Site Loader

Содержание

Индукционный нагреватель металла на 12 киловатт – схема инвертора и компоненты

Сейчас мы узнаем как сделать своими руками индукционный нагреватель, который можно использовать для разных проектов или просто для удовольствия. Вы сможете мгновенно плавить сталь, алюминий или медь. Вы можете использовать её для пайки, плавления и ковки металлов. Вы можете использовать самодельный индуктивный нагреватель и для литья.

Мое учебное пособие охватывает теорию, компоненты и сборку некоторых из важнейших компонентов.

Инструкция большая, в ней мы рассмотрим основные шаги, дающие вам представление о том, что входит в такой проект, и о том, как его спроектировать, чтобы ничего не взорвалось.

Для печи я собрал очень точный недорогой криогенный цифровой термометр. Кстати, в тестах с жидким азотом он неплохо себя показал против брендовых термометров.

Шаг 1: Компоненты

Основные компоненты высокочастотного индукционного нагревателя для нагрева металла электричеством — инвертор, драйвер, соединительный трансформатор и колебательный контур RLC.

Вы увидите схему чуть позже. Начнем с инвертора. Это — электрическое устройство, которое изменяет постоянный ток на переменный. Для мощного модуля он должен работать стабильно. Сверху находится защита, которая используется, чтобы защитить привод логического элемента МОП-транзистора от любого случайного перепада напряжения. Случайные перепады вызывают шум, который приводит к переключению на высокие частоты. Это приводит к перегреву и отказу МОП-транзистора.

Линии с большой силой тока находятся внизу печатной платы. Много слоев меди используются, чтобы позволить им пропускать более 50А тока. Нам не нужен перегрев. Также обратите внимание на большие алюминиевые радиаторы с водяным охлаждением с обеих сторон. Это необходимо, чтобы рассеивать тепло, вырабатываемое МОП-транзисторами.

Изначально я использовал вентиляторы, но чтобы справиться с этой мощностью, я установил небольшие водяные насосы, благодаря которым вода циркулирует через алюминиевые теплоотводы. Пока вода чистая, трубки не проводят ток. У меня также установлены тонкие слюдяные пластины под МОП-транзисторами, чтобы гарантировать отсутствие проводимости через стоки.

Шаг 2: Схема инвертора

Это схема для инвертора. Схема на самом деле не такая сложная. Инвертированный и неинвертированный драйвер повышает или понижает напряжение 15В, чтобы настроить переменный сигнал в трансформаторе (GDT). Этот трансформатор изолирует чипы от мосфетов. Диод на выходе мосфета действует для ограничения пиков, а резистор минимизирует колебания.

Конденсатор C1 поглощает любые проявления постоянного тока. В идеале, вам нужны самые быстрые перепады напряжения на цепи, так как они уменьшают нагрев. Резистор замедляет их, что кажется нелогичным. Однако если сигнал не угасает, вы получаете перегрузки и колебания, которые разрушают мосфеты. Больше информации можно получить из схемы демпфера.

Диоды D3 и D4 помогают защитить МОП-транзисторы от обратных токов. C1 и C2 обеспечивают незамкнутые линии для проходящего тока во время переключения. T2 — это трансформатор тока, благодаря которому драйвер, о котором мы поговорим далее, получает обратный сигнал от тока на выходе.

Шаг 3: Драйвер

Эта схема действительно большая. Вообще, вы можете прочитать про простой маломощный инвертор. Если вам нужна большая мощность, вам нужен соответствующий драйвер. Этот драйвер будет останавливаться на резонансной частоте самостоятельно. После того, как ваш металл расплавится, он останется заблокированным на правильной частоте без необходимости какой-либо регулировки.

Если вы когда-либо строили простой индукционный нагреватель с чипом PLL, вы, вероятно, помните процесс настройки частоты, чтобы металл нагревался. Вы наблюдали за движением волны на осциллографе и корректировали частоту синхронизации, чтобы поддерживать эту идеальную точку. Больше не придется этого делать.

В этой схеме используется микропроцессор Arduino для отслеживания разности фаз между напряжением инвертора и емкостью конденсатора. Используя эту фазу, он вычисляет правильную частоту с использованием алгоритма «C».

Я проведу вас по цепи:

Сигнал емкости конденсатора находится слева от LM6172. Это высокоскоростной инвертор, который преобразует сигнал в красивую, чистую квадратную волну. Затем этот сигнал изолируется с помощью оптического изолятора FOD3180. Эти изоляторы являются ключевыми!

Далее сигнал поступает в PLL через вход PCAin. Он сравнивается с сигналом на PCBin, который управляет инвертором через VCOout. Ардуино тщательно контролирует тактовую частоту PLL, используя 1024-битный импульсно-модулированный сигнал. Двухступенчатый RC-фильтр преобразует сигнал PWM в простое аналоговое напряжение, которое входит в VCOin.

Как Ардуино знает, что делать? Магия? Догадки? Нет. Он получает информацию о разности фаз PCA и PCB от PC1out. R10 и R11 ограничивают напряжение в пределах 5 напряжений для Ардуино, а двухступенчатый RC-фильтр очищает сигнал от любого шума. Нам нужны сильные и чистые сигналы, потому что мы не хотим платить больше денег за дорогие мосфеты после того, как они взорвутся от шумных входов.

Шаг 4: Передохнём

Это был большой массив информации. Вы можете спросить себя, нужна ли вам такая причудливая схема? Зависит от вас. Если вы хотите автонастройку, тогда ответ будет «да». Если вы хотите настраивать частоту вручную, тогда ответ будет отрицательным. Вы можете создать очень простой драйвер всего лишь с таймером NE555 и использовать осциллограф. Можно немного усовершенствовать его, добавив PLL (петля фаза-ноль)

Тем не менее, давайте продолжим.

Шаг 5: LC-контур

К этой части есть несколько подходов. Если вам нужен мощный нагреватель, вам понадобится конденсаторный массив для управления током и напряжением.

Во-первых, вам нужно определить, какую рабочую частоту вы будете использовать. Более высокие частоты имеют больший скин-эффект (меньшее проникновение) и хороши для небольших объектов. Более низкие частоты лучше для больших объектов и имеют большее проникновение. Более высокие частоты имеют большие потери при переключении, но через бак пройдет меньше тока.

Я выбрал частоту около 70 кГц и дошел до 66 кГц.

Мой конденсаторный массив имеет ёмкость 4,4 мкФ и может выдерживать более 300А. Моя катушка около 1мкГн. Также я использую импульсные пленочные конденсаторы. Они представляют собой осевой провод из самовосстанавливающегося металлизированного полипропилена и имеют высокое напряжение, высокий ток и высокую частоту (0.22 мкФ, 3000В). Номер модели 224PPA302KS.

Я использовал две медные шины, в которых просверлил соответствующие отверстия с каждой стороны. Паяльником я припаял конденсаторы к этим отверстиям. Затем я прикрепил медные трубки с каждой стороны для водного охлаждения.

Не берите дешевые конденсаторы. Они будут ломаться, и вы заплатите больше денег, чем если бы вы сразу купили хорошие.

Шаг 6: Сборка трансформатора

Если вы внимательно читали статью, вы зададите вопрос: а как управлять LC-контуром? Я уже рассказывал об инверторе и контуре, не упоминая, как они связаны.

Соединение осуществляется через соединительный трансформатор. Мой от Magnetics, Inc. Номер детали — ZP48613TC. Adams Magnetics также является хорошим выбором при выборе ферритовых тороидов.

Тот, что слева, имеет провод 2мм. Это хорошо, если ваш входной ток ниже 20А. Провод перегреется и сгорит, если ток больше. Для высокой мощности вам нужно купить или сделать литцендрат. Я сделал сам, сплетя 64 нити из проволоки 0.5мм. Такой провод без проблем может выдержать ток 50А.

Инвертор, который я показал вам ранее, принимает высоковольтный постоянный ток и изменяет его на переменные высокие или низкие значения. Эта переменная квадратная волна проходит черезч соединительный трансформатор через переключатели мосфета и конденсаторы связи постоянного тока на инверторе.

Медная трубка из емкостного конденсатора проходит через нее, что делает ее одновитковой вторичной обмоткой трансформатора. Это, в свою очередь, позволяет сбрасываемому напряжению проходить через конденсатор емкости и рабочую катушку (контур LC).

Шаг 7: Делаем рабочую катушку

Один из вопросов, который мне часто задавали: «Как ты делаешь такую изогнутую катушку?» Ответ — песок. Песок будет препятствовать разрушению трубки во время процесса изгиба.

Возьмите медную трубку от холодильника 9мм и заполните ее чистым песком. Перед тем, как сделать это, закройте один конец какой-нибудь лентой, а также закройте другой после заполнения песком. Вкопайте трубу соответствующего диаметра в землю. Отмерьте длину трубки для вашей катушки и начните медленно наматывать её на трубу. Как только вы сделаете один виток, остальные будет сделать несложно. Продолжайте наматывать трубку, пока не получите количество желаемых витков (обычно 4-6). Второй конец нужно выровнять с первым. Это упростит подключение к конденсатору.

Теперь снимите колпачки и возьмите воздушный компрессор, чтобы выдуть песок. Желательно делать это на улице.

Обратите внимание, что медная трубка также служит для водного охлаждения. Эта вода циркулирует через емкостный конденсатор и через рабочую катушку. Рабочая катушка генерирует много тепла от тока. Даже если вы используете керамическую изоляцию внутри катушки (чтобы удерживать тепло), вы по-прежнему будете иметь чрезвычайно высокие температуры в рабочем пространстве, нагревающие катушку. Я начну работу с большим ведром ледяной воды и через некоторое время она станет горячей. Советую заготовить очень много льда.

Шаг 8: Обзор проекта

Выше представлен обзор проекта на 3 кВт. Он имеет простой PLL-драйвер, инвертор, соединительный трансформатор и бак.

Видео демонстрирует 12кВт индукционный горн в работе. Основное различие заключается в том, что он имеет управляемый микропроцессором драйвер, более крупные МОП-транзисторы и теплоотводы. Блок 3кВт работает от 120В переменного тока; блок 12 кВт использует 240В.

Индукционный нагреватель металла на 12 киловатт – схема инвертора и компоненты

Сейчас мы узнаем как сделать своими руками индукционный нагреватель, который можно использовать для разных проектов или просто для удовольствия. Вы сможете мгновенно плавить сталь, алюминий или медь. Вы можете использовать её для пайки, плавления и ковки металлов. Вы можете использовать самодельный индуктивный нагреватель и для литья.

Мое учебное пособие охватывает теорию, компоненты и сборку некоторых из важнейших компонентов.

Инструкция большая, в ней мы рассмотрим основные шаги, дающие вам представление о том, что входит в такой проект, и о том, как его спроектировать, чтобы ничего не взорвалось.

Для печи я собрал очень точный недорогой криогенный цифровой термометр. Кстати, в тестах с жидким азотом он неплохо себя показал против брендовых термометров.

Шаг 1: Компоненты

Основные компоненты высокочастотного индукционного нагревателя для нагрева металла электричеством — инвертор, драйвер, соединительный трансформатор и колебательный контур RLC. Вы увидите схему чуть позже. Начнем с инвертора. Это — электрическое устройство, которое изменяет постоянный ток на переменный. Для мощного модуля он должен работать стабильно. Сверху находится защита, которая используется, чтобы защитить привод логического элемента МОП-транзистора от любого случайного перепада напряжения. Случайные перепады вызывают шум, который приводит к переключению на высокие частоты. Это приводит к перегреву и отказу МОП-транзистора.

Линии с большой силой тока находятся внизу печатной платы. Много слоев меди используются, чтобы позволить им пропускать более 50А тока. Нам не нужен перегрев. Также обратите внимание на большие алюминиевые радиаторы с водяным охлаждением с обеих сторон. Это необходимо, чтобы рассеивать тепло, вырабатываемое МОП-транзисторами.

Изначально я использовал вентиляторы, но чтобы справиться с этой мощностью, я установил небольшие водяные насосы, благодаря которым вода циркулирует через алюминиевые теплоотводы. Пока вода чистая, трубки не проводят ток. У меня также установлены тонкие слюдяные пластины под МОП-транзисторами, чтобы гарантировать отсутствие проводимости через стоки.

Шаг 2: Схема инвертора

Это схема для инвертора. Схема на самом деле не такая сложная. Инвертированный и неинвертированный драйвер повышает или понижает напряжение 15В, чтобы настроить переменный сигнал в трансформаторе (GDT). Этот трансформатор изолирует чипы от мосфетов. Диод на выходе мосфета действует для ограничения пиков, а резистор минимизирует колебания.

Конденсатор C1 поглощает любые проявления постоянного тока. В идеале, вам нужны самые быстрые перепады напряжения на цепи, так как они уменьшают нагрев. Резистор замедляет их, что кажется нелогичным. Однако если сигнал не угасает, вы получаете перегрузки и колебания, которые разрушают мосфеты. Больше информации можно получить из схемы демпфера.

Диоды D3 и D4 помогают защитить МОП-транзисторы от обратных токов. C1 и C2 обеспечивают незамкнутые линии для проходящего тока во время переключения. T2 — это трансформатор тока, благодаря которому драйвер, о котором мы поговорим далее, получает обратный сигнал от тока на выходе.

Шаг 3: Драйвер

Эта схема действительно большая. Вообще, вы можете прочитать про простой маломощный инвертор. Если вам нужна большая мощность, вам нужен соответствующий драйвер. Этот драйвер будет останавливаться на резонансной частоте самостоятельно. После того, как ваш металл расплавится, он останется заблокированным на правильной частоте без необходимости какой-либо регулировки.

Если вы когда-либо строили простой индукционный нагреватель с чипом PLL, вы, вероятно, помните процесс настройки частоты, чтобы металл нагревался. Вы наблюдали за движением волны на осциллографе и корректировали частоту синхронизации, чтобы поддерживать эту идеальную точку. Больше не придется этого делать.

В этой схеме используется микропроцессор Arduino для отслеживания разности фаз между напряжением инвертора и емкостью конденсатора. Используя эту фазу, он вычисляет правильную частоту с использованием алгоритма «C».

Я проведу вас по цепи:

Сигнал емкости конденсатора находится слева от LM6172. Это высокоскоростной инвертор, который преобразует сигнал в красивую, чистую квадратную волну. Затем этот сигнал изолируется с помощью оптического изолятора FOD3180. Эти изоляторы являются ключевыми!

Далее сигнал поступает в PLL через вход PCAin. Он сравнивается с сигналом на PCBin, который управляет инвертором через VCOout. Ардуино тщательно контролирует тактовую частоту PLL, используя 1024-битный импульсно-модулированный сигнал. Двухступенчатый RC-фильтр преобразует сигнал PWM в простое аналоговое напряжение, которое входит в VCOin.

Как Ардуино знает, что делать? Магия? Догадки? Нет. Он получает информацию о разности фаз PCA и PCB от PC1out. R10 и R11 ограничивают напряжение в пределах 5 напряжений для Ардуино, а двухступенчатый RC-фильтр очищает сигнал от любого шума. Нам нужны сильные и чистые сигналы, потому что мы не хотим платить больше денег за дорогие мосфеты после того, как они взорвутся от шумных входов.

Шаг 4: Передохнём

Это был большой массив информации. Вы можете спросить себя, нужна ли вам такая причудливая схема? Зависит от вас. Если вы хотите автонастройку, тогда ответ будет «да». Если вы хотите настраивать частоту вручную, тогда ответ будет отрицательным. Вы можете создать очень простой драйвер всего лишь с таймером NE555 и использовать осциллограф. Можно немного усовершенствовать его, добавив PLL (петля фаза-ноль)

Тем не менее, давайте продолжим.

Шаг 5: LC-контур

К этой части есть несколько подходов. Если вам нужен мощный нагреватель, вам понадобится конденсаторный массив для управления током и напряжением.

Во-первых, вам нужно определить, какую рабочую частоту вы будете использовать. Более высокие частоты имеют больший скин-эффект (меньшее проникновение) и хороши для небольших объектов. Более низкие частоты лучше для больших объектов и имеют большее проникновение. Более высокие частоты имеют большие потери при переключении, но через бак пройдет меньше тока. Я выбрал частоту около 70 кГц и дошел до 66 кГц.

Мой конденсаторный массив имеет ёмкость 4,4 мкФ и может выдерживать более 300А. Моя катушка около 1мкГн. Также я использую импульсные пленочные конденсаторы. Они представляют собой осевой провод из самовосстанавливающегося металлизированного полипропилена и имеют высокое напряжение, высокий ток и высокую частоту (0.22 мкФ, 3000В). Номер модели 224PPA302KS.

Я использовал две медные шины, в которых просверлил соответствующие отверстия с каждой стороны. Паяльником я припаял конденсаторы к этим отверстиям. Затем я прикрепил медные трубки с каждой стороны для водного охлаждения.

Не берите дешевые конденсаторы. Они будут ломаться, и вы заплатите больше денег, чем если бы вы сразу купили хорошие.

Шаг 6: Сборка трансформатора

Если вы внимательно читали статью, вы зададите вопрос: а как управлять LC-контуром? Я уже рассказывал об инверторе и контуре, не упоминая, как они связаны.

Соединение осуществляется через соединительный трансформатор. Мой от Magnetics, Inc. Номер детали — ZP48613TC. Adams Magnetics также является хорошим выбором при выборе ферритовых тороидов.

Тот, что слева, имеет провод 2мм. Это хорошо, если ваш входной ток ниже 20А. Провод перегреется и сгорит, если ток больше. Для высокой мощности вам нужно купить или сделать литцендрат. Я сделал сам, сплетя 64 нити из проволоки 0.5мм. Такой провод без проблем может выдержать ток 50А.

Инвертор, который я показал вам ранее, принимает высоковольтный постоянный ток и изменяет его на переменные высокие или низкие значения. Эта переменная квадратная волна проходит черезч соединительный трансформатор через переключатели мосфета и конденсаторы связи постоянного тока на инверторе.

Медная трубка из емкостного конденсатора проходит через нее, что делает ее одновитковой вторичной обмоткой трансформатора. Это, в свою очередь, позволяет сбрасываемому напряжению проходить через конденсатор емкости и рабочую катушку (контур LC).

Шаг 7: Делаем рабочую катушку

Один из вопросов, который мне часто задавали: «Как ты делаешь такую изогнутую катушку?» Ответ — песок. Песок будет препятствовать разрушению трубки во время процесса изгиба.

Возьмите медную трубку от холодильника 9мм и заполните ее чистым песком. Перед тем, как сделать это, закройте один конец какой-нибудь лентой, а также закройте другой после заполнения песком. Вкопайте трубу соответствующего диаметра в землю. Отмерьте длину трубки для вашей катушки и начните медленно наматывать её на трубу. Как только вы сделаете один виток, остальные будет сделать несложно. Продолжайте наматывать трубку, пока не получите количество желаемых витков (обычно 4-6). Второй конец нужно выровнять с первым. Это упростит подключение к конденсатору.

Теперь снимите колпачки и возьмите воздушный компрессор, чтобы выдуть песок. Желательно делать это на улице.

Обратите внимание, что медная трубка также служит для водного охлаждения. Эта вода циркулирует через емкостный конденсатор и через рабочую катушку. Рабочая катушка генерирует много тепла от тока. Даже если вы используете керамическую изоляцию внутри катушки (чтобы удерживать тепло), вы по-прежнему будете иметь чрезвычайно высокие температуры в рабочем пространстве, нагревающие катушку. Я начну работу с большим ведром ледяной воды и через некоторое время она станет горячей. Советую заготовить очень много льда.

Шаг 8: Обзор проекта

Выше представлен обзор проекта на 3 кВт. Он имеет простой PLL-драйвер, инвертор, соединительный трансформатор и бак.

Видео демонстрирует 12кВт индукционный горн в работе. Основное различие заключается в том, что он имеет управляемый микропроцессором драйвер, более крупные МОП-транзисторы и теплоотводы. Блок 3кВт работает от 120В переменного тока; блок 12 кВт использует 240В.

Индукционный нагреватель металла на 12 киловатт – схема инвертора и компоненты

Сейчас мы узнаем как сделать своими руками индукционный нагреватель, который можно использовать для разных проектов или просто для удовольствия. Вы сможете мгновенно плавить сталь, алюминий или медь. Вы можете использовать её для пайки, плавления и ковки металлов. Вы можете использовать самодельный индуктивный нагреватель и для литья.

Мое учебное пособие охватывает теорию, компоненты и сборку некоторых из важнейших компонентов.

Инструкция большая, в ней мы рассмотрим основные шаги, дающие вам представление о том, что входит в такой проект, и о том, как его спроектировать, чтобы ничего не взорвалось.

Для печи я собрал очень точный недорогой криогенный цифровой термометр. Кстати, в тестах с жидким азотом он неплохо себя показал против брендовых термометров.

Шаг 1: Компоненты

Основные компоненты высокочастотного индукционного нагревателя для нагрева металла электричеством — инвертор, драйвер, соединительный трансформатор и колебательный контур RLC. Вы увидите схему чуть позже. Начнем с инвертора. Это — электрическое устройство, которое изменяет постоянный ток на переменный. Для мощного модуля он должен работать стабильно. Сверху находится защита, которая используется, чтобы защитить привод логического элемента МОП-транзистора от любого случайного перепада напряжения. Случайные перепады вызывают шум, который приводит к переключению на высокие частоты. Это приводит к перегреву и отказу МОП-транзистора.

Линии с большой силой тока находятся внизу печатной платы. Много слоев меди используются, чтобы позволить им пропускать более 50А тока. Нам не нужен перегрев. Также обратите внимание на большие алюминиевые радиаторы с водяным охлаждением с обеих сторон. Это необходимо, чтобы рассеивать тепло, вырабатываемое МОП-транзисторами.

Изначально я использовал вентиляторы, но чтобы справиться с этой мощностью, я установил небольшие водяные насосы, благодаря которым вода циркулирует через алюминиевые теплоотводы. Пока вода чистая, трубки не проводят ток. У меня также установлены тонкие слюдяные пластины под МОП-транзисторами, чтобы гарантировать отсутствие проводимости через стоки.

Шаг 2: Схема инвертора

Это схема для инвертора. Схема на самом деле не такая сложная. Инвертированный и неинвертированный драйвер повышает или понижает напряжение 15В, чтобы настроить переменный сигнал в трансформаторе (GDT). Этот трансформатор изолирует чипы от мосфетов. Диод на выходе мосфета действует для ограничения пиков, а резистор минимизирует колебания.

Конденсатор C1 поглощает любые проявления постоянного тока. В идеале, вам нужны самые быстрые перепады напряжения на цепи, так как они уменьшают нагрев. Резистор замедляет их, что кажется нелогичным. Однако если сигнал не угасает, вы получаете перегрузки и колебания, которые разрушают мосфеты. Больше информации можно получить из схемы демпфера.

Диоды D3 и D4 помогают защитить МОП-транзисторы от обратных токов. C1 и C2 обеспечивают незамкнутые линии для проходящего тока во время переключения. T2 — это трансформатор тока, благодаря которому драйвер, о котором мы поговорим далее, получает обратный сигнал от тока на выходе.

Шаг 3: Драйвер

Эта схема действительно большая. Вообще, вы можете прочитать про простой маломощный инвертор. Если вам нужна большая мощность, вам нужен соответствующий драйвер. Этот драйвер будет останавливаться на резонансной частоте самостоятельно. После того, как ваш металл расплавится, он останется заблокированным на правильной частоте без необходимости какой-либо регулировки.

Если вы когда-либо строили простой индукционный нагреватель с чипом PLL, вы, вероятно, помните процесс настройки частоты, чтобы металл нагревался. Вы наблюдали за движением волны на осциллографе и корректировали частоту синхронизации, чтобы поддерживать эту идеальную точку. Больше не придется этого делать.

В этой схеме используется микропроцессор Arduino для отслеживания разности фаз между напряжением инвертора и емкостью конденсатора. Используя эту фазу, он вычисляет правильную частоту с использованием алгоритма «C».

Я проведу вас по цепи:

Сигнал емкости конденсатора находится слева от LM6172. Это высокоскоростной инвертор, который преобразует сигнал в красивую, чистую квадратную волну. Затем этот сигнал изолируется с помощью оптического изолятора FOD3180. Эти изоляторы являются ключевыми!

Далее сигнал поступает в PLL через вход PCAin. Он сравнивается с сигналом на PCBin, который управляет инвертором через VCOout. Ардуино тщательно контролирует тактовую частоту PLL, используя 1024-битный импульсно-модулированный сигнал. Двухступенчатый RC-фильтр преобразует сигнал PWM в простое аналоговое напряжение, которое входит в VCOin.

Как Ардуино знает, что делать? Магия? Догадки? Нет. Он получает информацию о разности фаз PCA и PCB от PC1out. R10 и R11 ограничивают напряжение в пределах 5 напряжений для Ардуино, а двухступенчатый RC-фильтр очищает сигнал от любого шума. Нам нужны сильные и чистые сигналы, потому что мы не хотим платить больше денег за дорогие мосфеты после того, как они взорвутся от шумных входов.

Шаг 4: Передохнём

Это был большой массив информации. Вы можете спросить себя, нужна ли вам такая причудливая схема? Зависит от вас. Если вы хотите автонастройку, тогда ответ будет «да». Если вы хотите настраивать частоту вручную, тогда ответ будет отрицательным. Вы можете создать очень простой драйвер всего лишь с таймером NE555 и использовать осциллограф. Можно немного усовершенствовать его, добавив PLL (петля фаза-ноль)

Тем не менее, давайте продолжим.

Шаг 5: LC-контур

К этой части есть несколько подходов. Если вам нужен мощный нагреватель, вам понадобится конденсаторный массив для управления током и напряжением.

Во-первых, вам нужно определить, какую рабочую частоту вы будете использовать. Более высокие частоты имеют больший скин-эффект (меньшее проникновение) и хороши для небольших объектов. Более низкие частоты лучше для больших объектов и имеют большее проникновение. Более высокие частоты имеют большие потери при переключении, но через бак пройдет меньше тока. Я выбрал частоту около 70 кГц и дошел до 66 кГц.

Мой конденсаторный массив имеет ёмкость 4,4 мкФ и может выдерживать более 300А. Моя катушка около 1мкГн. Также я использую импульсные пленочные конденсаторы. Они представляют собой осевой провод из самовосстанавливающегося металлизированного полипропилена и имеют высокое напряжение, высокий ток и высокую частоту (0.22 мкФ, 3000В). Номер модели 224PPA302KS.

Я использовал две медные шины, в которых просверлил соответствующие отверстия с каждой стороны. Паяльником я припаял конденсаторы к этим отверстиям. Затем я прикрепил медные трубки с каждой стороны для водного охлаждения.

Не берите дешевые конденсаторы. Они будут ломаться, и вы заплатите больше денег, чем если бы вы сразу купили хорошие.

Шаг 6: Сборка трансформатора

Если вы внимательно читали статью, вы зададите вопрос: а как управлять LC-контуром? Я уже рассказывал об инверторе и контуре, не упоминая, как они связаны.

Соединение осуществляется через соединительный трансформатор. Мой от Magnetics, Inc. Номер детали — ZP48613TC. Adams Magnetics также является хорошим выбором при выборе ферритовых тороидов.

Тот, что слева, имеет провод 2мм. Это хорошо, если ваш входной ток ниже 20А. Провод перегреется и сгорит, если ток больше. Для высокой мощности вам нужно купить или сделать литцендрат. Я сделал сам, сплетя 64 нити из проволоки 0.5мм. Такой провод без проблем может выдержать ток 50А.

Инвертор, который я показал вам ранее, принимает высоковольтный постоянный ток и изменяет его на переменные высокие или низкие значения. Эта переменная квадратная волна проходит черезч соединительный трансформатор через переключатели мосфета и конденсаторы связи постоянного тока на инверторе.

Медная трубка из емкостного конденсатора проходит через нее, что делает ее одновитковой вторичной обмоткой трансформатора. Это, в свою очередь, позволяет сбрасываемому напряжению проходить через конденсатор емкости и рабочую катушку (контур LC).

Шаг 7: Делаем рабочую катушку

Один из вопросов, который мне часто задавали: «Как ты делаешь такую изогнутую катушку?» Ответ — песок. Песок будет препятствовать разрушению трубки во время процесса изгиба.

Возьмите медную трубку от холодильника 9мм и заполните ее чистым песком. Перед тем, как сделать это, закройте один конец какой-нибудь лентой, а также закройте другой после заполнения песком. Вкопайте трубу соответствующего диаметра в землю. Отмерьте длину трубки для вашей катушки и начните медленно наматывать её на трубу. Как только вы сделаете один виток, остальные будет сделать несложно. Продолжайте наматывать трубку, пока не получите количество желаемых витков (обычно 4-6). Второй конец нужно выровнять с первым. Это упростит подключение к конденсатору.

Теперь снимите колпачки и возьмите воздушный компрессор, чтобы выдуть песок. Желательно делать это на улице.

Обратите внимание, что медная трубка также служит для водного охлаждения. Эта вода циркулирует через емкостный конденсатор и через рабочую катушку. Рабочая катушка генерирует много тепла от тока. Даже если вы используете керамическую изоляцию внутри катушки (чтобы удерживать тепло), вы по-прежнему будете иметь чрезвычайно высокие температуры в рабочем пространстве, нагревающие катушку. Я начну работу с большим ведром ледяной воды и через некоторое время она станет горячей. Советую заготовить очень много льда.

Шаг 8: Обзор проекта

Выше представлен обзор проекта на 3 кВт. Он имеет простой PLL-драйвер, инвертор, соединительный трансформатор и бак.

Видео демонстрирует 12кВт индукционный горн в работе. Основное различие заключается в том, что он имеет управляемый микропроцессором драйвер, более крупные МОП-транзисторы и теплоотводы. Блок 3кВт работает от 120В переменного тока; блок 12 кВт использует 240В.

Индукционный нагреватель металла своими руками: схема

Нагреватель индукционного типа является незаменимым приспособлением для домашних мастеров, которое позволяет нагревать, закалять и плавить металл. Устройство не требует угля, газа, сооружения специальной печи: нужно лишь подключение к электрической сети. На том, как собрать индукционный нагреватель металла своими руками по схеме и пошаговой инструкции, разберемся в подробностях.

Принцип работы

Индукционный нагрев осуществляется при помощи следующих составляющих:

  • индуктора;
  • генератора;
  • нагреваемого предмета.

В качестве индуктора используется катушка, которую изготавливают из толстой медной проволоки. Посредством этой детали создается магнитное поле. При помощи генератора переменного тока вырабатывается ВЧ поток от обычной электросети 220 В и 50 Гц. Нагревательным элементом может быть любой металлический предмет, который способен поглощать тепловую энергию под воздействием магнитного поля.

Особенность магнитного поля заключается в том, что оно способно менять направление электромагнитных волн на ВЧ. При помещении внутрь поля металлического предмета, происходит нагрев металла без контакта с катушкой, благодаря вихревым токам.

Таким образом удается добиться минимальных потерь при переходе одного вида энергии в другую и при этом получить высокий КПД. Благодаря индукционному способу можно получить довольно быстрый нагрев поверхностных слоев. Например, для нагрева металлической заготовки диаметром около 40 мм и длиной 150 мм понадобится порядка 25 с.

Индукционные нагреватели чаще всего работают на частоте 10 кГц. Именно так удается получить максимальный КПД. Частоту можно регулировать, что зависит от таких показателей:

  • температура нагреваемого предмета;
  • требуемая производительность нагрева;
  • поперечное сечение предмета.

Читайте также: Катушка Тесла своими руками в домашних условиях

Плюсы и минусы

Преимуществ у индукционного нагревателя немало:

  • простота изготовления;
  • высокий КПД;
  • экологичность;
  • возможность работы в различных средах;
  • невысокие затраты на электричество;
  • длительная эксплуатация;
  • надежность.

Что касается недостатков, то таковых практически не существует.

Индукционный нагрев применяется в быттехнике (отопительные котлы, кухонные плиты). Подобное оборудование выделяется простой эксплуатацией, надежностью, высокой эффективностью.

Как сделать индукционный нагреватель

Существуют разные варианты индукционных нагревателей металла, которые можно сделать своими руками по схеме и пошаговой инструкции. Рассмотрим наиболее распространенные из них.

Двухтактная схема

Устройство выполнено из задающего генератора ВЧ на мощных полевых транзисторах. Рабочее напряжение определяется мощностью самих транзисторов. Если последние используются IRFP250, то напряжение должно быть в пределах 12-30 В.

Поскольку во время работы транзисторы будут выделять большое количество тепла, их следует разместить на радиаторе большой площади и применить вентилятор для обдува либо вовсе воду для охлаждения. В холостом режиме самодельный нагреватель потребляет около 10 А, а во время нагрева – минимум 15 А, что говорит о необходимости использования мощного БП не менее чем на 20 А.

Для представленной схемы можно изготовить печатную плату.

Монтаж производим следующим образом:

  1. Наматываем дроссели проводом, покрытым лаковой изоляцией. Кольца можно использовать от компьютерного БП.
  2. Емкости с1-с16 используем металлопленочные, номиналом 0,33 мкФ на 630 В. Их соединяем параллельно рядами. Всего должно получиться 16 шт. Конденсаторы, рассчитанные на меньшее напряжение, лучше не использовать – будут греться.
  3. Монтируем конденсаторы и дроссели на плату. Последние фиксируем при помощи силиконового герметика.
  4. Катушку изготавливаем из медной трубки диаметром 6 мм. Наматываем ее на заготовке диаметром 40 мм, например, на отрезке трубы. Количество витков катушки – 5. Расстояние между крайними витками – 40 мм. Концы катушки загибаем и фиксируем к радиаторам при помощи клемных колодок.
  5. Поскольку в процессе работы катушка будет сильно нагреваться, изготавливаем систему охлаждения. Для этого на концы медной трубки надеваем силиконовые трубки и подключаем их к автомобильному насосу омывателя ветрового стекла.
  6. Для охлаждения теплоотводов монтируем компьютерный вентилятор. Если напряжение нагревателя будет подниматься до 60 В, потребуется более мощный вентилятор и радиаторы.
  7. Для усиления дорожек на плате напаиваем медную проволоку.
  8. Подаем питание от автомобильного АКБ и проверяем работоспособность устройства.

Усиленный вариант

Нагреватель выполнен по схеме обычного ВЧ мультивибратора.

Необходимые детали подбираются согласно схеме. Сборка состоит из таких шагов:

  1. Изготавливаем катушку из 5 мм меди и подготавливаем плату из текстолита.
  2. Монтируем катушку и транзисторы на плату.
  3. Изготавливаем дроссели.
  4. Припаиваем остальные радиокомпоненты по схеме.
  5. Проверяем работоспособность устройства, подавая напряжение от блока питания.

При правильной сборке изделие должно сразу функционировать. В противном случае следует проверить правильность соединений по схеме. Если нет желания самостоятельно собирать, можно приобрести готовый генератор, который справится с нагревом мелких деталей.

Читайте также: Качер Бровина своими руками

С питанием от сети

Для запитки нагревателя от электросети можно собрать схему на IR2153. Для настройки резонанса используется переменный резистор 100 кОм. Для управления частотами требуется дополнительное питание 12-15 В. Дроссель, через который питание подается от сети 220 В, состоит из 20 витков провода 1,5 мм, намотанного на ферритовом сердечнике 8х10 мм. Катушка для нагрева металлических изделий выполняется из толстой проволоки и имеет 10-30 витков, намотанных на оправке 3-10 см. Емкости используются 6х330 нФ на 250 В.

Простая схема

Одним из наиболее простых индукционных нагревателей является устройство, представленное на схеме:

Применяемые транзисторы имеют следующую распиновку:

Сборка выполняется в такой последовательности:

  1. Транзисторы закрепляем на большой теплоотвод. При использовании одного радиатора, транзисторы следует фиксировать через резиновые прокладки и пластиковые шайбы, чтобы избежать замыкания между элементами.
  2. Дроссели наматываем на кольцах из порошкового железа. Их можно взять от компьютерного блока питания. Провод используем 1,2 мм, количество витков – 7-15.
  3. Конденсаторы собираем в виде батареи с общей емкостью 4,7 мкФ. Все элементы между собой соединяем параллельно.
  4. Катушку наматываем проводом 2 мм в количестве 8 витков.
  5. Собираем нагреватель по схеме навесным монтажом либо на плате.

Закончив сборку, устройство при подаче напряжения начинает сразу же работать. В качестве источника питания можно задействовать АКБ на 12 В и 7,2 А. Ток на холостом ходу составляет 6-8 А. Если в контур поместить металлический предмет, потребляемый ток увеличится до 12 А.

Нагреватель на 3кВт

Для того чтобы индукционный нагреватель мог плавить разный металл (алюминий, медь, сталь), потребуется мощное устройство. Его можно собрать также своими руками по аналогии с приведенными схемами.

Компоненты

Основными составляющими мощного нагревателя являются инвертор, драйвер, трансформатор и RLC-контур. Инвертор преобразовывает постоянный ток в переменный. Для мощного устройства его работа должна быть стабильной. Также используется защита МОП-транзистора от перепадов напряжения. При скачках возникают шумы, переключающие изделие на ВЧ, что приводит к перегреву транзистора и его выходу из строя.

В нижней части печатной платы расположены линии с большими токами. Для этого используется несколько слоев меди, что позволяет пропускать токи больших величин, а именно — более 50 А. В конструкции задействуются алюминиевые радиаторы с водяным охлаждением для рассеивания тепла от транзисторов.

Схема инвертора:

Драйвер имеет следующее схематическое решение, которое позволяет самостоятельно останавливаться на частоте резонанса.

Блок конденсаторов имеет номинал 4,4 мкФ и способен выдерживать 300 А. Катушка используется с индуктивностью порядка 1 мкГн. Для крепления конденсаторов следует использовать медную шину, в которой нужно проделать отверстия и паяльником припаять к ним емкости. Затем с каждой стороны конденсаторов необходимо закрепить медные трубки для водяного охлаждения.

Для изготовления трансформатора на кольцах следует выполнить намотку из провода 0,54 мм, состоящего из 64 нитей. Это позволит выдерживать нагрузку в 50 А.

Для рабочей катушки используется трубка 9 мм от холодильника. Катушка состоит из 4-6 витков, намотанных на оправке около 50 мм.

Готовая конструкция имеет вид, как на фото.

С работой устройства на 12 киловатт можно ознакомиться по видео. Основное отличие со схемой на 3 кВт заключается в использовании управляемого микропроцессорного драйвера, более мощных транзисторах и больших радиаторах. Питание нагревателя на 12 кВт осуществляется от сети 220 В.


Из сварочного инвертора

Нагреватель можно выполнить из инвертора для сварки. Однако просто подключить катушку к клеммам устройства нельзя – он попросту выйдет из строя. Чтобы задействовать инвертор в качестве индукционного нагревателя, потребуется сложная переделка, которую невозможно выполнить без знаний в области радиоэлектроники.

Вкратце переоборудование сводится к следующему: первичную обмотку катушки подсоединяют после преобразователя ВЧ инвертора вместо встроенной катушки сварочного прибора. Также нужно будет убрать диодный мост и произвести монтаж конденсаторного блока.

Читайте также: Катушка для удлинителя своими руками

Меры безопасности

При работе с нагревателем индукционного типа нужно учитывать следующие моменты:

  • эксплуатация должна быть крайне аккуратной, поскольку повышается вероятность получения ожогов как от нагреваемых предметов, так и от элементов устройства;
  • создаваемое установкой электромагнитное поле может воздействовать на предметы, расположенные поблизости. Поэтому перед работой рекомендуется убрать такие устройства, как мобильники, цифровые камеры и т.п., а также надеть одежду без металлических элементов.

Ознакомившись с разными вариантами схем и пошаговыми инструкциями по изготовлению индукционного нагревателя металла своими руками, собрать подобное устройство сможет практически каждый желающий. Единственное, что потребуется, так это минимальные умения в обращении с паяльником, а также опыт чтения схем. Правильный подбор элементов и безошибочная сборка устройства позволят получить своеобразную печь для нагрева, закалки и плавки металлических предметов при конструировании или ремонте чего-либо.


Индукционный нагреватель своими руками – схема, устройство, видео

Идея нагревать металл вихревыми токами Фуко, возбуждаемыми электромагнитным полем катушки, отнюдь не нова. Она давно и успешно эксплуатируется в промышленных плавильных печах, кузнечных мастерских, бытовых нагревательных приборах – плитах и электрокотлах. Последние довольно дороги, так что домашние умельцы не оставляют попыток сделать индукционный нагреватель воды своими руками. Наша задача – рассмотреть работоспособные варианты самодельных устройств и разобраться, можно ли применять их для отопления дома.

О принципе индуктивного нагрева

Для начала разъясним, как функционируют электрические индукционные нагреватели. Переменный ток, проходя по виткам катушки, образует вокруг нее электромагнитное поле. Если поместить внутрь обмотки сердечник из магнитящегося металла, то он станет нагреваться вихревыми токами, возникающими под воздействием поля. Вот и весь принцип.

Важное условие. Чтобы металлический сердечник нагревался, катушка должна питаться переменным током, меняющим знак и вектор поля с высокой частотой. При подаче на обмотку постоянного тока вы получите обыкновенный электромагнит.

Сам нагревательный элемент носит название индуктора и является главной частью установки. В отопительных котлах он представляет собой стальную трубу с протекающим внутри теплоносителем, а в кухонных плитах – плоскую катушку, максимально приближенную к варочной панели, как изображено далее на фото.

Катушка-индуктор нагревает железную трубу, которая передает тепло протекающей воде

Вторая часть индукционного нагревателя — схема, повышающая частоту тока. Дело в том, что напряжение с промышленной частотой 50 Гц малопригодно для работы подобных устройств. Если присоединить индуктор к сети напрямую, то он начнет сильно гудеть и слабо прогревать сердечник, причем вместе с обмотками. Чтобы эффективно преобразовывать электричество в теплоту и полностью передавать ее металлу, частоту нужно повысить минимум до 10 кГц, чем и занимается электросхема.

В чем заключаются реальные преимущества индукционных котлов перед ТЭНовыми и электродными:

  1. Деталь, нагревающая воду, — это простой кусок трубы, не участвующий в электрохимических процессах (как в электродных теплогенераторах). Поэтому срок службы индуктора ограничивается только работоспособностью катушки и может достигать 10—20 лет.
  2. По той же причине элемент одинаково хорошо «дружит» со всеми видами теплоносителей – водой, антифризом и даже машинным маслом, разницы нет.
  3. Внутренности индуктора не покрываются накипью в процессе эксплуатации.
Здесь сердечником служит посуда из магнитного металла

Примечание. С индукционными котлами связано множество мифов. Например, продавцы утверждают, что они экономичнее других электрических обогревателей на 10—20%, хотя в действительности КПД всех электрокотлов равен 98%. Список преимуществ ограничивается тремя вышеперечисленными пунктами, остальное – реклама.

Варианты самодельных устройств

На просторах интернета размещено достаточное количество разнообразных конструкций, создаваемых для различных целей. Взять индукционный малогабаритный нагреватель, сделанный из компьютерного блока питания 250—500 Вт. Модель, показанная на фото, пригодится мастеру в гараже или автосервисе для плавки стержней из алюминия, меди и латуни.

Но для отопления помещений конструкция не подойдет по причине малой мощности. В интернете есть два реальных варианта, чьи испытания и работа засняты на видео:

  • водонагреватель из полипропиленовой трубы с питанием от сварочного инвертора либо индукционной кухонной панели;
  • стальной котел с нагревом от той же варочной панели.

Справка. Существуют и другие, полностью самодельные конструкции, где преобразователи частоты умельцы собирают с нуля. Но для этого нужны знания и навыки в области радиотехники, поэтому рассматривать их мы не будем, а просто приведем пример такой схемы.

Теперь давайте подробнее разберем, как делаются индукционные нагреватели своими руками, а главное, — как они потом функционируют.

Изготавливаем нагревательный элемент из трубы

Если вы плотно занимались поиском информации по данной теме, то наверняка столкнулись с этой конструкцией, поскольку мастер выложил ее сборку на популярном видеоресурсе YouTube. После чего многие сайты разместили текстовые версии изготовления этого индуктора в виде пошаговых инструкций. Вкратце нагреватель делается так:

  1. Внутрь трубы из полипропилена диаметром 40 мм и длиной 50 см наталкиваются металлические ершики для мытья посуды (можно рубленую проволоку — катанку). Они должны притягиваться магнитом.
  2. К трубе припаиваются отводы с резьбами для подключения к отопительной сети.
  3. Снаружи вдоль корпуса приклеиваются 4—5 стержней из текстолита. На них наматывается провод сечением 1.7—2 мм² со стеклоизоляцией, применяющийся в сварочных трансформаторах.
  4. Варочная панель разбирается и «родной» индуктор плоской формы демонтируется. Вместо него подключается самодельный нагреватель из трубы.

Важный нюанс. Длину и сечение провода для намотки катушки следует определять по штатному индуктору печки, чтобы она соответствовала мощности полевых транзисторов в электросхеме. Если взять больше провода, то упадет мощность нагрева, меньше – перегреются и выйдут из строя транзисторы. Как это выглядит визуально, смотрите на видео:

Как нетрудно догадаться, роль нагревательного элемента здесь играют металлические ершики, находящиеся в переменном магнитном поле катушки. Если запустить варочную панель на максимум, одновременно пропуская через импровизированный котел проточную воду, то ее удастся нагреть на 15—20 °С, что и показали испытания агрегата.

Поскольку мощность большинства индукционных плит лежит в пределах 2—2.5 кВт, то с помощью теплогенератора можно обогреть помещения общей площадью не более 25 м². Есть способ увеличить нагрев, подключив индуктор к сварочному аппарату, но здесь есть свои сложности:

  1. Инвертор выдает постоянный ток, а нужен переменный. Для подсоединения индукционного нагревателя аппарат придется разобрать и найти на схеме точки, где напряжение еще не выпрямлено.
  2. Нужно взять провод большего сечения и подобрать число витков путем расчета. Как вариант, медную проволоку Ø1.5 мм в эмалевой изоляции.
  3. Понадобится организовать охлаждение элемента.

Проверку работоспособности индуктивного водонагревателя автор демонстрирует в своем видео, представленном ниже. Испытания показали, что агрегат требует доработки, но конечный результат, к сожалению, неизвестен. Похоже, что умелец оставил проект незавершенным.

Как собрать индукционный котел

В этом случае дешевую китайскую плиту разбирать не нужно. Суть в том, чтобы сварить по ее размерам котловой бак, руководствуясь пошаговой инструкцией:

  1. Возьмите стальную профильную трубу 20 х 40 мм с толщиной стенки 2 мм и нарежьте из нее заготовок по ширине панели.
  2. Сварите трубки между собой по длине, стыкуя меньшими сторонами.
  3. Сверху и снизу к торцам герметично приварите железные крышки. Сделайте в них отверстия и поставьте патрубки с резьбами.
  4. К одной из сторон прикрепите сваркой 2 уголка, чтобы они образовали полку для индукционной печки.
  5. Покрасьте агрегат термостойкой эмалью из баллончика. Подробнее процесс сборки показан в видеоролике.

Окончательная сборка и запуск заключается в монтаже котла на стену и его врезке в систему отопления. Варочная панель вставляется в гнездо из уголков на задней стенке бака и подключается к электросети. Остается заполнить систему теплоносителем, стравить воздух и включить нагрев индуктора.

Здесь вас подстерегает та же проблема, что встречалась с предыдущей моделью. Несомненно, индукционный нагрев будет работать, но его мощности 2.5 кВт хватит для обогрева парочки небольших комнат при морозе на улице. Осенью и весной, когда температура не опустилась ниже нуля, самодельный котел сможет отопить площадь 35—40 м². Как его правильно подключить к системе, смотрите в очередном видеосюжете:

Выводы и рекомендации

Мы намеренно представили варианты индукционных водонагревателей несложной конструкции, чтобы каждый желающий мог сделать подобный агрегат своими силами. Но остался вопрос, нужно ли заниматься этим делом и тратить собственное время. На этот счет есть ряд объективных соображений:

  1. Пользователи, не разбирающиеся в электрике и радиотехнике, вряд ли смогут добиться увеличения мощности нагрева свыше 2.5 кВт. Для этого придется собрать схему преобразователя частоты.
  2. КПД индуктора ничуть не выше, чем у других электрических котлов. Но собрать нагреватель с ТЭНами гораздо проще.
  3. Если у вас не завалялась дома индукционная панель, то потребуется ее купить примерно за 80 у. е. Столько стоят дешевые китайские изделия в интернет-магазинах. За те же деньги продаются готовые электродные котлы мощностью до 10 кВт.
  4. Электроплиты оснащаются автоматикой безопасности, отключающих бытовой прибор спустя 1 или 2 часа работы. Это доставляет неудобство при эксплуатации.
  5. Если в силу разных причин теплоноситель вытечет из самодельного теплогенератора, то нагрев не прекратится. Это чревато пожаром.

Конечно, вы можете обойтись без дорогих покупок, досконально разобраться в конструкции и смастерить индукционный нагреватель с нуля. Но выполнить все бесплатно не получится, ведь потребуется приобрести комплектующие для схемы. Заметьте, что бонусы от подобного отопительного агрегата невелики, так что всерьез браться за его изготовление с целью обогрева частного дома нецелесообразно.

ПРОСТОЙ ИНДУКЦИОННЫЙ НАГРЕВАТЕЛЬ

Приветствую пользователей сайта Радиосхемы. Недавно у меня появилась идея сделать индукционный нагреватель. На просторах интернета были найдены несколько схем для построения устройства. Из них выбрал самую, на мой взгляд, простую по сборке и настройке, и главное — реально рабочую.

Схема устройства

Список деталей

1. Полевой транзистор IRFZ44V 2 шт.
2. Диоды ультра быстрые UF4007 или UF4001 2 шт. 
3. Резистор на 470 Ом на 1 или 0.5 Вт 2 шт.
4. Конденсаторы плёночные 
   1) 1 мкФ на 250в 3 шт.
   2) 220 нФ на 250в 4 штуки.
   3) 470 нФ на 250в 
   4) 330 нФ на 250в
5. Провод медный диаметром 1.2 мм.
6. Провод медный диаметром 2 мм.
7. Кольца от дросселей компьютерном блоке питания 2 шт.

Сборка устройства

Задающая часть нагревателя выполнена на полевых транзисторах IRFZ44V. Распиновка транзистора IRFZ44V.

Транзисторы нужно поставить на большой радиатор. Если устанавливать транзисторы на один радиатор то транзисторы нужно установить на резиновые прокладки и пластмассовые шайбочки чтобы не было замыкания между транзисторов.

Дросселя намотаны на кольцах от компьютерных БП. Сделанные из порошкового  железа. Проводом 1,2 мм 7-15 витков.

Батарея конденсаторов должна быть на 4.7 мкФ. Желательно использовать не один конденсатор, а несколько конденсаторов. Конденсаторы должны быть подключены параллельно.

Катушка нагревателя сделана на проводе диаметром 2 мм 7-8 витков.

После сборки устройство работает сразу. Питается устройство от аккумулятора 12 вольт 7.2 А/ч. Напряжение питания устройства 4.8-28 вольт. При продолжительной работе перегреваются: батарея конденсаторов, полевые транзисторы и дросселя. Потребление тока при холостом ходу 6-8 Ампер.

При внесении в контур металлического предмета потребление тока сразу увеличивается до 10-12 А.

Фото готового устройства смотрите далее.

Видео работы индукционного нагревателя

Далее можно оформить прибор в подходящий красивый корпус и использовать для различных опытов. С мощностью и размером катушки лучше поэкспериментировать, чтоб достичь наилучшего эффекта. Автор статьи 4ei3

   Форум

   Форум по обсуждению материала ПРОСТОЙ ИНДУКЦИОННЫЙ НАГРЕВАТЕЛЬ

Простой индукционный нагреватель своими руками

Приветствую, радиолюбители-самоделкины!

Сейчас на кухнях довольно часто можно встретить новый тип варочных плит — индукционные. В отличие от газовых и простых электрических, в них не нагревается конфорка, не горит с высокой температурой газ, ведь электрическая энергия в таких плитах поступает «напрямую» к разогреваемой посуде, не нагревая ненужные посторонние части плиты. Работает это следующим образом — специальный индуктор создаёт в толще металла посуды сильные вихревые токи, которые и разогревают металл. Помимо кухонных плит, такая технология используется в разных областях промышленности для нагрева и плавки металла. Возможно, на первый взгляд индукционный нагрев выглядит сложно и очень труднореализуемо в домашних условиях, но на самом деле, схема простого индукционного нагревателя не содержит дорогих либо редких деталей, собрать её под силу каждому радиолюбителю. Мощность такой схемы достаточна для того, чтобы раскалить до красна небольшие металлический предметы — лезвия канцелярского ножа, отвёртки, гвозди.



На самом деле, данная схема является довольно универсальной, на её основе также строят различные высоковольтные генераторы и прочие устройства, где требуется генерация высокочастотных импульсов. В интернете эту схему можно найти по названию «ZVS-драйвер». Рассмотрим более подробно все элементы схемы, определим возможные замены и отметим некоторые нюансы. Напряжение питания на схеме указано 12 В — это минимальное напряжение, которым можно питать данную схему. Максимальная граница напряжения питания зависит от мощности выбранных транзисторов и может составлять 50В. Чем больше напряжение питания, тем, соответственно, больше будет мощность индукционного нагревателя, тем быстрее он будет разогревать металл. Данная схема, особенно при разогреве массивных предметов, потребляет большой ток (до 10А), поэтому важно обеспечить её питание от источника соответствующей мощности. Неплохо для этого подойдут, например, блок питания компьютера или ноутбука, имеющие на выходе напряжения 12 и 19Вт соответственно.

Резисторы номиналами 220 Ом должны быть рассчитаны на мощность как минимум в 1 ватт, иначе возможен их чрезмерный нагрев. После этих резисторов на схеме можно увидеть стабилитроны, имеющими маркировку на схеме «15 v». Здесь можно применить любые стабилитроны на напряжение стабилизации в пределах от 12 до 15В, они нужны для того, чтобы на затворы полевых транзисторов не попало высокое напряжение (более 20В на затворе будет смертельным для полевого транзистора). Также на схеме можно увидеть диоды VD3 и VD4, подключенные к затворам транзисторов — в качестве них можно применить практически любые быстродействующие (обозначаются как ultra fast) диоды, например, UV4007, HER102, FR103. Особое внимание стоит уделить выбору транзисторов для данной схемы. На малой мощности с низким напряжением питания будут без проблем работать практически любые полевые транзисторы из ряда IRFZ44, IRF3205, 50N06 и им подобные по характеристикам. Но при использовании индукционного нагревателя при напряжении питания выше 12В рекомендуется поставить более мощные транзисторы, например IRFP250, IRFP260 либо им аналогичные. Ключевыми параметрами для транзисторов здесь будут максимальное напряжения сток-исток и максимальный ток. На схеме присутствуют дроссели L1 и L3, подключенные одним концом к плюсу питания. Можно найти готовые дроссели, рассчитанные на большой ток (как минимум 2-3А, но чем больше, тем лучше), имеющие индуктивность в диапазоне 47-200 мкГн, так и намотать дроссели самому. Для этого нужно взять кольцо из порошкового железа (оно имеет жёлтый цвет), и намотать на нём примерно 30-40 витков толстого медного провода. Найти кольца жёлтого цвета можно в компьютерных блоках питания, кроме них чуть хуже, но также подойдут обычные ферритовые кольца.

Колебательный контур C1 L2, пожалуй, самая важная часть схемы — именно эти элементы задают частоту колебания схемы. Катушка L2 — непосредственно сам индуктор, катушка большого размера из толстого медного провода, внутрь которой помещается нагреваемый предмет. Её диаметр может составлять от 1 до 5 см, в зависимости от размеров предмета, который нужно будет разогревать. Следует также учитывать, что чем больше будет размер катушки относительно размера нагреваемого объекта — тем менее эффективной будет работа данной схемы. В идеальном случае объект должен помещаться в катушку, не оставляя больших зазоров по краям, до витков. Для намотки можно использовать как изолированный медный провод, так и медные трубки либо шины. Количество витков может варьироваться в пределах от 6 до 12. Чем больше будет напряжение питания, тем большее количество витков следует выбирать.

Через конденсатор С1 в данной схеме будут протекать довольно значительные токи, а потому необходимо использовать неполярные плёночные конденсаторы и низким внутренним сопротивлением (ESR). Ёмкость С1 может варьироваться в пределах 0,68 — 1 мкФ, её можно будет подбирать для достижения наилучшей эффективности работы схемы, оценивая скорость нагрева. Для того, чтобы снизить внутреннее сопротивление С1, можно включить параллельно несколько конденсаторов — это наиболее предпочтительный вариант. Например, 6-10 конденсаторов по 0,1 мкФ каждый дадут как раз нужную ёмкость, а внутреннее сопротивление такой батареи конденсаторов будет значительно меньше, чем у одного конденсатора.

Ниже представлены осциллограммы в разных частях схемы.
На затворе транзистора:

Сток-исток транзистора:

На самой катушке индуктора:

Можно увидеть, что амплитура на катушке индуктора составляет около 70 вольт, и это при том, что напряжение питания схемы составляет всего 11В.


Преимуществом данной схемы является её простота — для сборки даже не обязательно изготавливать печатную плату. Смонтировать все элементы можно прямо на выводах индуктора, если он выполнен из жёсткого провода, то и конструкция будет обладать нужной жёсткостью и надёжностью. Батарея конденсаторов припаивается прямо на толстые выводы.

Ещё одним преимуществом данной схемы является её большой КПД — практически вся мощность, потребляемая от источника, уходит в нагрев объекта, а потому транзисторы нагреваются лишь слегка и не требуют массивных радиаторов. Тестовый запуск схемы можно проводить и вовсе без радиаторов, но для долговременной работы они обязательны. Также следует заметить, что ток потребления в этой схеме большой лишь во время нагрева — когда внутрь катушки-индуктора помещён металлический объект. На холостом же ходе схема потребляет небольшой ток, максимум несколько сотен миллиампер. Ниже представлено несколько фотографий раскалённого лезвия ножа, нагретого таким индукционным нагревателем. Удачной сборки!



Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Схема простого индукционного нагревателя своими руками

Этот замечательный небольшой проект демонстрирует принципы высокочастотной магнитной индукции и способы изготовления индукционного нагревателя. Схема очень проста в сборке и использует только несколько общих компонентов. С показанной здесь индукционной катушкой схема потребляет около 5 А от источника питания 15 В, когда наконечник отвертки нагревается. Кончик отвертки нагревается докрасна примерно за 30 секунд!

Схема управления использует метод, известный как ZVS (переключение при нулевом напряжении), для активации транзисторов, что позволяет эффективно передавать мощность.В схеме, которую вы видите здесь, транзисторы почти не нагреваются из-за метода ZVS. Еще одна замечательная особенность этого устройства заключается в том, что это саморезонансная система, которая автоматически работает на резонансной частоте подключенной катушки и конденсатора. Если вы хотите сэкономить время, в нашем магазине есть индукционный нагреватель. Возможно, вы все равно захотите прочитать эту статью, чтобы получить несколько полезных советов по правильной работе вашей системы.

Как работает индукционный нагрев?

Когда магнитное поле изменяется около металла или другого проводящего объекта, в материале индуцируется ток (известный как вихревой ток), который генерирует тепло.Вырабатываемое тепло пропорционально квадрату тока, умноженному на сопротивление материала. Эффекты индукции используются в трансформаторах для преобразования напряжений во всех видах приборов. Большинство трансформаторов имеют металлический сердечник, поэтому при использовании в них наведены вихревые токи. Разработчики трансформаторов используют разные методы, чтобы предотвратить это, поскольку нагрев — это пустая трата энергии. В этом проекте мы будем напрямую использовать этот нагревательный эффект и постараемся максимизировать нагревательный эффект, создаваемый вихревыми токами.

Если мы приложим непрерывно изменяющийся ток к катушке с проволокой, у нас будет постоянно изменяющееся магнитное поле внутри нее. На более высоких частотах индукционный эффект довольно силен и имеет тенденцию концентрироваться на поверхности нагреваемого материала из-за скин-эффекта. Типичные индукционные нагреватели используют частоты от 10 кГц до 1 МГц.

ОПАСНО: Данное устройство может создавать очень высокие температуры!

Схема

Используемая схема представляет собой тип коллекторного резонансного генератора Ройера, который имеет преимущества простоты и саморезонансной работы.Очень похожая схема используется в обычных схемах инвертора, используемых для питания люминесцентного освещения, такого как подсветка ЖК-дисплея. Они приводят в действие трансформатор с центральным ответвлением, который повышает напряжение примерно до 800 В для питания фонарей. В этой схеме самодельного индукционного нагревателя трансформатор состоит из рабочей катушки и нагреваемого объекта.

Основным недостатком этой схемы является то, что требуется катушка с отводом по центру, которую может быть немного сложнее намотать, чем обычный соленоид. Катушка с отводом по центру необходима, чтобы мы могли создать поле переменного тока из одного источника постоянного тока и всего двух транзисторов N-типа.Центр катушки подключается к положительному источнику питания, а затем каждый конец катушки попеременно подключается к земле транзисторами, так что ток будет течь вперед и назад в обоих направлениях.

Сила тока, потребляемого от источника питания, зависит от температуры и размера нагреваемого объекта.

Из этой схемы индукционного нагревателя видно, насколько он на самом деле прост. Всего несколько основных компонентов — это все, что нужно для создания рабочего индукционного нагревателя.

R1 и R2 — стандартные резисторы 240 Ом, 0,6 Вт. Значение этих резисторов будет определять, насколько быстро МОП-транзисторы могут включиться, и должно быть достаточно низким. Однако они не должны быть слишком маленькими, так как резистор будет заземлен через диод при включении противоположного транзистора.

Диоды D1 и D2 используются для разряда затворов MOSFET. Это должны быть диоды с низким прямым падением напряжения, чтобы затвор был хорошо разряжен, а полевой МОП-транзистор полностью выключился, когда другой включен.Рекомендуются диоды Шоттки, такие как 1N5819, поскольку они имеют низкое падение напряжения и высокую скорость. Номинальное напряжение диодов должно быть достаточным, чтобы выдерживать повышение напряжения в резонансном контуре. В этом проекте напряжение выросло до 70 В.

Транзисторы T1 и T2 представляют собой полевые МОП-транзисторы на 100 В, 35 А (STP30NF10). Для этого проекта они были установлены на радиаторах, но при работе с указанными здесь уровнями мощности они почти не нагревались. Эти полевые МОП-транзисторы были выбраны из-за их низкого сопротивления сток-исток и малого времени отклика.

Катушка индуктивности L2 используется как дроссель для предотвращения попадания высокочастотных колебаний в источник питания и ограничения тока до приемлемого уровня. Значение индуктивности должно быть довольно большим (у нас было около 2 мГн), но оно также должно быть выполнено из достаточно толстого провода, чтобы пропускать весь ток питания. Если дроссель не используется или у него слишком малая индуктивность, цепь может перестать колебаться. Необходимое точное значение индуктивности будет зависеть от используемого блока питания и настройки катушки. Возможно, вам придется поэкспериментировать, прежде чем вы получите хороший результат.Показанный здесь был сделан путем наматывания примерно 8 витков магнитной проволоки толщиной 2 мм на тороидальный ферритовый сердечник. В качестве альтернативы вы можете просто намотать провод на большой болт, но вам понадобится гораздо больше витков провода, чтобы получить такую ​​же индуктивность, как у тороидального ферритового сердечника. Вы можете увидеть пример этого на фото слева. В нижнем левом углу вы можете увидеть болт, намотанный на множество витков провода оборудования. Эта установка на макетной плате использовалась при малой мощности для тестирования. Для большей мощности пришлось использовать более толстую проводку и все спаять вместе.

Поскольку компонентов было так мало, мы спаяли все соединения напрямую и не использовали печатную плату. Это также было полезно для выполнения соединений для сильноточных частей, поскольку толстый провод можно было напрямую припаять к клеммам транзистора. Оглядываясь назад, возможно, было бы лучше подключить индукционную катушку, прикрутив ее непосредственно к радиаторам на полевых МОП-транзисторах. Это связано с тем, что металлический корпус транзисторов также является выводом коллектора, а радиаторы могут помочь охладить катушку.

Конденсатор C1 и индуктор L1 образуют резонансный контур резервуара индукционного нагревателя. Они должны выдерживать большие токи и температуры. Мы использовали полипропиленовые конденсаторы емкостью 330 нФ. Более подробная информация об этих компонентах представлена ​​ниже.

Индукционная катушка и конденсатор

Катушка должна быть сделана из толстой проволоки или трубы, так как в ней будут протекать большие токи. Медная труба работает хорошо, так как токи высокой частоты в любом случае будут течь в основном по внешним частям.Вы также можете прокачать по трубе холодную воду, чтобы она оставалась прохладной.

Конденсатор должен быть подключен параллельно рабочей катушке, чтобы создать резонансный контур резервуара. Комбинация индуктивности и емкости будет иметь определенную резонансную частоту, на которой цепь управления будет работать автоматически. Используемая здесь комбинация катушка-конденсатор резонирует на частоте около 200 кГц.

Важно использовать конденсаторы хорошего качества, которые могут выдерживать большие токи и тепло, рассеиваемое в них, иначе они скоро выйдут из строя и разрушат вашу схему привода.Они также должны быть размещены достаточно близко к рабочей катушке и с использованием толстой проволоки или трубы. Большая часть тока будет протекать между катушкой и конденсатором, поэтому этот провод должен быть самым толстым. При желании провода, соединяющие цепь и источник питания, можно сделать немного тоньше.

Этот змеевик здесь был сделан из латунной трубы диаметром 2 мм. Его было просто наматывать и легко паять, но вскоре он начал деформироваться из-за чрезмерного нагрева. Затем повороты касаются друг друга, замыкаясь и делая его менее эффективным.Поскольку во время использования контур управления оставался относительно холодным, казалось, что его можно заставить работать на более высоких уровнях мощности, но необходимо будет использовать более толстую трубу или охлаждать ее водой. Затем установка была улучшена, чтобы выдерживать более высокий уровень мощности…

Продвигая дальше

Основным ограничением описанной выше схемы было то, что рабочая катушка через короткое время сильно нагрелась из-за больших токов. Для того, чтобы в течение длительного времени иметь большие токи, мы сделали еще одну катушку, используя более толстую латунную трубку, чтобы вода могла прокачиваться через нее во время работы.Более толстую трубу было труднее согнуть, особенно в центральной точке отвода. Перед сгибанием трубы необходимо было засыпать ее мелким песком, так как это предохраняет ее от защемления на крутых изгибах. Затем он был очищен сжатым воздухом.

Индукционная катушка была сделана из двух половин, как показано здесь. Затем они были спаяны вместе, и небольшой кусок трубы из ПВХ использовался для соединения центральных труб, чтобы вода могла течь через всю катушку.

В этой катушке было использовано меньше витков, чтобы она имела более низкий импеданс и, следовательно, выдерживала более высокие токи.Емкость также была увеличена, чтобы резонансная частота была ниже. Всего было использовано шесть конденсаторов по 330 нФ, что дало общую емкость 1,98 мкФ.

Кабели, соединяющиеся с катушкой, были просто припаяны к трубе около концов, оставляя место для установки какой-нибудь трубы из ПВХ.

Этот змеевик можно охладить, просто пропустив воду прямо из крана, но для отвода тепла лучше использовать насос и радиатор. Для этого в емкость с водой поместили старый насос для аквариума, а к выпускному патрубку вставили трубу.Эта труба поступала на модифицированный кулер компьютерного процессора, в котором для отвода тепла использовались три тепловые трубы.

Кулер был преобразован в радиатор путем отрезания концов тепловых трубок, а затем их соединения с трубами PCV, чтобы вода протекала через все 3 тепловые трубки, прежде чем выйти и вернуться к насосу.

Если вы сами разрезаете тепловые трубки, делайте это в хорошо проветриваемом помещении, а не в помещении, поскольку они содержат летучие растворители, которые могут быть токсичными для дыхания. Вы также должны носить защитные перчатки, чтобы предотвратить контакт с кожей.

Этот модифицированный кулер для процессора был очень эффективным в качестве радиатора и позволял воде оставаться довольно прохладной.

Другие необходимые модификации заключались в замене диодов D1 и D2 на диоды, рассчитанные на более высокое напряжение. Мы использовали обычные диоды 1N4007. Это было связано с тем, что с увеличением тока в резонансном контуре наблюдалось большее повышение напряжения. Вы можете видеть на изображении здесь, что пиковое напряжение составляло 90 В (желтый график осциллографа), что также очень близко к номинальному значению транзисторов 100 В.

Используемый блок питания был настроен на 30 В, поэтому также необходимо было подавать напряжение на затворы транзистора через стабилизатор напряжения 12 В. Когда внутри рабочей катушки не было металла, она потребляла около 7 А. Когда был добавлен болт на фотографии, он поднялся до 10 А, а затем постепенно снова упал, когда он нагрелся до температуры выше Кюри. Для более крупных объектов он, безусловно, превышает 10А, но используемый блок питания имеет ограничение в 10А. Вы можете найти подходящий блок питания на 24 В, 15 А в нашем интернет-магазине.

Болт, который вы видите на фотографии раскаленным докрасна, разогрелся примерно за 30 секунд.Отвертка на первом изображении теперь может нагреться докрасна примерно за 5 секунд.

Чтобы перейти на более высокую мощность, чем эта, необходимо использовать другие конденсаторы или их массив большего размера, чтобы ток распределялся между ними в большей степени. Это связано с тем, что протекающие большие токи и используемые высокие частоты могут значительно нагревать конденсаторы. Примерно через 5 минут использования на этом уровне мощности индукционный нагреватель DIY необходимо выключить, чтобы они могли остыть.Также необходимо использовать другую пару транзисторов, чтобы они могли выдерживать большие скачки напряжения.

Во всем этот проект оказался вполне удовлетворительным, так как дал хороший результат от простой и недорогой схемы. Как бы то ни было, он может быть полезен для закалки стали или для пайки мелких деталей. Если вы решили создать собственный проект индукционного нагревателя, разместите свои фотографии ниже. Пожалуйста, ознакомьтесь с другими комментариями, прежде чем делать свои собственные, поскольку это может сэкономить ваше время в дальнейшем.

Если вы хотите смоделировать этот проект для тестирования различных значений индуктивности или выбора транзисторов, загрузите LTSpice и запустите это моделирование самодельного индукционного нагревателя (щелкните правой кнопкой мыши, Сохранить как)

Насколько будет жарко?

Трудно сказать, насколько горячо вы сможете что-то получить, так как есть много параметров, которые необходимо учитывать. Различные материалы будут по-разному реагировать на индукционный нагрев, а их форма и размер будут влиять на то, как нагревание или отвод тепла в атмосферу.

Вы можете получить приблизительное представление, используя некоторые базовые вычисления по приведенной ниже формуле, или, если хотите, мы сделали удобный калькулятор мощности нагревателя, который может рассчитать это за вас. Эта форма включает в себя материалы (например, воду), которые нельзя нагревать напрямую с помощью индукционных нагревателей, но она по-прежнему полезна, если вы пытаетесь определить, например, мощность, необходимую для нагрева поддона с водой с помощью индукционного нагревателя.

ПРИМЕР: Насколько сильно нагреются 20 г стали за 30 секунд при нагревании с помощью нагревателя мощностью 300 Вт? (при условии, что 100 Вт потеряно для окружающей среды)

Формулы:
Q = m x Cp x ΔT
ΔT = Q ÷ m ÷ Cp

Рабочий:
(300Вт — 100Вт) x 30с = 6000Дж
6000Дж ÷ 20г ÷ 0.466Дж / г ° C = 643,78 ° C

Результат:
20 г стали нагреваются до температуры на 643,78 ° C при нагревании нагревателем мощностью 300 Вт в течение 30 секунд.

Поиск и устранение неисправностей

Если у вас возникли проблемы с тем, чтобы это работало, вот несколько советов, которые помогут устранить неполадки в вашем домашнем проекте индукционного нагревателя….

PSU (источник питания)
Если ваш PSU не может обеспечить большой скачок тока при включении индукционного нагревателя, он не будет колебаться. В этот момент напряжение источника питания упадет (хотя блок питания может этого не отображать), и это помешает правильному переключению транзисторов.Чтобы решить эту проблему, вы можете разместить несколько больших электролитических конденсаторов параллельно источнику питания. Когда они заряжены, они могут подавать в вашу цепь большой импульсный ток. Хорошим мощным источником питания будет наш БП на 24 В 15 А постоянного тока.

Дроссель (индуктор L2)
Ограничивает мощность индукционного нагревателя. Если ваш не колеблется, вам может потребоваться дополнительная индуктивность, чтобы предотвратить падение напряжения в вашем блоке питания. Вам нужно будет поэкспериментировать с необходимой вам индуктивностью. Лучше иметь слишком много, чем слишком мало, так как это только ограничит мощность нагревателя.Слишком мало может означать, что это вообще не сработает. Если у вас слишком маленький сердечник индуктора, сильный ток приведет к его насыщению и вызовет слишком большой ток, что может привести к повреждению вашей цепи.

Электропроводка
Соединительные провода должны быть короткими, чтобы уменьшить паразитную индуктивность и помехи. Длинные провода добавляют в цепь нежелательное сопротивление и индуктивность, что может привести к нежелательным колебаниям или снижению производительности. Наш кабель питания на 30 А подходит для этого.

Компоненты
Выбранные транзисторы должны иметь низкое падение напряжения / сопротивление в открытом состоянии, в противном случае они перегреются или даже не позволят системе колебаться.Вероятно, IGBT не будут работать, но большинство полевых МОП-транзисторов с аналогичными характеристиками должны работать нормально. Конденсаторы должны иметь низкое ESR (сопротивление) и ESL (индуктивность), чтобы они могли выдерживать высокие токи и температуры. Диоды также должны иметь низкое прямое падение напряжения, чтобы транзисторы правильно отключались. Они также должны быть достаточно быстрыми, чтобы работать на резонансной частоте вашего индукционного нагревателя.

Включение питания
При включении не допускайте попадания металла в нагревательную спираль.Это может привести к более сильным скачкам тока, что может помешать возникновению колебаний, как упомянуто выше. Также не пытайтесь нагревать большое количество металла. Этот проект подходит только для небольших индукционных нагревателей. Если вы хотите контролировать или постепенно увеличивать мощность, вы можете использовать одну из наших схем импульсного модулятора мощности. Подробности смотрите в публикации 5108 ниже.

Мозг
Для безопасного выполнения этого проекта вам понадобится разумно работающий мозг. Создание индукционного нагревателя может быть очень опасным, поэтому, если вы новичок в электронике, вам следует попросить кого-нибудь помочь вам сделать это.Подходите к делу логически; Если он не работает, проверьте, что используемые компоненты не неисправны, проверьте правильность подключения, прочтите всю эту статью и все комментарии, выполните поиск в Google, если вы не понимаете какие-либо термины, или прочитайте наш раздел «Обучение электронике». Помните: горячее обожжет вас и может поджечь; Электричество может убить вас электрическим током, а также вызвать пожар. Безопасность превыше всего.

Самодельный индукционный нагреватель Схема DIY

Схема индукционного нагревателя

Как работают эти индукционные нагреватели? Мы рассмотрим схему и шаг за шагом объясним, как создается колебательный сигнал, как индуцируется ток и как нагревается металл.Наконец, мы используем эту схему и устанавливаем самодельную версию и смотрим, работает ли она на нагрев некоторых металлов. Так что посмотрим …

ЧАСТЬ 1 — Коммерческий модуль

Во-первых, чтобы узнать и сопоставить сигналы, я купил один из этих коммерческих модулей индукционного нагревателя. Он рекламируется как 1000 Вт mdoule. Мы можем видеть несколько огромных конденсаторов, несколько катушек и еще несколько компонентов, а на выходе — огромную катушку из толстой медной проволоки. Эта выходная катушка создаст мощное колеблющееся магнитное поле, которое будет нагревать металлы, и мы увидим, как это сделать.Я делаю еще одну катушку из медного провода и помещаю ее рядом с катушкой индукционного нагревателя, и, как вы можете видеть на осциллографе, у нас есть колебательный сигнал около 100 МГц.

Чтобы понять, как этот модуль нагревает металлы, нам нужно понять 3 вещи. Во-первых, как магнитные поля могут индуцировать токи внутри металлов и обратный процесс, как токопроводящие провода будут создавать магнитные поля. Затем нам нужно увидеть, как резонанс этих катушек и конденсаторов будет создавать высокочастотные сигналы и, наконец, как ток будет нагревать металлы.Как вы можете видеть ниже, после включения модуля эти высокочастотные и мощные колебания нагревают металл до ярко-красного цвета всего за несколько секунд.

ЧАСТЬ 2 — Закон Фарадея

Закон индукции Фарадея — это основной закон электромагнетизма, предсказывающий, как магнитное поле будет взаимодействовать с электрической цепью, создавая явление электродвижущей силы, называемое электромагнитной индукцией. Это основной принцип работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.Таким образом, движущийся магнит будет создавать изменения магнитного потока внутри катушки, и тем самым мы можем индуцировать ток внутри катушки. Но что еще могло образовывать магнитные поля?


Что ж, еще один компонент, помимо amgnet, который также создает магнитные поля, — это катушка. Да, катушка может производить обратный процесс индукции тока. Если мы подаем ток через катушку, будет создано магнитное поле, поэтому нам не нужны магниты. Катушка могла создавать магнитное поле и наводить ток во второй катушке, как трансформаторы.Итак, теперь мы знаем, как индуцировать ток, и этот ток будет нагревать наш металл. Ниже вы можете увидеть, как я передаю сигнал от одной катушки к другой.

ЧАСТЬ 3 — Частота резонанса

В этом примере мы будем использовать параллельно катушку и конденсатор. Это называется резервуаром LC, и если мы ударим по нему электроникой, он будет резонировать на своей резонансной частоте. Итак, если я приложу небольшой импульс напряжения, и они отключат соединение, это создаст быстро колеблющийся сигнал.Я подключаю конденсатор и катушку параллельно и очень быстро прикасаюсь к одному кабелю с напряжением 12 В к этому резервуару LC. Посмотрите ниже, что происходит. После прикосновения к резервуару LC я получаю на осциллографе первый осциллирующий сигнал, который медленно затухает. Итак, теперь мы получаем наши высокочастотные и мощные колебания, которые позже индуцируют ток внутри металла. Но наша схема работает немного иначе. Для этого давайте взглянем на схему базового и простого модуля индукционного нагревателя.


ЧАСТЬ 4 — Схема

В этом примере мы будем использовать параллельно катушку и конденсатор.Это называется резервуаром LC, и если мы ударим по нему электроникой, он будет резонировать на своей резонансной частоте. Итак, если я приложу небольшой импульс напряжения, и они отключат соединение, это создаст быстро колеблющийся сигнал. Я подключаю конденсатор и катушку параллельно и очень быстро прикасаюсь к одному кабелю с напряжением 12 В к этому резервуару LC. Посмотрите ниже, что происходит. После прикосновения к резервуару LC я получаю на осциллографе первый осциллирующий сигнал, который медленно затухает. Итак, теперь мы получаем наши высокочастотные и мощные колебания, которые позже индуцируют ток внутри металла.Но наша схема работает немного иначе. Для этого давайте взглянем на схему базового и простого модуля индукционного нагревателя.


Итак, как вы можете видеть на схеме выше, у нас на выходе 3 катушки. Пока не обращайте внимания на катушку L3, потому что это будет выходная катушка, которая будет создавать магнитное поле. У нас есть 2 катушки, L1 и L2, и один конденсатор, C1. У нас будет резонанс, как и раньше, но на этот раз он будет другим и никогда не прекратится. Как вы можете видеть, у нас также есть два диода, D1 и D2, которые подключены к затвору двух транзисторов, T1 и T2.Когда сигнал сначала колеблется на C1, на одной стороне C1 будет положительное напряжение, а на другой стороне C1 — отрицательное напряжение. Таким образом, один диод будет пропускать ток, а другой — нет. Таким образом, один транзистор будет включен, а другой выключен. Но буквально через мгновение из-за этого процесса полярность на C1 изменится, и это активирует второй транзистор и выключит другой. И этот процесс будет повторяться снова и снова, и это изменит поток тока внутри катушки L3, потому что, как вы можете видеть, один энф этой катушки подключен к 15 В, а другой конец будет подключен к отрицательному или положительному, и тем самым будет создаваться колебательный ток.Это создаст колеблющееся магнитное поле.


Помогите мне, поделившись этим постом
Руководство по индукционным нагревателям

Easy DIY. Jadroppingscience | Джеймс Эндрюс | Заслуживает внимания

Рис. 1. Использование индукционного нагревателя для нагрева вилки за секунды.

Индукционный нагрев — это так увлекательно. Катушка не горячая, но все же может нагреть любой магнитный и проводящий объект до сотен градусов за секунды! Самое безумное то, что вы можете заполучить подобное устройство менее чем за 15 долларов.У меня их несколько, и я люблю показывать, насколько они круты, на моем YouTube, как показано ниже:

Хотите прочитать эту историю позже? Сохранить в журнале.

Индукционный нагрев широко применяется в промышленности. В промышленном мире индукционный нагрев может использоваться для отжига, сварки, ковки и т. Д. Кроме того, многие любители мотоциклов и автомобилей используют индукционный нагрев для удаления старых ржавых гаек и болтов с помощью Bolt Buster, хотя они довольно дороги.

Я лично считаю, что индукционные нагреватели — это слишком крутая идея, чтобы не получать от них удовольствия, поэтому я использую свои в основном для нагрева случайных предметов или прорезания продуктов горячим ножом.

Индукционный нагрев довольно сложен, но может быть упрощен для тех, у кого нет серьезной технической подготовки. Вам необходимо понять четыре основных понятия. Если вы в большей степени наглядно обучаетесь, вы можете посмотреть мое видео на YouTube, где я обсуждаю следующее.

Магнитные и проводящие предметы

Индукционный нагрев работает только с объектами, способными проводить электричество, и намного лучше работает с объектами, которые являются магнитными.Чтобы объект был проводящим, он должен иметь свободные электроны, способные перемещаться вокруг объекта. Большинство металлов являются проводящими. Магнитные объекты окружены магнитным полем. Хотя вы не можете увидеть магнитное поле визуально, магнитные поля будут взаимодействовать с другими магнитными полями. Например, если вы поместите два магнита рядом друг с другом, они будут притягиваться друг к другу.

Закон Ампера

Когда вы пропускаете ток через провод, вокруг него создается магнитное поле.Изначально провод не был магнитным, но теперь он имеет магнитное поле. Когда вы наматываете катушку из проволоки, а затем пропускаете через нее ток, магнитное поле внутри катушки становится намного сильнее.

Рисунок 2. Закон Ампера

Закон Фарадея / Ленца

Когда вы помещаете два противоположных магнитных поля рядом друг с другом, они влияют друг на друга. Электроны внутри объектов движутся, чтобы ориентироваться в новом магнитном поле. Это движение (поток) электронов называется током.

Итак, изменение магнитного поля проводящего объекта приведет к возникновению крошечных токов внутри объекта, известных как вихревые токи.Как только электроны закончат выравнивание с новым магнитным полем, электроны снова станут неподвижными. Тока больше нет. Чтобы постоянно создавать вихревые токи внутри объекта, вы должны постоянно изменять магнитное поле.

Лучший способ сделать это — использовать переменный ток (AC). Направление, в котором ток течет через катушку, имеет значение. Вы можете увидеть это, посмотрев на северный и южный полюса индуцированного магнитного поля на предыдущем рисунке выше (Рисунок 1).Если вы измените направление тока, полярность магнитного поля также изменит направление.

Если этот переменный ток имеет высокую частоту, направление тока меняется много раз в секунду, что означает, что вы меняете магнитное поле много раз в секунду. Следовательно, электроны никогда не прекращают движение, а объект постоянно производит вихревые токи.

Сопротивление производит тепло

Последний кусок головоломки — понимание того, как ток производит тепло.Когда электроны постоянно движутся (ток), возникает сопротивление (например, трение), которое выделяет тепло. Это похоже на то, как трение создает тепло, когда вы растираете руки вперед и назад. Постоянно создавая вихревые токи, вы можете очень быстро нагреть объект.

Доступен на Amazon

На Amazon доступен модуль индукционного нагрева, который обычно стоит менее 15 долларов. Хотя можно сделать это самостоятельно, это выходит далеко за рамки данной статьи. Этот модуль индукционного нагрева рассчитан на напряжение от 5 до 12 В.Я включил письменные инструкции по безопасности, которые производитель предоставляет в конце этой статьи. Модуль поставляется с катушкой, которую необходимо припаять к устройству.

Доступно на Amazon

Вам нужен блок питания, который может обеспечить ток не менее нескольких ампер и напряжение от 5 до 12 вольт. Источник питания, который у меня есть по ссылке выше, дает вам максимальную мощность для этого устройства, которая составляет 12 В и 10 А. По словам производителя, устройство не рассчитано на что-либо более высокое.

Я использовал блок питания с переменным напряжением до того, как получил этот хороший блок питания.Если у вас есть источник питания с переменным напряжением, вы можете его использовать, но УБЕДИТЕСЬ, ЧТО НЕ УСТАНАВЛИВАЕТЕ ДЛЯ ДАННОГО МОДУЛЯ ВЫШЕ 12 Вольт.

Доступно на Amazon

Этот адаптер гнезда подключается непосредственно к источнику питания, поэтому вам не нужно беспокоиться о потерях в соединениях.

В качестве альтернативы вы можете использовать зажимы типа «крокодил» и провод 18 калибра. Зажимы типа «крокодил» требуют меньше усилий, но они менее надежны. Я использовал оба, но мне очень нравится, когда гнездовой разъем надежно закреплен.

Паяльник / припой

Вам понадобится паяльник, чтобы припаять катушку к модулю.Теоретически вместо них можно использовать винтовые клеммы, но производитель предупреждает, что пластиковые клеммы могут плавиться. В результате я решил припаять выводы катушки напрямую.

Сверла / сверла

Вам нужно сделать отверстие, в которое можно вставить гнездовой разъем. Хорошо подойдет сверло на 3/8 дюйма.

Клей для дерева / дерева

Это необязательно, но я рекомендую сделать небольшое основание, как в моем видео, чтобы вы могли перемещать индукционное нагревательное устройство, не касаясь его напрямую.

Супер клей (или лента)

Вам нужно что-нибудь, чтобы прикрепить индукционный нагреватель к деревянной основе.

Отказ от ответственности: Неправильное использование оборудования или несоблюдение надлежащих протоколов безопасности может нанести вред пользователю. Будьте осторожны при работе с электричеством. Не пытайтесь, если у вас нет понимания основных электрических схем и этих компонентов. Попробуйте на свой страх и риск.

  1. Извлеките катушку индукционного нагрева из упаковки.(Необязательно: согните катушку до новой желаемой формы и ориентации, если вы хотите ее изменить. К вашему сведению: форма катушки влияет на ее производительность, поэтому будьте осторожны.)
  2. Припаяйте концы катушки к модулю индукционного нагрева.
Рис. 3. Пример одного конца катушки, припаянного к модулю.

3. Создайте основу (деревянную конструкцию) и прикрепите катушку индукционного нагрева.

4. Возьмите красный (+) и черный (-) провода из гнездового разъема и ввинтите их в задние винтовые клеммы.Поскольку провод состоит из многих жил, подумайте о добавлении припоя на концы, прежде чем закручивать его.

Рис. 4. Правильно закрепленные провода.

5. Просверлите отверстие 3/8 дюйма в середине верхней деревянной детали. Если вы запутались, посмотрите изображение ниже.

6. Запрессуйте гнездовой разъем. Убедитесь, что он не выходит легко.

7. Подключите блок питания постоянного тока и подключите разъем питания к розетке. Синий светодиод на индукционном нагревателе загорится, показывая, что цепь работает.(К вашему сведению: блок питания включается примерно через секунду после его подключения)

Рисунок 5. Окончательная конфигурация
  • Если ваш блок питания способен потреблять только несколько ампер, устройству может не хватить мощности для обработки большой металлический предмет. Кроме того, если вы вставите металлический предмет слишком быстро, это также может стать слишком большой нагрузкой для источника питания. Когда это случилось со мной (когда я использовал другой источник питания, отличный от указанного выше), вы заметите, что светодиод на модуле индукционного нагрева гаснет.
  • Хотя сам змеевик не должен быть горячим, чтобы нагреть предметы, помещенные внутри, змеевик может начать нагреваться после длительного использования. При использовании устройства всегда обращайтесь с катушкой так, как будто она горячая. Руководство предупреждает, что нельзя использовать более 5 минут, не давая ему остыть.

“Технические характеристики :
Входное напряжение : 5 В ~ 12 В постоянного тока
Максимальная мощность : 120 Вт
Размер печатной платы : 55 x 37 x 1,6 мм

Примечание:
1. При индукционном нагреве обычно работает в течение 5 минут до отключите охлаждение.Поскольку во время индукционного нагрева ток относительно велик, тепло от катушки также относительно велико. При нагревании часть тепла, выделяемого нагретым объектом, передается нагревательной спирали. В течение длительного времени температура нагревательного змеевика высокая. Если к клемме подсоединить нагревательную спираль, пластиковая часть клеммы оплавится. Поэтому при индукционном нагреве лучше всего припаять нагревательную катушку непосредственно к печатной плате
2. Только некоторые типы материалов могут эффективно нагреваться индукционным нагревом — в основном магнитные материалы, такие как сталь.Такие материалы, как латунь, медь и алюминий, очень трудно нагреть.
3. Большой конденсатор, помещенный параллельно источнику питания, может помочь уменьшить падение напряжения / тока, препятствующее запуску устройства.
4. Этот модуль не должен работать без нагрузки, иначе это может привести к сгоранию цепи.
5. Вы можете проверить, загорелся ли синий светодиодный индикатор, чтобы узнать, подано ли питание или модуль может работать нормально. Когда индикатор тусклый, возможно, источник питания недостаточен, следует использовать более мощный источник питания.Просто убедитесь, что напряжение питания находится в пределах 5–12 В постоянного тока.
Примечание: Вы можете припаять нагревательную спираль к плате ».

Отказ от ответственности: я делаю небольшую часть всех продаж через партнерские ссылки без дополнительной оплаты для покупателя.

самодельный индукционный нагреватель слишком горячий

@tokenknifeguy — интересный факт об индукционных нагревателях — есть два параметра настройки; глубина проникновения и мощность.

Глубина проникновения, центрирование магнитного поля, имеет прямое отношение к задержке кликера.Чем дальше кликер находится от центра магнитного поля, центра катушки, тем больше времени требуется для щелчка. Это, конечно, означает больше тепла, как и «дополнительная секунда», но вы можете его увеличить. Фактически, чем меньше катушка, тем более чувствительна эта настройка. Лучшее основание для нового IH — разместить плоскую часть крышки КЛА заподлицо с нижней частью змеевика. Оттуда отрегулируйте. Катушки диаметром 3/4 дюйма очень снисходительны, если катушки диаметром 15 мм резко меняют задержку на 1/2 миллиметра.

Уровень мощности — это степень запекания. Вы хотите выпечку за 4 секунды, конечно, HOTTER-N-HELL. 100 ватт и просто попытайтесь заставить этот кликер догнать, прежде чем он воспламенится о стенки наконечника. Это цена скорости — и некоторым это нравится! Возгорание, ну и что? Нет, я ненавижу горение! Я узнал, что 60-70 Вт — отличная выпечка. Большая открытая катушка гарантирует простую настройку и приемлемые уровни мощности.

Как только вы закончите настройку входящего трафика, все готово.С этим параметром все ваши советы будут работать примерно одинаково. Такая же жара, так сказать. Чаевые не имеют значения, это просто предпочтение. Помните, нам важна не скорость, а качество выпечки. Тост великолепно пахнет — жжёных тостов не так много. Оба съедобны.

Параметр мощности — это то, что кусает большинство DIY-проектов в задницу. Индукционные нагреватели — аналоговые устройства. Они функционируют в зависимости от данной мощности. По-простому они переводят напряжение. Индукционный нагреватель принимает постоянное напряжение и преобразует его в переменное напряжение.Напряжение переменного тока подается в катушку, образуя электромагнит. Это просто то, с чем мы имеем дело. Доставить желаемое количество «мощности» — это банка червей, которая заставляет DIY работать с ног на голову.

Для настольных устройств у вас есть известное количество. Вы будете обеспечивать только одно напряжение, обычно 12 В постоянного тока. Вы можете прочитать ток на этом розыгрыше, чтобы получить хорошее представление о мощности вашего обогревателя с -этой- крышкой. У каждой шапки будет разное значение — некоторые близки к одинаковым, а другие нет.Скажем, устройство потребляет не более 5 ампер со всеми вашими крышками. Это нагреватель на 60 ватт для вашей коллекции. Для моей коллекции это обогреватель мощностью 50-70 ватт. Фактическое напряжение на самом модуле точно скажет вам, что происходит. Многие IH не получают достаточного питания, а мощность источника питания ужасно занижена. Полезно знать эти параметры.

Аккумуляторная батарея добавляет несколько новых проблем. Учтите вышесказанное — мощность будет изменяться в диапазоне 9–12,6 В аккумуляторной батареи.Это может означать разницу между нагревателем на 60 Вт при 12 В и пресс-папье 35 Вт при 9 В. Вы хотите, чтобы весь диапазон этой аккумуляторной батареи до 9 В составлял эти 60 Вт, если не по крайней мере 45 Вт. Вам нужна приемлемая цель, но не упускайте ее из виду. Каждая крышка должна любить настройку от свежего заряда до отключения BMS на 9 В. Теперь вы видите причину повышения производительности во всем диапазоне напряжений.

Но подождите, на пути еще много дерьма! У клеток есть внутреннее сопротивление.Это должно быть добавлено в смесь. У нас есть сильноточные устройства. Наименьший ток, который вы будете потреблять, составляет около 4 ампер при низком напряжении. Ячейки специально разряжаются, когда они достигают 9 В при срабатывании, они опускаются до этого напряжения из-за мощности, потребляемой через этот виртуальный резистор, известный как внутреннее сопротивление. Таким образом, клетки восстановятся до некоторого более высокого значения в состоянии покоя. Сведение к минимуму этого эффекта для достижения максимальной производительности батареи — настоящий танец.

Как это так легко вытекает из кончиков моих пальцев? Это мои мотивационные исследования C’19.У меня есть история с индукционным нагревом, и это доставляет удовольствие. Также знайте, что я балансировал эти параметры для новых нагревателей флюса Flite IH. Я твердо убежден в том, что оптимизация аккумуляторных устройств очень полезна, если сравнивать то, что Orion смог достичь с ячейками 1000 мАч, и то, что я получаю от Flite с ячейками 1200 мАч.

Еще немного информации, пока мы здесь;
Магнитная муфта имеет передаточное число; пусковой ток выше холостого тока. Я получаю диапазон от 6,2: 1 до 3.6: 1 из разных крышек.
Любая крышка может производить вейп при 150 мАч энергии, передаваемой на крышку. «150 мАч до щелчка на эффективном IH». Снова вычислите Орион, и вы приблизитесь к этой цифре. Я получаю почти 11 Втч от ячеек 3S 18350 1200 мАч.

Возможно, не у всех есть решения, но я собрал много данных, чтобы найти лучший компромисс. Просто потому, что одна крышка выравнивает все, другая крышка может просто свалить ваш карточный домик. У меня сейчас широкий выбор бейсболок. И у меня есть идеальный обогреватель Fluxer Flite для всех моих бейсболок.Здесь не шиллинг, честно. Я немного повлиял на обсуждаемые здесь вопросы. Я очень доволен результатами.

IDH 1000W ZVS Низковольтный индукционный нагреватель DIY Board Module с катушкой Тесла — купить по низким ценам в платформе электронной коммерции Joom

Спецификация: Совершенно новый Эта секция индукционного нагрева с использованием низковольтного источника постоянного тока 12-48В. Максимальный ток 20А, максимальная мощность 1000Вт Протестированный источник питания 53 В при правильной работе Из-за своей умеренной мощности может использоваться для мелких деталей, которые делают игроки DIY для закалки, отжига и другой термообработки. Также может использоваться с графитовым тиглем, плавящим золото, серебро, медь, алюминий и другие металлы, быстро нагревается, очень удобно Внутренний диаметр змеевика: прибл.40мм Высота катушки: прибл. 50 мм Вход 24 В при токе холостого хода 3 А Вход 48 В при токе холостого хода 6 А Чем выше напряжение, тем больше ток нагрева, когда одно и то же, эффект лучше Но в то же время тепло также велико, поэтому для устранения реальной ситуации для выбора входного напряжения достаточно общего использования слов 24 В или 36 В источник питания. Подходит для источника питания 12-36 В (не входит в комплект) Катушка принимает тигель 40 мм. В пакет включено: Плата индукционного нагрева низкого напряжения ZVS-1 шт. 1 х латунная катушка Примечание: В комплект входит полный набор элементов схемы привода и латунь. Покупателям необходимо привезти собственный блок питания и охлаждения.Печатная плата с использованием двухсторонней стекловолоконной платы, в основном, медные дорожки используются для расширения использования всей задней поверхности резонансной цепи общей, непрерывной работы, пожалуйста, добавьте вентилятор для продувки сверху, чтобы резонансные конденсаторы и другие компоненты охлаждались. Использование импульсного источника питания Обратите внимание, что из-за высокой мощности, как правило, функция медленного запуска, при которой выходное напряжение только что открытой машины медленно растет, в то время как она включается до цепи индукционного нагрева, если напряжение повышается до 12 В, потому что начальное недостаточное напряжение не может позволить себе вибрацию, что приводит к одновременной проводимости двух трубок MOS, поэтому сгорели компоненты Таким образом, первый начнет переключение напряжения источника питания выше 12 В, а затем подключится к цепи индукционного нагрева.Объем нагреваемого объекта внутри нагревательной спирали не может превышать 1/5 объема (если нагревательный цилиндр, то диаметр нагревательной спирали меньше диаметра 1/3), либо это может быть связано с перегрузкой или перегоранием. источник питания в цепи Хотя эта схема может выдерживать входной ток 20-30 А, но не превышать 15 А при безопасной работе, вы можете легко добавить амперметр между источником питания и платой драйвера обогрева, но всегда контролировать перегрузку по току. Эта схема может не только делать индукционный нагрев, медная трубка в высокочастотном трансформаторе, это мощный инвертор.Чтобы увеличить теплоотвод, используйте специальную подложку толщиной 8,5 мм! Холодопроизводительность очень мощная. Используя столбы M4, температура меньше, эффективнее.

Тип продукта: Интегральные схемы

diy индукционный нагреватель dynavap

diy индукционный нагреватель dynavap

припой. Да, именно по этой причине я так поступил. Я предполагаю, что есть корреляция между этим и наводнением самодельных индукционных нагревателей на сабвуфер. Обычно мне не нравятся компьютеры с прозрачным корпусом (в общем, я даже не геймер на ПК), но я обожаю эту вещь.Сайт может работать некорректно, если вы этого не сделаете. Если вы не обновите свой браузер, мы рекомендуем вам посетить. Нажмите J, чтобы перейти к ленте. Надеюсь, это поможет вам всем. Если у вас есть какие-либо вопросы о том, как создать свой собственный индукционный нагреватель DynaVap, пожалуйста, свяжитесь с нами через [электронная почта защищена]. Мы активно работаем на Reddit, где есть большое сообщество энтузиастов, особенно по r / индукционным нагревателям. Я знаю, что для проводки в аккумуляторном блоке 18650 потребуется BMS, но в качестве альтернативы будет работать внешний блок вроде этого https: // www.amazon.ca/gp/product/B00MF70BPU/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1 с кабелем питания папа-папа, если я хочу стать портативным? Я хотел поделиться своими знаниями с сообществом. Индукционный нагреватель Йода. Orion — это карманный индукционный нагреватель с батарейным питанием, разработанный и спроектированный DynaTec специально для использования с DynaVap VapCap. Я нашел несколько довольно недорогих нагревательных элементов USB и т. Д. В Интернете. Это круто, я тоже скоро построю свой, просто жду деталей.5.0 из 5 звезд 3. Я схватил те переходники 18-14 мм для стеклянной секции, и они слишком тугие, чтобы попасть в катушку прямо сейчас. … индукционный нагреватель dynavap индукционный нагреватель инструмент В этом режиме. Для работы: слегка вдавите VapCap в… Как вы это сделали или как можно это сделать с небольшим знанием электротехники? Это все еще сложно сказать. Основным недостатком этой схемы является то, что требуется катушка с отводом по центру, которую может быть немного сложнее намотать, чем обычный соленоид.Это тратит впустую много… Мне интересно, как сделать эту установку портативной. clouper Cloutank M3 сменное стекло. Это индукционный нагреватель Dynavap для использования с испарителем Dynavap. 33,68 $ 33. Не могли бы вы, может быть, eli5, в чем смысл полевого МОП-транзистора? Припой подвержен коррозии и разваливается. Что-то в «кнопке, получи вейп», которое отображает электрический путь, просто … завораживает. Да, очень приятно видеть, как мощность нагревает dynavap. Скачивайте файлы и создавайте их на 3D-принтере, лазерном резаке или ЧПУ.Я хотел бы увидеть раздел о питании от батареи и о расположении переключателя мгновенного действия в нижней части катушки. Хотя я уважаю ваше мнение, я не согласен с припоем и тройниками. Есть пара руководств, таких как This One by u / Beasthoss, которые значительно упрощают понимание. Будет ли работать автомобильный прикуриватель примерно так же? Мне очень нравится, как вы повернули корпус набок так, чтобы смотреть через окно в кишки. Ого, это крутая автофокусировка. 1000W ZVS Низковольтный модуль платы индукционного нагрева с обратным ходом Нагреватель DIY.Я действительно добился успеха только сам, используя 48-72 Вт. Настенный индукционный нагреватель Apollo 2 разработан и спроектирован DynaTec специально для использования с DynaVap VapCap. Индукционный нагреватель использует вихревые токи посредством электромагнитной индукции для возбуждения ферромагнитного металла в катушке, вызывая его нагрев. Я полностью согласен с этим. IH ONE FTV — последняя новинка конца лета 2020 года от French Touch Vaporizer! Вы сэкономили мне немного денег и прояснили несколько вещей относительно того, какие компоненты мне следует искать, но у меня есть вопрос относительно вариантов батареи.Узнайте, как работают электрические схемы. Индукционный нагреватель Apollo 2 от DynaVap добавляет комфорта и простоты вашим сеансам vapcap, и мы долго ждали, чтобы заполучить его! Я изо всех сил пытаюсь намотать катушку на кусок стекла, и совет? Обычно, когда вы вставляете динавап в змеевик, крышка из нержавеющей стали сама становится нагревателем. Наслаждайтесь плавным, быстрым и равномерным испарением за 4-6 секунд с наконечниками из нержавеющей стали или титана. 477. Я обязательно пожертвую немного, чтобы выразить признательность за помощь сообществу, когда она у меня заработает :).Молочная машина — это доступный и мощный вариант для всех, кто хочет использовать индукционный нагреватель. Индукционный нагреватель IH ONE FTV для Dynavap — FTV. Особенно если вы их продаете, вам действительно стоит просто сделать это правильно и припаять, на дополнительные 30 секунд это гораздо лучший путь. Он может работать для нагрева Dynavap, но это совсем не тот метод нагрева. Прикуриватель работает так же, как и элемент электрической плиты: он просто нагревается за счет электрического тока и передает это тепло в кастрюлю (или, в данном случае, нагреватель прикуривателя в динавап).Я собирал это руководство в течение нескольких недель и закончил его сегодня утром. Мощный индукционный нагреватель DIY: индукционные нагреватели, безусловно, являются одним из наиболее эффективных способов нагрева металлических предметов, особенно черных металлов. Некоторые могут возразить, что фонарик и ваш Dynavap более портативны, чем индукционный нагреватель, хотя Dynatec Orion неплохо борется с этой опасностью. Я просто не хотел снимать их до того, как протестировал их, а теперь, когда они собраны и работают, я не вижу смысла иметь меньше катушек.Самое лучшее в этом индукционном нагревателе то, что вам не нужно физически контактировать с нагреваемым объектом. Их много … Возьмите индукционный нагреватель, и вам никогда не придется задавать эти вопросы. Они идеально дополняют друг друга, поскольку металлический Dynavap блестяще испаряет каннабис (вместо того, чтобы сжигать его), а индукционный нагрев — это беспламенный способ нагрева металлических предметов с помощью осциллирующего магнитного потока. Можете ли вы уточнить в руководстве, почему индукционная катушка должна быть завернутым в стеклянную бочку? by dazultra2000 17 июля, 2020.Обычно я часто бываю в / r / vaporents и / r / dynavap. Используя насадку DynaVap, вы получаете 100% равномерный нагрев, поэтому вы никогда ничего не потеряете. У меня около 6 месяцев, и я очень им доволен. Thingiverse — это вселенная вещей. Индукционный нагрев Используя магнитные поля в катушке, вы можете точно нагреть металл VapCap! Небольшой простой в использовании индукционный нагреватель для вашего DV. В дополнение к этому, если у вас есть надлежащий источник питания на 10 А, просто возьмите кнопку или переключатель на 10 А, нет необходимости использовать МОП-транзистор. Нажмите вопросительный знак, чтобы изучить остальные сочетания клавиш, https: // www.amazon.ca/gp/product/B00MF70BPU/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1. По сути, оставалось только припаять переключатель к источнику питания и припаять катушку к индукционному блоку. Спасибо, что добавили это в документ. Мне нравятся мои Dynavap M и Omnivap XL. Дальнейшая информация. Я должен вытянуть шею, чтобы заглянуть в свою. Я рада быть частью такого замечательного сообщества! Мы продаем комплекты компонентов для самостоятельной сборки для версий с питанием от сети и от батарей, а также предоставляем библиотеку схем, руководств и других ресурсов, которые помогут вам в пути.Откуда у тебя этот чехол? Кроме того, максимальная потребляемая мощность большинства этих катушек составляет 120 Вт, поэтому, если у вас есть только блок питания с номиналом 5 А, то вы недополучаете мощность нагревателя, вы должны использовать блок питания на 10 А, чтобы не создавать узких мест. что-нибудь. Что касается мощности, я еще не видел, чтобы кто-нибудь разместил полную 120-ваттную установку, созданную или проданную самостоятельно, но я хотел бы услышать несколько историй успеха этого и увидеть некоторые проекты, если они у вас есть. Я хотел создать индукционный нагреватель для своего динавапа. Тааааааааааааааааще кликов больше, чем у меня.Узнать больше + Нажмите вопросительный знак, чтобы узнать о других сочетаниях клавиш. Привет, ты / beasthoss! DynaVap DynaTec Apollo 2 Induction Heater / 129,99 долларов в 420 Science. Кроме того, это выглядит менее пугающим для других, поэтому, если вы хотите познакомить людей с dynavap, они не так беспокоятся о том, чтобы обжечься. INTBUYING Мини-воздуховодный индукционный нагреватель с высокочастотной обработкой, 110 В, 1 кВт, 6 катушек. Вы самые лучшие. … Приобретая и используя эти продукты, вы соглашаетесь обезопасить Dynavap LLC от любых травм в результате прямого или связанного с этим использования этих продуктов и аксессуаров.Они просты, надежны и обеспечивают максимально постоянный обогрев. Итак, стоит ли индукционный нагреватель Dynavap? Индукционные нагреватели немного дорогие, и за эту цену вы можете получить второй бюджетный вейп с сухими травами, который можно взять с собой в дорогу. 41 51 17. Наслаждайтесь плавным, быстрым и постоянным испарением за 5-8 секунд с наконечниками из нержавеющей стали или титана. Обогреватель Apollo 2 DynaTec. Оригинальный сабреддит фанатов лучшего вейпа на рынке без батареек, Dynavap! Он достаточно крепкий для этой работы.Похоже на мини-игровой ПК, ха-ха. Мы не связаны с DV, нам просто очень нравится этот продукт! Испаритель Dynavap, кажется, был создан для индукционного нагрева! edit: Вау, спасибо за все положительные отзывы и платиновые и серебряные награды !! Войти Зарегистрироваться. Поделки своими руками. 2 4. Мне нравятся прозрачные футляры для индукционных нагревателей. Это придало ему совершенно новый весёлый вид, потому что, когда я запекаюсь, я могу включить «крутой свет». Это выглядит как поперечное сечение генераторной комнаты, которую мышь могла бы использовать в мультфильм, Вы просто не можете увидеть мышь на колесе генератора вне кадра, который питает эту штуку.10 18 0. VHB при 8,4 В нагревается медленнее, чем остальные, позволяя духовке нагреваться равномерно с более ароматными затяжками. Жаль, что у меня не было его пару недель назад. Рекламы потрясающие. Я получил M в подарок. Купил XL. Мне он очень нравится. ZVS Корпус индукционного нагревателя для Dynavap или DIY. Этот действительно портативный индукционный нагреватель может легко обеспечить вас 50… Спасибо! DIH-005: Самодельный индукционный нагреватель Dynavap «Русская кукла». Настольный индукционный нагреватель Fluxer с ШИМ-контролем температуры Режим полной мощности является типичным режимом работы для других индукционных нагревателей Dynavap.Мне нравились модели меньшего размера, которые собирали люди, но я хотел что-то более прочное, с несколькими предохранителями. IH ONE FTV совместим со всеми испарителями Dynavap без зажигалки и имеет более однородный нагрев! Благодаря этому руководству я чувствую себя достаточно уверенно, чтобы, по крайней мере, сделать это методом без пайки и позволить одному из моих приятелей, который умеет правильно паять, припаять эти 2 разъема после того, как они некоторое время проработали. спасибо, что разместили это. Я вижу, что некоторые люди используют его в своих сборках, а некоторые нет.477. На этой схеме должно быть все необходимое. В самолетах по этой причине обжимаются соединения проводов. Индукционный нагреватель своими руками: когда вы думаете о способе нагрева металлического предмета, вы думаете о возгорании — правильно? Представьте себе, что вы покупаете хорошее новое устройство и разбираете его, чтобы узнать, как оно собрано с тройниками или стыковыми разъемами. Моя схема и ваш документ должны привлечь множество людей к созданию этих забавных проектов! Привет, я заказал запчасти на основе вашего списка, и все они сегодня здесь! Я предполагаю, что вы используете батареи 18650 с надлежащей системой управления батареями, но помимо этого на этой схеме должно быть все необходимое.Индукционный нагреватель Apollo 2 — ваш обогреватель начального уровня, который идеально подходит для домашнего использования. Я как раз собираюсь получить свою динавап по почте. Это потрясающий пост, и вы хороший человек, вы могли просто беспокоиться о денежном аспекте, но желание поделиться — вот о чем все эти сообщества. Я бы заказал правильный блок питания с первого раза. Купите его во вторник, 23 февраля. На самом деле, это отличное сравнение, я купил его на Amazon по довольно низкой цене. Эти адаптеры позволяют подключать индукционный нагреватель Apollo 2 с питанием от стены к любой вилке прикуривателя на 12 В.Меня определенно вдохновили его индукционные нагреватели, когда я создавал свои собственные. Индукционный нагреватель использует вихревые токи посредством электромагнитной индукции для возбуждения ферромагнитного металла в катушке, вызывая его нагрев. Руководство по индукционным нагревателям DIY. Отключите фонарик и наслаждайтесь равномерным испарением в течение пяти-восьми секунд одним нажатием кнопки. Индукционный нагреватель Dynavap. Из простой деревянной коробки с кнопкой «Mag Heater» превратился в идеального компаньона для Dynavap — без хлопот нагревать в пути или дома.Нажмите J, чтобы перейти к ленте. Вместо этого я сделал схему цепи с батарейным питанием, если она вам тоже нужна. Нажмите вопросительный знак, чтобы изучить остальные сочетания клавиш, Arizer Solo / Dynavap / Fury 2 / Arizer EQ, Arizer EQ / ArGo / Air / S & B Plenty / Dynavap + IH / MFLB / TEV / Nova. С дополнительным бонусом, что мне было проще выстроить все в линию для установки. Привет, ребята. Я построил обогреватель с батарейным питанием вместо 18650, поэтому моя диаграмма немного нечеткая, но она будет работать точно так же, за исключением того, что вам не понадобится вольтметр, поскольку при использовании настенного зарядного устройства мощность никогда не меняется.Наслаждайтесь плавным, быстрым и равномерным испарением за 5-8 секунд с наконечниками из нержавеющей стали или титана. by Elek93 19 ноября, 2020. Несколько членов сообщества Dynavap создали индукционные нагреватели для нагрева Vapcap. Я не говорю, что я делаю индукционные нагреватели авиационного класса или тройники лучше, чем припой, но надежность соединений пайкой и обжимом определенно спорна. Подлый Пит говорит: Бог Орион был великим охотником; его лук никогда не промахивался, и, как и его тезка, портативный индукционный нагреватель DynaTec Orion попадает в цель с этой мощной и точной машиной.Да, и принципиальную схему не всегда плохо включать. Не стесняйтесь делиться любыми отзывами, которые у вас есть. В этой схеме самодельного индукционного нагревателя трансформатор состоит из рабочей катушки и нагреваемого объекта. 40A 12V-48V 1800W ZVS Индукционный нагреватель Модуль платы с обратным ходом Нагреватель драйвера, DIY Модуль высокочастотного индукционного нагрева 4,6 из 5 звезд 9 $ 118,39 $ 118. Найдите профиль трубы на FC и отправьте ему DM, его нагреватель котла дешев и ультраэффективен. Переносной индукционный нагреватель Dynavap «Русская кукла».У вас сработало или вы пробовали ?? Чувак, это так здорово. Я вижу, вы оставили катушку со всеми петлями (10 или 11), какой блок питания вы взяли? Как вы думаете, это сработает? Существует не так много причин не использовать его с DynaVap M. Apollo 2. Для работы просто вставьте VapCap в камеру, пока не услышите щелчок нагрева. Очень доволен малым форм-фактором и емкостью аккумулятора. У меня есть несколько индукционных нагревателей, включая Dynavap Apollo, а также портативные и подключаемые варианты от JoJo’s Creations.39 Просто говорю, но вам действительно не следует использовать тройники или изоленту для их создания. Это действительно несложно, если у вас есть базовое оборудование и время. Отказ индукционного нагревателя своими руками — Перегрев полевого МОП-транзистора — Электрооборудование … Индукционный нагреватель Dynavap — Головки пара — UK420. Самый популярный цвет? Убедитесь, что ваша розетка 12 В рассчитана на ток 6 ампер или выше. Индукционный нагреватель ZVS Зажим для намотки катушки. Может ли кто-нибудь прислать мне ссылку на хороший индукционный нагреватель, такой как в Bud’s Live Show и Price? В сабреддите ender 3 есть целая информация об этом и о том, как они рекомендуют людям отрезать консервированные стыки и обжимать их вместо этого, поскольку они намного надежнее, новые комментарии не могут быть опубликованы и голоса не могут быть отданы.Меню учетной записи пользователя. Эти нагреватели обходятся без горелки и используют электрический ток и индукцию для нагрева кончика Vapcap. Потрясающие! Модель DIH-005. Нажмите J, чтобы перейти к ленте. Трейлер китайской драмы «Выпускной сезон», Ежедневный распорядок Чамат Палихапития, Аллан и Малькольм Локхид, Biore Watery Essence против геля Reddit, Река Крыса Реактивная лодка Огайо, Хосе Хулиан Общество Instagram, Kr $ na Чистая стоимость, Сорвиголова и Черная вдова 102, Что такое заземление, «/>

Мы используем файлы cookie на нашем веб-сайте, чтобы предоставить вам наиболее релевантный опыт, запоминая ваши предпочтения и повторные посещения.Нажимая «Принять», вы соглашаетесь на использование ВСЕХ файлов cookie.

Политика конфиденциальности и использования файлов cookie

Как сделать небольшой и мощный индукционный паяльник

Если вы относитесь к тому типу людей, которые любят делать или ремонтировать мелкие вещи по дому, вы наверняка знаете, что паяльник — один из инструментов, которые вам абсолютно необходимы. Люди в основном покупают эти инструменты, не задумываясь. Но знаете ли вы, что есть способ сделать его самостоятельно?

Вы можете спросить себя, почему мы говорим о производстве паяльников, если их можно найти в каждом магазине DIY, и они относительно дешевы.

Во-первых, важно указать на разницу между теми, которые вы можете купить, и тем, о котором мы здесь говорим. Большинство паяльников, которые вы найдете на рынке, нагреваются от источника питания. Это означает, что электрический ток идет к нагревательному элементу вашего инструмента через кабель или батареи. Речь идет об индукционном паяльнике. В этом случае нагрев электрического проводника достигается за счет электромагнитной индукции.

Другое дело, что, несмотря на то, что несколько компаний производят этот паяльник высокой мощности, они довольно дорогие.Если вы не используете его профессионально, вы, вероятно, не захотите вкладывать деньги в инструмент, который будете использовать несколько раз в год.

Люди, которые увлекаются пайкой в ​​качестве хобби, например, играми в казино, и мы предполагаем, что вы тоже, часто используют для своей работы дешевый и маленький паяльник из Китая. Правда об этих инструментах заключается в том, что они обычно недолговечны. Итак, когда вы думаете о том, чтобы время от времени покупать новый, оказывается, что, возможно, этот паяльник не такой дешевый, как кажется.И это еще одна причина, по которой изготовить его самому — хорошая идея. В этом тексте мы объясним вам, как это сделать, используя части старых сломанных инструментов.

Паяльник с индукционным нагревом

Во-первых, предположим, что паяльник с магнитной индукцией состоит из трех частей: блока питания, рабочей головки и катушки.

Говоря об этом, мы считаем важным упомянуть, что когда паяльник использует электромагнитную индукцию, весь процесс нагрева становится намного быстрее.Индукционная пайка — это процесс, при котором две части соединяются расплавленным припоем. Индукция — довольно безошибочный и повторяющийся метод, а это означает, что вы можете ожидать снова и снова получать один и тот же результат. Более того, это довольно быстрый процесс, так как для нагрева жала паяльника требуется около 10 секунд.

Как сделать паяльник

Вы можете подумать, что использование практического руководства или мобильного приложения и создание всего паяльника — довольно сложная работа, и что лучше доверить ее профессионалам.Это неудивительно: многие люди думают так же, и мы тоже, пока не провели небольшое исследование. Не позволяйте этой идее пугать вас, потому что она вовсе не так устрашающа, как может показаться на первый взгляд. Давайте посмотрим, как вы можете сделать свой первый паяльник Homebase Tool из лома, лежащего вокруг вашего рабочего места.

  • Одним из важнейших элементов, необходимых вашему паяльнику своими руками, является электрическая цепь. Он состоит из рабочего змеевика и металлического наконечника, который будет нагреваться. Теперь вы, конечно, можете изготовить схему самостоятельно, но, если хотите сэкономить время, ее также можно купить.Если вы решите сделать его самостоятельно, вам потребуются два резистора на 240 Ом, 0,6 Вт, диоды с низким падением напряжения, транзисторы на 100 В и катушка индуктивности. Когда речь идет о диодах, нужно обращать внимание на то, что они могут сопротивляться при повышении напряжения в цепи. Роль индуктора здесь заключается в предотвращении колебаний источника питания.
  • Следующая часть — изготовить катушку. Лучше всего использовать медную проволоку или трубу. Это отличный материал, потому что он выдерживает сильные токи.Если вы не можете найти медь, имейте в виду, что в большинстве случаев подойдет латунь, представляющая собой смесь меди и цинка. Однако, если вы используете латунную катушку, лучше делать ее чаще, потому что в случае перегрева она может быть повреждена.
  • При изготовлении конденсатора важно также убедиться, что он выдерживает токи высокой частоты и тепло. В противном случае он быстро перестанет работать, и весь ваш инструмент будет испорчен. Вам также необходимо использовать клещевую проволоку или трубку для конденсатора, в основном потому, что электричество будет течь между катушкой и конденсатором.
  • Наконечник также должен быть из толстой медной проволоки или трубы. Убедитесь, что верхняя часть хорошо заточена, чтобы обеспечить наилучший эффект при пайке. Диаметр жала не имеет значения для правильной работы паяльника.
  • После того, как вы закончите пайку системы, вам нужно прикрепить ручку паяльника, и все готово. Ручка или основание могут быть изготовлены из термостойкого пластика или любого другого материала по вашему выбору.

В конце концов, мы считаем важным напомнить вам, что самодельный индукционный паяльник имеет множество преимуществ.Один и, возможно, самый важный, заключается в том, что его нагревательный элемент нагревается намного быстрее, чем при использовании обычного паяльника. Но помните, что с этим также очень просто заменить наконечник, потому что единственное, что вам нужно, — это подходящий медный провод или труба. Возможно, это не критический момент, но стоит задуматься о дизайне. Когда вы делаете свой паяльник, вы можете использовать всю свою фантазию, чтобы создать изделие по своему вкусу.

Вывод: Мы подошли к концу нашего приключения по созданию паяльника своими руками.На первый взгляд может показаться, что вам нужно иметь серьезное инженерное образование.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *