Site Loader
Когда не помогает ЦАП. Цифровые потенциометры в деталях. Часть первая / Хабр

Прогресс не обошёл стороной не только велосипед. Сегодня традиционные переменные и подстроечные резисторы в очень многих приложениях уступают место цифровым сопротивлениям. В англоязычных источниках их называют digital potentiometer, RDAC или digiPOT. Область применения этих устройств гораздо шире регулировки уровня звукового сигнала. В частности они приходят на помощь в очень многих случаях, когда требуется изменять параметры обратной связи, что трудно реализовать с помощью традиционных ЦАП.

Особенно эффективно их применение в связке с операционными усилителями. Так можно получить регулируемые усилительные каскады, преобразователи разного рода величин, фильтры, интеграторы, источники напряжения и тока и многое многое другое. Словом эти очень недорогие и компактные устройства могут быть полезными каждому разработчику электроники и радиолюбителю…

Изначально я хотел написать краткую статью, но в результате углубленного изучения темы материал с трудом уместился в две части. Сегодня я постараюсь рассказать об архитектуре данных устройств, их возможностях, ограничениях использования и тенденциях развития. В заключении вскользь затрону тему областей применения, поскольку конкретные примеры практической реализации схем на их основе будут рассмотрены во второй части. МНОГО примеров!

Лично я за последние пять лет с успехом применял цифровые сопротивления в нескольких своих разработках, надеюсь что данный цикл статей окажется полезным для многих и поможет вам решать многие задачи более изящно и просто, чем сегодня. Людям, далёким от разработки электроники данная статья может просто расширить кругозор, показав как эволюционируют под натиском цифровых технологий даже такие простейшие вещи, как переменные резисторы.

P.S.Так получилось, что уже вышла ещё одна статья из этой серии и в ней пример всего один, зато подробно разобранный. Для остальных обещанных примеров придётся писать третью.

Содержание

Архитектура.

Для того, чтобы понять как работает данное устройство обратимся к функциональной схеме. На ней изображена аналоговая часть цифрового 8 битного сопротивления.

Основа прибора — 255 резисторов одинакового номинала и выполненные по технологии КМОП двунаправленные электронных ключи. Цифровое значение в интервале 0-255 записывается в регистр с которого подаётся на дешифратор. В зависимости от значения, сохранённого в регистре, срабатывает один из ключей, подключающий средний вывод W к выбранной точке в линейной матрице сопротивлений Rs. Ещё два ключа служат для подключения крайних выводов А и В. С их помощью прибор может переходить в неактивный режим.

Выводы А и В — аналоги крайних выводов переменного сопротивления, W — среднего вывода к которому у обычных переменных резисторов крепится движок.

Возможные схемы включения также аналогичны традиционным переменным сопротивлениям…

Рассмотрим как устанавливается требуемое сопротивление на примере 10 килоомного резистора. Для начала вычислим значение каждого из резисторов сборки, необходимых для формирования такого сопротивления Rs=10000/256=39,06 Oм. Допустим, мы пытаемся регулировать сопротивление между выводами W и B. Для получения нуля запишем это значение в управляющий регистр, но вместо желаемого нуля получим сопротивление в 100 Ом. Почему? Дело в том, что каждый из контактов прибора имеет своё внутреннее сопротивление и в рассматриваемом случае оно равно 50 Ом, поэтому и минимальное значение, которое можно получить с помощью данного потенциометра равно не нулю, а ста Омам — сопротивлению контактов W и B. Записав в регистр единицу получим 50+50+39=139 Ом.

В общем случае вычислить сопротивление между выводами W и B в зависимости от значения регистра D можно по формуле:

где:

  • D — значение регистра от 0 до 255
  • Rab — номинальное сопротивление
  • Rw — сопротивление одного контакта

Нетрудно догадаться что сопротивление между выводами W и А вычисляется как
Интерфейсы подключения.

Рассмотрим теперь функциональную диаграмму всего устройства, имеющего интерфейс I2C.

Тут некоторые вопросы может вызвать только вывод AD0. Он предназначен для возможности применения в одном канале I2C одновременно двух потенциометров. В зависимости от того, находится ли на нём логический ноль или единица, меняется адрес устройства на шине I2C. Схема подключения двух микросхем на одну шину показана ниже.

Кроме интерфейса I2C, для управления данными приборами часто используется SPI интерфейс. В этом случае также существует возможность управления несколькими устройствами по одной шине. Для этого они объединяются в цепочку. Например так:

В данном режиме буферный регистр записи значений работает как сдвиговый. Каждый новый бит поступает на вход DIN и по стробу с SCLK записывается в его младший разряд. Одновременно бит старшего разряда выходит наружу через вывод SDO и переходит в следующий прибор в цепочке. После того, как записана информация во все устройства, поступает импульс стробирования SYNC, по которому новые значения регистров всех приборов входящих в цепочку перезаписывается из буферного в рабочий регистрор. Очевидный недостаток подобного решения — не существует способа записать информацию в отдельно взятый прибор. Для любого изменения значений требуется обновить содержание регистров во всей цепочке.

Для решения подобного рода проблем, а так же экономии конечной цены решения изготавливают микросхемы, включающие в свой состав два, четыре и даже 6 цифровых сопротивлений одновременно.

Рабочие напряжение и ток

Пожалуй, самым существенным недостатком первых разработок было ограниченное напряжение, допустимое на выводах. Оно не должно превышать напряжения питания которое могло лежать в диапазоне от 2.7 до 5.5В, а главное не могло уходить в отрицательную область, из-за чего применение микросхем ограничивалось устройствами с однополярным питанием. Первым делом инженеры решили проблему двуполярности. Так появились приборы, способные работать как от однополярного напряжения вплоть до 5,5 Вольт, так и поддерживающие режим двуполярного питания вплоть до ± 2.75В. Затем стали появляться версии с максимальным питанием ±5.5 и даже ±16,5(до 33 вольт однополярного у AD5291/5292). Конечно по этому параметру традиционные сопротивления до сих пор сильно выигрывают, но для подавляющего большинства схем и 33 вольт вполне достаточно.

Тем не менее, какое бы максимальное напряжение не поддерживал прибор, в случае если имеется возможность его выхода за пределы допустимого, следует применить хотя бы простейшую защиту с помощью диодов или супрессоров.

Ещё одной серьёзной проблемой является низкий максимальный рабочий ток цифровых сопротивлений, который обусловлен в первую очередь их малыми размерами. Без риска деградации с течением времени средний постоянный ток для большинства моделей не должен превышать 3 мА. В случае, если протекающий ток имеет импульсный характер, его максимальное значение может быть выше.

Борьба за точность. Технология управляемого хаоса

К сожалению, существующая технология изготовления допускает возможность отклонения сопротивления интегральных резисторов, применяемыx в цифровых сопротивлениях, вплоть до 20 процентов от номинала. Однако, внутри одной партии и тем более одного конкретного прибора разница сопротивлений не превышает 0.1%. Для того, чтобы повысить точность установки, производитель стал измерять сопротивление резисторов как минимум на каждой пластине и прописывать в энергонезависимую память каждой из микросхем не номинальное, а реальное сопротивление, которое получилось в ходе производства, с точностью до 0.01 процента. Подобный механизм позволяет в частности в микросхемах AD5229/5235 вычислить реальную точность установки сопротивления c погрешностью недостижимой даже в многооборотных подстроечных резисторах — 0.01 процент. Основываясь на этом можно скорректировать операцию декодирования цифрового кода в сопротивление. Предположим, что элементарное сопротивление имеет значение 100 Ом. Тогда, чтобы выставить сопротивление в 1K вы устанавливаете в цифровом регистре 10. Но если в реальном приборе сопротивления имеют отклонение от номинала в большую сторону и равны 110 Ом, то при уровне 10 вы получите 1,1K. Однако, считав реальное значение сопротивления микроконтроллер может пересчитать код и подаст в действительности на дешифратор вместо десяти код 9. Тогда мы получим в реальности 9*110= 990 Ом.

Кроме этого, AD запатентовала технологию калибровки значения сопротивлений с точностью 1%. К сожалению, я так и не смог найти информации каков её механизм работы.

Для увеличения дискретности установки сопротивления были разработаны приборы с 10 битным дешифратором, обеспечивающие 1024 шага регулировки. Дальнейшее увеличение этого параметра можно достичь используя последовательное или параллельное соединение двух цифровых сопротивлений с разным номиналом.

Температурная стабильность

Тут всё совсем не плохо. Применение резисторов, изготавливаемых по плёночным технологиям позволяет достичь уровня дрейфа не превышающего 35ppm/°C (0,0035%). Существуют приборы с термокомпенсацией, температурный дрейф которых находится на уровне 10ppm/°C. По этому параметру цифровые сопротивления превосходят многие движковые аналоги. Для приложений, в которых данный параметр не актуален, можно выбирать более дешёвые приборы с полупроводниковыми резисторами у которых дрейф находится на уровне 600 ppm/°C.

Рабочий температурный диапазон большинства приборов от ADI находится в пределах от -40°C до +125°C, что достаточно для подавляющего большинства приложений.

Ряд доступных сопротивлений.

Конечно, тут не наблюдается такого разнообразия как у традиционных движковых резисторов, тем не менее есть из чего выбрать. Таблица ниже иллюстрирует зависимость доступных сопротивлений от разрядности прибора.

Искажение сигнала

Основные искажения, сигнала вносимые цифровыми усилителями можно разделить на два класса.
  • Гармонические искажения или на западный манер total harmonic distortion (THD).

Эти искажения возрастают с увеличением приложенного напряжения. Получить представление о их типичных значениях можно из следующей таблицы, составленной для микросхем AD9252…

В отдельных случаях этот вид искажений может возрастать до -60 dB

  • Искажения вызванные нелинейностью АЧХ.

Контактные площадки, электронные ключи и сами элементарные сопротивления имеют конечную паразитную ёмкость. В результате цифровые сопротивления являются своеобразным фильтром ФНЧ и на высоких частотах их сопротивление сигналу увеличивается.

Влияние этого эффекта возрастает с увеличением сопротивления прибора. В таблице ниже показано на какой частоте наблюдается ослабление сигнала на 3 децибела для разных сопротивлений разных номиналов.

Для большей наглядности приведу ещё графики зависимости передачи сигнала от установленного уровня сопротивления для микросхем AD5291 с разными номиналами 20 и 100 килоом.

Таким образом, получается что чем выше номинал сопротивления, тем ниже его рабочая частота.

“Фишечки” эволюции

Производители пытаются сделать работу с прибором наиболее комфортной, изобретая разные приятные мелочи. В результате цифровые сопротивления обзавелись внутренней энергонезависимой памятью, как однократно, так и многократно программируемой.

Главное её предназначение — хранения начального значения сопротивления, которое автоматически устанавливается сразу после включения питания. Первые модели электронных резисторов устанавливались при подаче питания в среднее положение, потом появилась дополнительная ножка для сброса в ноль, затем уровень стало можно задавать с помощью записанного в память значения. В наиболее продвинутых моделях в память можно записать несколько предустановленных значений, между которыми потом пользователь может быстро переключаться нажатием кнопок.

Кстати о кнопках — в некоторых моделях добавили две кнопочки для пошагового увеличения / уменьшения сопротивления.

Кроме этого, появился интерфейс для подключения энкодеров.

Что бы ещё улучшить?

Можно пофантазировать в каком направлении будет развиваться прогресс в производстве цифровых сопротивлений.
Для достижения большей точности может измениться система коммутации.

Например, добавив в традиционную схему всего одно сопротивление в параллельном включении, ну хорошо, два. Ещё одно в верхнее плечо для симметрии — можно увеличить точность установки сопротивлений в два раза! Объединение же в одной корпусе двух приборов даст возможность увеличения дискретности и точности в несколько раз.

Введение в корпус простейшего микроконтроллера, управляющего дишифратором позволит на основе реального значения полученных сопротивлений создать программу переключения для установки сопротивления прибора с очень большой точностью — 0.1% и выше. Интегрировав в такие приборы датчик температуры можно ввести компенсацию для сохранения линейности в очень широком температурном диапазоне. Возможно появление аналогов частотнокомпенсированных сопротивлений для HiFi аппаратуры, которые будут представлять из себя несколько сопротивлений в одном корпусе. Одно из них будет использоваться для регулировки уровня громкости, а другие для частотной компенсации.

Области применения

Конкретные схемотехнические решения на основе цифровых сопротивлений я приведу в следующей части статьи, пока же просто рассмотрим области применения.

Конечно, прежде всего приходит на ум усилители с регулируемым коэффициентом усиления.

В результате повышения точности установки значений, стало возможным применение электронных сопротивления в схемах управления уровнем усиления инструментальных усилителей.

Автоматическое или программное изменение контрастности жидкокристаллического индикатора можно организовать с помощью электронного сопротивления номиналом 10 Килоом.

На основе цифровых сопротивлений легко реализовывать управляемые фильтры. Фильтры высоких порядков часто требуют по несколько задающих резисторов одинаковых номиналов. Это очень удобно реализовать с помощью приборов, содержащих несколько сопротивлений в одном корпусе, поскольку в этом случае мы получаем отличную повторяемость. На рисунке приведена упрощённая схема простейшего управляемого ФНЧ.

Логарифмический усилитель, со сравнительно высоким напряжением питания, на основе AD5292.

Программно управляемый стабилизатор напряжения.

Линейный ряд от ADI

В заключении приведу полную список доступных на сегодня электронных потенциометров от компании Analog Devices. При этом следует отметить, что подобные приборы выпускает далеко не только эта фирма. Например, MAXIM также давно делает неплохие микросхемы.

Для начала приборы, которые не поддерживают программирование пользователем.

В заключении программируемые приборы. При выбора конкретной модели стоит обращать внимание на то что они бывают как однократно программируемыми, так и поддерживающими репрограммирование. Причём большое количество циклов обеспечивают только микросхемы с памятью выполненной по технологии EEPROM.

На этом заканчиваю обзор. Следующая статья будет посвящена рассмотрению практических схем с применением цифровых сопротивлений.

P.S. Так получилось, что уже вышлаещё одна статья из этой серии и в ней пример всего один, зато подробно разобранный. Для остальных обещанных примеров придётся писать третью.

По назначению дискретные резисторы делятся на резисторы — Студопедия

общего назначения,

прецизионные,

высокочастотные,

высоковольтные и

высокоомные.

По постоянству значения сопротивления резисторы подразделяются на постоянные, переменные и специальные. Постоянные резисторы имеют фиксированную величину сопротивления, у переменных резисторов предусмотрена возможность изменения сопротивления в процессе эксплуатации, сопротивление специальных резисторов изменяется под действием внешних факторов: протекающего тока или приложенного напряжения (варисторы), температуры (терморезисторы), освещения (фоторезисторы) и т.д.

По виду токопроводящего элемента резисторы делятся на проволочные и непроволочные.

По эксплуатационным характеристикам дискретные резисторы делятся на термостойкие, влагостойкие, вибро- и ударопрочные, высоконадежные и т.д.

Резисторы гибридных ИМС изготавливаются в виде резистивных пленок, наносимых на поверхность подложки. Эти резисторы могут быть тонкопленочными (толщина пленки порядка 1 мкм) и толстопленочными (толщина пленки порядка 20 мкм).

Резисторы полупроводниковых ИМС представляют собой тонкую (толщиной 2-3 мкм) локальную область полупроводника, изолированную от подложки и защищенную слоем SiO2.

Основным элементом конструкции постоянного резистора является резистивный элемент, который может быть либо пленочным, либо объемным. Величина объемного сопротивления материала определяется количеством свободных носителей заряда в материале, температурой, напряженностью поля и т.д. и определяется известным соотношением


(2.1)

где r удельное электрическое сопротивление материала,

l — длина резистивного слоя,

s — площадь поперечного сечения резистивного слоя.

В чистых металлах всегда имеется большое количество свободных электронов, поэтому они имеют малую величину r и для изготовления резисторов не применяются. Для изготовления проволочных резисторов применяют сплавы никеля, хрома и т.д., имеющие большую величину r.

Для расчета сопротивления тонких пленок пользуются понятием удельного поверхностного сопротивления rs , под которым понимается сопротивление тонкой пленки, имеющей в плане форму квадрата. Величина rs связана с величиной r и легко может быть получена из 2.1, если принять в ней s = dw , где w — ширина резистивной пленки, d толщина резистивной пленки.

Тогда

(2.2)

где


— удельное поверхностное сопротивление, зависящее от толщины пленки d и имеющее размерность Ом/ (Ом/квадрат). Если l = w, то R=rs, причем величина сопротивления не зависит от размеров сторон

На рис.2.1 представлено устройство пленочного резистора. На диэлектрическое цилиндрическое основание 1 нанесена резистивная пленка 2. На торцы цилиндра надеты контактные колпачки 3 из проводящего материала с припаянными к ним выводами 4. Для защиты резистивной пленки от воздействия внешних факторов резистор покрывают защитной пленкой 5.

Сопротивление такого резистора определяется соотношением

(2.3)

где l — длина резистора (расстояние между контактными колпачками), D диаметр цилиндрического стержня.на резистора (расстояние между контактными колпачками), D диаметр цилиндрического стержня.

Такая конструкция резистора обеспечивает получение сравнительно небольших сопротивлений ( сотни Ом ). Для увеличения сопротивления резистора резистивнную пленку 2 наносят на поверхность керамического цилиндра 1 в виде спирали ( рис. 2.2 ).

Рис. 2.2

Сопротивление такого резистора определяется соотношением

(2.4)

где t — шаг спирали, а — ширина канавки (расстояние между соседними виткамиспирали),

число витков спирали.

На рис. 2.3 показана конструкция объемного резистора, представляющего собой стержень 1 из токопроводящей композиции круглого или прямоугольного сечения с запрессованными проволочными выводами 2. Снаружи стержень защищен стеклоэмалевой или стеклокерамической оболочкой 3. Сопротивление такого резистора определяется соотношением (2.1).

Постоянный проволочный резистор представляет собой изоляционный каркас, на который намотана проволока с высоким удельным электрическим сопротивлением. Снаружи резистор покрывают термостойкой эмалью, спрессовывают пластмассой либо герметизируют металлическим корпусом, закрываемым с торцов керамическими шайбами.

Для гибридных ИМС выпускаются микромодульные резисторы, представляющие собой стержень из стекловолокна с нанесенным на поверхность тонким слоем токопро водящей композиции. Такие резисторы приклеиваются к контактным площадкам подложек токопроводящим клеем- контактолом.

Конструкции переменных резисторов гораздо сложнее, чем постоянных. На рис. 2.4 представлена конструкция переменного непроволочного резистора круглой формы.


Рис. 2.4

Он состоит из подвижной и неподвижной частей. Неподвижная часть представляет собой пластмассовый корпус 2, в котором смонтирован токопроводящий элемент 3, имеющий подковообразную форму. Посредством заклепок 6 он крепится к круглому корпусу. Эти заклепки соединены с внешними выводами 4. Подвижная часть представляет собой вращающуюся ось, с торцом которой 7 посредством чеканки соединена изоляционная планка 8, на которой смонтирован подвижный контакт 1 (токосъемник), соединенный с внешним выводом. Угол поворота оси составляет 270° и ограничивается стопором 5.

Существуют и другие конструкции переменных непроволочных резисторов.

Токопроводящий элемент в них бывает тонкослойным металлическим или металлоксидным (резисторы типа СП2), пленочным композиционным (резисторы типа СП4).

Переменные резисторы могут иметь разный закон изменения сопротивления в зависимости от угла поворота оси (рис.2.5).

Рис. 2.5

У линейных резисторов (типа А) сопротивление зависит от угла поворота линейно. У логарифмических резисторов (тип Б) сопротивление изменяется по логарифмическому закону, а у резисторов типа В — по обратнологарифмическому. Кроме того, существуют резисторы, у которых сопротивление изменяется по закону синуса (тип И) или косинуса (тип Б).

Некоторые типы переменных резисторов состоят из двух переменных резисторов объединенных в единую конструкцию, в которой токосъемники расположены на общей оси. Существуют переменные резисторы, содержащие выключатель, контакты которого разомкнуты, если ось резистора повернута в крайнее положение при вращении против движения часовой стрелки. При повороте оси по движению часовой стрелки на небольшой угол контакты выключателя замыкаются. Некоторые типы резисторов комплектуются специальными стопорящими устройствами, жестко фиксирующими положение оси. На рис.2.6 показана конструкция переменного проволочного резистора с круговым перемещением токосъемника. В пластмассовом корпусе 7 с помощью цанговой втулки 3 укреплена поворотная ось 2, на которой закреплен изоляционный диск с контактной пружиной (ползуном) 4, скользящей по проводу обмотки 9, — укрепленной на гетинаксовой дугообразной пластине 6. Концы обмотки соединены с выводами 8, а ползун через контактное кольцо соединен с внешним контактным лепестком 10. Положение оси может быть зафиксировано стопорной разрезной гайкой 1, а угол поворота оси ограничен выступами корпуса, в которые упирается планка-ограничитель 5, закрепленная на оси.

Помимо переменных резисторов с круговым перемещением существуют резисторы с прямолинейным перемещением подвижного контакта. В этом случае контактный ползун укрепляется не на поворотной, а на червячной оси.

Выбор типа резистора (постоянного или переменного) для конкретной схемы производится с учетом условий работы и определяется параметрами резисторов.

Резистор нельзя рассматривать как, элемент, обладающий только активным сопротивлением, определяемым его резистивным элементом.

Помимо сопротивления резистивного элемента он имеет емкость, индуктивность и дополнительные паразитные сопротивления. Эквивалентная схема постоянного резистора представлена на рис. 2.7.

На схеме RR— сопротивление резистивного элемента,

Rиз сопротивление изоляции, определяемое свойством защитного покрытия и основания, Rk сопротивление контактов, LR— эквивалентная индуктивность резиcтивного слоя и выводов резистора, СR — эквивалентная емкость резистора, CB1 и CB2— емкости выводов. Активное сопротивление резистора определяется соотношением

(2.5)

Сопротивление RКимеет существенное значение только для низкоомных резисторов. Сопротивление Rизпрактически влияет на общее сопротивление только высокоомных резисторов.Реактивные элементы определяют частотные свойства резистора. Из-за их наличия сопротивление резистора на высоких частотах становится комплексным.

Относительная частотная погрешность определяется соотношением

(2.6)

где Z — комплексное сопротивление резистора на частоте w

.На практике, как правило, величины L и С неизвестны. Поэтому для некоторых типов резисторов указывается значение обобщенной постоянной времени tmax , которая связана с относительной частной погрешностью сопротивления приближенным уравнением:

(2.7)

Частотные свойства непроволочных резисторов значительно лучше, чем проволочных.

что нужно знать о переменных резисторах / Хабр

Регулировка громкости звуковой системы, фиксация положения пальца на сенсорном экране и определение появления в автомобиле человека – вот всего лишь несколько примеров использования переменных резисторов в повседневной жизни. Возможность изменять сопротивление – это возможность взаимодействовать, поэтому переменные резисторы можно найти во множестве вещей. (Всё, что необходимо знать о постоянных резисторах, описано в предыдущей статье).

Принципы одинаковы, но способов разделения напряжения существует довольно много. Рассмотрим, что лежит в основе верньеров, реостатов, мембранных потенциометров, резистивных сенсорных экранов, а также датчиков изгиба и растяжения.


Потенциометры, по сути – это делители напряжения. Это метод разделения заданного напряжения на меньшие значения. Согласно схеме, у потенциометра (серый) есть три точки соединения. Средняя – переменная (обозначена стрелкой), и она контактирует с материалом резистора внутри где-то в одной из точек протяжённого резистора.


Напряжение между регулируемой точкой и одной из оставшихся (концов резистора) определяется сопротивлением между ними. Если соединены только две точки, тогда у нас получится переменный резистор, или реостат.

На фото – потенциометр с цилиндрической поворотной ручкой. Круглая пластиковая ручка громкости на вашей звуковой системе прячет один из таких потенциометров. Обратите внимание на три контакта, из которых средний соединён с переменной точкой. На фото изображён новый потенциометр. А вот статья о том, как я использовал такое устройство на усилителе, сделанном из банки из-под арахисового масла.



У потенциометров может быть линейный или логарифмический диапазон сопротивления. Линейный означает, что при повороте ручки сопротивление меняется линейно. Если повернуть её на четверть, сопротивление изменится на четверть.

Но если так будет с ручкой громкости, нашим ушам покажется, что громкость растёт слишком быстро; так происходит из-за особенностей восприятия звуков мозгом. Поэтому для ручки громкости лучше использовать потенциометр, чьё сопротивление меняется логарифмически. На графике показано, как меняется громкость при повороте ручки, как для линейного, так и для логарифмического потенциометра. Некоторые потенциометры обеспечивают лишь псевдо-логарифмический рост, и они дешевле тех, что дают настоящий логарифм. Они состоят из двух линейных частей, встречающихся на 50% поворота. Их работа также отражена на графике.

Логарифмическое поведение достигается изменением формы резистивного элемента – его ширина меняется по всей длине. Поэтому потенциометры часто делят на линейно сужающиеся и логарифмически сужающиеся.

Ещё одна разновидность потенциометра – подстроечное сопротивление, или триммер. Они меньше размером, и используются на электронных платах. Подстраиваются одни обычно один раз, или очень редко – только для калибровки схемы.


Триммеры


Эквалайзер

Не все потенциометры работают с вращением. Они могут быть сделаны и в форме ползунов, как на фото с эквалайзером. Такие ползуны подвержены попаданию грязи, нарушающей их работу – именно такая проблема появилась у клавиатуры на фото (это моя клавиатура, и её ползуны действительно трудно передвигать).


Как я уже упомянул, при подсоединении только двух контактов потенциометр часто называют реостатом. Реостаты обычно используются для больших токов, и, конечно же, не только для регулировки громкости.

Чтобы работать с большими токами, они обычно делаются при помощи провода, намотанного на изолированный сердечник, по которому ходит скользящий контакт. Вспомним символ потенциометра, у которого использовано три контакта. Поскольку здесь мы подключаем два контакта, мы используем другой символ; сопротивление со стрелочкой (не подсоединённой) поперёк. На изображении ниже вы можете видеть два варианта этого символа – по стандартам IEEE и IEC.


Мембранный потенциометр состоит из гибкой диэлектрической, часто прозрачной мембраны с присоединённой снизу полоской сопротивления.
Ниже её находится основание, на поверхности которого нанесена токопроводящая дорожка. Когда палец, или другой объект прикасается к мембране, полоска устанавливает контакт с дорожкой. В результате на контактах полоски появляется напряжение. Оно зависит от того, в каком месте полоска соприкоснулась с дорожкой. Схема тут та же, что и самая первая схема на странице для потенциометра.

Сопротивление мембранного потенциометра SoftPot с сайта Sparkfun меняется линейно от 100 Ом до 10 кОм с номинальной мощностью в 1 Вт.

В случае, когда контакт не постоянен (например, он возникает только при нажатии пальцем), в схеме необходим подтягивающий резистор (к примеру, 100 кОм). Но у некоторых мембранных потенциометров есть магнит или скользящий контакт, всегда давящий на мембрану и поддерживающий постоянный контакт.


Резистивный сенсорный экран похож на мембранный потенциометр, только резистивный материал есть на обоих его слоях, причём материал прозрачный. Передняя мембрана гибкая и также прозрачная, так что палец или стилус может надавить на неё и создать контакт. Технология использовалась в некоторых дешёвых карманных компьютерах или детских игрушках. Она всё ещё применяется, но революция смартфонов произошла благодаря ёмкостным экранам, не требующим гибкой мембраны.
Для 4-проводного резистивного сенсорного экрана напряжение подаётся на верхний слой, а результат считывается с нижнего, и таким образом считывается координата X. Затем всё происходит наоборот и получается координата Y. Всё это происходит за миллисекунды, и опрос экрана проводится непрерывно.

Все подсчёты ведутся вспомогательным контроллером. Резистивные экраны не такие отзывчивые, как ёмкостные, и для высокой точности обычно требуется стилус. Используются в очень дешёвых смартфонах.


Датчики давления состоят из токопроводящего полимера, в котором есть проводящие и непроводящие частицы. Он расположен между двумя проводниками, переплетёнными, но не соединёнными. Прижимание полимера к проводникам создаёт контакт. Увеличение силы или площади нажатия увеличивает проводимость и уменьшает сопротивление. Без нажатия сопротивление конструкции может быть более 1 МОм, а точность обычно составляет около 10%. Этого достаточно для использования в музыкальных инструментах, протезах, датчиках наличия человека в машине и портативной электроники.


Гибкий датчик – это резистивный материал, например, углерод, нанесённый на гибкую мембрану. При изгибании датчика материал растягивается и сопротивление увеличивается пропорционально радиусу изгиба. Судя по одной из спецификаций, сопротивление плоского датчика в 10 кОм может удваиваться при сгибании его на 180 градусов, когда оба конца соединяются. Распространённый пример – пальцы в игровых перчатках, такие, как в контроллере Nintendo Power Glove (в одном из проектов его хакнули для управления квадрокоптером). Сгибание пальцев приводит к изменению сопротивления, показывающему степень сгиба.


Датчик растяжения работает по тому же принципу, только его сопротивление увеличивается при растяжении. Резиновый шнур с углеродом выглядит, как шнур для банджи. Судя по одному примеру с Adafruit, 6-дюймовый шнурок сопротивлением 2,1 кОм при растяжении до 10″ меняет сопротивление до 3,5 кОм. Ещё один пример – проводящая нить из стальных волокон, смешанных с полиэстером, а ещё бывают датчики в виде резинок или ремней.

Цифровой переменный резистор MCP41XXX/42XXX с интерфейсом SPI | hardware

Микросхемы MCP41XXX/MCP42XXX компании Microschip это электронный переменный резистор, управляемый последовательными данными через интерфейс SPI. У него может быть 1 или 2 канала и дополнительные входы для сброса, выключения, а также цифровой выход для каскадирования таких устройств в цепочку по данным управления (количество каналов и наличие дополнительных выводов зависит от типа корпуса устройства).

Примечание: здесь дан перевод даташита [1] с акцентом на программирование и применение. Таблицы с электрическими, предельно допустимыми параметрами и параметрами диаграмм времени см. в оригинальном даташите.

[Основные возможности цифрового потенциометра]

• У каждого канала потенциометра имеется 256 положений «движка».
• Значения сопротивления могут быть 10 kΩ, 50 kΩ и 100 kΩ.
• Есть одноканальные и двухканальные версии микросхемы.
• Последовательный интерфейс SPI (режимы 0,0 и 1,1).
• Интегральная нелинейность (INL) дифференциальная нелинейность (DNL) составляют ±1 вес младшего разряда (LSB).
• Применена технологий Low power CMOS, в статическом режиме ток потребления составляет максимум 1 μA.
• Несколько микросхем могут быть соединены в одну цепочку каскадирования по передаче данных.
• Одно напряжение питания (2.7 .. 5.5V).
• Индустриальное исполнение для диапазона температур: -40° .. +85°C.
• Расширенный температурный диапазон: -40° .. +125°C.
• Функция выключения открывают схемы для всех резисторов для максимальной экономии энергии питания.

Только для двухканальных версий MCP42XXX:

• Аппаратные выводы выключения ~SHDN, сброса ~RS и выхода данных SO.

Версии MCP41XXX являются одноканальными устройствами, поставляемыми в 8-выводных корпусах PDIP или SOIC. Версии MCP42XXX содержат 2 независимых канала в 14-выводных корпусах PDIP, SOIC или TSSOP. Позиция «движка» резисторов MCP41XXX/42XXX меняется по линейному закону и под управлением стандартного интерфейса SPI. Функция выключения (shutdown), активируемая программно, работает таким образом, что вывод A переменного резистора отключается, и одновременно «движок» W подсоединяется к выводу B. Дополнительно двухканальные версии электронного потенциометра MCP42XXX имеют вывод ~SHDN, который выполняет ту же функцию, но аппаратно. Во время режима shutdown содержимое регистра положения движка может быть изменено, и тогда потенциометр вернется из состояния shutdown в новое положение движка.

Движок сбрасывается в среднюю позицию 80h после включения питания. Вывод ~RS (reset, сброс, доступен только в двухканальных версиях MCP42XXX) реализует аппаратный сброс, возвращая движок резистора в среднее положение.

Интерфейс SPI микросхем версий MCP42XXX имеет 2 сигнала SI и SO (вход и выход), позволяя каскадировать последовательно несколько устройств.

Сопротивления каналов MCP42XXX отличаются не больше, чем на 1%.

Цоколевка корпусов PDIP8, SOIC8:

Цоколевка корпусов PDIP14, SOIC14, TSSOP14:

[Описание выводов]

Имя Описание
PB0,
PB1
Вывод B потенциометра. Клемма переменного резистора, которая обычно при использовании подключается к земле.
PA0,
PA1
Вывод A потенциометра. Клемма переменного резистора, на которую обычно подается регулируемый сигнал.
PW0,
PW1
«Движок» потенциометра/переменного резистора.
~CS Это вывод входа для выборки порта SPI (chip select), который используется для загрузки команды и данных в регистр сдвига и копирования загруженных данных в из регистра сдвига в регистр (или регистры) потенциометра (потенциометров). Сигнал этого вывода проходит через триггер Шмитта.
SCK Это вывод входа тактов порта SPI, и он используется для последовательной загрузки в микросхему команды и данных. Данные вдвигаются в вывод SI по положительному перепаду SCK (0 -> 1), и выходят наружу через вывод SO по отрицательному перепаду SCK (1 -> 0). Этот вывод активизируется сигналов вывода ~CS (например, микросхема почти не потребляет ток, если вывод SCK переключается, когда на выводе ~CS уровень лог. 1). Сигнал с вывода SCK проходит через триггер Шмитта.
SI Это вход для поступления последовательных данных порта SPI. Байты команды и данных вдвигаются в регистр сдвига через этот вывод. Действие входа SI управляется сигналом вывода ~CS (микросхема не потребляет ток и не реагирует на входные данные, когда они меняются на выводе SI, если вывод ~CS находится в лог. 1). Сигнал на вывод SI проходит через триггер Шмитта.
SO Это выход последовательных данных порта SPI, предназначенный для соединения нескольких микросхем в цепочку. Данные выдвигаются наружу через вывод SO по спаду сигнала тактов SCK. Выход SO является двухтактным, и он не переходит в третье состояние, когда на входе ~CS лог. 1. Если на ~CS лог. 1, то на выходе SO будет лог. 0.
~RS Это вход сброса, который переводит состояние потенциометров в среднее положение (код 80h), если на этом выводе появился лог. 0 на время как минимум 150 нс. Этот вывод не переключается в лог. 0, когда ~CS переключается в лог. 0. Можно переключить вход сброса, когда ~SHDN находится в лог. 0. Чтобы снизить потребление тока, вход сброса должен быть подтянут к лог. 1 через резистор pull-up. Производительность этой схемы показана на рис. 2-12 даташита [1]. Этот вывод будет потреблять нежелательный ток, когда находится на уровне между лог. 0 и лог. 1, поэтому не оставляйте вход сброса в подвешенном состоянии.
~SHDN Это аппаратный вход выключения, снабженный триггером Шмитта. Если перевести этот вывод в лог. 0, то микросхема перейдет в энергосберегающий режим, в котором вывод A переменных резисторов отключается, а выводы B и W замыкаются друг на друга. Вход ~SHDN не должен переходить в лог. 0, когда вывод ~CS находится в лог. 0. Чтобы минимизировать потребление энергии, этот вывод должен иметь верхнюю подтяжку (резистор pull-up). Производительность этой схемы показана на рис. 2-12 даташита [1]. Этот вывод будет потреблять нежелательный ток, когда находится на уровне между лог. 0 и лог. 1, поэтому не оставляйте вход сброса в подвешенном состоянии.
VSS GND, земля, минус питания и общий провод для всех цифровых сигналов.
VDD + питания.

[4.0. Информация по применению]

Устройства MCP41XXX/MCP42XXX это одноканальные и двухканальные потенциометры с 256 положениями, которые можно использовать вместо обычных механических. Доступны номиналы 10 кОм, 50 кОм и 100 кОм. Как показано на рис. 4-1, каждый потенциометр построен из как массив переключаемых резисторов, управляемый 8-битным (отсюда 256 позиций) регистром данных, который определяет положение «движка». Номинальное сопротивление движка составляет 52 Ом для 10 кОм версии, 125 Ом для 50 кОм версии и 100 кОм версии. Для двухканальных устройств различия по сопротивлению между каналами составляет не более 1%. Сопротивление между движком и любым из крайних выводов резистора линейно меняется в зависимости от значения, сохраненное в регистре данных. Код 00h соединяет движок W с выводом B. После включения питания все регистры данных автоматически загружаются средним значением (80h). Последовательный интерфейс предоставляет способ загрузить данные в регистр сдвига, после чего переместить их в регистры данных. Последовательный интерфейс также позволяет перевести отдельные потенциометры в режим выключения (shutdown mode) для минимизации потребления энергии. Вывод ~SHDN может также может использоваться для перевода всех потенциометров в shutdown mode (программно можно задавать shutdown mode индивидуально для каждого из потенциометров), и предоставляется вывод ~RS для установки потенциометров в среднее положение mid-scale (80h).

Shutdown отключает вывод A и подключает движок W к выводу B, без изменения состояния регистров данных.

Когда разводится печатная плата с использованием цифровых потенциометров, должны использоваться блокирующие конденсаторы. Они должны быть подключены максимально близко к выводам питания микросхемы. Рекомендуется использовать конденсатор номиналом 0.1 мкФ. Цифровые и аналоговые проводники должны быть максимально удалены друг от друга на плате, желательно, чтобы не было проводников под корпусом микросхемы или под корпусом конденсатора. Особое внимание должно быть уделено проводникам с высокочастотными сигналами (такие как сигналы тактов), чтобы они как можно дальше проходили от проводников с аналоговыми сигналами. Использование аналоговой заливки рекомендуется, чтобы удерживать потенциал земли одинаковым для всех устройств на плате.

4.1. Режимы работы. Приложения с цифровым потенциометром можно поделить на 2 категории: режим реостата и потенциометра, или режим делителя напряжения.

4.1.1. Режим реостатата. В этом режиме потенциометр используется как двухвыводный резистивный элемент (переменный резистор). Не используемый вывод должен быть соединен с движком, как показано на рис. 4-2. Обратите внимание, что смена полярности выводов A и B не влияет на работу потенциометра в режиме реостата (смена полярности просто поменяет действие записываемых кодов).

Рис. 4-2. Конфигурация реостата с двумя выводами. Работает в схеме как переменный резистивный элемент, сопротивление которого меняется под управлением цифрового кода.

Использование устройства в этом режиме позволяет менять общее сопротивление между двумя узлами схемы. Общее измеренное сопротивление будет минимальным для кода 00h, когда движок W соединен с выводом A, и переместился к выводу B. Сопротивление при этом будет равно сопротивлению движка, что составит типично 52Ω для 10 kΩ устройств MCP4X010, 125Ω для 50 kΩ (MCP4X050) и 100 kΩ (MCP4X100) устройств. Для 10 kΩ устройства вес младшего разряда регулирования 39.0625Ω (если предположить общее сопротивление 10 kΩ). Сопротивление будет расти при увеличении кода, и будет максимальным 9985.94Ω для кода FFh. Движок никогда не будет соединен напрямую с точкой B стека резисторов.

В состоянии 00h общее сопротивление будет равно сопротивлению движка W. Чтобы избежать повреждения микросхемы следует ограничить ток через переменный цифровой резистор значением 1 mA.

Для двухканальных устройств разница сопротивления точек A и B между каналами составит меньше 1%. Однако между разными микросхемами несовпадение может составлять до 30%.

В режиме реостата сопротивление имеет положительный температурный коэффициент. Изменение сопротивление между движком и крайним выводом в зависимости от температуры показано на рис. 2-8 даташита [1]. Наибольшее изменение из-за температуры будут происходить для 6% кодов (в диапазоне 00h .. 0Fh) из-за того, что коэффициент сопротивления движка влияет на общее сопротивление. Для оставшихся кодов доминантным будет вклад температурного коэффициента массива резисторов RAB, который обычно составляет 800 ppm/°C.

4.1.2. Режим потенциометра. В режиме потенциометра все 3 вывода устройства подключаются к разным точкам схемы. Это позволяет менять напряжение на движке (выходе) пропорционально коду. Этот режим иногда называют режимом делителя напряжения. Потенциометр используется для предоставления настраиваемого напряжения между двумя точками, как показано на рис. 4-3. Обратите внимание, что изменение полярности выводов A и B не влияет на работу (смена полярности просто поменяет действие записываемых кодов).

Рис. 4-3. Режим делителя напряжения (потенциометра).

В этой конфигурации соотношение внутреннего сопротивления определяется температурным коэффициентом устройства. Совпадение по температурному коэффициенту сопротивлений RAB и RWB составляет 1 ppm/°C (измерено для кода 80h). Для кодов с меньшими значениями температурный коэффициент движка будет доминировать. Рис. 2-3 даташита [1] показывает эффект температурного коэффициента движка. Выше младших кодов этот рисунок показывает, то 70% состояний даст температурный коэффициент меньше 5 ppm/°C. 30% состояний дадут ppm/°C меньше 1.

4.2. Типовые применения

4.2.1. Программируемые усилители с несимметричным выходом. Потенциометры часто используют для настройки уровней опорного напряжения или усиления. Схемы с программируемым усилением на основе цифровых потенциометров могут быть реализованы разными способами. Пример инвертирующего усилителя с одним источником питания показан на рис. 4-4. Из-за высокого входного сопротивления усилителя сопротивление движка не участвует в передаточной функции.

 
 
VOUT = -VIN * (RB/RA) + VREF * (1 + RB/RA)
 
Здесь:
 
     RAB*(256 – Dn)            RAB * Dn
RA = --------------       RB = --------
          256                     256
          
RAB = общее сопротивление канала
Dn = настройка движка (Dn = 0 .. 255)

Рис. 4-4. Инвертирующий программируемый усилитель с однополярным питанием.

Для не инвертирующего усилителя с однополярным питанием может быть использована схема на рис. 4-5.

 
 
 
VOUT = VIN * (1 + RB/RA)
 
Здесь:
 
     RAB*(256 – Dn)            RAB * Dn
RA = --------------       RB = --------
          256                     256
          
RAB = общее сопротивление канала
Dn = настройка движка (Dn = 0 .. 255)

Рис. 4-5. Не инвертирующий программируемый усилитель с однополярным питанием.

Чтобы эти схемы работали правильно, необходимо учесть некоторые моменты. Для линейной работы сигналы на входе и выходе не должны уходить за пределы уровней выводов VSS и VDD микросхемы потенциометра и не должны быть превышены пределы входных и выходных сигналов операционного усилителя. Схема на рис. 4-4 требует виртуальной земли или опорного напряжения для не инвертирующего усилителя. Для дополнительной информации обратитесь к апноуту 682 «Using Single-Supply Operational Amplifiers in Embedded Systems» (DS00682). При включении питания или поступления сигнала сброса (~RS), сопротивление установится в среднее положение, когда сопротивление плеч RA и RB равны. На основе передаточной функции схемы усиление составит 1. Когда код увеличивается, движок перемещается в сторону вывода A, и усиление увеличивается. Соответственно когда движок перемещается к выводу B, усиление уменьшается. Рис. 4-6 показывает эту зависимость. Обратите внимание на псевдо-логарифмическое усиление вокруг десятичного кода 128. По мене приближения движка к любому из выводов крутизна изменения усиления резко возрастает. Из-за несовпадения величин RA и RB для крайних старших и младших кодов малое изменение позиции движка очень сильно влияет на усиления. Как показано на рис. 4-3, рекомендуется использовать изменение коэффициента усиления в диапазоне от 0.1 до 10.

Рис. 4-6. Зависимость усиления от кода для схем инвертирующего и дифференциального усилителей.

4.2.2. Программируемый дифференциальный усилитель. Пример усилителя с дифференциальным входом, где используются цифровые потенциометры, показан на рис. 4-7. Для поддержки передаточной функции в оба канала резистора должны быть запрограммированы одинаковым кодом. Точное соответствие по сопротивлению между каналами сдвоенного резистора может быть использовано как достоинство для этой схемы. Эта схема покажет также стабильную работу в зависимости от температуры из-за низкого температурного коэффициента потенциометра. На рис. 4-6 также показана зависимость между усилением и кодом для этой схемы. Когда движок приближается к любому из выводов потенциометра, с каждым новым шагом усиление меняется очень значительно, поэтому рекомендуется менять коэффициент усиления в диапазоне между 0.1 и 10.

 
 
 
VOUT = (VA - VB) * RB/RA
 
Здесь:
 
     RAB*(256 – Dn)            RAB * Dn
RA = --------------       RB = --------
          256                     256
          
RAB = общее сопротивление канала
Dn = настройка движка (Dn = 0 .. 255)

Замечание: сопротивления каналов RAB должны быть одинаковые (каналы из одного корпуса MCP42XXX).

Рис. 4-7. Дифференциальный усилитель с однополярным питанием.

4.2.3. Программируемая подстройка смещения. Для приложений, где требуется только программируемое опорное напряжение, можно использовать схему на рис. 4-8. Эта схема показывает устройство, используемое в режиме потенциометра (делителя напряжения) с двумя дополнительными резисторами и буферным усилителем. Это создает линейную зависимость между выходным напряжением и программируемым кодом. Резисторы R1 и R2 могут использоваться для уменьшения или увеличения веса шага регулирования. Потенциометр в этом режиме работает стабильно при изменениях температуры. Температурная зависимость этой схемы показана на рис. 2-3 даташита [1]. Самые плохие показатели для температурной зависимости будут для нижних и верхних кодов из-за того, что начинает оказывать влияние сопротивление движка. R1 и R2 также используются для изменения границ напряжения, таким образом может быть снижена необходимость использования этих крайних кодов.

 
 

Рис. 4-8. Номиналы R1 и R2 меняют разрешающую способность схемы и пределы регулирования выходного напряжения.

4.3. Вычисление сопротивлений. Когда программируются настройки цифрового потенциометра, используются следующие выражения для получения сопротивлений. Код 00h соответствует крайнему положению движка максимально близко к выводу B, оставляя только сопротивление движка. Программирование кодов близко к FFh приближают движок к выводу A потенциометра. Выражения на рис. 4-9 могут использоваться для вычисления сопротивлений плеч.

 
 
 
RWA(Dn) = (RAB * (256 - Dn) / 256) + RW
 
RWB(Dn) = (RAB * Dn / 256) + RW
 
Здесь:
 
PA ножка A потенциометра
PB ножка B потенциометра
PW движок потенциометра
RWA сопротивление между выводом A и движком
RWB сопротивление между выводом B и движком
RAB общее сопротивление резистора (10 kΩ, 50 kΩ или 100 kΩ)
RW сопротивление движка
Dn 8-битное значение в регистре данных для потенциометра n

Рис. 4-9. Сопротивление плеч потенциометра является функцией кода. Следует заметить, что при использовании этих выражений для большинства схем усилителей с обратной связью (как на рис. 4-4 и 4-5) сопротивление движка можно опустить из-за высокого входного сопротивления усилителя.

Рис. 4-10 показывает пример вычислений для 10 kΩ потенциометра.

 
 
 
R = 10 kΩ
Код = C0h = 192
 
RWA(Dn) = (RAB * (256 - Dn) / 256) + RW
RWA(C0h) = (10kΩ * (256 - 192) / 256) + 52Ω = 2552Ω
 
RWB(Dn) = (RAB * Dn / 256) + RW
RWB(C0h) = (10kΩ * 192 / 256) + 52Ω = 7552Ω

Рис. 4-10. Пример расчетов сопротивления.

[5.0. Последовательный интерфейс]

Обмен данными между микроконтроллером и цифровым резистором MCP41XXX/42XXX осуществляется через последовательный интерфейс SPI. Этот интерфейс использует 3 команды:

1. Запись нового значения в регистр (регистры) данных потенциометра.
2. Перевод канала в низкопотребляющий режим выключения (low power shutdown mode).
3. Команда NOP (No Operation, пустая операция).

Выполнение любой команды происходит переводом сигнала ~CS в лог. 0, после чего вдвигается байт команды, за которым идет байт данных. Эти данные попадают в 16-битный регистр сдвига. Команда выполняется после того, как сигнал ~CS переводится в лог. 1. Данные вдвигаются через вывод SI по спаду тактов SCK, и выдвигаются на выход через вывод SO, см. рис. 5-1.

Примечание: не все микросхемы имеют вывод SO, это зависит от корпуса.

Рис. 5.1. Диаграмма сигналов для записи инструкций или данных в цифровой потенциометр.

Примечания к рис. 5-1: значения бит данных, помеченных крестиком X, не имеют значения. Всегда должно быть нацело поделенное на 16 количество тактов, когда сигнал ~CS находится в лог. 0, иначе команды не будут приняты устройством. Последовательный выход данных SO доступен только для двухканальной версии микросхемы MCP42XXX. Для одноканальной версии микросхемы MCP41XXX бит P1 не имеет значения.

Устройство отслеживает количество тактов (перепадов от 0 -> 1), пока сигнал ~CS находится в лог. 0, и оборвет все команды, если количество пришедших тактов не будет делиться нацело на 16.

5.1. Байт команды. Первый отправляемый байт всегда байт команды, за которым идет байт данных. Байт команды содержит 2 бита выбора команды и 2 бита выбора потенциометра. Содержимое не используемых бит игнорируется (биты ‘don’t care’, т. е. не имеет значения). Биты выбора команд суммарно описываются на рис. 5-2. Биты выбора команды C1 и C0 (биты 4:5) определяют, какая команда будет выполнена. Если биты команд оба 0 или 1, то будет выполнена команда NOP, как только загружены все 16 бит. Эта команда полезна в конфигурации, когда несколько микросхем соединены в цепочку. Когда биты команды 01, то будет выполнена команда с 8 битами, отправленными в байте данных. Данные будут записаны в потенциометр, определенный битами выбора потенциометра. Если биты команды 10, то будет выполнена команда shutdown на потенциометрах, определенных этими битами выбора потенциометра.

Для устройств MCP42XXX биты выбора потенциометра P1 и P0 (биты 0:1) определяют, на какие потенциометры действует команда. Соответствующая лог. 1 в позиции обозначает, что выполняется команда для этого потенциометра, в то время как лог. 0 обозначает, что команда не будет влиять на этот потенциометр (см. рис. 5-2).

D15 D14 D13 D12 D11 D10 D9 D8
X X C1 C0 X X P1 P2

Рис. 5-2. Формат байта команды.

Биты C1C0 задают команду:

C1 C0 Команда Описание
0 0 None Пустая команда (не будет выполнено никаких действий).
0 1 Write Data В регистр данных выбранного потенциометра (определяется состоянием бит P1P0) будут записано 8 бит данных, которые идут за командой (D7..D0).
1 0 Shutdown Потенциометры, выбранные битами P1P0, будут переведены в состояние «выключено» (Shutdown Mode). Биты данных (D7..D0) для этой команды не имеют значения.
1 1 None Пустая команда (не будет выполнено никаких действий).

Биты P1P0 выбирают потенциометры:

P1 P0 Выбор канала потенциометров
0 0 Пустой выбор: команда не повлияет на состояние потенциометров.
0 1 Команда выполнится для потенциометра 0.
1 0 Команда выполнится для потенциометра 1.
1 1 Команда выполнится для обоих потенциометров.

5.2. Запись данных в регистры. Когда новые данные записаны в один или большее количество регистров данных потенциометра, за командой записи идет байт данных с новым значением. Команда выбирается битами C1C0, установленными в 01. Биты выбора потенциометра P1 и P0 позволяют новому значению записаться в potentiometer 0, potentiometer 1 (или в них оба) одной командой. Лог. 1 либо для P1, либо для P0 приведет к записи данных в соответствующий регистр данных потенциометра, и лог. 0 не окажет изменения, данные этого потенциометра не поменяется. См. суммарное описание формата команды на рис. 5-2.

5.3. Использование команды Shutdown. Команда shutdown позволяет перевести схему приложение в режим низкого потребления тока (power-saving mode). В этом режиме выводы отключены, и ножки потенциометра B и W замкнуты друг на друга. Эта команда выбирается, когда биты команды C1C0 установлены в 10. Биты выбора потенциометра P1 и P0 позволяют выключить каждый потенциометр независимо друг от друга. Если либо P1, либо P0 в лог. 1, то соответствующий потенциометр перейдет в режим shutdown. Лог. 0 для P1 или P0 не окажет эффекта. 8 бит данных, которые идут за командой, все еще нужны для передачи команды shutdown, но их содержимое не имеет значения. См. суммарное описание формата команды на рис. 5-2.

Как только определенный потенциометр вошел в режим shutdown, он будет оставаться в нем, пока не произойдет следующее:

• Новое значение записано в регистр данных потенциометра, при этом вывод ~SHDN должен быть в лог. 1. Устройство будет оставаться в режиме shutdown до перепада 0 -> на выводе ~CS, после чего устройство выйдет из режима shutdown, и новое значение будет записано в регистр (регистры) данных. Если вывод ~SHDN находится в лог. 0, когда принято новое значение, то регистры все-таки получат новое значение, но устройство останется в режиме shutdown. Этот сценарий подразумевает, что принята допустимая команда. Если принята недопустимая команда, то она будет игнорирована, и устройство останется в режиме shutdown.

Примечание: иногда у микросхемы нет вывода ~SHDN, тогда подразумевается, что он всегда находится в состоянии лог. 0. Это зависит от корпуса микросхемы — если корпус имеет 8 выводов, то нет не только вывода ~SHDN, но также нет выводов ~SHDN и сброса ~RS. Поэтому все, что написано дальше, к этим микросхемам не относиться.

Также можно использовать аппаратный вывод выключения (shutdown pin) и вывод сброса (reset pin) для вывода устройства из программно активированного режима выключения. Чтобы сделать это, сначала должен быть выдан импульс лог. 0 на выводе выборки. Для нескольких устройств использование общего вывод ~SHDN или RESET позволяет с помощью выборки перевести вывести из shutdown только нужную микросхему. См. рис. 1-3 диаграммы сигналов. С предварительной подачей импульса выборки может возникнуть одна из ситуаций для вывода устройства из программного shutdown:

• На выводе ~RS появляется импульс лог. 0 на время как минимум 150 нс, при этом ~SHDN должен быть в лог. 1. Если вывод ~SHDN в лог. 0, то регистры все еще будут установлены в среднее значение, но устройство останется в режиме shutdown. Это условие подразумевает, что ~CS находится в лог. 1, так как перевод вывода ~RS в лог. 0 при выводе ~CS в лог. 0 приведет к недопустимому состоянию, и результаты будут непредсказуемы.

• Перепад 0 -> 1 на выводе ~SHDN, который произошел после уровня лог. 0 как минимум 100 нс, когда вывод ~CS был в лог. 1. Переключение ~SHDN в лог. 0, когда ~CS в лог. 0 это недопустимое состояние, которое приведет к непредсказуемым результатам.

• Устройство выключено и потом снова включено.

Примечание: аппаратный вывод ~SHDN всегда переведет устройство в режим shutdown, независимо от того, переведен ли потенциометр в режим shutdown программной командой.

Когда устройство выключено, регистры данных устанавливаются в среднее значение (80h). Схема сброса при включении питания используется для гарантии, что после включения устройства оно окажется в известном состоянии.

5.8. Использование MCP41XXX/42XXX в SPI Mode 11. Можно работать с устройствами в режимах SPI 00 и 11. Разница между этими режимами только в том, что когда используется режим 11, такты остаются в режиме ожидания в состоянии лог. 1, в то время как в режиме 00 такты остаются в режиме ожидания в лог. 0. В обоих режима данные вдвигаются в устройство через вход SI по положительным перепадам SCK, и выдвигаются наружу через вывод SO по спадам уровня SCK. Операции с использованием режима 00 показаны на рис. 5-1. Пример на рис. 5-5 показывает режим 11.

Рис. 5-5. Диаграмма сигналов для работы в режиме SPI Mode 11.

[Ссылки]

1. MCP41XXX/42XXX Single/Dual Digital Potentiometer with SPI™ Interface site:microchip.com.
2. AD9833: программируемый генератор сигналов.

Что такое переменный цифровой резистор, простой ЦАП

Часто регулирующие устройства должны имитировать изменяющееся сопротивление, для чего можно использовать цифровой (наборный) резистор, сопротивление которого варьируется в широких пределах с малым шагом в соответствии с заданным цифровым сигналом. Есть программируемые интегральные цифровые потенциометры, которые помогают в решении данной задачи. Однако такие микросхемы сравнительно дороги и не всегда обладают нужными параметрами, поэтому их часто заменяют дискретными компонентами.

Схема, приведенная на рис. 1 позволяет имитировать переменный резистор, характеристики которого можно выбирать исходя из конкретных требований. Переключения выполняются с помощью контактов реле, что обеспечивает полную изоляцию управляющей (цифровой) части устройства от исполнительной (аналоговой).

Принцип работы схемы очень прост. В ней используется набор последовательно включенных резисторов, сопротивления которых при переходе от одного к другому изменяются путем умножения на 2, что соответствует изменению веса разрядов двоичного управляющего сигнала. Параллельно выводам каждого резистора подключен нормально замкнутый контакт реле, на обмотку которого подается цифровой сигнал соответствующего разряда.

Переменный управляемый резистор

Рис. 1. Переменный управляемый резистор

В состоянии покоя общее сопротивление равно нулю. Появление управляющего сигнала, соответствующего единице младшего разряда, размыкает контакт, шунтирующий первый резистор. В рассматриваемом примере на выходе появляется сопротивление 500 Ом. Включение второго реле, соответствующего следующему разряду двоичного сигнала (при отключении первого), дает на выходе сопротивление 1000 Ом. Дальнейшее увеличение двоичного слова на единицу (переход от 2 к 3 в десятичном коде) обеспечивает увеличение выходного сопротивления до 1500 Ом и т.д. Максимальное значение сопротивления составляет 7,5 кОм (все контакты разомкнуты), оно реализуется при подаче двоичного слова 0FH. Таким образом, получается переменный резистор 7,5 кОм с 16 дискретными значениями сопротивления с шагом 500 Ом.

Число разрядов и наименьшее сопротивление в наборе могут задаваться с учетом конкретных требований. Управление реле осуществляется с помощью дискретных транзисторов или микросхем. Подобный вариант схемы можно использовать в сочетании с двоичным счетчиком, реализующим счет вперед или назад, или с микроконтроллером. Очевидно, что при управлении с помощью механического реле выходное сопротивление будет изменяться сравнительно медленно.

РЕЗИСТОРЫ | Маркировка резисторов ⋆ diodov.net

Программирование микроконтроллеров Курсы

Резисторы относятся к наиболее простым, с точки зрения понимания и конструктивного исполнения, радиоэлектронным элементам. Однако при этом они занимают лидирующее место по применению в схемах различных электронных устройств. Поэтому очень важно научится применять их в практических целях, уметь самостоятельно рассчитать необходимые параметры и правильно выбрать резистор с соответствующими характеристиками. Этим и другим вопросам посвящена данная статья.

Резистор

Основное назначение резисторов – ограничивать величину тока и напряжения в электрической цепи с целью обеспечения нормального режима работы остальных электронных компонентов электрической схемы, таких как транзисторы, диоды, светодиоды, микросхемы и т.п.

Главнейшим параметром любого резистора является сопротивление. Именно благодаря наличию сопротивления электронам становится сложнее перемещаться по электрической цепи, в результате чего снижается величина тока. Ввиду этого, сопротивление выполняет не только положительную роль – ограничивает ток, протекающий через другие радиоэлектронные элементы, но также является и паразитным явлением – снижает коэффициент полезного действия всего устройства. К паразитным относятся сопротивления проводов, различных соединений, разъемов и т.п. и его стремятся снизить.

Первооткрывателей такого свойства электрической цепи, как сопротивление является выдающийся немецкий ученый Георг Симон Ом, поэтому за единицу измерения электрического сопротивления приняли Ом. Наиболее практическое применение получили килоомы, мегаомы и гигаомы.

килоом, мегаом, гигаом

Расширенный список сокращений и приставок системы СИ физических величин, используемых в радиоэлектронике. Максимальное значение 1018 – экса, а минимальное – 10-18 – атто. Надеюсь, приведенная таблица станет полезной.

приставки системы СИ

Условно резисторы подразделяются на два больших подвида: постоянные и переменные.

Постоянные резисторы

Постоянные резисторы могут иметь различное конструктивное исполнение, в основном отличающееся внешним видом и размерами. Характерной особенностью постоянных резисторов является постоянное значение сопротивления, которое не предусматривается изменять в процессе эксплуатации радиоэлектронной аппаратуры.

Резисторы

Подстроечные резисторы

Подстроечные резисторы применяются для тонкой настройки отдельных узлов радиоэлектронной аппаратуры на этапе ее окончательной регулировки перед выдачей в эксплуатацию. Чаще всего подстроечные резисторы не имеют специальной регулировочной рукоятки, а изменение сопротивления выполняется с помощью отвертки, что предотвращает самопроизвольное изменение положения регулировочного узла, а соответственно и сопротивления.

Подстроечный резистор

В некоторых устройствах после окончательной их регулировки на корпус и поворотный винт подстроечного резистора наносится краска, которая предотвращает поворот винта при наличии вибраций. Также метка, нанесенная краской, служит одновременно и индикатором самопроизвольного поворота регулировочного винта, что можно визуально определить по срыву краски в месте поворотного и стационарного элементов корпуса.

В современных электронных устройствах получили широкое применение многооборотные подстроечные резисторы, позволяющие более тонко выполнять регулировку аппаратуры. Как правило, они имеют синий пластиковый корпус прямоугольной формы.

Переменные резисторы

Переменные резисторы применяются для изменения электрических параметров в схеме устройства непосредственно в процессе работы, например для изменения яркости света светодиодных ламп или громкости звука приемника. Часто, вместо «переменный резистор» говорят потенциометр или реостат.

Переменный резистор

Также к переменным резисторам относятся радиоэлементы, имеющие всего два вывода, а сопротивление их изменяется в зависимости от освещенности или температуры, например фоторезисторы или терморезисторы.
Потенциометры применяются для изменения величины силы тока или напряжения. Регулируемый параметр зависит от схемы включения.

Если переменный либо подстроечный резистор используется в качестве регулятора тока, но его называют реостатом.

Ниже приведены две схемы, в которых реостат применяется для регулировки величины тока, протекающего через светодиод VD. В конечном итоге изменяется яркость свечения светодиода.

Схема включения реостата

Обратите внимание, в первой цепи задействованы все три вывода реостата, а во второй – только два – средний (регулирующий) и один крайний. Обе схемы полностью работоспособны и выполняют возлагаемые на них функции. Однако вторую цепь применять менее предпочтительно, поскольку свободный вывод реостата, как антенна, может «поймать» различные электромагнитные излучения, что повлечет за собой изменение параметров электрической цепи. Особенно не рекомендуется применять такую электрическую цепь в усилительных каскадах, где даже незначительная электромагнитная наводка приведет к непредсказуемой работе аппаратуры. Поэтому берем за основу первую схему.

Изменять величину напряжения потенциометром можно по такой схеме: параллельно источнику питания подключается два крайних вывода; между одним крайним и средним выводами можно плавно регулировать напряжение от 0 до напряжения источника питания. В данном случае, от нуля до 12 В. Потенциометр служит делителем напряжения, которому более подробно уделено внимание в отдельной статье.

Схема включения переменного резистора - потенциометра

Условное графическое обозначение (УГО) резисторов

На чертежах электрических схем в независимости от внешнего вида резистора его обозначают прямоугольником. Прямоугольник подписывается латинской буквой R с цифрой, обозначающей порядковый номер данного элемента на чертеже. Ниже указывается номинальное значение сопротивления.

Обозначение резисторов на схеме

Условное графическое обозначение резисторов

В некоторых государствах УГО резистора имеет следующий вид.

Схемное обозначение резистора

Мощность рассеивания резистора

Резистор, как и любой другой элемент, обладающий активным сопротивлением, подвержен нагреву при протекании через него тока. Природа нагрева заключается в том, что при движении электроны встречают на своем пути препятствия и ударяются об них. В результате столкновений кинетическая энергия электрона передается препятствиям, что вызывает нагрев последних. Аналогично нагревается гвоздь, когда по нему долго бьют молотком.

Мощность рассеивания нормируемый параметр для любого резистора и если ее не выдерживать, то он перегреется и сгорит.

Мощность рассеивания P линейно зависит от сопротивления R и в квадрате от тока I

P=I2R

Значение допустимой P показывает, какую мощность способен рассеять резистор не перегреваясь выше допустимой температуры в течение длительного времени.

Как правило, чем выше P, тем большие размеры имеет резистор, чтобы отвести и рассеять больше тепла.

Мощность рассеивания резистора

На чертежах электрических схем этот параметр наносится в виде определенных меток.

Обозначение мощности рассеивания резисторов на схеме

Если прямоугольник пустой – значит мощность рассеивания не нормирована, поэтому можно применять самый «маленький» резистор.

Резистор 5 Вт 39 Ом

Более наглядные примеры расчета P  можно посмотреть здесь.

Классы точности и номиналы резисторов

Ни один радиоэлектронный элемент невозможно выполнить со сто процентным соблюдением требуемых характеристик, так как точность связана с рядом параметров и технологических процессов, которым присуща погрешность, в основном связана с точностью производственного оборудования. Поэтому любая деталь или отдельный элемент имеют отклонение от заданных размеров или характеристик. Причем, чем меньший разброс характеристик, тем точнее производственное оборудование и выше конечная стоимость изделия. Поэтому далеко не всегда оправдано применение изделий с минимальными отклонениями характеристик. В связи с этим введены классы точности. В радиолюбительской практике наибольшее применение находят резисторы трех классов точности: I, II и III. Последним временем резисторы второго и третьего классов точности встречаются довольно редко, но мы их рассмотрим в качестве примера.

К I-му классу относится допуск отклонения сопротивления от номинального значения ±5%, II –му – ±10%, III –му – ±20%. Например, при номинальном значении сопротивления 100 Ом резистора I класса, допустимое отклонение может находиться в диапазоне 95…105 Ом; для II-го – 90…110 Ом; для III -го – 80…120 Ом.
Резисторы более высокого класса точности, с допуском 1% и менее, относятся к прецизионным. Они имеют более высокую стоимость, поэтому их применение оправдано только в измерительной и высокоточной технике.

Все стандартные значения сопротивлений I…III классов точности приведены выше в таблице, значения из которой могут умножаться на 0,1; 1, 10, 100, 1000 и т.д. Например, резисторы I-го класса изготавливаются со значениями 1,3; 13; 130; 1300; 13000; 130000 Ом и т.п.

Номиналы резисторов

В зависимости от класса точности, номинальные значения выпускаемых промышленностью резисторов строго стандартизированы. Например, если потребуется сопротивление 17 Ом I-го класса, то вы его не найдете, поскольку данный номинал не изготавливается в соответствующем классе точности. Вместо него следует выбрать ближайший номинал – 16 Ом или 18 Ом.

Маркировка резисторов

Маркировка резисторов служит для визуального восприятия ряда параметров, характерных для данных электронных элементов. Среди прочих параметров следует выделить три основных: номинальное значение сопротивления, класс точности и мощность рассеивания. Именно на эти параметры в первую очередь обращают внимание при выборе рассматриваемых радиоэлементов.

Маркировка резисторов

На протяжении долгих лет существовало много типов маркировки, однако постепенно, по мере развития технологических процессов, пару типов маркировки вытеснили все остальные.

На корпусах советских резисторов, которые все еще широко используются, наносится маркировка в виде цифр и букв. Латинские буквы «E» и «R», стоящие рядом с цифрами или только цифры, обозначают сопротивление в омах, например 21; 21E, 21R – 21 Ом. Буквы «k» и «M» означают соответственно килоомы и мегаомы. Например, если буква стоит перед цифрами или посреди них, то она одновременно служит десятичной точкой: 68к – 68 кОм; 6к8 – 6,8 кОм; к68 – 0,68 кОм.

Цветовая маркировка резисторов

Для большинства радиоэлектронных элементов сейчас применяется цветовая маркировка. Такой подход является вполне рациональный, поскольку цветные метки проще рассмотреть, чем цифры и буквы, поэтому хорошо распознаются даже на самых мелких корпусах.

Цветовая маркировка резисторов

Цветная маркировка резисторов наносится на корпус в виде четырех или пяти цветных колец или полос. В первом случае (4 полосы) первые две полосы обозначают мантису, а во втором (5 полос) – мантису обозначают три полосы. Третье или соответственно 4-е кольцо указывают множитель. Четвертое или пятое – допустимое отклонение в процентах от номинального сопротивления.

Цветовая маркировка резисторов 4 полосы

Цветовая маркировка резисторов 5 полос

По моему мнению и личному опыту, гораздо удобней, проще и практичней измерять сопротивление мультиметром. Здесь наименьшая вероятность допустить ошибку, поскольку цвета колец не всегда четко различимы. Например, красный цвет можно принять за оранжевый и наоборот. Однако, выполняя измерения, следует избегать касания пальцами щупов мультиметра и выводов резистора. В противном случае тело человека зашунтирует резистор, и результаты измерений будут заниженные.

Маркировка SMD резисторов

Характерной особенностью SMD резисторов по сравнению с выводными аналогами являются минимальные габариты при сохранении необходимых характеристик.

SMD резисторы

Маркировка SMD резисторов

В SMD компонентах отсутствуют гибкие выводы, вместо них имеются контактные площадки, посредством которых производится пайка SMD детали на аналогичные поверхности, предусмотренные на печатной плате. По этой причине SMD компоненты называют компонентами для поверхностного монтажа.

Благодаря смене традиционного корпуса на SMD упростился процесс автоматизации изготовления печатных плат, что позволило значительно снизить затраты время на изготовление электронного изделия, его массы и габаритов.

Маркировка SMD резисторов чаще всего состоит из трех цифр. Первые две указывают мантису ,а третья – множитель или количество нулей, следующих после двух предыдущих цифр. Например, маркировка 681 означает 68×101 = 680 Ом, то есть после числа 68 нужно прибавить один ноль.

Если все три цифры – нули, то это перемычка, сопротивление такого SMD резистора близкое к нулю.

Электроника для начинающих

Еще статьи по данной теме

реостат, потенциометр, цифровой »Resistor Guide

Что такое переменный резистор?

Переменный резистор — это резистор, значение электрического сопротивления которого можно регулировать. Переменный резистор по сути является электромеханическим преобразователем и обычно работает путем скольжения контакта (стеклоочистителя) над резистивным элементом. Когда переменный резистор используется в качестве делителя потенциала с использованием 3 клемм, он называется потенциометром. Когда используются только две клеммы, он функционирует как переменное сопротивление и называется реостатом.Существуют переменные резисторы с электронным управлением, которые могут управляться электронным способом вместо механического воздействия. Эти резисторы называются цифровыми потенциометрами.

Определение переменного резистора

Резистор, значение омического сопротивления которого можно регулировать. Механически (потенциометр, реостат) или электронно (цифровой потенциометр).

Типы переменных резисторов

Потенциометр

Потенциометр является наиболее распространенным переменным резистором.Он действует как делитель потенциала и используется для генерации сигнала напряжения в зависимости от положения потенциометра. Этот сигнал может использоваться для очень широкого спектра применений, включая: регулировку усиления усилителя (громкость звука), измерение расстояния или углов, настройку цепей и многое другое. Когда переменные резисторы используются для настройки или калибровки цепи или приложения, используются потенциометры или триммеры триммера, в основном это небольшие потенциометры, установленные на монтажной плате, которые можно отрегулировать с помощью отвертки.

Реостат

Реостаты очень похожи по конструкции на потенциометры, но используются не как делитель потенциала, а как переменное сопротивление. Они используют только 2 клеммы вместо потенциометров с 3 клеммами. Одно соединение выполнено на одном конце резистивного элемента, другое — на очистителе переменного резистора. В прошлом реостаты использовались в качестве устройств контроля мощности последовательно с нагрузкой, например, лампочки. В настоящее время реостаты больше не используются в качестве регулятора мощности, поскольку это неэффективный метод.Для контроля мощности реостаты заменены на более эффективную переключающую электронику. Предварительно установленные переменные резисторы, подключенные как реостаты, используются в цепях для выполнения настройки или калибровки.

Цифровой резистор

Цифровой переменный резистор — это тип переменного резистора, в котором изменение сопротивления осуществляется не механическим движением, а электронными сигналами. Они могут изменять сопротивление дискретными шагами и часто управляются цифровыми протоколами, такими как I2C, или простыми сигналами вверх / вниз.

Символы для переменных резисторов

Символ потенциометра
Стандарт МЭК

Реостат символ
Стандарт МЭК

Предустановленный символ резистора
Стандарт МЭК

,
Переменный резистор — Типы переменного резистора

Переменная обзор резисторов

Как следует из названия, сопротивление переменный резистор переменчивый. Это легко изменить или изменить сопротивление переменного резистора до желаемого значения. Переменные резисторы чаще всего используются, когда пользователь не знает какое именно значение сопротивления он хочет.

Процесс ограничения или ограничения Электрический ток до определенного уровня называется сопротивлением. устройство, которое используется для ограничения протекания электрического тока до определенного уровня, называется резистором.

Устройство, которое не только ограничивает поток электрического тока, а также контролировать (увеличивать и уменьшать) Поток электрического тока называется переменным резистором.

Когда мы меняем сопротивление переменной резистор с более высоким значением сопротивления, электрический ток протекающий через переменный резистор уменьшится. в Аналогичным образом, когда мы меняем сопротивление переменного резистора до более низкого значения сопротивления, электрический ток течет через переменный резистор будет увеличиваться.

Переменная определение резистора

Переменный резистор — это резистор, который контролирует (увеличивает или уменьшает) поток электрического тока когда мы меняемся или меняем его сопротивление.Другими словами, когда мы изменить сопротивление переменного резистора, электрического ток, протекающий через него, будет увеличиваться или уменьшаться.

Переменная символ резистора

Американский стандартный символ и международный стандартный символ переменного резистора показан на рисунке ниже.

Типы переменных резисторов

Различные типы переменных резисторов включает в себя:

Потенциометр состоит из трех терминалов, среди которых два фиксированных и один изменчив.Две фиксированные клеммы потенциометра подключены к обоим концам резистивного элемента под названием трек и третий терминал соединен с ползунком или скользящим стеклоочистителем. Ползунок или стеклоочиститель, движущийся по резистивной дорожке, изменяет сопротивление потенциометра. Сопротивление Потенциометр меняется, когда стеклоочиститель перемещается над резистивный путь.

Когда мы увеличиваем сопротивление потенциометр, электрический ток, протекающий через Потенциометр уменьшится.Аналогичным образом, когда мы уменьшить сопротивление потенциометра, электрического ток, протекающий через потенциометр, будет увеличиваться.

Реостат

Слово реостат происходит от греческого слова «rheos» и «-statis», который означает текущее устройство управления или управление потоком устройство.

Строительство реостата почти похож на потенциометр.Как и потенциометр, Реостат также состоит из трех терминалов. Однако в реостате мы используем только два терминала для выполнения операции.

Сопротивление реостата зависит от длина резистивного элемента или дорожки, через которую проходит электрический ток течет.

Если мы используем клеммы A и B в реостат (как показано на рисунке ниже), минимальное сопротивление достигается, когда мы двигаем стеклоочиститель близко к терминалу A, потому что длина резистивного пути уменьшается.В результате только небольшое количество электрического тока блокируется и большое количество электрический ток разрешен.

Аналогичным образом, максимальное сопротивление достигается, когда мы перемещаем стеклоочиститель близко к клемме C, потому что Длина резистивного пути увеличивается. В результате большой количество электрического тока блокируется и только небольшое количество электрический ток разрешен.

Термистор

Слово термистор происходит от сочетания слов: термический и резистор. Это тип резистора, сопротивление которого изменяется, когда температура окружающей среды меняется.

Термисторы бывают двух типов: отрицательный температурный коэффициент (NTC) термисторы и положительный температурный коэффициент (PTC) термисторы.

Сопротивление термисторов NTC уменьшается, когда температура увеличивается, тогда как сопротивление термисторов PTC увеличивается, когда температура увеличивается.

Магнето резистор

Сопротивление магнето резистор меняется, когда к нему приложено магнитное поле. Когда сила магнитного поля приложена к магниту резистор увеличивается, сопротивление магниторезистора также увеличилось.Аналогичным образом, когда сила магнитное поле, приложенное к магниторезистору, уменьшается, Сопротивление магниторезистора также уменьшилось.

Фоторезистор

Слово фоторезистор происходит от сочетания слов: фотон и резистор. Когда световая энергия подается на фоторезистор, его изменения сопротивления. Сопротивление фоторезистора уменьшается, когда интенсивность применяемого света увеличивается.Фоторезисторы бывают двух типов на основе материала, используемого для построить их: внутренние фоторезисторы и внешние фоторезисторы.

Фоторезисторы также известны как свет зависимые резисторы, полупроводниковые фоторезисторы или фоторезисторы.

Гумистор

Имя хьюмистор происходит от сочетания слов: влажность и резистор.Увлажнители очень чувствительны к влажности. Сопротивление гуммистора изменяется при незначительном изменении влажность окружающего воздуха. Хьюмисторы также известны как резистивные датчики влажности или чувствительные к влажности резисторы.

Чувствительный к силе резисторы

Само название предполагает, что резисторы, чувствительные к силе очень чувствительны к приложенной силе.Когда мы применяем силу к резистор чувствительный к силе, его сопротивление быстро меняется. Чувствительные к силе резисторы также известны как датчики силы, датчик давления, резисторы или FSR.

basicvvv typessd

facebook icon icon icon


,

Резистор и типы резисторов

Различные типы резисторов — фиксированные, переменные, линейные и нелинейные резисторы и приложения

Сопротивление:

Свойство вещества, которое противостоит току (или электричеству). ) через него называется Сопротивление ИЛИ Сопротивление — это способность цепи, которая противостоит току.

Слюда, стекло, резина, дерево и т. Д. Являются примерами резистивных материалов . Единицей сопротивления является ОМ (Ω) , где 1Ω = 1 В / 1A. который получен из основного электрического закона Ома = V = IR.

Другие определения ома «Ω» следующие;

Если между двумя концами проводника имеется разность потенциалов в 1 В и ток, протекающий через него, составляет 1 А, то сопротивление этого проводника будет равно 1 Ом (Ом). ИЛИ

Если через сопротивление протекает 1 ампер тока, и генерируется энергия 1 Дж в секунду (1 Вт) (в виде тепла), то измерение этого сопротивления составляет 1 Ом.

Ом — это измеренное количество сопротивления, которое вырабатывает один джоул энергии (в виде тепла) за одну секунду, когда через него протекает один ампер тока.

Ответное сопротивление называется проводимостью.

Резистор

Резистор — это компонент или устройство, имеющее известное значение сопротивления. ИЛИ,

,

. Эти компоненты и устройства, которые специально разработаны для обеспечения определенного сопротивления и используются для противодействия или ограничения электрического тока, протекающего через него, называются резисторами.

Полезно знать : Сопротивление резистора зависит от его длины (l), удельного сопротивления (ρ) и его площади поперечного сечения (a), которое также известно как законов сопротивления R = ρ (л / л) а) .

IEEE & IEC символы резисторов
Types of Resistors. IEEE & IEC symbols of Resistors Types of Resistors. IEEE & IEC symbols of Resistors IEEE & IEC символы различных типов резисторов.

Типы резисторов:

Резисторы доступны в различных размерах, формах и материалах. Мы обсудим все возможные типы резисторов один за другим подробно с за и против и применением следующим образом.

Resistors Types chart and Tree Resistors Types chart and Tree Различные типы резисторных диаграмм / деревьев.

Существует два основных типа резисторов.

  • Линейные резисторы
  • Нелинейные резисторы
Линейные резисторы:

Эти резисторы, значения которых изменяются в зависимости от приложенного напряжения и температуры, называются линейными резисторами. Другими словами, резистор, значение тока которого прямо пропорционально приложенному напряжению, известен как линейные резисторы.

Обычно существует два типа резисторов, которые имеют линейные свойства.

  • Фиксированные резисторы
  • Переменные резисторы
Фиксированные резисторы

Как видно из названия, фиксированный резистор — это резистор, имеющий определенное значение, и мы не можем изменить значение фиксированных резисторов.

Типы фиксированных резисторов.

  • Резисторы с углеродным составом
  • Резисторы с проволочной обмоткой
  • Резисторы с тонкой пленкой
  • Толстопленочные резисторы
Резисторы с углеродным составом

Изготовлена ​​из типичной фиксированной гранулы. или порошкообразный углерод или графит, изоляционный наполнитель или связующее из смолы.Соотношение материала изоляции определяет фактическое сопротивление резистора. Изоляционный порошок (связующее) выполнен в виде стержней и имеет два металлических колпачка на обоих концах стержня.

На обоих концах резистора имеется два проводника для простого подключения в цепи с помощью пайки. Пластиковое покрытие покрывает стержни разными цветовыми кодами (напечатаны), которые обозначают значение сопротивления. Они доступны в диапазоне от 1 до 25 мегагом и имеют номинальную мощность от ¼ Вт до 5 Вт.

Carbon Composition Resistors.Construction and Wattage Rating Carbon Composition Resistors.Construction and Wattage Rating Конструкция и номинальная мощность углеродных резисторов.

Характеристика фиксированных резисторов

Как правило, они очень дешевые и небольшие по размеру, поэтому занимают меньше места. Они надежны и доступны в различных омических и номинальных мощностях. Кроме того, постоянный резистор может быть легко подключен к цепи и выдерживать большее напряжение.

С другой стороны, они менее стабильны, значит их температурный коэффициент очень высок. Кроме того, они производят небольшой шум по сравнению с другими типами резисторов.

Резисторы с проволочной обмоткой

Резистор с проволочной обмоткой изготавливается из изолирующего сердечника или стержня путем намотки на резистивный провод. Сопротивляющая проволока обычно представляет собой сплав вольфрама, манганина, нихрома или никеля или никеля и хрома, а изоляционный сердечник изготовлен из фарфора, бакелита, бумаги для прессования или керамической глины.

Резисторы с проволочной обмоткой из манганина очень дороги и используются с чувствительным испытательным оборудованием, например Мост Уитстона и т. Д. Они доступны в диапазоне мощности от 2 Вт до 100 Вт и более.Омическое значение этих типов резисторов составляет от 1 до 200 кОм или более и может безопасно эксплуатироваться при температуре до 350 ° C.

Кроме того, номинальная мощность намоточного резистора большой мощности составляет 500 Вт, а доступное значение сопротивления этих резисторов составляет 0,1 Ом — 100 кОм.

Wire wound Resistors Types and Construction Wire wound Resistors Types and Construction Конструкция проволочных обмоточных резисторов

Преимущества и недостатки проволочных обмоточных резисторов

Проволочные обмоточные резисторы производят меньший шум, чем резисторы с углеродной композицией.Их производительность хорошо в условиях перегрузки. Они надежны и гибки и могут использоваться с частотным диапазоном DC и Audio. Недостатком проволочного резистора является то, что он дорогостоящий и не может использоваться в высокочастотном оборудовании.

Применение проволочных резисторов

Проволочные резисторы используются там, где требуется высокая чувствительность, точное измерение и сбалансированный контроль тока, например, как шунт с амперметром. Кроме того, проволочные резисторы обычно используются в устройствах и оборудовании с высокой номинальной мощностью, испытательных и измерительных устройствах, промышленности и контрольно-измерительных приборах.

Тонкопленочные резисторы

По сути, все тонкопленочные резисторы изготовлены из керамического стержня с высокой решеткой и резистивного материала. Очень тонкий слой проводящего материала, нанесенный на изолирующий стержень, пластину или трубку, который изготовлен из высококачественного керамического материала или стекла. Есть еще два типа тонкопленочных резисторов.

  • Углеродные пленочные резисторы
  • Металлические пленочные резисторы
Углеродные пленочные резисторы

Углеродные пленочные резисторы содержат стержень или сердечник из изоляционного материала, изготовленный из высококачественного керамического материала, который называется подложкой.Очень тонкий резистивный углеродный слой или пленка, наложенная вокруг стержня. Эти типы резисторов широко используются в электронных схемах из-за незначительного шума и широкого рабочего диапазона и стабильности по сравнению с твердыми углеродными резисторами.

Construction of Carbon Film Resistors & Its labels. Construction of Carbon Film Resistors & Its labels. Конструкция углеродных пленочных резисторов и их этикеток.
Металлические пленочные резисторы

Металлические пленочные резисторы имеют такую ​​же конструкцию, как и углеродные пленочные резисторы, но основное отличие состоит в том, что существует металл (или смесь оксидов металлов, никеля, хрома или смесь металлов и стекла, которая называется металлом). глазурь, которая используется в качестве резистивной пленки) вместо углерода.Металлические пленочные резисторы очень малы, дешевы и надежны в эксплуатации. Их температурный коэффициент очень низок (± 2 ppm / ° C) и используется там, где важны стабильность и низкий уровень шума.

Metal Film Resistor. Construction and name of internal parts. Metal Film Resistor. Construction and name of internal parts. Конструкция и внутренние части металлического пленочного резистора. ,
Толстопленочные резисторы

Метод изготовления толстопленочных резисторов такой же, как и у тонкопленочных резисторов, но отличие состоит в том, что вокруг тонкой пленки или слоя резистивного материала есть толстая пленка.Вот почему это называется Толстопленочные резисторы. Существует два дополнительных типа толстопленочных резисторов.

  • Металлические оксидные резисторы
  • Керметные пленочные резисторы
  • Плавкие резисторы
Металлические оксидные резисторы

Путем окисления толстой пленки хлорида олова на нагреваемом простом стеклянном стержне (подложка) получается способ изготовления металлооксидного резистора. Эти резисторы доступны в широком диапазоне сопротивлений с высокой температурной стабильностью.Кроме того, уровень шума при работе очень низкий и может использоваться при высоких напряжениях.

Кермет-оксидные резисторы (сетевые резисторы)

В кермет-оксидных резисторах внутренняя поверхность находится на керамических изоляционных материалах. Затем пленку или слой из углеродистого или металлического сплава оборачивают вокруг резистора и затем фиксируют его в керамическом металле (который известен как кермет). Они выполнены в квадратной или прямоугольной форме, а выводы и выводы находятся под резисторами для легкой установки в печатные платы.Они обеспечивают стабильную работу при высокой температуре, поскольку их значения не меняются при изменении температуры.

cermet film resistor network construction cermet film resistor network construction Керметное пленочное сопротивление резисторов
Плавкие резисторы

Эти типы резисторов такие же, как и проволочные резисторы. Когда номинальная мощность цепи превышает указанное значение, этот резистор перегорает, то есть он размыкает или размыкает цепь. Вот почему это называется Плавкие резисторы. Плавкие реставраторы выполняют двойную работу, что означает, что они ограничивают ток, а также могут использоваться в качестве предохранителя.

Они широко используются в телевизорах, усилителях и других дорогих электронных схемах. Как правило, омическая величина плавких резисторов составляет менее 10 Ом.

Переменные резисторы

Как видно из названия, те резисторы, значения которых можно изменить с помощью диска, ручки и винта или вручную, соответствующим способом. В резисторах этих типов имеется скользящий рычаг, который соединен с валом, и значение сопротивления можно изменить, повернув рычаг.Они используются в радиоприемнике для регулировки громкости и сопротивления тона.

Ниже приводятся следующие типы переменных резисторов

  • Потенциометры
  • Реостаты
  • Триммеры
Потенциометры

Потенциометр представляет собой трехконтактное устройство, которое используется для трехуровневого управления, которое представляет собой трехконтактное устройство для трехуровневого устройства, которое используется в качестве трехуровневого управляющего устройства. напряжение в цепи. Сопротивление между двумя внешними клеммами является постоянным, в то время как третий вывод связан с подвижным контактом (стеклоочистителем), который является переменным.Значение сопротивления можно изменить, повернув стеклоочиститель, который соединен с валом управления.

Potentiometer Construction Potentiometer Construction Конструкция потенциометра

Таким образом, потенциометры могут использоваться в качестве делителя напряжения, и эти резисторы называются резисторами переменного состава. Они доступны до 10 Мега Ом.

Different Types of Potentiometers resistors Different Types of Potentiometers resistors Различные типы потенциометров
Реостаты

Реостаты — это двух- или трехконтактные устройства, которые используются для ограничения тока вручную или вручную.Реостаты также известны как резисторы с резьбой или с переменными проволочными резисторами .

Types of Rheostats resistor and construction of Screw Drive Rheostat Types of Rheostats resistor and construction of Screw Drive Rheostat Типы резисторов Rheostats и конструкция реостата с винтовым приводом

Для создания реостатов они обматывают резистором Nichrome вокруг керамического сердечника и затем собираются в защитную оболочку. Металлическая полоса обернута вокруг резисторного элемента и может использоваться в качестве потенциометра или реостата (см. Примечание ниже для разницы в между реостатом и потенциометром ).

Construction of Tapped Rheostat Resistor Construction of Tapped Rheostat Resistor Конструкция реостата с резьбой

Переменные проволочные резисторы доступны в диапазоне от 1 Ом до 150 Ом. Номинальная мощность этих резисторов составляет от 3 до 200 Вт. В то время как наиболее используемые реостаты в соответствии с номинальной мощностью составляет от 5 до 50 Вт.

Wirewound Rheostat Construction Wirewound Rheostat Construction Конструкция проволочного реостата

Полезно знать:

В чем основное различие между потенциометром и реостатом?

В принципе, нет никакой разницы между потенциометром и реостатом.Оба являются переменными резисторами. Основное различие заключается в использовании и работе схемы, то есть для каких целей мы используем этот переменный резистор?

Например, если мы подключаем цепь между клеммами резисторного элемента (где одна клемма является общим концом резисторного элемента, а другая — скользящим контактом или стеклоочистителем) в качестве переменного резистора для управления током цепи, то это Rheostats ,

С другой стороны, если мы сделаем то же самое, что упомянуто выше для контроля уровня напряжения, то этот переменный резистор будет называться потенциометром.Это оно.

Триммеры

Существует дополнительный винт с потенциометром или переменными резисторами для лучшей эффективности и работы, и они известны как триммеры. Значение сопротивления можно изменить, изменив положение винта, чтобы он вращался маленькой отверткой.

Construction of Different Types of Trimmers. Trimmer potentiometer Resistor construction Construction of Different Types of Trimmers. Trimmer potentiometer Resistor construction Конструкция различных типов триммеров и потенциометра триммера Резистор

Они изготовлены из углеродной композиции, углеродной пленки, кермета и проволочных материалов и доступны в диапазоне от 50 Ом до 5 Мегаом.Номинальная мощность потенциометров триммеров составляет от 1/3 до ¾ Вт.

Нелинейные резисторы

Мы знаем, что нелинейные резисторы — это те резисторы, в которых ток, протекающий через него, не изменяется в соответствии с законом Ома, но изменяется с изменением температуры или приложенного напряжения.

Кроме того, если ток, протекающий через резистор, изменяется с изменением температуры тела, то резисторы такого типа называются термисторами. Если ток, протекающий через резистор, изменяется с приложенными напряжениями, то он называется варисторами или VDR (резисторами, зависящими от напряжения).

Ниже приведены дополнительные типы нелинейных резисторов.

  • Thermisters
  • Varisters (VDR)
  • Фоторезистор или фотопроводящий элемент или LDR
Thermisters

Thermisters — это двухконтактное устройство, которое очень чувствительно к температуре. Другими словами, термисторы — это тип переменного резистора, который замечает изменение температуры. Термистеры изготавливаются из кобальта, никеля, стронция и оксидов металлов марганца.Сопротивление термистера обратно пропорционально температуре, то есть сопротивление увеличивается при понижении температуры и наоборот.

Thermisters types & Construction Thermisters types & Construction Типы термистеров и их конструкция

Это означает, что у Thermisteres отрицательный температурный коэффициент (NTC), но есть также PTC (положительный температурный коэффициент), который изготовлен из полупроводниковых материалов на основе титаната бария и их сопротивление увеличивается при повышении температуры. ,

Переменные (VDR)

Переменные являются резисторами, зависящими от напряжения (VDR), которые используются для устранения переходных процессов высокого напряжения.Другими словами, специальный тип переменных резисторов, используемых для защиты цепей от разрушительных скачков напряжения, называется переменными.
Когда напряжение увеличивается (из-за освещения или неисправностей линии) на подключенном чувствительном устройстве или системе, тогда оно понижает уровень напряжения до безопасного уровня, то есть изменяет уровень напряжений.

Types of Varisters Resistors Types of Varisters Resistors Типы переменных
Фоторезистор или фотопроводящая ячейка или LDR (светозависимые резисторы)

Фоторезистор или LDR (светозависимые резисторы) — это резистор, конечное значение сопротивления которого изменяется в зависимости от интенсивности света.Другими словами, те резисторы, значения сопротивления которых изменяются в зависимости от падающего света на их поверхности, называются фоторезистором или фотопроводящим элементом или LDR (светозависимым резистором). Материал, который используется для изготовления резисторов такого типа, называется фотопроводником, например, сульфид кадмия, сульфид свинца и т. д.

Construction of LDR (Light Dependent Resistor), Photo-resistor or photo conductive cell Construction of LDR (Light Dependent Resistor), Photo-resistor or photo conductive cell Конструкция LDR (светозависимого резистора), фоторезистора или фотопроводящего элемента

Когда свет падает на фотопроводящие элементы (LDR или фоторезистор), происходит увеличение количества свободных носителей (пары электронных дырок) из-за энергии света, которые уменьшают сопротивление полупроводникового материала (т.е.е. количество световой энергии обратно пропорционально полупроводниковому материалу). Это означает, что фоторезисторы имеют отрицательный температурный коэффициент.

Types of Photo cells, and LDR Types of Photo cells, and LDR Типы фотоэлементов и LDR
SMD (Технология поверхностного монтажа) Резисторы

Вы можете прочитать более подробную информацию о специальных резисторах, т. Е. SMD резисторе с методами цветового кодирования, которые мы уже обсуждали ранее.

Применение и использование фоторезисторов / фотопроводящих ячеек или LDR

Эти типы резисторов используются в охранной сигнализации, механизмах открывания дверей, детекторах пламени, детекторах дыма, измерителях освещенности, цепях управления реле с активированным светом, промышленных и коммерческих автоматическое управление уличным освещением и фотографические приборы и оборудование.

Применение резисторов

Практически оба типа резисторов (фиксированные и переменные) обычно используются для следующих целей.

Используются резисторы :

  • Для управления током и ограничения
  • Для изменения электрической энергии в виде тепловой энергии
  • В качестве шунта в амперметрах
  • В качестве умножителя в вольтметре
  • Для контроля температуры
  • Для контроля напряжения или падения
  • В целях защиты, e.грамм. Плавкие резисторы
  • В лабораториях
  • В бытовых электроприборах, таких как нагреватель, утюг, погружной стержень и т. Д.
  • Широко используются в электронной промышленности

Полезно знать : Характеристики различных типов резисторов одинаковы для обоих типов переменного тока и DC, но есть разница между AC DC Resistance.

Похожие сообщения:

.Переменный резистор

, типы потенциометров »Электроника Примечания

— краткое изложение или обзор, описывающий, что такое переменный резистор или потенциометр, и подробное описание различных типов переменного резистора и как используются переменные резисторы


Учебное пособие по резисторам

Включает:

Обзор резисторов Углеродный состав Карбоновая пленка Металлооксидная пленка Металлическая пленка Проволочный SMD резистор MELF резистор Переменные резисторы Светозависимый резистор термистор варистор Цветовые коды резисторов Маркировка и коды резисторов SMD Технические характеристики резисторов Где и как купить резисторы Стандартные значения резисторов и серия E


Переменные резисторы, или, как их часто называют, потенциометры, используются во многих областях электроники.Они используются для регулировки громкости и усиления, а также для множества других приложений. Предварительно установленные переменные резисторы или потенциометры также используются в цепях, которые требуют небольшой регулировки для настройки схемы после изготовления.

Для удобства переменные резисторы изготавливаются с помощью фиксированного резистора с переменной точкой ответвления. В результате этого устройства эти устройства часто называют потенциометрами или «горшками» для краткости. Это название происходит от конфигурации, используемой для многих в первые дни электричества для измерения напряжения.Здесь потенциометр состоял из отрезка резистивного провода с точкой ответвления, которое можно было перемещать вдоль провода, — такой же конфигурации, как и в этих переменных резисторах.

Типы переменного резистора

Существует множество типов потенциометров, которые доступны, и существует множество различных способов классификации переменных резисторов или потенциометров. Различные типы могут быть важны в разных приложениях, и поэтому иногда необходимо выбрать правильные типы.

Одним из первых способов классификации переменных резисторов является то, являются ли они предустановленными или регулируемыми.

  1. Регулируемый: Типом переменного резистора, который можно назвать регулируемым, являются те, которые имеют шпиндель и могут использоваться с ручкой. Они обычно используются для таких функций, как управление громкостью или тоном на радиостанциях. Они также находят много других применений, где значение должно быть установлено пользователем.
  2. Предустановка: Предустановленная форма переменного резистора недоступна для пользователя части оборудования.Они используются, когда значение должно быть установлено в цепи, обычно в рамках настройки производства и стадии тестирования во время его изготовления. Хотя хороший дизайн требует использования наименьшего количества регулируемых компонентов, иногда необходимо внести некоторые корректировки, чтобы гарантировать, что схема работает в своих требуемых пределах.

    Некоторые предустановки состоят из настройки на один оборот. Это может быть довольно естественно, когда требуется точная настройка. Чтобы преодолеть это, доступны различные многооборотные пресеты.Как правило, у них есть около десяти поворотов, чтобы поставить их с одного конца пути на другой. Однако есть еще выбор. Некоторые могут быть отрегулированы сбоку, а другие имеют верхнюю регулировку. Таким образом, все возможности в оборудовании могут быть покрыты.

В дополнение к базовому формату переменного резистора, описанному выше, важна также внутренняя конструкция и, в частности, материал, используемый для резистивного элемента. По существу переменные резисторы имеют резистивную дорожку, которая установлена ​​вниз, и ползунок перемещается, вступая в контакт с определенной позицией на фиксированном резисторе.Материал, используемый для самой дорожки, может регулировать аспекты производительности компонента, включая способность рассеивания мощности и генерируемый шум.

  1. Состав углерода: Потенциометры состава углерода или переменные резисторы являются наиболее часто используемым типом. Используемый материал представляет собой смесь углерода и материала наполнителя, комбинацию, определяющую удельное сопротивление пленки углеродного состава элемента потенциометра. Carbon film preset potentiometer with a single turn adjustment Предварительно установленный потенциометр для углеродной пленки Carbon film preset potentiometer with a single turn adjustment Предварительно установленный потенциометр для углеродной пленки
  2. Кермет: Кермет, как следует из названия, представляет собой композитный материал, состоящий из керамики и металлического материала.Это особенно применимо там, где могут возникнуть любые высокие температуры. Они также предлагают низкие уровни шума, чем те, которые предлагаются типами углеродных композиций.

    Typical preset potentiometer with a multi-turn screw adjustment Типичный кермет с предустановленным потенциометром

  3. Проводящий пластик: Они изготовлены из проводящего пластика.
  4. Намотка проволоки: Потенциометры с проволочной обмоткой — самый дорогой тип производства. Как следует из названия, они изготовлены путем намотки «катушки» из проволоки сопротивления на полукруглый формирователь.Поверхность провода не должна быть изолирована, чтобы ползунок мог установить электрический контакт с элементом с фиксированным сопротивлением. При использовании часто можно почувствовать, как ползунок перемещается от одного витка проволоки к следующему, и это можно использовать, чтобы определить, действительно ли потенциометр намотан на проволоку. Эти потенциометры часто используются для компонентов с высокой мощностью или низким сопротивлением.

Другая переменная в типе доступных потенциометров определяется соотношением между сопротивлением и положением вдоль дорожки.Существует два основных типа: линейный и логарифмический:

  1. Линейный: Для этого типа переменного резистора существует линейное соотношение между сопротивлением и положением вокруг дорожки, то есть для каждого градуса вокруг его перемещения его сопротивление будет изменяться на ту же величину. Практически все предустановленные потенциометры линейного типа, но не все регулируемые.
  2. Логарифмический: Несмотря на то, что заданные банки являются почти исключительно линейными, многие из непредустановленных разновидностей не являются линейными.Вместо этого они могут следовать логарифмическому закону. Таким образом, они имеют относительно небольшие изменения в первой части своего путешествия, увеличивая дальнейшее расстояние, которое они устанавливают. Причина этого заключается в том, что ухо не является линейным, а логарифмическая шкала на потенциометре дает более равномерное увеличение громкости при перемещении регулятора, воспринимаемое ухом. В некоторых случаях могут быть получены обратные логарифмические или антилогарифмические шкалы, хотя они встречаются не так часто, как логарифмические потенциометры

Способ изменения сопротивления обычно отмечается на потенциометре.Можно увидеть описания, такие как 10k LOG или 5k LIN, представляющие потенциометр 10 кОм с логарифмическим изменением значения или линейную версию 5 кОм соответственно.

Помимо электрических соображений, важны и механические. То, как движется потенциометр или переменный резистор, может сильно повлиять на эргономику электронного оборудования. Одним из основных механических соображений является форма движения, которая создает электрические изменения в переменном резисторе.Есть два основных типа:

  1. Вращающийся: Наиболее распространенным из переменного резистора или потенциометра является вращающийся вариант. В этих версиях потенциометра используется вращательное движение для перемещения ползунка по дорожке, которая ставит под угрозу большую часть круга, с контактами на любом конце дорожки в области, где отсутствует часть круга.

    Rotary potentiometer of the type used ias volume or tone controls on radios and other equipment Типичный поворотный потенциометр Эта форма широко используется с ручками на шпинделе для фактического управления, и их можно найти во многих приложениях, начиная от регулировки на испытательном оборудовании и заканчивая использованием для регулировки громкости на домашних радиостанциях.

  2. Ползунок: Ползунковые регуляторы — это переменные резисторы, которые скользят линейно, то есть по прямой линии. Эти элементы управления занимают больше места на передней панели, но при некоторых обстоятельствах их гораздо проще использовать. Например, они широко используются для аудио микшеров и осветительных столов.

    Audio mixer controls use slider potentiometers Управление микшером звука Преимущество ползунков заключается в том, что ими проще управлять точно и сравнивать относительные положения ряда ползунков.Также возможно управлять несколькими ползунками вместе.

Резюме

Потенциометры используются в огромных количествах при производстве электронного оборудования. Эти переменные резисторы или потенциометры обеспечивают возможность настройки электронных схем для получения правильных выходных сигналов. Хотя их наиболее очевидное применение должно быть для регуляторов громкости на радиоустройствах и другом электронном оборудовании, используемом для аудио, они также находят много применений в других областях электроники.

Больше электронных компонентов:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды транзистор Фототранзистор FET Типы памяти тиристор Соединители РЧ разъемы Клапаны / Трубы батареи Выключатели Реле
Вернуться в меню компонентов. , ,

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *