происходит разрядка C через R2 и вход 7, что и определяет длительность паузы на таймере. После этого все повторяется, и на выходе получаются импульсы заданной напряжением питания амплитуды и длительностями t 1 и t 2 , то есть частотой f
и скважностью S = T/t 1 . Скважность в данном простейшем подключении более 2 быть не может, так как время импульса t 1 всегда > времени паузы t 2 .
Легендарный таймер NE555 – описание и применение микросхемы
Таймер NE555 является, пожалуй, самой популярной интегральной микросхемой своего времени. Несмотря на то, что он был разработан более 40 лет назад (в 1972 году) он до сих пор выпускается многими производителями. В этой статье, постараемся подробно осветить вопросы описания и применения таймера NE555.
Умные соединения компаратора, сбрасываемый триггер и инвертирующий усилитель в одной монолитной интегральной микросхеме, наряду с несколькими другими элементами породили почти бессмертные схемы устройств, которые сегодня используется многими радиолюбителями.
555 Таймер был разработан американской компанией Signetics в 1972 году и зарегистрирован на мировом рынке. Два года спустя той же компании был разработана микросхема с обозначением 556, которая объединила в себе два отдельных таймера NE555 имеющих только общие выводы по питанию. Еще позже были разработаны микросхемы 557, 558 и 559 с применением до четырех таймеров NE555 в одном корпусе. Но позже они были сняты с производства и почти забыты.
Интегральная микросхема NE555 разрабатывалась в качестве таймера и содержит в себе комбинацию аналоговых и цифровых элементов в одном кристалле. Выпускается в различном исполнении, начиная от классического DIP корпуса стандартного и SOIC для SMD монтажа и до миниатюрного корпуса версии SSOP или SOT23-5. (Цены на таймер NE555)
Таймер NE555, кроме стандартного исполнения производиться так же в маломощном CMOS исполнении. Схема электропитания NE555 составляет от 4,5 до 15 вольт (18 вольт максимум), а CMOS вариант использует питание от 3 вольт. Максимальная выходная нагрузка выхода для NE555 200мА, у версии маломощного таймера только 20 мА при 9 вольт.
Стабильность работы стандартной версии 555 сильно зависит от качества источника питания. Это не так сильно сказывается в простых схемах с применением таймера, однако, в более сложных конструкциях, желательно устанавливать буферный конденсатор по цепи питания емкостью 100 мкф.
Основные характеристики интегрального таймера NE555
- Максимальная частота более чем 500 кГц.
- Длина одного импульса от 1 мсек до часа.
- Может работать в режиме моностабильного мультвибратора.
- Высокий выходной ток (до 200 мА)
- Регулируемая скважность импульса (отношение периода импульса к его длительности).
- Совместимость с TTL уровнями.
- Температурная стабильность 0,005% на 1 градус Цельсия.
Микросхема NE555 в своем составе содержит чуть более 20 транзисторов и 10 резисторов. На следующем рисунке приводится структурная схема таймера от Philips Semiconductors.
В следующей таблице перечислены основные свойства NE555
Назначение выводов таймера NE555
№2 — Запуск (триггер)
Триггер переключается, если на этом выводе напряжение упадет ниже 1/3 напряжения питания. Данный вывод имеет высокое входное сопротивление, более 2 мОм. В нестабильном режиме используется для контроля напряжения на времязадающем конденсаторе, в бистабильном режиме к нему подключается элемент коммутации, например, кнопка.
№4 – Сброс
Если напряжение на этом выводе ниже 0,7 вольт, то происходит сброс внутреннего компаратора. В случае неиспользования, на данный вывод таймера NE555 необходимо подать напряжение питания. Сопротивление вывода составляет около 10 кОм.
№5 — Контроль
Может использоваться для регулировки длительности импульсов на выходе путем подачи напряжения 2/3 от напряжения питания. Если это вывод не используется, то его желательно подключить к минусу источника питания через конденсатор 0,01 мкф.
№6 — Стоп (компаратор)
Останавливает функционирование таймера, если напряжение на этом выводе будет выше 2/3 напряжения питания. Вывод имеет высокое входное сопротивление, более 10 мОм. Он обычно используется для измерения напряжения на времязадающем конденсаторе.
№7 — Разряд
Вывод через внутренний транзистор подключается к «земле», когда внутренний триггер находится в активном состоянии. Вывод (открытый коллектор) используется в основном для разряда времязадающего конденсатора.
№3 – Выход
Микросхема NE555 имеет всего один выход с током до 200 мА. Это значительно больше, чем у обычных интегральных микросхем. Вывод способен управлять, например, светодиодами (с токоограничивающим резистором), небольшими лампочками, пьезоэлектрическим преобразователем, динамиком (с конденсатором), электромагнитным реле (с защитным диодом) или даже маломощными двигателями постоянного тока. Если требуется более высокий выходной ток, то можно подключить подходящий транзистор в качестве усилителя.
Таймер NE555 — схема включения
Способность вывода 3 таймера NE555 создавать как высокий уровень напряжения, так и низкий (практически 0 вольт) позволяет управлять нагрузкой подключенной как к минусу питания, так и к плюсу. Как пример, подключение светодиодов. Это, конечно, не является обязательным требованием, и нагрузка (светодиод) может быть подключен либо к минусу, либо плюсу питания.
Если таймер NE555 работает в нестабильном состоянии (режим генератора), то к выходу его можно подключить динамик. Он подключается после разделительного конденсатора (например, 100 мкф) и должен иметь сопротивление не менее 64 Ом из-за ограниченного максимального тока нагрузки выхода таймера. Конденсатор предназначен для отделения постоянной составляющей сигнала и проводит только аудиосигнал.
Динамик с сопротивлением катушки ниже чем 64 Ом можно подключить либо через конденсатор с меньшей емкостью (реактивное сопротивление), являющегося дополнительным сопротивлением либо с помощью усилителя. Усилитель также может быть использован для подключения более мощного громкоговорителя.
Как и все интегральных микросхемы, выход таймера NE555 управляющий индуктивной нагрузкой (реле) должен быть защищена от скачков повышенного напряжения, созданное в индуктивности в момент отключения. Диод (например, 1N4148) всегда подключается параллельно к катушке реле в обратном направлении.
Однако, для микросхемы NE555 требуется второй диод, включенный последовательно с катушкой реле. Он ограничивает низкое напряжение, которое находится на выходе 3 таймера и предотвращает возбуждение реле небольшим током.
Таким диодом может быть, например, 1N4001 (1N4148 диод не подходит) либо светодиод.
Скачать калькулятор и datasheet для таймера NE555 (1,3 MiB, скачано: 5 159)
Firefly Light, Светлячок на таймере 555, DIY
То, что у вас уже есть, вы можете удалить в корзине.
Для изучения таймера 555 предлагаем провести несколько весёлых экспериментов в виде командной игры. Для этого нужно будет подготовить несколько «светлячков». Чем больше, тем эффектнее эксперименты. Каждый «светлячок» собран на таймере 555 по схеме — моностабильный мультивибратор. Подробная инструкция по сборке и демонстрация экспериментов показаны в видео.
Электическая схема
Схема включения микросхемы в «светлячке»показана на рисунке. RC цепочка (R3C2) включена между плюсом и минусом питания. К месту соединению резистора и конденсатора подключен вывод 6 — Стоп. Это вход компаратора №1. Сюда же подключен вывод 7 — Разряд.
Входной импульс подается на вывод 2 — Запуск. Это вход компаратора №2.
Итак, в исходном состоянии, на выходе таймера низкий уровень — около нуля вольт, конденсатор С2 разряжен и заряжаться не будет, поскольку открыт транзистор в таймере к которому он подключен через вывод 7. Это состояние стабильное, оно может продолжаться неопределенно долгое время. При поступлении на вход импульса низкого уровня, срабатывает компаратор 2 и переключает внутренний триггер таймера. В результате на выходе (3) устанавливается высокий уровень напряжения. Светодиод светится. Транзистор в таймере закрывается и начинает заряжаться конденсатор С2 через резистор R3. Все время, пока он заряжается, на выходе таймера сохраняется высокий уровень. Таймер не реагирует, ни на какие внешние раздражители, поступающие на вывод 2. То есть, после срабатывания таймера от первого импульса дальнейшие импульсы не оказывают никакого действия на состояние таймера! Конденсатор продолжает заряжаться. Когда он зарядится до напряжения 2/3 Uпит, сработает компаратор 1 подключенный к выводу 6 и в свою очередь переключит внутренний триггер. В результате на выходе установится низкий уровень напряжения, и схема вернется в свое исходное, стабильное состояние. Транзистор откроется и через вывод 7 разрядит конденсатор С2.
Время, на которое таймер выходит из стабильного состояния, может быть от одной миллисекунды до сотен секунд. Считается оно так: T=1.1*R3*C2. Это и будет время на которое зажигается светодиод.
В нашем опыте очень важно чтобы таймер запускался по спаду сигнала — заднему фронту импульса. Для этого построим простой формирователь импульса. Это узел, состоящий из фототранзистора, конденсатора C1, резисторов R1 и R2. В начальном состоянии, после подключения питания, конденсатор C1 оказывается заряженным через R2 и R1. Т.к. сопротивление перехода эмиттер-коллектор фототранзистора очень велико (Мы ведь ещё не засветили его пучком света) и он практически не влияет на заряд C1. На входе 2 таймера высокий потенциал и ничего не происходит. Как только мы подадим на фототранзистор луч света, сопротивление фототранзистора резко упадет, левая пластина конденсатора зарядит положительным потенциалом. Пока тоже ничего не происходит. А вот как только мы выключим свет, сопротивление перехода фототранзистора резко возрастет и он практически отключится от конденсатора C1. Вот в этот момент конденсатор C1 разрядится на минус питания через резистор R1. По нему пройдет ток разряда. И на это время вывод 2 таймера будет подключен к минусу питания. Таймер запустится. Светодиод на выходе зажжется на некоторое время.
Этот световой импульс попадает на фототранзистор следующего «светлячка» и в нем происходят те же процессы. И так по цепочке световой импульс передается от одного «светлячка» к другому. Можно сделать из «светлячков» ветки и световой импульс пройдет поочередно по всем веткам. Можно замкнуть их в круг и тогда импульс свет будет бесконечно кружится.
Для питания «светлячка» можно использовать практически любые элементы напряжением от 3В до 9В. В видеоролике мы использовали по два элемента CR2016 установленные в держатель для CR2032 (получалось 6В) и батарейку крона (9В). Можно использовать и один элемент CR2016 или 2032 (3В), но в этом случае придется подбирать светодиод на 2В (не более!), а с двумя CR2016 зажигается практически любой светодиод небольшой мощности.
Светодиод можно поставить любой круглый выводной.
Печатная плата
Файлы печатной платы во вложении, её можно изготовить лазерно утюжной технологией.
Схему, проект в KiCad можно скачать в разделе техническая документация.
Это открытый проект! Лицензия, под которой он распространяется – Creative Commons — Attribution — Share Alike license.
555 Timer Tutorial — Моностабильный мультивибратор
Мы видели, что мультивибраторы и КМОП-генераторы могут быть легко сконструированы из дискретных компонентов для создания релаксационных генераторов для генерации базовых прямоугольных выходных сигналов. Но есть также специальные ИС, специально разработанные для точного воспроизведения требуемой формы выходного сигнала с добавлением всего лишь нескольких дополнительных компонентов синхронизации.
Одним из таких устройств, которое существует с первых дней создания ИС и само по себе стало отраслевым «стандартом», является 555 Timer Oscillator , который чаще называют «555 Timer» .
Базовый таймер 555 получил свое название из-за наличия трех подключенных внутри резистора 5 кОм, которые он использует для генерации опорных напряжений двух компараторов. Микросхема таймера 555 — это очень дешевое, популярное и полезное устройство точной синхронизации, которое может действовать либо как простой таймер для генерации одиночных импульсов или длительных задержек, либо как генератор релаксации, генерирующий цепочку стабилизированных форм сигналов с различными рабочими циклами от 50 до 100%.
Чип таймера 555 представляет собой чрезвычайно прочное и стабильное 8-контактное устройство, которое может работать как очень точный моностабильный, бистабильный или нестабильный мультивибратор для различных применений, таких как таймеры однократного действия или задержки, генерация импульсов, светодиоды и лампы. мигалки, сигналы тревоги и генерация тонов, логические часы, деление частоты, источники питания и преобразователи и т. д., фактически любая схема, которая требует некоторой формы контроля времени, поскольку список бесконечен.
Одиночная микросхема таймера 555 в своей базовой форме представляет собой биполярный 8-контактный миниатюрный двухрядный корпус (DIP), состоящий примерно из 25 транзисторов, 2 диодов и примерно 16 резисторов, образующих два компаратора, триггер и выходной каскад с высоким током, как показано ниже. Наряду с таймером 555 доступен также генератор таймера NE556, который объединяет ДВА отдельных 555 в одном 14-контактном DIP-корпусе и маломощные КМОП-версии одного таймера 555, такие как 7555 и LMC555, которые вместо этого используют MOSFET-транзисторы.
Упрощенная «блок-схема», представляющая внутреннюю схему таймера 555 , приведена ниже с кратким объяснением каждого из его соединительных контактов, чтобы помочь обеспечить более четкое понимание того, как он работает.
Блок-схема таймера 555
- • Контакт 1. — Земля , Контакт заземления соединяет таймер 555 с отрицательной (0 В) шиной питания.
- • Контакт 2. — Триггер , отрицательный вход на компаратор № 1.Отрицательный импульс на этом выводе «устанавливает» внутренний триггер, когда напряжение падает ниже 1/3 В постоянного тока, что приводит к переключению выхода из состояния «НИЗКОЕ» в «ВЫСОКОЕ».
- • Контакт 3 — Выход , выходной контакт может управлять любой цепью TTL и способен обеспечивать или принимать до 200 мА тока при выходном напряжении, равном приблизительно Vcc — 1,5 В, поэтому небольшие динамики, светодиоды или двигатели могут быть подключен напрямую к выходу.
- • Контакт 4. — Сброс , Этот контакт используется для «сброса» внутреннего триггера, контролирующего состояние выхода, контакт 3.Это вход с активным низким уровнем, который обычно подключается к уровню логической «1», когда не используется, чтобы предотвратить любой нежелательный сброс выхода.
- • Контакт 5. — Управляющее напряжение , Этот контакт управляет синхронизацией 555, подавляя уровень 2 / 3Vcc в сети делителя напряжения. Путем подачи напряжения на этот контакт ширину выходного сигнала можно изменять независимо от схемы синхронизации RC. Когда он не используется, он подключается к земле через конденсатор 10 нФ, чтобы устранить любые помехи.
- • Контакт 6. — Порог , положительный вход для компаратора № 2. Этот вывод используется для сброса триггера, когда приложенное к нему напряжение превышает 2/3 В постоянного тока, что приводит к переключению выхода с «ВЫСОКОГО» на «НИЗКОЕ». » штат. Этот вывод подключается непосредственно к схеме синхронизации RC.
- • Контакт 7. — Разряд , Разрядный контакт подключен непосредственно к коллектору внутреннего NPN-транзистора, который используется для «разряда» синхронизирующего конденсатора на землю, когда выход на контакте 3 переключается на «НИЗКИЙ».
- • Контакт 8. — Supply + Vcc , Это контакт источника питания и для таймеров общего назначения TTL 555 находится в диапазоне от 4,5 В до 15 В.
Таймеры 555 Название происходит от того факта, что три резистора 5 кОм соединены между собой внутри, образуя сеть делителя напряжения между напряжением питания на выводе 8 и землей на выводе 1. Напряжение на этой последовательной резистивной цепи удерживает отрицательный инвертирующий вход. второго компаратора на 2/3 В постоянного тока и положительного неинвертирующего входа на первый компаратор при 1/3 В постоянного тока.
Два компаратора вырабатывают выходное напряжение, зависящее от разницы напряжений на их входах, которая определяется действием заряда и разряда внешне подключенной RC-цепи. Выходы обоих компараторов подключены к двум входам триггера, который, в свою очередь, выдает выходной уровень «ВЫСОКИЙ» или «НИЗКИЙ» на Q в зависимости от состояний его входов. Выход триггера используется для управления ступенью переключения сильноточного выхода, чтобы управлять подключенной нагрузкой, создавая на выходном контакте либо «ВЫСОКИЙ», либо «НИЗКИЙ» уровень напряжения.
Чаще всего генератор таймера 555 используется в качестве простого нестабильного генератора путем подключения двух резисторов и конденсатора к его клеммам для генерации фиксированной последовательности импульсов с периодом времени, определяемым постоянной времени RC-цепи. Но микросхему генератора таймера 555 также можно подключать различными способами для производства моностабильных или бистабильных мультивибраторов, а также более распространенного нестабильного мультивибратора.
Моностабильный таймер 555
Работа и выход моностабильного таймера 555 точно такие же, как и у транзисторного таймера, который мы рассмотрели ранее в руководстве по моностабильным мультивибраторам.На этот раз разница в том, что два транзистора были заменены таймером 555. Рассмотрим моностабильную схему таймера 555 ниже.
Моностабильный 555 Таймер
Когда отрицательный (0 В) импульс подается на вход триггера (контакт 2) моностабильного генератора с таймером 555, внутренний компаратор (компаратор №1) обнаруживает этот вход и «устанавливает» состояние триггера, изменяя выход из состояния «НИЗКИЙ» в состояние «ВЫСОКИЙ». Это действие, в свою очередь, выключает разрядный транзистор, подключенный к выводу 7, тем самым устраняя короткое замыкание на внешнем синхронизирующем конденсаторе C1.
Это действие позволяет синхронизирующему конденсатору начать заряжаться через резистор R1 до тех пор, пока напряжение на конденсаторе не достигнет порогового (вывод 6) напряжения 2/3 В постоянного тока, установленного внутренней сетью делителя напряжения. В этот момент выход компаратора становится «ВЫСОКИМ» и «сбрасывает» триггер обратно в исходное состояние, что, в свою очередь, включает транзистор и разряжает конденсатор на землю через контакт 7. Это заставляет выход изменить свое состояние. вернуться к исходному стабильному значению «НИЗКОЕ» в ожидании следующего импульса запуска для повторного запуска процесса отсчета времени.Тогда, как и раньше, моностабильный мультивибратор имеет только «ОДНО» стабильное состояние.
Цепь моностабильного таймера 555 запускается по отрицательному импульсу, приложенному к выводу 2, и этот импульс запуска должен быть намного короче, чем ширина выходного импульса, позволяющая синхронизирующему конденсатору зарядиться, а затем полностью разрядиться. После запуска 555 Monostable будет оставаться в этом нестабильном выходном состоянии «ВЫСОКИЙ» до тех пор, пока не истечет период времени, установленный сетью R 1 x C 1 .Время, в течение которого выходное напряжение остается «ВЫСОКИМ» или на уровне логической «1», определяется следующим уравнением постоянной времени.
Где t — в секундах, R — в Ω, а C — в фарадах.
555 Пример таймера №1
Моностабильный таймер 555 требуется для создания временной задержки в цепи. Если используется синхронизирующий конденсатор емкостью 10 мкФ, рассчитайте номинал резистора, необходимого для создания минимальной временной задержки на выходе 500 мс.
500 мс — это то же самое, что сказать 0.5 с, поэтому, изменив приведенную выше формулу, мы получим расчетное значение для резистора R как:
Расчетное значение резистора синхронизации, необходимого для обеспечения требуемой постоянной времени 500 мс, поэтому составляет 45,5 кОм. Однако резистор номиналом 45,5 кОм не существует в качестве резистора стандартного номинала, поэтому нам нужно будет выбрать резистор ближайшего предпочтительного значения 47 кОм, который доступен во всех стандартных диапазонах допуска от E12 (10%) до E96. (1%), что дает нам новое пересчитанное время задержки 517 мс.
Если эта разница во времени в 17 мс (500 — 517 мс) неприемлема, вместо одного резистора синхронизации, два резистора разного номинала могут быть соединены вместе последовательно, чтобы отрегулировать ширину импульса до точного желаемого значения, или выбрать другое значение конденсатора синхронизации.
Теперь мы знаем, что временная задержка или ширина выходного импульса моностабильного таймера 555 определяется постоянной времени подключенной RC-сети. Если требуются длительные задержки в несколько десятков секунд, не всегда целесообразно использовать высокопроизводительные временные конденсаторы, поскольку они могут быть физически большими, дорогими и иметь большие допуски по величине, например.г, ± 20%.
Одним из альтернативных решений является использование синхронизирующего конденсатора небольшого номинала и резистора гораздо большего номинала до примерно 20 МОм, чтобы обеспечить требуемую временную задержку. Кроме того, используя один временный конденсатор меньшего номинала и подключенные к нему через многопозиционный поворотный переключатель резисторы разных номиналов, мы можем создать схему генератора моностабильного таймера 555, которая может производить импульсы разной длительности при каждом повороте переключателя, например переключаемую схему таймера моностабильного 555. показано ниже.
A Переключаемый таймер 555
Мы можем вручную рассчитать значения R и C для отдельных необходимых компонентов, как мы это делали в примере выше.Однако выбор компонентов, необходимых для получения желаемой временной задержки, требует от нас расчета либо с использованием киломов (кОм), мегомов (МОм), микрофарадов (мкФ) или пикафарадов (пФ), и очень легко получить временную задержку. это в десять или даже сто раз меньше.
Мы можем немного облегчить нашу жизнь, используя тип диаграммы, называемый «Номограф», который поможет нам найти ожидаемую выходную частоту моностабильных мультивибраторов для различных комбинаций или значений как R, так и C.Например,
Моностабильный номограф
Таким образом, выбрав подходящие значения C и R в диапазонах от 0,001 мкФ до 100 мкФ и от 1 кОм до 10 МОм соответственно, мы можем считать ожидаемую выходную частоту непосредственно с графика номограммы, тем самым исключив любые ошибки в расчетах. На практике значение резистора синхронизации для моностабильного таймера 555 не должно быть меньше 1 кОм или больше 20 МОм.
Бистабильный 555 Таймер
Наряду с одноразовой конфигурацией 555 Monostable , описанной выше, мы также можем изготовить бистабильное (два стабильных состояния) устройство с работой и выходом 555 Bistable , аналогичными транзисторному устройству, которое мы рассматривали ранее в бистабильном режиме. Руководство по мультивибраторам.
555 Bistable — одна из простейших схем, которые мы можем построить, используя микросхему генератора таймера 555. Эта бистабильная конфигурация не использует какую-либо схему синхронизации RC для создания выходной формы волны, поэтому не требуется никаких уравнений для расчета периода времени схемы. Рассмотрим схему бистабильного таймера 555 ниже.
Бистабильный таймер 555 (триггер)
Переключение формы выходного сигнала достигается путем управления входами триггера и сброса таймера 555, которые удерживаются на «ВЫСОКОМ» уровне двумя подтягивающими резисторами, R1 и R2.Принимая триггерный вход (контакт 2) «НИЗКИЙ», переключатель в заданном положении, изменяет состояние выхода на «ВЫСОКОЕ» состояние и, принимая вход сброса (контакт 4) «НИЗКИЙ», переключатель в положение сброса, изменяет выход в состояние «НИЗКОЕ».
Эта схема таймера 555 будет оставаться в любом состоянии неопределенное время и, следовательно, является бистабильной. Тогда бистабильный таймер 555 будет стабильным в обоих состояниях, «ВЫСОКИЙ» и «НИЗКИЙ». Пороговый вход (контакт 6) подключен к земле, чтобы гарантировать, что он не может сбросить бистабильную схему, как это было бы в обычном приложении синхронизации.
555 Выход таймера
Мы не смогли закончить этот учебник по таймеру 555 , не обсудив кое-что о коммутационных и управляющих возможностях таймера 555 или даже двойного таймера 556 IC .
Выход (контакт 3) стандартного таймера 555 или таймера 556 может либо «принимать», либо «получать» ток нагрузки максимум до 200 мА, что достаточно для непосредственного управления выходными преобразователями, такими как реле, лампы накаливания, двигатели светодиодов или динамики и т. д. с помощью последовательных резисторов или диодной защиты.
Эта способность таймера 555 одновременно «поглощать» (поглощать) и «обеспечивать» (подавать) ток означает, что выходное устройство может быть подключено между выходной клеммой таймера 555 и источником питания для поглощения тока нагрузки или между выходной терминал и заземление для источника тока нагрузки. Например.
Поглощение и получение выхода таймера 555
В первой схеме выше светодиод подключен между положительной шиной питания (+ Vcc) и выходным контактом 3.Это означает, что ток будет «опускаться» (поглощаться) или течь в выходную клемму таймера 555, и светодиод будет «ВКЛ», когда выход «НИЗКИЙ».
Вторая схема выше показывает, что светодиод подключен между выходным контактом 3 и землей (0 В). Это означает, что ток будет «Источником» (питанием) или течь из выходного терминала таймера 555, и светодиод будет «ВКЛ», когда выход «ВЫСОКИЙ».
Способность таймера 555 как потреблять, так и передавать выходной ток нагрузки означает, что оба светодиода могут быть подключены к выходной клемме одновременно, но только один будет включен «ВКЛ» в зависимости от того, является ли состояние выхода «ВЫСОКОЕ» или «НИЗКИЙ».Схема слева показывает пример этого. два светодиода будут попеременно включаться и выключаться в зависимости от выхода. Резистор R используется для ограничения тока светодиода ниже 20 мА.
Ранее мы говорили, что максимальный выходной ток для потребления или источника тока нагрузки через контакт 3 составляет около 200 мА при максимальном напряжении питания, и этого значения более чем достаточно для управления или переключения других логических ИС, светодиодов или небольших ламп и т. Д. Но что, если бы мы хотели переключать или управлять устройствами более высокой мощности, такими как двигатели, электромагниты, реле или громкоговорители.Затем нам нужно будет использовать транзистор для усиления выхода таймера 555, чтобы обеспечить достаточно высокую мощность для управления нагрузкой.
Драйвер транзистора 555 с таймером
Транзистор в двух приведенных выше примерах может быть заменен устройством Power MOSFET или транзистором Дарлингтона, если ток нагрузки велик. При использовании индуктивной нагрузки, такой как двигатель, реле или электромагнит, рекомендуется подключить диод свободного хода (или маховик) непосредственно через клеммы нагрузки, чтобы поглотить любые напряжения обратной ЭДС, генерируемые индуктивным устройством, когда оно меняет состояние.
До сих пор мы рассматривали возможность использования таймера 555 для генерации моностабильных и бистабильных выходных импульсов. В следующем руководстве по генерации сигналов мы рассмотрим подключение 555 в нестабильной конфигурации мультивибратора. При использовании в нестабильном режиме и частота, и рабочий цикл выходного сигнала можно точно контролировать для создания очень универсального генератора сигналов.
555 Блок-схема таймера, рабочая схема, вывод конфигурации, технические данные
Блок-схема IC-таймера 555, работа, конфигурация выводов, техническое описание — полное базовое руководство
В этой статье рассматриваются все основные аспекты микросхемы таймера 555.Возможно, вы уже знаете, что SE / NE 555 — это микросхема таймера, представленная Signetics Corporation в 1970-х годах. В этой статье мы рассмотрим следующую информацию о микросхеме таймера 555.
1. Введение в микросхему таймера 555
2. Конфигурация выводов ИС таймера 555
3. Основы таймера 555
4. Блок-схема
5. Принцип работы
6. Скачать паспорт
Если вам все еще нужно детальное представление об ИС таймера 555, мы рассмотрели 3 книги в нашем интернет-магазине.Эти книги охватывают все аспекты микросхемы таймера 555, а также ее приложения. Чтобы получить обзоры и купить их, щелкните здесь: — 3 великие книги для изучения 555 схем таймеров и проектов
1. Введение
555 таймер ICМикросхема таймера 555 была представлена в 1970 году компанией Signetic Corporation и получила название SE / NE 555 timer . По сути, это монолитная схема синхронизации, которая обеспечивает точные и очень стабильные временные задержки или колебания.По сравнению с применением операционного усилителя в тех же областях, 555IC также является столь же надежным и дешевым. Помимо применения в качестве моностабильного мультивибратора и нестабильного мультивибратора , таймер 555 может также использоваться в преобразователях постоянного тока , цифровых логических пробниках, генераторах сигналов , аналоговых частотомерах и тахометрах, для измерения температуры и устройства управления, регуляторы напряжения , и т. д. ИС таймера настроена для работы в одном из двух режимов — однократном или моностабильном, либо в качестве автономного или нестабильного мультивибратора. SE 555 может использоваться в диапазоне температур от — 55 ° C до 125 °. NE 555 может использоваться в диапазоне температур от 0 ° до 70 ° C.
Важными характеристиками таймера 555 являются:
- Он работает от широкого диапазона источников питания в диапазоне от + 5 В до + 18 Вольт.
- Потребление или получение 200 мА тока нагрузки.
- Внешние компоненты должны быть выбраны правильно, чтобы временные интервалы можно было разделить на несколько минут вместе с частотами, превышающими несколько сотен килогерц.
- Выход таймера 555 может управлять транзисторно-транзисторной логикой (TTL) из-за его высокого выходного тока.
- Он имеет температурную стабильность 50 частей на миллион (ppm) при изменении температуры на градус Цельсия или, что эквивалентно 0,005% / ° C.
- Продолжительность включения таймера регулируется.
- Максимальная рассеиваемая мощность на корпус составляет 600 мВт, а его входы триггера и сброса имеют логическую совместимость. Дополнительные функции перечислены в таблице данных.
2.Конфигурация выводов IC
Конфигурация выводов микросхемы таймера 555Микросхема таймера 555 доступна в виде 8-контактного металлического корпуса, 8-контактного миниатюрного DIP (двойного в корпусе) или 14-контактного DIP. Конфигурация штифтов показана на рисунках.
Эта ИС состоит из 23 транзисторов, 2 диодов и 16 резисторов . Использование каждого вывода в ИС объясняется ниже. Номера выводов, используемые ниже, относятся к 8-выводным корпусам DIP и 8-выводным металлическим корпусам. Эти булавки подробно описаны, и вы получите лучшее представление после прочтения всего поста.
Контакт 1 : Заземленная клемма: Все напряжения измеряются относительно клеммы заземления.
Контакт 2: Терминал триггера: Контакт триггера используется для питания входа триггера, когда микросхема 555 настроена как моностабильный мультивибратор. Этот вывод является инвертирующим входом компаратора и отвечает за переход триггера из состояния установки в состояние сброса. Выход таймера зависит от амплитуды внешнего триггерного импульса, приложенного к этому выводу.На эту клемму подается отрицательный импульс с уровнем постоянного тока выше Vcc / 3. При отрицательном фронте, когда триггер проходит через Vcc / 3, выходной сигнал нижнего компаратора становится высоким, а дополнительный Q становится равным нулю. Таким образом, выход 555 IC получает высокое напряжение и, следовательно, квазистабильное состояние.
Контакт 3: Выходной терминал: Выход таймера доступен на этом контакте. Есть два способа подключения нагрузки к выходной клемме. Один из способов — подключить выходной контакт (контакт 3) к контакту заземления (контакт 1) или между контактом 3 и контактом питания (контакт 8).Нагрузка, подключенная между выходом и контактом заземления, называется , нормально подключенная к нагрузке , а нагрузка, подключенная между выходом и контактом заземления, называется , обычно без нагрузки .
Контакт 4: Клемма сброса: Каждый раз, когда таймер IC должен быть сброшен или отключен, отрицательный импульс подается на контакт 4 и, таким образом, называется клеммой сброса. Выход сбрасывается независимо от состояния входа. Если этот вывод не используется для сброса, его следует подключить к + V CC , чтобы избежать любой возможности ложного срабатывания.
Контакт 5: Клемма управляющего напряжения: Пороговые уровни и уровни срабатывания управляются с помощью этого контакта. Ширина импульса выходного сигнала определяется подключением POT или подачей внешнего напряжения на этот вывод. Внешнее напряжение, приложенное к этому выводу, также можно использовать для модуляции формы выходного сигнала. Таким образом, величина напряжения, приложенного к этому выводу, будет определять, когда следует переключить компаратор, и, таким образом, изменяет ширину импульса на выходе.Когда этот вывод не используется, он должен быть отключен от земли через 0,01 мкФ, чтобы избежать каких-либо проблем с шумом.
Контакт 6 : Пороговая клемма: Это неинвертирующая входная клемма компаратора 1, которая сравнивает напряжение, приложенное к клемме, с опорным напряжением 2/3 В CC . Амплитуда напряжения, приложенного к этой клемме, отвечает за установленное состояние триггера. Когда напряжение, приложенное к этой клемме, превышает 2 / 3Vcc, верхний компаратор переключается на + Vsat, и выход сбрасывается.
Контакт 7 : Клемма разряда: Этот контакт внутренне подключен к коллектору транзистора, и в большинстве случаев между этой клеммой и землей подключается конденсатор. Это называется разрядным выводом, потому что, когда транзистор насыщается, конденсатор разряжается через транзистор. Когда транзистор отключен, конденсатор заряжается со скоростью, определяемой внешним резистором и конденсатором.
Контакт 8: Клемма питания: На эту клемму подается напряжение питания от + 5 В до + 18 В относительно земли (контакт 1).
3. 555 Основные сведения о таймере
Таймер 555 объединяет в себе генератор релаксации, два компаратора, триггер R-S и разрядный конденсатор.
S-R-Flip FlopКак показано на рисунке, два транзистора T1 и T2 имеют перекрестную связь. Коллектор транзистора T1 управляет базой транзистора T2 через резистор Rb2. Коллектор транзистора T2 управляет базой транзистора T1 через резистор Rb1. Когда один из транзисторов находится в состоянии насыщения, другой транзистор будет в состоянии отсечки.Если считать транзистор Т1 насыщенным, то напряжение на коллекторе будет практически нулевым. Таким образом, транзистор T2 будет иметь нулевую базу и перейдет в состояние отключения, а его напряжение коллектора приблизится к + Vcc. Это напряжение подается на базу T1 и, таким образом, поддерживает его насыщение.
S-R Flip Flop SymbolТеперь, если мы считаем, что транзистор T1 находится в состоянии отсечки, то напряжение коллектора T1 будет равно + Vcc. Это напряжение доводит базу транзистора Т2 до насыщения.Таким образом, насыщенный коллектор на выходе транзистора Т2 будет практически равен нулю. Это значение при подаче обратно на базу транзистора T1 приведет его к отключению. Таким образом, значение насыщения и отсечки любого из транзисторов определяет высокое и низкое значение Q и его дополнения. При добавлении дополнительных компонентов в схему получается триггер R-S. Триггер R-S — это схема, которая может устанавливать выход Q на высокий или сбрасывать его на низкий уровень . Между прочим, дополнительный (противоположный) выход Q доступен от коллектора другого транзистора.Схематический символ триггера S-R также показан выше. Схема фиксируется либо в состоянии Q, либо в дополнительном состоянии. Высокое значение входа S устанавливает высокое значение Q. Высокое значение входа R сбрасывает значение Q на низкое. Выход Q остается в заданном состоянии до тех пор, пока не перейдет в противоположное состояние.
Схема синхронизации 555 IC Базовая концепция синхронизацииИз рисунка выше, если предположить, что выходной сигнал S-R триггера высокий. Это высокое значение передается на базу транзистора, и транзистор насыщается, создавая таким образом нулевое напряжение на коллекторе.Напряжение конденсатора зафиксировано на земле, то есть конденсатор C закорочен и не может заряжаться.
На инвертирующий вход компаратора подается управляющее напряжение, а на неинвертирующий вход — пороговое напряжение. При установленном триггере R-S насыщенный транзистор удерживает пороговое напряжение на нуле. Однако управляющее напряжение составляет 2/3 В CC, , то есть 10 В, из-за делителя напряжения.
Предположим, что на вход R.Это сбрасывает триггер R-Output Q на низкий уровень, и транзистор отключается. Конденсатор C теперь можно заряжать бесплатно. Когда этот конденсатор C заряжается, пороговое напряжение повышается. В конце концов, пороговое напряжение становится немного выше (+ 10 В). Затем на выходе компаратора устанавливается высокий уровень , , заставляя триггер R S установить. Выходной сигнал с высокой добротностью насыщает транзистор, и это быстро разряжает конденсатор. На конденсаторе C наблюдается экспоненциальный рост, а на выходе Q появляется положительный импульс.Таким образом, напряжение конденсатора V C экспоненциально, а выходное напряжение — прямоугольное. Это показано на рисунке выше.
4. Блок-схема таймера IC 555
Блок-схема таймера IC 555Блок-схема таймера 555 показана на рисунке выше. Таймер 555 имеет два компаратора, которые в основном представляют собой 2 операционных усилителя, триггер R-S, два транзистора и резистивную цепь.
- Резистивная сеть состоит из трех равных резисторов и действует как делитель напряжения.
- Компаратор 1 сравнивает пороговое напряжение с опорным напряжением + 2/3 В CC Вольт.
- Компаратор 2 сравнивает напряжение запуска с опорным напряжением + 1/3 В CC Вольт.
Выход обоих компараторов подается на триггер. Триггер принимает свое состояние в соответствии с выходом двух компараторов. Один из двух транзисторов является разрядным транзистором, коллектор которого подключен к выводу 7. Этот транзистор насыщается или отключается в соответствии с состоянием выхода триггера.Транзистор с насыщением обеспечивает путь разряда к конденсатору, подключенному извне. База другого транзистора подключена к клемме сброса. Импульс, приложенный к этой клемме, сбрасывает весь таймер независимо от входа.
5. Принцип работы
См. Блок-схему микросхемы таймера 555, приведенную выше:Внутренние резисторы действуют как сеть делителей напряжения, обеспечивая (2/3) Vcc на неинвертирующем выводе верхнего компаратора и (1/3) Vcc на инвертирующем выводе нижнего компаратора.В большинстве приложений управляющий вход не используется, поэтому управляющее напряжение равно + (2/3) В CC . Верхний компаратор имеет пороговый вход (контакт 6) и вход управления (контакт 5). Выход верхнего компаратора применяется к входу установки (S) триггера. Каждый раз, когда пороговое напряжение превышает управляющее напряжение, верхний компаратор устанавливает триггер, и на его выходе высокий уровень . Высокий выходной сигнал от триггера, когда он подается на базу разрядного транзистора, насыщает его и, таким образом, разряжает транзистор, который подключен снаружи к разрядному выводу 7.Дополнительный сигнал с триггера поступает на вывод 3, выход. На выходе 3 имеется низкий уровень . Эти условия будут преобладать до тех пор, пока нижний компаратор не сработает триггер. Даже если напряжение на пороговом входе упадет ниже (2/3) В CC , то есть верхний компаратор не сможет снова изменить триггер. Это означает, что верхний компаратор может только установить высокий уровень на выходе триггера.
Чтобы изменить выходной сигнал триггера на низкий уровень , , напряжение на входе триггера должно упасть ниже + (1/3) Vcc.Когда это происходит, нижний компаратор запускает триггер, устанавливая на его выходе низкий уровень . Низкий уровень на выходе триггера выключает разрядный транзистор и вынуждает усилитель мощности выводить высокий уровень. Эти условия сохранятся независимо от напряжения на входе триггера. Компаратор нижнего уровня может привести только к низкому выходному сигналу триггера.
Из приведенного выше обсуждения можно сделать вывод, что для наличия низкого выходного сигнала таймера 555 напряжение на пороговом входе должно превышать управляющее напряжение или + (2/3) В CC .Это также включает разрядный транзистор. Чтобы на выходе таймера был высокий уровень, напряжение на входе триггера должно упасть ниже + (1/3) В CC . Это выключает разрядный транзистор.
На управляющий вход может подаваться напряжение для изменения уровней, при которых происходит переключение. Когда он не используется, конденсатор 0,01 нано Фарад должен быть подключен между контактом 5 и землей, чтобы шум, связанный с этим контактом, не приводил к ложному срабатыванию.
Подключение сброса (вывод 4) к низкому логическому уровню приведет к установке высокого уровня на выходе триггера.Разрядный транзистор включится, и на выходе усилителя мощности будет низкий уровень. Это состояние будет продолжаться до тех пор, пока сброс не станет высоким. Это позволяет синхронизировать или сбросить работу схемы. Когда он не используется, сброс должен быть привязан к + V CC .
Скачать лист технических данных таймера 555:
Чтобы узнать больше о микросхеме таймера NE / SE 555, просмотрите / скачайте техническое описание. — NE-SE 555 Таймер Лист данных
Применение 555 схем таймера
Чтобы узнать больше о применении микросхемы таймера 555, прочтите следующие сообщения:
555 микросхем таймера555 Моностабильный | Клуб электроники
555 Моностабильный | Клуб электроникиПериод времени | Операция | Сброс / триггер при включении | Триггер по фронту
Микросхема таймера 555 может использоваться с несколькими простыми компоненты для создания моностабильной схемы, которая при срабатывании генерирует одиночный выходной импульс.Он называется стабильным mono , потому что он стабилен только в одном состоянии : «низкий выход». Состояние «высокий выход» является временным.
Рекомендуемая книга: IC 555 Projects
Период моностабильного времени
Длительность импульса называется периодом времени (T), и это определяется резистор R1 и конденсатор C1:
Период времени, T = 1,1 × R1 × C1 |
T = период времени в секундах (с)
R1 = сопротивление в Ом ()
C1 = емкость в фарадах (Ф)
Максимальный надежный период времени составляет около 10 минут.
Почему 1.1? Конденсатор заряжается до 2 / 3 = 67%, поэтому он немного длиннее постоянной времени (R1 × C1) — время, необходимое для зарядки до 63%.
555 моностабильный выход, одиночный импульс
555 моностабильная схема с ручным пуском
Выбор R1 и C1
Выберите сначала C1 , потому что доступно относительно мало значений.
Выберите R1 , чтобы указать необходимый вам период времени.R1 должен быть в пределах 1k до 1 МОм, поэтому используйте постоянный резистор на не менее 1k последовательно, если R1 переменный.
Остерегайтесь , что электролитические конденсаторы не имеют точных значений (часто встречаются ошибки не менее 20%)
и они имеют тенденцию к утечке заряда, что увеличивает период времени (особенно, если вы используете резистор большого номинала).
Например: проект таймера должен иметь максимальный период времени.
266 с (около 4½ минут), но многие электролитические конденсаторы увеличивают это время примерно до 10 минут!
Моностабильный режим
Период синхронизации запускается (запускается), когда входной сигнал триггера (контакт 2) меньше 1 / 3 Vs, это делает выход высоким (+ Vs), и конденсатор C1 запускается заряжать через резистор R1.После начала периода времени дальнейшие пусковые импульсы игнорируются.
Порог Вход (контакт 6) контролирует напряжение на C1, и когда оно достигает 2 / 3 По истечении периода времени значение на выходе становится низким. В то же время разряд (вывод 7) внутренне подключен к 0 В, разряжая конденсатор готов к следующему триггеру.
Сброс Вход (контакт 4) отменяет все другие входы, и отсчет времени может быть отменен в любой момент, подключив сброс к 0 В, это мгновенно понижает выходной сигнал и разряжает конденсатор.Если функция сброса не требуется, контакт сброса должен быть напрямую подключен к + Vs. с проводом или с резистором около 10к (значение не критично).
Сброс или триггер при включении
Может быть полезно убедиться, что моностабильная цепь сбрасывается или запускается автоматически при источник питания подключен или включен. Это достигается за счет использования конденсатора вместо (или в дополнение к) нажимному переключателю, как показано на схеме.
Конденсатору требуется короткое время для зарядки, кратковременно удерживая вход близким к 0 В, когда цепь включена.Переключатель может быть подключен параллельно конденсатору, если вручную операция тоже требуется.
Это расположение используется для триггера в проекте таймера.
Срабатывание по фронту
Если вход триггера все еще меньше 1 / 3 Вс в конце периода времени выходной сигнал будет оставаться высоким до тех пор, пока триггер не станет больше 1 / 3 Vs. Этот Ситуация может возникнуть, если входной сигнал поступает от двухпозиционного переключателя или датчика.
Можно сделать моностабильным срабатыванием фронта , реагируя только на изменений входного сигнала путем подключения триггерного сигнала через конденсатор к триггерному входу. Конденсатор пропускает резкие изменения (переменный ток), но блокирует постоянный сигнал (постоянный ток). Для дополнительной информации см. страницу, посвященную емкости. Схема « срабатывает отрицательный фронт », потому что она реагирует на внезапное падение входного сигнала.
Резистор между триггером (вывод 2) и + Vs обеспечивает нормальный высокий уровень триггера (+ Vs).
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.
electronicsclub.info © Джон Хьюс 2021 г.
Принципиальная схема таймера от 1 до 15 минут, работа и приложения
Принципиальная схема таймера от 1 до 15 минут, работа и приложенияВ эпоху технологий каждый прибегает к помощи машин, чтобы упростить себе жизнь.Цепи таймера облегчают выполнение повседневных задач во многих отношениях, инициируя или выполняя их через определенный интервал времени. Другими словами, если вы ищете автоматическое устройство, которое будет работать в течение определенного периода времени и отключаться по истечении желаемого времени, тогда эта схема таймера — лучший выбор.
В этом проекте мы используем микросхему таймера 555 для создания различных схем таймера, таких как схема таймера 1 мин, схема таймера 5 мин, схема таймера 10 мин и схема таймера 15 мин. Здесь, с помощью микросхемы таймера 555, мы избавляемся от необходимости вручную включать или выключать устройство.Также таймер 555 используется для генерации колеблющегося импульса. Это означает, что выходной вывод 3 микросхемы таймера 555 находится в состоянии «ВЫКЛ» в течение некоторого времени и снова переходит в состояние «ВКЛ» после заданного интервала времени. Мы можем использовать это колебательное поведение микросхемы таймера 555 для создания схемы таймера с различными временными задержками. Чтобы создать схему таймера на желаемый интервал времени, достаточно просто изменить номинал резистора R 1 или конденсатора C 1 .
Мы можем использовать разные схемы таймера с разной выдержкой времени для управления сигнализацией, устройством, двигателями и т. Д.через определенный промежуток времени. Основную роль в этой схеме играет микросхема таймера 555. В этой статье мы будем обсуждать все схемы с четырьмя таймерами (таймер 1 мин., 5 мин., 10 мин и 15 мин) по очереди. Перед этим давайте кратко рассмотрим микросхему таймера 555.
555 ИС таймера555 ИС таймера используется в приложениях таймера, генерации импульсов и генератора. Микросхема таймера 555 в основном может быть сконфигурирована в трех различных состояниях, а именно: мультивибратор A-стабильный, мультивибратор с моностабильным двигателем и мультивибратор с двухсторонней стабильностью.
Давайте посмотрим на внутреннюю схему микросхемы таймера 555, чтобы лучше понять принцип ее работы:
Три резистора 5 кОм соединены между собой внутри. Это создает схему делителя напряжения на контактах 8 и 1. Два компаратора вырабатывают выходное напряжение, которое зависит от разницы напряжений на их входе. Разница напряжений определяется внешне подключенной RC-цепью. Выход обоих компараторов соединен со входом триггера для создания логического выхода «высокий» или «низкий» в зависимости от состояния входа.Выход триггера можно использовать для управления ступенью переключения сильноточного выхода, чтобы управлять подключенной нагрузкой, создавая высокий или низкий уровень на выходном контакте.
Выводы микросхемы таймера 555:- Контакт 1 — Земля
- Контакт2 — Триггер
- Вывод 3 — Выход
- Вывод 4 — Сброс
- Вывод 5 — Управляющее напряжение
- Вывод 6 — Порог
- Вывод 7 — Разряд
- Контакт 8 — Источник питания (4,5-15 В)
Таймер IC 555 — это полезное прецизионное синхронизирующее устройство, вырабатывающее одиночные импульсы или как генератор, генерирующий последовательность стабилизированных сигналов с любыми конкретными рабочими циклами. .
- Может использоваться в однократных таймерах или таймерах задержки для создания временной задержки.
- Может использоваться в светодиодных или импульсных лампах для включения лампы на определенное время.
- ИТ может использоваться в генерации тонов или логических тактовых генераторах
- Его можно использовать в источниках питания, преобразователях и т. Д.
Соберите нижеупомянутые компоненты, чтобы разработать схему таймера разной продолжительности времени:
- 555 Таймер IC
- Светодиод
- Конденсатор (1000 мкФ)
- Переменный резистор
- Кнопка
- Резистор
- Источник питания
- Соединительные провода
Приведенная выше принципиальная схема предназначена для 1-минутного таймера.В течение 5 минут, 10 минут и 15 минут вам просто нужно изменить номинал резистора (R 1 ). Нам нужно настроить таймер 555 в моностабильном режиме, чтобы построить таймер. Таймер 555 начинает отсчет времени при включении. По истечении одной минуты светодиод автоматически включится. Обычно продолжительность времени, в течение которого вывод 3 микросхемы таймера 555 будет оставаться на высоком уровне, может быть получена по следующей формуле: T = 1,1 * R 1 * C 1 Как обсуждалось выше, мы должны изменить номинал конденсатора или резистора.Теперь, для создания схемы 1-минутного таймера, мы можем рассчитать номинал резистора, используя приведенную выше формулу: 60 сек = 1,1 x R 1 x 1000 мкФ R 1 = 60 / (1,1 x 1000 мкФ) R 1 = 55K Следовательно, установите значение потенциометра на 55k, и ваш таймер будет установлен на 1 минуту. Теперь вы можете легко использовать приведенные выше формулы для определения номинала резистора в цепи таймера на 5, 10 и 15 минут. Примечание. Вы также можете использовать эту формулу для создания схемы таймера, изменив значение конденсатора и сделав значение сопротивления постоянным. Аналогично, в схеме 5-минутного таймера мы будем использовать приведенную выше формулу, чтобы получить точное сопротивление резистора. T = 1,1 * R 1 * C 1 Теперь время равно 5 минутам и будет равно (5 x 60) секундам. Емкость конденсатора останется неизменной для всей схемы таймера. Здесь T = 5 * 60 C 1 = 1000 мкФ 5 * 60 = 1,1 * R 1 * 1000 мкФ Следовательно, R 1 = 272,7 кОм Следовательно, чтобы разработать схему 5-минутного таймера, измените номинал резистора на 272,7 кОм. И через 5 минут светодиод загорится. Как только сработает контакт 2 микросхемы таймера 555, таймер начнет отсчет времени, и светодиод погаснет. По истечении 5 минут на выводе 3 микросхемы таймера 555 снова станет низкий уровень, и загорится светодиод. Связанный проект: Автоматическая система управления уличным освещением с использованием LDR и транзистора BC 547 Опять же, как обсуждалось выше, вам нужно только изменить номинал резистора R 1 для разработки 10-минутного таймера. Цепь таймера мин. Ниже приведен расчет для определения номинала резистора: T = 1,1 * R 1 * C 1 Теперь время составляет 10 минут и будет равно (10 x 60) секундам.Емкость конденсатора останется неизменной для всей схемы таймера. Здесь T = 10 * 60 C 1 = 1000 мкФ 10 * 60 = 1,1 * R 1 * 1000 мкФ Следовательно, R 1 = 545,4 кОм В этом случае контакт 3 микросхемы таймера 555 снова станет низким, и светодиод включится через 10 минут. Для установки таймера на 15 минут измените значение резистора R 1 , используя следующую формулу: T = 1.1 * R 1 * C 1 Теперь время равно 15 минутам и будет равно (15 x 60) секундам. Емкость конденсатора останется неизменной для всей схемы таймера. Здесь T = 15 * 60 C 1 = 1000 мкФ 15 * 60 = 1,1 * R 1 * 1000 мкФ Следовательно, R 1 = 818,2 кОм Итак , при замене сопротивления резистора на 818,2 кОм светодиод включится через 15 минут. 555 ИС таймера отлично работает для создания временной задержки для определенного интервала.Однако для создания временной задержки более 20 минут таймер 555 не очень подходит. Здесь мы использовали обратную логику со светодиодами. Это означает, что всякий раз, когда на выходе Pin3 микросхемы таймера 555 низкий уровень, светодиод будет включен. Точно так же светодиод будет выключен, когда на выходе Pin3 таймера 555 IC установлено значение High. В приведенных выше расчетах светодиод будет включен по истечении расчетного времени. Выходной вывод 3 таймера 55 изначально будет низким. Как только сработает микросхема таймера 555, начнется отсчет времени, и светодиод погаснет.По истечении заданного времени задержки светодиод снова включится, так как контакт 3 снова будет установлен на низкий уровень. Выше мы вычислили номинал резистора для различных схем таймера, таких как 1 мин, 5 мин, 10 мин и 15 мин. Цепи таймера с различной выдержкой времени очень полезны в реальной жизни для автоматизации действия, которое должно быть выполнено в желаемое время без участия людей. Просмотрите список применений схемы таймера в повседневной жизни. Bottom Line В приведенном выше обсуждении мы разработали схемы таймера на 1 минуту, 5 минут, 10 минут и 15 минут с временной задержкой с использованием 555 Timer IC. Устройства для измерения времени очень удобны в повседневной жизни и очень просты в изготовлении. Мы можем положиться на микросхему таймера 555 для создания задержек 15-20 минут. Мы надеемся, что вы хорошо знакомы с микросхемой таймера 555 и различными схемами таймера, использующими ее.Теперь вы можете легко спроектировать различные схемы таймера на 1 минуту, 5 минут, 10 минут и 15 минут, используя микросхему таймера 555. В этом сообщении блога мы представим интегральную схему (ИС) с таймером 555. Вы узнаете, что это такое, три разных режима и его распиновку. Таймер 555 — это интегральная схема, она чрезвычайно универсальна и может использоваться для построения множества различных схем. EN555 обычно используется для генерации непрерывных серий импульсов. Эти серии импульсов позволяют, например, непрерывно мигать светодиодом. Таймер 555 может работать в трех различных режимах: В этом посте вы увидите пример нестабильного режима. Если вы выполните поиск по Google 555 timer datasheet , одним из первых результатов должен быть datasheet в формате PDF. Это документ с большим количеством информации, но на что вам действительно стоит обратить внимание прямо сейчас, так это на распиновку. Распиновка EN555: Эта микросхема имеет 8 контактов: На принципиальной схеме обычно таймер 555 изображен следующим образом: Вывод 3 — это выход.Этот штифт генерирует колебания. Напряжение высокое, затем низкое, затем высокое, затем снова низкое и так далее (это называется нестабильным режимом). Чтобы таймер 555 работал в нестабильном режиме, вы должны подключить свою схему следующим образом: Частоту колебаний можно регулировать, изменяя номиналы резисторов R1 и R2 и емкость конденсатора C. Частоту можно рассчитать с помощью следующего выражения: С выходным напряжением, поступающим с контакта 3, вы можете управлять чем угодно (например, светодиодом, динамиком, двигателем и т. Д.). В этом разделе вы будете мигать светодиодом, используя таймер 555 в нестабильном режиме. Итак, нам просто нужно добавить светодиод к выходу предыдущей схемы. Это необходимые компоненты: Вы можете использовать предыдущие ссылки или перейти непосредственно на MakerAdvisor.com/tools, чтобы найти все детали для ваших проектов по лучшей цене! Это принципиальная схема: Вы можете либо следовать предыдущей схеме, либо следовать схеме электрических соединений на макетной плате, приведенной ниже.Наконец, включите свою схему, подключив батарею к макетной плате: В конце концов, вы должны увидеть, как ваш светодиод мигает следующим образом: Примечание: замените электролитический конденсатор емкостью 1 мкФ другим конденсатором с меньшей емкостью и увидите, что светодиод будет мигать с другой скоростью. При более низких значениях емкости частота вспышек увеличивается. Надеюсь, вы узнали что-то новое сегодня и сочли это объяснение полезным. Если вы хотите узнать больше об основах электроники или начать знакомство с миром электроники, обязательно ознакомьтесь с нашей электронной книгой Electronics for Beginners . Спасибо за чтение! В этом руководстве мы узнаем об использовании таймера 555 в нестабильном режиме. Мы говорили о долговечности почтенного таймера 555 и о том, что на момент написания этой статьи он просуществовал почти 50 лет.Это невероятно универсальная маленькая интегральная схема с множеством фантастических применений. В этом уроке мы расскажем, как использовать таймер 555, чтобы мигать синим светодиодом. Скорее всего, когда-нибудь в будущем это войдет в нашу сборку R2-D2, так что следите за этим! Астабильный режим на сегодняшний день является наиболее часто используемым таймером 555 и наиболее часто ассоциируется с ним. Бистабильный и моностабильный режимы не следует сбрасывать со счетов, но нестабильный режим — вот где волшебство. Модель 555 называется таймером или «таймером 555».Это связано с тем, что он может генерировать импульсы электрического тока в течение точного времени в зависимости от значений резисторов и конденсаторов, подключенных к таймеру. Таймер имеет три режима работы: Вот краткий список деталей, который поможет вам быстро приступить к созданию этого проекта: Давайте перейдем к нестабильному режиму.В Astable таймер 555 использует резистор и конденсатор для создания циклической функции. В этом режиме мы можем создать схему с повторяющимся действием. Астабильный режим — это наиболее распространенный режим, в котором используются 555 таймеров. Значения резистора и конденсатора будут определять синхронизацию этой повторяемой схемы. В нашем случае мы заставим светодиодный индикатор мигать с повторяющимся интервалом в нестабильном режиме. Чтобы подключить таймер 555 для бистабильной работы, следуйте этой схеме подключения. В нестабильном режиме циклы выходных PIN-кодов непрерывно образуют от HIGH до LOW . Как вы можете видеть на схеме подключения, вывод порогового значения и вывод триггера подключены к конденсатору емкостью 100 мкФ. Следовательно, уровни напряжения будут одинаковыми на контакте триггера, пороговом контакте и конденсаторе 100 мкФ. Когда схема впервые получает питание, напряжение на конденсаторе, пороговом контакте и контакте триггера составляет LOW .Помните, что если напряжение на выводе триггера равно LOW , на выходе будет HIGH . Когда разрядный вывод находится в выключенном состоянии, ток может протекать через резисторы 5,1 кОм, которые, в свою очередь, заряжают наш электролитический конденсатор емкостью 100 мкФ. Когда заряд конденсатора достигает двух третей от Vcc + , выходной контакт отключается. Когда выходной вывод LOW , разрядный вывод включается, заставляя конденсатор стекать на землю. Как только напряжение конденсатора упадет до одной трети от Vcc + , триггерный вывод отключает разрядный вывод, и конденсатор снова начинает заряжаться. Цикл повторяется бесконечно. Вот быстрый GIF-изображение использования таймера 555 в нестабильном режиме. Это отличная схема, которую можно использовать во многих проектах. Два резистора 5,1 кОм и конденсатор 100 мкФ можно изменить на разные значения, чтобы увеличить или уменьшить скорость мигания синего светодиода. Кроме того, вы можете использовать потенциометр между контактами 6 и 7, чтобы изменить схему. Поворот ручки на потенциометре будет контролировать частоту мигания синего светодиода. СВЯЗАННО: 555 Таймер в моностабильном режиме Мы надеемся, что это руководство было легким для понимания. Если у вас есть какие-либо вопросы или проблемы с его работой, напишите нам в комментариях ниже, и мы постараемся помочь! Нестабильный режим мультивибратора таймера 555 IC также называется Автономный режим или режим самозапуска . В отличие от режима моностабильного мультивибратора, он не имеет какого-либо стабильного состояния, он имеет два квази-стабильных состояния (ВЫСОКОЕ и НИЗКОЕ).В Astable mode не требуется внешнего запуска, он автоматически меняет два своих состояния на определенном интервале, следовательно, генерирует прямоугольный сигнал. На этот раз длительность ВЫСОКОГО и НИЗКОГО выходных сигналов определяется внешними резисторами (R1 и R2) и конденсатором (C1). Астабильный режим работает как схема генератора , в котором выходной сигнал колеблется с определенной частотой и генерирует импульсы в форме прямоугольной волны. Используя микросхему таймера 555, мы можем сгенерировать точную временную продолжительность ВЫСОКОГО и НИЗКОГО выходных сигналов, от микросекунд до часов, поэтому 555 является очень популярной и универсальной микросхемой.Перед тем, как продолжить, вы должны знать об ИС таймера 555 и ее PIN-кодах, вот краткое описание ее PIN-кодов. Контакт 1. Земля: Этот контакт должен быть подключен к земле. Контакт 2. TRIGGER: Триггерный контакт перетаскивается с отрицательного входа компаратора два. Выход нижнего компаратора подключен к выводу SET триггера. Отрицательный импульс ( Контакт 3.ВЫХОД: Этот вывод также не имеет специальной функции. Это выходной контакт, к которому подключена нагрузка. Его можно использовать как источник или приемник и управлять током до 200 мА. Контакт 4. Сброс: В микросхеме таймера есть триггер. Вывод сброса напрямую подключен к MR (Master Reset) триггера. Это активный вывод низкого уровня, который обычно подключается к VCC для предотвращения случайного сброса. Вывод 5. Контрольный вывод: Контрольный вывод подключается к отрицательному входному выводу первого компаратора.Ширина выходного импульса может контролироваться путем подачи напряжения на этот вывод независимо от RC-цепи. Обычно этот вывод опускается с помощью конденсатора (0,01 мкФ), чтобы избежать нежелательных шумовых помех при работе. Вывод 6. ПОРОГ: Пороговое напряжение на выводе определяет, когда сбрасывать триггер в таймере. Пороговый вывод выводится с положительного входа верхнего компаратора. Если управляющий контакт разомкнут, тогда напряжение, равное или превышающее VCC * (2/3), сбросит триггер.Таким образом, выход становится низким. Контакт 7. РАЗРЯД: Этот вывод выводится из открытого коллектора транзистора. Так как транзистор (на котором был взят разрядный вывод, Q1) получил свою базу, подключенную к Qbar. Каждый раз, когда на выходе падает низкий уровень или триггер сбрасывается, разрядный штырь замыкается на массу и конденсатор разряжается. Контакт 8. Питание или VCC: Он подключен к положительному напряжению (от + 3,6 до +15 В). Эта зарядка и разрядка конденсатора продолжается, и генерируется прямоугольная колеблющаяся выходная волна для. Пока конденсатор заряжается, выход 555 ВЫСОКИЙ, а пока конденсатор разряжается, выходной сигнал НИЗКИЙ.Таким образом, это называется Astable mode , потому что ни одно из состояний не является стабильным, и 555 автоматически меняет свое состояние с HIGH на LOW и с LOW на HIGH, поэтому он называется Free running Multivibrator. Теперь длительность ВЫХОДНОГО ВЫХОДА и НИЗКОГО ВЫХОДА определяется резисторами R1 и R2 и конденсатором C1. Это можно рассчитать по формулам ниже: Максимальное время (секунды) T1 = 0,693 * (R1 + R2) * C1 Минимум времени (секунды) T2 = 0.693 * R2 * C1 Период времени T = Максимум времени + Минимум времени = 0,693 * (R1 + 2 * R2) * C1 Частота f = 1 / Период времени = 1 / 0,693 * (R1 + 2 * R2) * C1 = 1,44 / (R1 + 2 * R2) * C1 Рабочий цикл: Рабочий цикл — это отношение времени, в течение которого выходной сигнал ВЫСОКИЙ, к общему времени. Рабочий цикл%: (Время ВЫСОКИЙ / Общее время) * 100 = (T1 / T) * 100 = (R1 + R2) / (R1 + 2 * R2) * 100 Вы также можете использовать этот калькулятор с таймером 555 для расчета вышеуказанных значений. Вот практическая демонстрация нестабильного режима микросхемы таймера 555 IC , где мы подключили светодиод к выходу микросхемы 555. В этой цепи нестабильного мультивибратора 555 светодиод будет автоматически включаться и выключаться с определенной продолжительностью. Время включения, время выключения, частота и т. Д. Можно рассчитать, используя приведенные выше формулы. На рисунке выше показана принципиальная схема нестабильного мультивибратора с таймером 555. Вы можете найти множество схем и приложений, использующих нестабильный режим в схемах таймера 555. Знакомство с микросхемой таймера 555 — Учебное пособие
Таймер 555 (EN555)
Распиновка
Выход
Астабильный режим
Мигает светодиод с таймером 555
Необходимые компоненты
Принципиальная схема
Схема подключения
Завершение
Использование таймера 555 в нестабильном режиме
Что такое таймер 555?
Список деталей для этого проекта
555 Таймер в нестабильном режиме Пример
Подключение таймера 555 для нестабильного режима
555 Таймер Astable Pinout
Что такое нестабильный режим на таймере 555
Таймер 555 в нестабильном режиме в действии
Схема цепи нестабильного мультивибратора 555 с таймером