Site Loader

Содержание

Микросхема 4047

4047

Описание
4047 - цоколёвка

Микросхема 4047 очень широко применяется в аппаратуре. Она содержит экономичный мультивибратор-автогенератор, который снабжён развитой логикой управления. Рассмотрим структурную схему этого мультивибратора. Мультивибратор имеет входы запуска +TRG и —TRG, входы включения автогенерации АГ и АГ, а также вход перезапуска RT (retriggering). Выход генератора (вывод 13) снабжен буферным усилителем. Имеется внутренний делитель частоты на 2. От этого делителя есть выходы Q и Q. Внешний сброс подается на вывод 9 (вход R). Для данного мультивибратора требуется два времязадающих элемента Сτ и Rτ (выводы 3, 1 и 2).

Автогенерация мультивибратору 4047 разрешается, если на вход автогенерации (АГ) подано напряжение высокого уровня. Если на вход АГ подавать последовательность прямоугольных импульсов (или на вход АГ — инверсную последовательность), получим прерывистую автогенерацию. Генерируемая последовательность, наблюдаемая на выводе 13, может не иметь скважность 1/2. Точный меандр получается на выходах после делителя Q и Q (частота снижена в 2 раза).

Рассмотрим эпюры сигналов мультивибратора 4047 на выводах 13 (U13) и 10 (U10). Здесь tа =4,4 Rτ Cτ (максимальное значение для ряда экземпляров микросхем может быть tAmax=4,62RτTτ, что определяется разбросом пороговых напряжений транзисторов КМОП). Если время t = 10 мс зафиксировано при напряжении питания Uи.п = IO В, то при крайних напряжениях питания 3 В и 15 В оно может уменьшиться примерно на 2%. На высоких частотах автогеперации (более О,5 МГц) частота может измениться на 8% и более. На высоких частотах при минимальной температуре —55

оС период tА уменьшается на 11%, при крайней положительной 125оС — увеличивается на 12%. На частоте 2 кГц изменения периода tА не выходят за пределы +2%.

В ждущем режиме мультивибратор 4047 при запуске положительным перепадом подаем запускающий импульс на вход +TRG. На вход —TRG подается напряжение низкого уровня. Для запуска отрицательным перепадом импульсы подаем па вход —TRG, а на вход +ТRC подключаем напряжение высокого уровня.

Входные импульсы могут быть любой длительности (относительно выходного). Мультивибратор можно перезапустить только активным перепадом, если полный импульс подать на входы +TRG и RT. При перезапуске выходной уровень останется высоким в том случае, когда период входного импульса короче, чем период, определяемый элементами R

τ и Сτ

Импульс мультивибратора 4047 можно удлинить по времени в n раз, если подать сигнал Q на внешний счётчик-делитель (:n), который будет сбрасываться импульсом TRG. Выходной импульс счетчика подается на вход АГ. Длительность этого импульса увеличивается в n раз. Выходной импульс Q мультивибратора можно «укоротить», подав высокий уровень на вывод 9 внешнего сброса. Эпюры напряжений для ждущего режима показаны на рисунке. Здесь U

8 — импульс запуска на входе +TRG (вывод 8). Длительность импульса tж на выходе 10 tж=2,48 Rτ Сτ, причем для некоторых микросхем может наблюдаться максимальное отклонение tжmax = 2,71RτСτ, определяющееся разбросом пороговых напряжений В режиме автогенерации первый импульс — положительный полупериод — имеет длительность tж, (а не tА/2).

Перезапуск используется для затягивания выходного импульса. Рассмотрим обычный запуск в ждущем режиме. Если дается два входных импульса (выводы 8 и 12 соединяют), время импульса U с перезапуском:

     tRT

= 2 (t1 + t2).

Если выпускающие импульсы U8,12 образуют последовательность, время tRT будет равно продолжительности этой последовательности плюс время задержки за последним импульсом. На рисунке показана схема затягивания выходного импульса с помощью внешнего счетчика. Длительность импульса может управляться двоичным кодом, если счетчик имеет переменный коэффициент деления. Другое преимущество схемы в том, что можно применить высокостабильный конденсатор Сτ малой ёмкости. Время выходного импульса

tвых = (n — 1)tA + tж + tA/2
где и — коэффициент деления счетчика.

Для всех схем включения мультивибратора 4047 следует применять неполярные конденсаторы с малыми токами утечки. Для автогенераторов выбирается С

τ > 100 пФ, для ждущих генераторов — Сτ > 1000 пФ. Сопротивления резисторов выбираются в пределах 10 кОм < Rτ < 1 МОм. Длительность импульса запуска для любого входа не должна быть меньше 600 нс (Uи.п = 1O В). Для Uи.п = 5 В — эту длительность следует увеличить до 1300 нс. Длительность фронтов этих импульсов должна быть менее 5 мкс (10 мкс для Uи.п = 5 В). Время tзд.р от входов +TRG до выходов Q и Q — 800 нс (1600 нс при Uи.п = 5 В). Фронты импульсов на выходах Q и Q не хуже 100 нс (150 нс при Uи.п = 5 В).

4047 - структурная схема

4047 - принципиальная схема
Предельные значения параметров микросхемы 4047

Напряжение питания, В +3…+20
Входное напряжение, В +2,5…+20,5
Мощность рассеяния на один корпус, мВт
500
Рабочая температура, С° -55…+125
Временные и частотные параметры микросхемы 4047

Параметр Мин. Тип. Макс.
Время задержки фронта импульса (AST — OSC), нс 400
Время задержки фронта импульса (AST — Q), нс 700
Электрические параметры микросхемы 4047

Параметр +25°С
Выходное напряжение «0», В Uп=+5В 0,05
Uп=+10В 0,05
Uп=+15В 0,05
Выходное напряжение «1», В Uп=+5В 4,95
Uп
=+10В
9,95
Uп=+15В 14,95
Входной ток, мкА Uп=+15В +0,1
Выходной ток, мА Uп=+5В 0,53
Uп=+10В 1,4
Uп=+15В 3,5
Мультивибратор — микросхема 4047

Функция Соединение выводов Выход от контактов Период или длительность
к+Ил к-Ил Вход
Автоколебательный мультивибратор
Свободные колебания 4, 5, 6, 14 7, 8, 9, 12 10, 11, 13 Ta(10, 11) = 4,4 RC
Стробирование прямое 4, 6, 14 7, 8, 9, 12 5 10, 11, 13
Ta(13) = 2,2 RC
Стробирование инверсное 6, 14 5, 7, 8, 9, 12 4 10, 11, 13 То же
Ждущий мультивибратор
Запуск 4, 14 5, 6, 7, 9, 12 8 10, 11 tm(10, 11) = 2,48 RC
Запуск 4, 8, 14 5, 7, 9, 12 6
10, 11
То же
Перезапуск 4, 14 5, 6, 7, 9, 8, 12 10, 11 То же

Простой инвертор (12В -230В, 100Вт) на CD4047 и RF540 – Поделки для авто

Инверторам называют устройство, которое преобразует постоянный ток (DC) в другое значение переменного тока(AC). Инвертор только преобразует DC сигнал от батареи в AC сигнал для питания разнообразной техники, в то время как мощность системы зависит от используемого источника DC (батареи).

Типичный инвертор для дома должен использовать источник стабильного постоянного тока, способного обеспечить потребности системы.

Блок-диаграмма простого инвертора

Простой инвертор (12В -230В, 100Вт) на CD4047 и RF540

Постоянный ток от батареи преобразуется в переменный с помощью полевых генератора прямоугольных импульсов на базе микросхемы, затем сигнал усиливается с помощью транзисторов, переменный ток высокой частоты в некоторой частотой поступает на первичную обмотку силового трансформатора. Ну а дальше, всем хорошо знакомым методом индукции происходит трансформация и на вторичной обмотке трансформатора получаем напряжения уровня 220-230 вольт, которое пригодно для запитки многих сетевых нагрузок.

Форма выходного сигнала у такого инвертора – модифицированная синусоида, но не смотря на это инвертор может питать персональный компьютер, телевизор, проигрыватели DVD и многие другие нагрузки пассивного типа и нагрузки. которые в своей конструкции содержат импульсный или бестрансформаторный источник питания.

Простой инвертор (12В -230В, 100Вт) на CD4047 и RF540
Микросхема CD4047

CD4047 представлеяет собой мультивибратор низкой мощности (моностабильный / нестабильный) фирмы Texas Instruments. Нестабильный режим обеспечивается высоким уровнем сигнала на входе Astable. Моностабильный режим запускается передним фронтом импульса (от НИЗКИЙ к ВЫСОКИЙ) на триггерном входе.

В нестабильном режиме CD4047 может работать как с синхронизацией, так и в автоколебательном режиме с хорошо стабилизированной частотой прямоугольной формы (50% цикл). Эта микросхема часто применяется в схемах таймеров, для умножения или деления частоты и т.д.

IRF540

Простой инвертор (12В -230В, 100Вт) на CD4047 и RF540

IRF540 N-канальный полевой транзистор (MOFSET). Имеет большое входное сопротивление и малый рабочий ток затвора, что позволяет использовать его в качестве высокоскоростного переключателя без использования дополнительных драйверов, которые иногда нужны для управления затворами полевых транзисторов.

Транзисторы могут быть иные, но обязательно полевые, хотя схема работает и с биполярными, но мощность инвертора будет в разы ниже. В случае замены транзисторов (на иные полевые ключи) советуется использовать ключи с рабочим напряжением 100 и выше вольт, более низковольтные транзисторы могут выйти из строе из за высокого обратного напряжения от трансформатора.

Транзисторы нужно подобрать с током выше 50 Ампер, чем больше, тем лучше, но подберите транзисторы с малой емкостью затвора, поскольку с тяжелыми затворами могут возникнуть проблемы ибо нет отдельного драйвера для управления ключами.

Принципиальная схема

Простой инвертор (12В -230В, 100Вт) на CD4047 и RF540

Описание работы инвертора

CD4047 работает в нестабильном (автоколебательном) режиме. На выходах 10 и11 имеем импульсы прямоугольной формы (меандр) длительностью 0.01 сек со сдвигом фазы 180 градусов. Выходы 10 и11 соединены с затворами транзисторов через резисторы для предотвращения перегрузки выходов микросхемы.

Когда на выходе 10 имеем ВЫСОКИЙ уровень, 1-ый транзистор открывается и ток течет по верхнему плечу первичной обмотки трансформатора, что формирует на выходе положительную полуволну переменного тока. Аналогично, со 2-го транзистора получаем отрицательную полуволну переменного тока.

Повышающий трансформатор увеличивает напряжение, а диод Зенера является защитой от обратного тока.
Процесс переключения транзисторов сопровождается их нагревом, поэтому требуется установить их на радиаторы.
Этот инвертор имеет выходную мощность в 100Вт при преобразовании 12В в 230В.

Однако он выдает не синусоидальное напряжение, поэтому не рекомендуется питать через него телевизоры, радиоприемники и т.д. Но его можно использовать для питания осветительных приборов и зарядки мобильных телефонов.

Похожие статьи:

Микросхема CD4047, SOP14 — RadioMart.kz

CD4047 представлеяет собой мультивибратор низкой мощности (моностабильный / нестабильный). Нестабильный режим обеспечивается высоким уровнем сигнала на входе Astable. Моностабильный режим запускается передним фронтом импульса (от НИЗКИЙ к ВЫСОКИЙ) на триггерном входе.

В нестабильном режиме CD4047 может работать как с синхронизацией, так и в автоколебательном режиме с хорошо стабилизированной частотой прямоугольной формы (50% цикл).

Микросхема 4047 очень широко применяется в аппаратуре. Она содержит экономичный мультивибратор-автогенератор, который снабжён развитой логикой управления. Рассмотрим структурную схему этого мультивибратора. Мультивибратор имеет входы запуска +TRG и —TRG, входы включения автогенерации АГ и АГ, а также вход перезапуска RT (retriggering). Выход генератора (вывод 13) снабжен буферным усилителем. Имеется внутренний делитель частоты на 2. От этого делителя есть выходы Q и Q. Внешний сброс подается на вывод 9 (вход R). Для данного мультивибратора требуется два времязадающих элемента Сτ и Rτ (выводы 3, 1 и 2).

Автогенерация мультивибратору 4047 разрешается, если на вход автогенерации (АГ) подано напряжение высокого уровня. Если на вход АГ подавать последовательность прямоугольных импульсов (или на вход АГ — инверсную последовательность), получим прерывистую автогенерацию. Генерируемая последовательность, наблюдаемая на выводе 13, может не иметь скважность 1/2. Точный меандр получается на выходах после делителя Q и Q (частота снижена в 2 раза).

Рассмотрим эпюры сигналов мультивибратора 4047 на выводах 13 (U13) и 10 (U10). Здесь tа =4,4 Rτ Cτ (максимальное значение для ряда экземпляров микросхем может быть tAmax=4,62RτTτ, что определяется разбросом пороговых напряжений транзисторов КМОП). Если время t = 10 мс зафиксировано при напряжении питания Uи.п = IO В, то при крайних напряжениях питания 3 В и 15 В оно может уменьшиться примерно на 2%. На высоких частотах автогеперацин (более О,5 МГц) частота может измениться иа 8% и более. На высоких частотах при минимальной температуре —55оС период tА уменьшается на 11%, при крайней положительной 125оС — увеличивается на 12%. На частоте 2 кГц изменения периода tА не выходят за пределы +2%.

В ждущем режиме мультивибратор 4047 при запуске положительным перепадом подаем запускающий импульс на вход +TRG. На вход —TRG подается напряжение низкого уровня. Для запуска отрицательным перепадом импульсы подаем па вход —TRG, а на вход +ТRC подключаем напряжение высокого уровня.

Входные импульсы могут быть любой длительности (относительно выходного). Мультивибратор можно перезапустить только активным перепадом, если полный импульс подать на входы +TRG и RT. При перезапуске выходной уровень останется высоким в том случае, когда период входного импульса короче, чем период, определяемый элементами Rτ и Сτ

Импульс мультивибратора 4047 можно удлинить по времени в n раз, если подать сигнал Q на внешний счётчик-делитель (:n), который будет сбрасываться импульсом TRG. Выходной импульс счетчика подается на вход АГ. Длительность этого импульса увеличивается в n раз. Выходной импульс Q мультивибратора можно «укоротить», подав высокий уровень на вывод 9 внешнего сброса. Эпюры напряжений для ждущего режима показаны на рисунке. Здесь U8 — импульс запуска на входе +TRG (вывод 8). Длительность импульса tж на выходе 10 tж=2,48 Rτ Сτ, причем для некоторых микросхем может наблюдаться максимальное отклонение tжmax = 2,71RτСτ, определяющееся разбросом пороговых напряжений В режиме автогеперации первый импульс — положительный полупериод — имеет длительность tж, (а не tА/2).

Перезапуск используется для затягивания выходного импульса. Рассмотрим обычный запуск в ждущем режиме. Если дается два входных импульса (выводы 8 и 12 соединяют), время импульса U с перезапуском:

tRT = 2 (t1 + t2).

Если выпускающие импульсы U8,12 образуют последовательность, время tRT будет равно продолжительности этой последовательности плюс время задержки за последним импульсом. На рисунке показана схема затягивания выходного импульса с помощью внешнего счетчика. Длительность импульса может управляться двоичным кодом, если счетчик имеет переменный коэффициент деления. Другое преимущество схемы в том, что можно применить высокостабильный конденсатор Сτ малой ёмкости. Время выходного импульса

tвых = (n — 1)tA + tж + tA/2
где и — коэффициент деления счетчика.

Для всех схем включения мультивибратора 4047 следует применять неполярные конденсаторы с малыми токами утечки. Для автогенераторов выбирается Сτ > 100 пФ, для ждущих генераторов — Сτ > 1000пФ. Сопротивления резисторов выбираются в пределах 10 кОм < Rτ < 1 МОм. Длительность импульса запуска для любого входа не должна быть меньше 600 нс (Uи.п = 1O В). Для Uи.п = 5 В — эту длительность следует увеличить до 1300 нс. Длительность фронтов этих импульсов должна быть менее 5 мкс (10 мкс для Uи.п = 5 В). Время tзд.р от входов +TRG до выходов Q и Q — 800 нс (1600 нс при Uи.п = 5 В). Фронты импульсов иа выходах Q и Q не хуже 100 нс (150 нс при Uи.п = 5 В).


Комплект поставки и внешний вид данного товара могут отличаться от указанных на фотографиях в каталоге интернет-магазина.

Четырехканальный шифратор с частотным кодированием на микросхеме CD4047

September 13, 2012 by admin Комментировать »

Принципиальная схема

   

   Несложен и шифратор, выполненный на микросхеме CD4047 (отечественный аналог отсутствует). Здесь требуется минимум навесных элементов (рис. 2.8). Микросхема содержит автоколебательный мультивибратор, частота работы которого определяется постоянной времени цепи RC, подключаемой к выводам 1—3.

   Генерируемая последовательность может не иметь скважность [отношение периода следования (повторения) электрических импульсов к их длительности], равную двум, поэтому внутри микросхемы имеется делитель на два, реализованный на синхронном триггере, что обеспечивает на выводе 10 практически идеальный меандр.

   Период следования выходных импульсов, с учетом внутреннего делителя и разброса параметров микросхем, определяется выражением Тп = (2,2—2,31 )RC. Напряжение питания может лежать в пределах 3—15 В, период повторения при этом изменяется не более, чем на 2%.

   

Детали и конструкция

   Номиналы резисторов указаны для частот 0,9; 1,32; 1,61 и 2,4 кГц. Конденсатор СЗ обязательно пленочный или металлобу-мажный. Точная подгонка осуществляется аналогично описанной в предыдущих вариантах шифраторов. Амплитуда выходных импульсов равна напряжению питания, выходной ток не должен превышать 10 мА. Печатная плата шифратора приведена на рис. 2.9. К контактам 1—8 подключаются кнопки управления SI—S4. При желании количество команд во всех приведенных шифраторах можно увеличить до десяти, дополнив их соответствующими резисторами и кнопками.

   

Днищенко В. А.
500 схем для радиолюбителей. Дистанционное управление моделями.
СПб.: Наука и техника, 2007. — 464 е.: ил.

Микросхемы.

Микросхемы ТТЛ (74…).

На рисунке показана схема самого распространенного логического элемента — основы микросхем серии К155 и ее зарубежного аналога — серии 74. Эти серии принято называть стандартными (СТТЛ). Логический элемент микросхем серии К155 имеет среднее быстродействие tзд,р,ср.= 13 нс. и среднее значение тока потребления Iпот = 1,5…2 мА. Таким образом, энергия, затрачиваемая этим элементом на перенос одного бита информации, примерно 100 пДж.

Для обеспечения выходного напряжения высокого уровня U1вых. 2,5 В в схему на рисунке потребовалось добавить диод сдвига уровня VD4, падение напряжения на котором равно 0,7 В. Таким способом была реализована совместимость различных серий ТТЛ по логическим уровням. Микросхемы на основе инвертора, показанного на рисунке (серии К155, К555, К1533, К1531, К134, К131, К531), имеют очень большую номенклатуру и широко применяются.

Динамические параметры микросхем ТТЛ серии

ТТЛ серия Параметр Нагрузка
Российские Зарубежные Pпот. мВт. tзд.р. нс Эпот. пДж. Cн. пФ. Rн. кОм.
К155 КМ155 74 10 9 90 15 0,4
К134 74L 1 33 33 50 4
К131 74H 22 6 132 25 0,28
К555 74LS 2 9,5 19 15 2
К531 74S 19 3 57 15 0,28
К1533 74ALS 1,2 4 4,8 15 2
К1531 74F 4 3 12 15 0,28

При совместном использовании микросхем ТТЛ высокоскоростных, стандартных и микромощных следует учитывать, что микросхемы серии К531 дают увеличенный уровень помех по шинам питания из-за больших по силе и коротких по времени импульсов сквозного тока короткого замыкания выходных транзисторов логических элементов. При совместном применении микросхем серий К155 и К555 помехи невелики.

Взаимная нагрузочная способность логических элементов ТТЛ разных серий

Нагружаемый
выход
Число входов-нагрузок из серий
К555 (74LS) К155 (74) К531 (74S)
К155, КM155, (74) 40 10 8
К155, КM155, (74), буферная 60 30 24
К555 (74LS) 20 5 4
К555 (74LS), буферная 60 15 12
К531 (74S) 50 12 10
К531 (74S), буферная 150 37 30

Выходы однокристальных, т. е. расположенных в одном корпусе, логических элементов ТТЛ, можно соединять вместе. При этом надо учитывать, что импульсная помеха от сквозного тока по проводу питания пропорционально возрастет. Реально на печатной плате остаются неиспользованные входы и даже микросхемы (часто их специально «закладывают про запас») Такие входы логического элемента можно соединять вместе, при этом ток Ioвх. не увеличивается. Как правило, микросхемы ТТЛ с логическими функциями И, ИЛИ потребляют от источников питании меньшие токи, если на всех входах присутствуют напряжения низкого уровня. Из-за этого входы таких неиспользуемых элементов ТТЛ следует заземлять.

Статические параметры микросхем ТТЛ

Параметр Условия измерения К155 К555 К531 К1531
Мин. Тип. Макс. Мин. Тип. Макс. Мин. Тип. Макс. Мин. Макс.
U1вх, В
схема
U1вх или U0вх Присутствуют на всех входах 2 2 2 2
U0вх, В
схема
0,8 0,8 0,8
U0вых, В
схема
Uи.п.= 4,5 В 0,4 0,35 0,5 0,5 0,5
I0вых= 16 мА I0вых= 8 мА I0вых= 20 мА
U1вых, В
схема
Uи.п.= 4,5 В 2,4 3,5 2,7 3,4 2,7 3,4 2,7
I1вых= -0,8 мА I1вых= -0,4 мА I1вых= -1 мА
I1вых, мкА с ОК
схема
U1и.п.= 4,5 В, U1вых=5,5 В 250 100 250
I1вых, мкА Состояние Z
схема
U1и.п.= 5,5 В, U1вых= 2,4 В на входе разрешения Е1 Uвх= 2 В 40 20 50
I0вых, мкА Состояние Z
схема
U1и.п.= 5,5 В, Uвых= 0,4 В, Uвх= 2 В -40 -20 -50
I1вх, мкА
схема
U1и.п.= 5,5 В, U1вх= 2,7 В 40 20 50 20
I1вх, max, мА U1и.п.= 5,5 В, U1вх= 10 В 1 0,1 1 0,1
I0вх, мА
схема
U1и.п.= 5,5 В, U0вх= 0,4 В -1,6 -0,4 -2,0 -0,6
Iк.з., мАU1и.п.= 5,5 В, U0вых= 0 В -18 -55 -100 -100 -60 -150

Микросхема 4049

Предельные значения параметров микросхемы 4049

Напряжение питания, В +3…+18
Входное напряжение, В +5…+18,5
Мощность рассеяния на один корпус, мВт 700
Рабочая температура, С° -40…+85
Временные и частотные параметры микросхемы 4049

Параметр Мин. Тип. Макс.
Время задержки фронта импульса, нс Uп=+5В 30 65
Uп=+10В 20 40
Uп=+15В 15 30
Электрические параметры микросхемы 4049

Параметр +25°С
Выходное напряжение «0», В Uп=+5В 0,05
Uп=+10В 0,05
Uп=+15В 0,05
Выходное напряжение «1», В Uп=+5В 4,95
Uп=+10В 9,95
Uп=+15В 14,95
Входной ток, мкА Uп=+15В +0,3
Ток потребления (макс.) в состоянии покоя, мкА Uп=+5В 4
Uп=+10В 8
Uп=+15В 18
Выходной ток, мА Uп=+5В 0,72
Uп=+10В 1,5
Uп=+15В 5

Микросхемы.

Микросхемы ТТЛ (74…).

На рисунке показана схема самого распространенного логического элемента — основы микросхем серии К155 и ее зарубежного аналога — серии 74. Эти серии принято называть стандартными (СТТЛ). Логический элемент микросхем серии К155 имеет среднее быстродействие tзд,р,ср.= 13 нс. и среднее значение тока потребления Iпот = 1,5…2 мА. Таким образом, энергия, затрачиваемая этим элементом на перенос одного бита информации, примерно 100 пДж.

Для обеспечения выходного напряжения высокого уровня U1вых. 2,5 В в схему на рисунке потребовалось добавить диод сдвига уровня VD4, падение напряжения на котором равно 0,7 В. Таким способом была реализована совместимость различных серий ТТЛ по логическим уровням. Микросхемы на основе инвертора, показанного на рисунке (серии К155, К555, К1533, К1531, К134, К131, К531), имеют очень большую номенклатуру и широко применяются.

Динамические параметры микросхем ТТЛ серии

ТТЛ серия Параметр Нагрузка
Российские Зарубежные Pпот. мВт. tзд.р. нс Эпот. пДж. Cн. пФ. Rн. кОм.
К155 КМ155 74 10 9 90 15 0,4
К134 74L 1 33 33 50 4
К131 74H 22 6 132 25 0,28
К555 74LS 2 9,5 19 15 2
К531 74S 19 3 57 15 0,28
К1533 74ALS 1,2 4 4,8 15 2
К1531 74F 4 3 12 15 0,28

При совместном использовании микросхем ТТЛ высокоскоростных, стандартных и микромощных следует учитывать, что микросхемы серии К531 дают увеличенный уровень помех по шинам питания из-за больших по силе и коротких по времени импульсов сквозного тока короткого замыкания выходных транзисторов логических элементов. При совместном применении микросхем серий К155 и К555 помехи невелики.

Взаимная нагрузочная способность логических элементов ТТЛ разных серий

Нагружаемый
выход
Число входов-нагрузок из серий
К555 (74LS) К155 (74) К531 (74S)
К155, КM155, (74) 40 10 8
К155, КM155, (74), буферная 60 30 24
К555 (74LS) 20 5 4
К555 (74LS), буферная 60 15 12
К531 (74S) 50 12 10
К531 (74S), буферная 150 37 30

Выходы однокристальных, т. е. расположенных в одном корпусе, логических элементов ТТЛ, можно соединять вместе. При этом надо учитывать, что импульсная помеха от сквозного тока по проводу питания пропорционально возрастет. Реально на печатной плате остаются неиспользованные входы и даже микросхемы (часто их специально «закладывают про запас») Такие входы логического элемента можно соединять вместе, при этом ток Ioвх. не увеличивается. Как правило, микросхемы ТТЛ с логическими функциями И, ИЛИ потребляют от источников питании меньшие токи, если на всех входах присутствуют напряжения низкого уровня. Из-за этого входы таких неиспользуемых элементов ТТЛ следует заземлять.

Статические параметры микросхем ТТЛ

Параметр Условия измерения К155 К555 К531 К1531
Мин. Тип. Макс. Мин. Тип. Макс. Мин. Тип. Макс. Мин. Макс.
U1вх, В
схема
U1вх или U0вх Присутствуют на всех входах 2 2 2 2
U0вх, В
схема
0,8 0,8 0,8
U0вых, В
схема
Uи.п.= 4,5 В 0,4 0,35 0,5 0,5 0,5
I0вых= 16 мА I0вых= 8 мА I0вых= 20 мА
U1вых, В
схема
Uи.п.= 4,5 В 2,4 3,5 2,7 3,4 2,7 3,4 2,7
I1вых= -0,8 мА I1вых= -0,4 мА I1вых= -1 мА
I1вых, мкА с ОК
схема
U1и.п.= 4,5 В, U1вых=5,5 В 250 100 250
I1вых, мкА Состояние Z
схема
U1и.п.= 5,5 В, U1вых= 2,4 В на входе разрешения Е1 Uвх= 2 В 40 20 50
I0вых, мкА Состояние Z
схема
U1и.п.= 5,5 В, Uвых= 0,4 В, Uвх= 2 В -40 -20 -50
I1вх, мкА
схема
U1и.п.= 5,5 В, U1вх= 2,7 В 40 20 50 20
I1вх, max, мА U1и.п.= 5,5 В, U1вх= 10 В 1 0,1 1 0,1
I0вх, мА
схема
U1и.п.= 5,5 В, U0вх= 0,4 В -1,6 -0,4 -2,0 -0,6
Iк.з., мАU1и.п.= 5,5 В, U0вых= 0 В -18 -55 -100 -100 -60 -150

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *