микросхемы STM для зарядных устройств и мониторинга батарей
25 марта 2013
В современных мобильных электронных устройствах, даже тех, которые спроектированы с учетом минимизации энергопотребления, использование невосстанавливаемых батарей уходит в прошлое. И с экономической точки зрения — уже на непродолжительном интервале времени суммарная стоимость необходимого количества разовых батарей быстро превысит стоимость одного аккумулятора, и с точки зрения удобства пользователя — проще перезарядить аккумулятор, чем искать, где купить новую батарейку. Соответственно, зарядные устройства для аккумуляторов становятся товаром с гарантированным спросом. Неудивительно, что практически все производители интегральных схем для устройств электропитания уделяют внимание и «зарядному» направлению.
Еще лет пять назад обсуждение микросхем для заряда аккумуляторных батарей (Battery Chargers IC) начиналось со сравнения основных типов аккумуляторов — никелевых и литиевых.
Коротко напомним основные особенности литиевых аккумуляторов. Достоинства:
- Высокая удельная электроемкость. Типичные значения 110…160Вт*час*кг, что в 1,5…2,0 раза превышает аналогичный параметр для никелевых батарей. Соответственно, при равных габаритах емкость литиевой батареи выше.
- Низкий саморазряд: примерно 10% в месяц. В никелевых батареях этот параметр равен 20…30%.
Отсутствует «эффект памяти», благодаря чему эта батарея проста в обслуживании: нет необходимости разряжать аккумулятор до минимума перед очередной зарядкой.
Недостатки литиевых батарей:
- Необходимость защиты по току и напряжению. В частности, необходимо исключить возможность короткого замыкания выводов аккумулятора, подачи напряжения обратной полярности, перезаряда.
- Необходимость защиты от перегрева: нагрев батареи выше определенного значения негативно влияет на ее емкость и срок службы.
Существуют две промышленные технологии изготовления литиевых аккумуляторов: литий-ионная (Li-Ion) и литий-полимерная (Li-Pol). Однако, поскольку алгоритмы заряда этих батарей совпадают, то микросхемы заряда не разделяют литий-ионную и литий-полимерную технологии. По этой причине обсуждение достоинств и недостатков Li-Ion- и Li-Pol-аккумуляторов пропустим, сославшись на литературу [1, 2, 3].
Рассмотрим алгоритм заряда литиевых батарей, представленный на рисунке 1.
Рис. 1. Алгоритм заряда литиевых батарей
Первая фаза, так называемый предварительный заряд, используется только в тех случаях, когда батарея сильно разряжена. Если напряжение батареи ниже 2,8 В, то ее нельзя сразу заряжать максимально возможным током: это крайне отрицательно скажется на сроке службы аккумулятора. Необходимо сначала «подзарядить» батарею малым током примерно до 3,0 В, и только после этого заряд максимальным током становится допустим.
Вторая фаза: зарядное устройство как источник постоянного тока. На этом этапе через батарею протекает максимальный для заданных условий ток. При этом, напряжение аккумулятора постепенно растет до тех пор, пока не достигнет предельного значения, равного 4,2 В. Строго говоря, по завершению второго этапа заряд можно прекратить, но при этом следует иметь в виду, что аккумулятор на данный момент заряжен примерно на 70% своей емкости. Отметим, что во многих зарядных устройствах максимальный ток подается не сразу, а плавно нарастает до максимума в течение нескольких минут — используется механизм «плавного старта» (Soft Start).
Если желательно зарядить батарею до значений емкости, близких к 100%, то переходим к третьей фазе: зарядное устройство как источник постоянного напряжения.
Напомним, что одним из ключевых параметров аккумуляторной батареи является ее емкость (единица измерения — А*час). Так, типичная емкость литий-ионного аккумулятора типоразмера ААА равна 750…1300 мА*ч. Как производная от этого параметра используется характеристика «ток 1С», это величина тока, численно равная номинальной емкости (в приведенном примере — 750…1300 мА). Значение «тока 1С» имеет смысл только как определение величины максимального тока при заряде батареи и величины тока, при которой заряд считается законченным. Принято считать, что величина максимального тока не должна превышать величины 1*1С, а заряд батареи можно считать завершенным при снижении тока до величины 0,05…0,10*1С.
Перейдем к рассмотрению линейки микросхем заряда компании STMicroelectronics.
Микросхемы STBC08 и STC4054
Эти микросхемы представляют собой достаточно простые изделия для заряда литиевых аккумуляторов. Микросхемы выполнены в миниатюрных корпусах типа DFN6 и TSOT23-5L, соответственно. Это позволяет использовать данные компоненты в мобильных устройствах с достаточно жесткими требованиями по массогабаритным характеристикам (например, сотовые телефоны, МР3-плейеры).
Рис. 2. Схемы включения микросхем STBC08 и STC4054
Несмотря на ограничения, которые накладывает минимальное количество внешних выводов в корпусах, микросхемы обладают достаточно широкими функциональными возможностями:
- Нет необходимости в применении внешнего MOSFET-транзистора, блокировочного диода и токового резистора. Как следует из рисунка 2, внешняя обвязка ограничивается фильтрующим конденсатором на входе, программирующим резистором и двумя (для STC4054- одним) индикаторными светодиодами.
- Максимальное значение тока заряда программируется номиналом внешнего резистора и может достигать значения 800мА. Факт окончания заряда определяется в тот момент, когда в режиме постоянного напряжения значение зарядного тока снизится до величины 0,1*IBAT, то есть, также задается номиналом внешнего резистора. Максимальный ток заряда определяется из соотношения:
где IBAT — ток заряда в Амперах, RPROG — сопротивление резистора в Омах, VPROG — напряжение на выходе PROG, равное 1,0 Вольта.
- В режиме постоянного напряжения на выходе формируется стабильное напряжение 4,2В с точностью не хуже 1%.
- Заряд сильно разряженных батарей автоматически начинается с режима предварительной зарядки. До тех пор, пока напряжение на выходе аккумулятора не достигнет величины 2,9В, заряд осуществляется слабым током величиной 0,1*IBAT. Подобный метод, как уже отмечалось, предотвращает весьма вероятный выход из строя при попытке заряда сильно разряженных аккумуляторов обычным способом. Кроме того, величина стартового значения зарядного тока принудительно ограничивается, что также увеличивает срок службы батарей.
- Реализован режим автоматической капельной подзарядки- при снижении напряжения батареи до 4,05В цикл заряда будет перезапущен. Это позволяет обеспечить постоянный заряд батареи на уровне не ниже 80% от его номинальной емкости.
- Защита от перенапряжения и перегрева. Если значение входного напряжения превышает определенный предел (в частности, 7,2В) или если температура корпуса превысит величину 120°С, то зарядное устройство отключается, защищая себя и аккумулятор. Разумеется, реализована также защита от низкого входного напряжения- если входное напряжение опустилось ниже определенного уровня (U
- Возможность подключения светодиодов индикации позволяет пользователю иметь представление о текущем состоянии процесса зарядки батареи.
Микросхемы заряда батареи L6924D и L6924U
Данные микросхемы представляют собой устройства с более широкими возможностями по сравнению с STBC08 и STC4054. На рисунке 3 представлены типовые схемы включения микросхем L6924D и L6924U.
Рис. 3. Схемы подключения микросхем L6924D и L6924U
Рассмотрим те функциональные особенности микросхем L6924, которые касаются задания параметров процесса заряда батареи:
1. В обеих модификациях есть возможность задать максимальную продолжительность заряда батареи начиная с момента перехода в режим стабилизации постоянного тока (также используется термин «режим быстрой зарядки» — Fast charge phase). При переходе в этот режим запускается сторожевой таймер, запрограммированный на определенную длительность TPRG номиналом конденсатора, подключенного к выводу TPRG. Если до срабатывания данного таймера заряд батареи не будет прекращен по штатному алгоритму (снижение тока, протекающего через батарею, ниже значения IEND), то после срабатывания таймера зарядка будет прервана принудительно. При помощи этого же конденсатора задается максимальная продолжительность режима предварительной зарядки: она равна 1/8 от продолжительности TPRG. Также, если за это время не произошел переход в режим быстрой зарядки, происходит выключение схемы.
2. Режим предварительной зарядки. Если для устройства STBC08 ток в этом режиме задавался как величина, равная 10% от IBAT, а напряжение переключения в режим постоянного тока было фиксированным, то в модификации L6924U этот алгоритм сохранился без изменений, но в микросхеме L6924D оба этих параметра задаются с использованием внешних резисторов, подключаемых ко входам IPRE и VPRE.
3. Признак завершения зарядки на третьей фазе (режим стабилизации постоянного напряжения) в устройствах STBC08 и STC4054 задавался как величина, равная 10% от IBAT. В микросхемах L6924 этот параметр программируется номиналом внешнего резистора, подключаемого к выводу IEND. Кроме того, для микросхемы L6924D существует возможность снизить значение напряжения на выводе VOUT с общепринятого значения 4,2 В до значения 4,1 В.
4. Значение максимального зарядного тока IPRG в данных микросхемах задается традиционным образом — посредством номинала внешнего резистора.
Как видим, в простых «зарядках» STBC08 и STC4054 при помощи внешнего резистора задавался только один параметр — зарядный ток. Все остальные параметры были либо жестко зафиксированы, либо являлись функцией от IBAT. В микросхемах L6924 есть возможность тонкой подстройки еще нескольких параметров и, кроме того, осуществляется «страховка» максимальной продолжительности процесса зарядка батареи.
Для обеих модификаций L6924 предусмотрено два режима работы, если входное напряжение формируется сетевым AC/DC-адаптером. Первый — стандартный режим линейного понижающего регулятора выходного напряжения. Второй — режим квазиимпульсного регулятора. В первом случае в нагрузку может быть отдан ток, величина которого чуть меньше, чем величина входного тока, отбираемого от адаптера. В режиме стабилизации постоянного тока (вторая фаза — Fast charge phase) разница между входным напряжением и напряжением на «плюсе» батареи рассеивается как тепловая энергия, вследствие чего рассеиваемая мощность на этой фазе заряда максимальна. При работе в режиме импульсного регулятора в нагрузку может быть отдан ток, значение которого выше, чем значение входного тока. При этом «в тепло» уходит существенно меньшая энергия. Это, во-первых, снижает температуру внутри корпуса, а во-вторых — повышает эффективность устройства. Но при этом следует иметь в виду, что точность стабилизации тока в линейном режиме равно приблизительно 1%, а в импульсном — около 7%.
Работа микросхем L6924 в линейном и квазиимпульсном режимах иллюстрируется рисунком 4.
Рис. 4. Линейный и квазиимпульсный режим заряда в микросхемах L6924D и L6924U
Микросхема L6924U, кроме того, может работать не от сетевого адаптера, а от USB-порта. В этом случае микросхема L6924U реализует некоторые технические решения [4], которые позволяют дополнительно снизить рассеиваемую мощность за счет увеличения продолжительности зарядки.
Микросхемы L6924D и L6924U имеют дополнительный вход принудительного прерывания заряда (то есть отключения нагрузки) SHDN.
В простых микросхемах заряда температурная защита заключается в прекращении заряда при повышении температуры внутри корпуса микросхемы до 120°С. Это, конечно, лучше, чем полное отсутствие защиты, но величина 120°С на корпусе с температурой самой батареи связана более чем условно. В изделиях L6924 предусмотрена возможность подключения термистора, непосредственно связанного с температурой аккумулятора (резистор RT1 на рисунке 3). При этом появляется возможность задать температурный диапазон, в котором заряд батареи станет возможным. С одной стороны, литиевые батареи не рекомендуется заряжать при минусовой температуре, а с другой — также крайне нежелательно, если батарея при зарядке нагревается более чем до 50°С. Применение термистора дает возможность производить зарядку батареи только при благоприятных температурных условиях.
Естественно, дополнительный функционал микросхем L6924D и L6924U не только расширяет возможности проектируемого устройства, но и приводит к увеличению площади на плате, занимаемой как самим корпусом микросхемы, так и внешними элементами обвязки.
Микросхемы заряда аккумулятора STBC21 и STw4102
Это — дальнейшее усовершенствование микросхемы L6924. С одной стороны, реализован приблизительно тот же функциональный пакет:
- Линейный и квазиимпульсный режим.
- Термистор, связанный с батареей, как ключевой элемент температурной защиты.
- Возможность задания количественных параметров для всех трех фаз процесса зарядки.
Некоторые дополнительные возможности, отсутствовавшие в L6924:
- Защита от неправильной полярности.
- Защита от короткого замыкания.
- Существенным отличием от L6924 является наличие цифрового интерфейса I2C для задания значений параметров и других настроек. Как следствие, становятся возможными более точные настройки процесса заряда. Рекомендуемая схема включения STBC21 приведена на рисунке 5. Очевидно, что в данном случае вопрос об экономии площади платы и о жестких массогабаритных характеристиках не стоит. Но также очевидно, что применение данной микросхемы в малогабаритных диктофонах, плейерах и мобильных телефонах простых моделей не предполагается. Скорее, это аккумуляторы для ноутбуков и подобных устройств, где замена батареи- процедура нечастая, но и недешевая.
Рис. 5. Рекомендуемая схема включения STBC21
Микросхемы STBC21 и STw4102 не принадлежат к одному семейству. Несмотря на то, что их основные функциональные возможности схожи, в мелких деталях существует значительное количество различий. Микросхема STw4102, например, предоставляет более широкие возможности в «тонких» настройках практически всех возможных параметров, кроме того, реализованы дополнительные функции мониторинга батареи, имеется возможность использования внешнего MOSFET-транзистора. Однако целевая область применения обеих микросхем примерно одна и та же.
Микросхемы контроля/индикации
Основу линейки «батарейных микросхем» любого производителя составляют именно микросхемы заряда аккумуляторных батарей (Battery Chargers IC), которые и были рассмотрены выше. Но многие производители дополняют номенклатуру «сопутствующими» микросхемами, к которым можно отнести микросхемы контроля состояния батареи (Battery Status Monitor) и микросхемы индикации уровня заряда батареи (Battery Gas Gauge). В номенклатуре STMicroelectronics обе эти роли выполняют STC3100 и STC3105. Схема включения STC3105 представлена на рисунке 6.
Рис. 6. Схема включения STC3105
С функциональной точки зрения микросхема осуществляет периодические измерения значений напряжения на выходе микросхемы и тока, протекающего через нее. Полученные и обработанные данные передаются на микроконтроллер по каналу I2C. Данные микросхемы, с одной стороны, могут оказаться эффективным дополнением для простых микросхем заряда в приложениях, где не имеет смысла усложнять саму процедуру заряда, но может оказаться полезным расширить функции контроля над процессом. С другой стороны, интерфейс I2C предполагает наличие микроконтроллера, который должен получить данные и, в результате, принять какое-то решение на их основе. Но в этом случае напрашивается решение о применение интеллектуальных микросхем STBC21 и STw4102, в которых уже реализованы некоторые функции мониторинга.
CC/CV-контроллеры
Помимо функционально законченных микросхем заряда аккумуляторных батарей, компания STMicroelectronics предлагает семейство микросхем CC/CV-контроллеров, в частности — микросхем серии TSM101x. Данные микросхемы включают в себя опорный источник напряжения и два операционных усилителя, как правило, с объединенным выходом. На рисунке 7 представлен фрагмент схемы сетевого зарядного устройства для литиевой батареи с использованием контроллера TSM1012. На первом операционном усилителе (CV — Constant Voltage) реализован контур стабилизированного постоянного напряжения, на втором (CC — Constant Current) — контур стабилизированного постоянного тока. Остальные компоненты представляют собой типовую обвязку импульсного источника питания и задающие цепи.
Рис. 7. Сетевое зарядное устройство на CC/CV-контроллере TSM1012
Напомним, что цикл заряда литиевого аккумулятора состоит из двух фаз, в которых устройство выступает в качестве источника постоянного тока и одной фазы, в которой устройство выступает в качестве источника постоянного напряжения. Безусловно, проектирование зарядного устройства на базе универсальных «кирпичиков» — более хлопотное и трудоемкое занятие, нежели использование специализированных схем. Однако, в этом случае становится возможным создание устройств, в которых некоторые параметры оказываются на существенно ином качественном уровне. Так, например, в работе [5] приводится ряд решений, позволяющих существенно снизить энергопотребление сетевого зарядного устройства в режиме холостого хода. Приводятся расчеты, согласно которым, типовое решение обеспечивает значение полной потребляемой мощности, равное 440 мВт. Первоначальная оптимизация схемы с применением контроллера TMS1011 дает величину 140 мВт, а дальнейшая оптимизация схемы на контроллере TMS1012 обеспечивает дальнейшее снижение мощности до величины 104 мВт. Безусловно, в большинстве случаев можно обойтись и типовыми решениями, которые дают не рекордные, но вполне приемлемые показатели. Однако, стоит иметь в виду и тот факт, что в линейке продукции есть компоненты, позволяющие, при необходимости, разработать устройство с «элитарными» значениями отдельных параметров.
DC/DC-преобразователи
для солнечных батарей
Для большинства мобильных устройств с питанием от аккумуляторных батарей зарядное устройство выполняется в виде автономного устройства для бытовой сети переменного тока. То есть в любом случае для формирования входного постоянного напряжения для микросхемы заряда батареи требуется AC/DC-преобразователь. Компания STMicroelectronics предлагает широкий спектр подобных преобразователей, а также проверенную технологию проектирования сетевых адаптеров. Однако сетевые зарядные устройства — хотя и самое распространенное, но не единственно возможное решение. В качестве источника энергии может быть использована солнечная энергия, накапливаемая в солнечных батареях. В номенклатуре компании STMicroelectronics присутствуют микросхемы DC/DC-преобразователей для солнечных батарей, использующих алгоритм MPPT (Maximum Power Point Tracking — слежение за точкой максимальной мощности). Не вдаваясь в специфические детали, отметим, что на сегодня технология MPPT является наиболее передовой и эффективной технологией для контроллеров заряда солнечной батареи. Вычисление максимальной точки эффективности заряда от солнечного модуля позволяет повысить эффективность генерации солнечной энергии до 25…30% по сравнению с контроллерами других типов [6]. В настоящий момент STMicroelectronics выпускает две микросхемы — SPV1020 и SPV1040. Первая работает с цепочкой последовательно соединенных солнечных батарей с выходным напряжением в диапазоне 6,5…40 В. Вторая — как правило, с одной, батареей напряжением до 5,5 В. Компания STMicroelectronics также выпустила демонстрационную плату STEVAL-ISV012V1, включающую в себя MPPT DC/DC-преобразователь SPV1040 и микросхему заряда L6924D. На рисунке 8 показана демонстрационная плата.
Рис. 8. Демонстрационная плата зарядного устройства на солнечной батарее STEVAL-ISV012V1
В материале [7] указывается, что суммарная эффективность подобной связки составляет примерно 85% (для SPV1040 — 94%, для L6924D — 90%).
Заключение
Номенклатуру микросхем для заряда аккумуляторных батарей, которые предлагает компания STMicroelectronics, нельзя назвать очень широкой: линейка включает в себя восемь изделий и примерно столько же микросхем в смежных нишах. Но реальные функциональные возможности существующих изделий STMicroelectronics покрывают основные потребности рынка в зарядных микросхемах от достаточно простых изделий до высокотехнологичных решений. Возможности интеграции микросхем заряда с такими современными технологиями, как солнечные батареи, также представляются очень перспективным направлением.
Литература
1. Чигарев М. Микросхемы управления зарядом аккумуляторов компании ON Semiconductor//Новости Электроники, № 3, 2010.
2. Никитин А. Интегральные схемы управления зарядом аккумуляторов производства Maxim//Новости электроники, № 15, 2009.
3. Хрусталев Д.А. Аккумуляторы. — М.: Изумруд, 2003.
4. L6924U. USB compatible battery charger system with integrated power switch for Li-Ion/Li-Polymer//Материал компании STMicroelectronics. Размещение в Интернете: Ссылка
5. Camiolo Jean, Scuderi Giuseppe. Reducing the Total No-Load Power Consumption of Battery Chargers and Adapter Applications Polymer//Материал компании STMicroelectronics. Размещение в Интернете: Ссылка
6. Maximum power point tracker. Статья в Википедии. Страница в Интернете: http://en.wikipedia.org/wiki/Maximum_power_point_tracker
7. STEVAL-ISV012V1: lithium-ion solar battery charger//Материал компании STMicroelectronics. Размещение в Интернете: Ссылка.
Получение технической информации, заказ образцов, поставка — e-mail: [email protected]
•••
Схемы контроллеров заряда-разряда Li-ion аккумуляторов и микросхемы модулей защиты литиевых батарей
Главная > Схемы и чертежи > Модули защиты и контроллеры заряд/разряд для Li-ion аккумуляторов
Содержание статьи:
- Что такое «контроллер заряда-разряда»?
- Микросхемы, применяемые для защиты Li-ion:
— DW01
— S-8241 Series
— AAT8660 Series
— FS326 Series
— LV51140T
— R5421N Series
— SA57608
— LC05111CMT - В чем разница между контроллером заряда и схемой защиты?
Для начала нужно определиться с терминологией.
Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.
При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.
Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.
Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:
И вот тоже они:
Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).
Контроллеры заряда-разряда
Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).
DW01-Plus
Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.
Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.
Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4. 25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.
Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.
Вся схема выглядит примерно вот так:
Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.
S-8241 Series
Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.
Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4. 35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.
AAT8660 Series
Решение от Advanced Analog Technology — AAT8660 Series.
Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).
FS326 Series
Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.
В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.
LV51140T
Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.
Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0. 2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.
R5421N Series
Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).
Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:
Обозначение | Порог отключения по перезаряду, В | Гистерезис порога перезаряда, мВ | Порог отключения по переразряду, В | Порог включения перегрузки по току, мВ |
---|---|---|---|---|
R5421N111C | 4.250±0.025 | 200 | 2.50±0.013 | 200±30 |
R5421N112C | 4.350±0.025 | |||
R5421N151F | 4.250±0.025 | |||
R5421N152F | 4.350±0.025 |
SA57608
Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.
Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:
Обозначение | Порог отключения по перезаряду, В | Гистерезис порога перезаряда, мВ | Порог отключения по переразряду, В | Порог включения перегрузки по току, мВ |
---|---|---|---|---|
SA57608Y | 4.350±0.050 | 180 | 2.30±0.070 | 150±30 |
SA57608B | 4.280±0.025 | 180 | 2.30±0.058 | 75±30 |
SA57608C | 4.295±0.025 | 150 | 2.30±0.058 | 200±30 |
SA57608D | 4.350±0.050 | 180 | 2.30±0.070 | 200±30 |
SA57608E | 4.275±0.025 | 200 | 2.30±0.058 | 100±30 |
SA57608G | 4.280±0.025 | 200 | 2.30±0. 058 | 100±30 |
SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).
LC05111CMT
Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.
Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.
Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).
Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.
Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.
Контроллеры заряда и схемы защиты — в чем разница?
Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.
Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.
По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.
Схемы правильных зарядок для литиевых аккумуляторов приведены в этой статье.
Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.
Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.
Керамическая аккумуляторная батарея чип-типа серии «EnerCera» | Продукция
- ДОМ
- Продукты
- Керамическая аккумуляторная батарея чип-типа серии «EnerCera»
Продукты
Теги продукта:
- Бизнес электронных компонентов
- Автомобили
- Грузовые автомобили и автобусы
- EV и FCV
- Автоматика
- Электрические компоненты
- Железная дорога
- Полупроводники
- Персональные компьютеры
- Центр обработки данных
- Мобильные устройства
- 5G
- Интернет вещей
- Электроэнергия
- Связь
- Энергия
- Трафик
- Возобновляемая энергия
- Энергосбережение
- Строительная техника
- Производство полупроводников и электронных компонентов
- Медицинское оборудование
Обзор
EnerCera — это литий-ионная перезаряжаемая батарея с оригинальной кристаллоориентированной керамической пластиной NGK в качестве электродов. Кристаллоориентированная керамическая пластина состоит только из активного материала и не содержит органического связующего или проводящего материала, который обычно присутствует в литий-ионном аккумуляторе, но не увеличивает его емкость. Таким образом, EnerCera реализует высокую плотность энергии и низкое внутреннее сопротивление при маленьком и тонком корпусе и способна устанавливаться при высоких температурах. Плотность энергии удваивается, а внутреннее сопротивление меньше половины по сравнению с коммерческими перезаряжаемыми батареями того же размера. Таким образом, EnerCera представляет собой сверхмалую/ультратонкую бортовую высокопроизводительную батарею для работы интегральных схем, датчиков и системы беспроводной связи, которая требует больших токов, таких как от нескольких 10 мА до нескольких 100 мА. Кроме того, возможность зарядки CV (постоянным напряжением) устраняет необходимость в микросхеме зарядного устройства для управления зарядным током.
Примеры применения
Регистратор данных с гибкими тегами для логистики Оценочная плата для аккумуляторов EnerCera и электронных ценников (ESL)Модельный ряд
EnerCera имеет два типа: «EnerCera Pouch», ультратонкая и гибкая ячейка, толщиной 0,45 мм, для встраивания в карту, и «EnerCera Coin», ячейка типа монеты, толщиной от 1 мм до 1,8 мм, для монтажа на печатной плате. EnerCera Pouch — это первая в мире литий-ионная батарея тонкого типа, которая может быть встроена методом горячего ламинирования (выше 100 градусов Цельсия), что широко используется при производстве карт с ИС. В линейку EnerCera Pouch входят модели с быстрой зарядкой, модели с большой емкостью и модели с высокой мощностью для различных моделей устройств клиентов. EnerCera Coin — это первая в мире литий-ионная батарея типа SMD (устройства для поверхностного монтажа), которую можно монтировать с помощью оплавления припоем, обычно используемого в качестве процесса монтажа электронных компонентов, и она обладает свойством высокого тока разряда, достаточного для работы устройств.
Линейка пакетов EnerCera
*1 Падение напряжения менее 0,5 В при непрерывном разряде в течение 0,1 с. (при 25℃)
*2 Может заряжаться от 0% до 80% емкости за 14 мин.
Набор монет EnerCera
*1 Падение напряжения менее 0,5 В при непрерывном разряде в течение 0,1 с. (при 25℃)
*2 от -40°C до 105°C для приложений резервного копирования RTC.
*3 Рекомендуемые условия Макс. 240°C x 1 раз Пожалуйста, свяжитесь с нами для получения подробной информации.
Сертифицирован IEC62133
Содержание может быть изменено без уведомления.
Буклет EnerCera (PDF:911KB)
Технический документ от Reuters События:
Инновационные технологии, обеспечивающие цифровую трансформацию
В этом техническом документе представлены технологические идеи и реальные примеры из различных отраслей, включая; Логистика, здравоохранение, умные города, носимые устройства и многое другое, в том числе:
- NGK INSULATORS: питание и расширение возможностей Интернета вещей
- Корпорация SMK: сбор энергии для предотвращения разряда батареи IoT
- Ricoh USA, Inc. Group: Питание для датчиков в новых сферах деятельности
Инновационные технологии, обеспечивающие цифровую трансформацию
Назад к бизнесу электронных компонентов
Запрос об электронных компонентах
Пожалуйста, заполните контактную форму и дайте нам свои комментарии или вопросы.
Контактный телефон
Сферы бизнеса Приложение Ключевые слова
555 ПРОГРАММНЫЙ ЧИП ДЛЯ ЗАРЯДНОГО УСТРОЙСТВА ИОНА ЛИТИЯ A123
Этот программный чип может превратить вашу модель 109/109D или более новую модель 110 Deluxe Charger в литий-ионное зарядное устройство A123 и заряжать аккумуляторы A123. Теперь он не распознает никакие другие батареи, кроме A123. Характеристики включают: 1. Счетчик ячеек блокируется, как только обнаруживается батарея.
Этот микрочип прост в установке. Он подключается к разъему на печатной плате и модернизирует зарядное устройство 110 Deluxe Charger или зарядное устройство 109/109D для зарядки аккумуляторов A123. Удалите четыре винта, которые скрепляют зарядное устройство. Переверните лицевую панель зарядного устройства. Используйте острогубцы, чтобы аккуратно удалить (покачивая вверх) старый чип. Вы можете использовать палочку от эскимо, чтобы направлять ноги и слегка нажимать. Небольшая выемка на чипе должна быть обращена к середине зарядного устройства, а не к краю зарядного устройства. Если он войдет задом наперёд, ничего страшного не будет, но вы увидите чёрные квадраты на дисплее. ГарантияКомпания Astro Flight, Inc. предоставляет гарантию на отсутствие дефектов материалов и изготовления на всю продукцию сроком на 90 дней с момента покупки. В течение гарантийного срока Astro Flight отремонтирует или заменит продукт. Эта гарантия не применяется, если продукт был поврежден в результате несчастного случая, злоупотребления, неправильного использования или неправильного применения, а также в результате обслуживания или модификации, выполненной другими лицами. Astro Flight не несет ответственности за случайные или косвенные убытки, возникшие в результате использования этого продукта. Это включает в себя ущерб интеллектуальной информации, собственности и телесные повреждения. |