Site Loader

Содержание

TDA2030A характеристики, DataSheet, аналоги, цоколевка

Интегральная микросхема TDA2030A, согласно своим техническим характеристикам, предназначена для использования в качестве одноканального усилителя низкой частоты класса AB. Она включает в себя, уже стандартные для таких устройств, системы: защиты от короткого замыкания, перенапряжения, ограничения рассеиваемой мощности и термического отключения.

Создаваемые на её основе УНЧ характеризуются небольшими искажениями и уровнем собственных шумов. Широко применяется в изготовлении электронной начинки для систем типа 2.0 и 2.1 компьютерных акустических колонок, сделанных преимущественно из дерева. Мощность последних у разных производителей варьируется от 9 до 14 Вт.

Цоколевка

Распиновка TDA2030A следующая. Она изготавливается в современном, пластиковом корпусе для микросхем PENTAWAT, с пятью металлическими контактами. Более ранние версии выпускались в упаковке ТО220-5. Если смотреть на лицевую сторону, там где маркировка, то первая и вторая “ножки” – это неинверсный (IN) и инверсный (IN inv) входы соответственно, четверная — выход. Отрицательный полюс источника питания (в однополярных схемах) соединяют с третьим (GND), а положительный с пятым выводом микросхемы (Vcc +).

Третий контакт микросхемы физически соединен с радиатором.

Технические характеристики

В техописании интегральной микросхемы TDA2030A указано, что она способна обеспечить большой выходной ток, при этом иметь достаточно низкую гармонику и перекрестные искажения. Внешние диоды защищают от бросков прямого и обратного перенапряжения. Номинальная выходная мощность на один канал составляет до 18 Вт. Устройство может использоваться как с двуполярным, так и однополярным источником питанием. Рассмотрим более подробно его предельно допустимые параметры:

  • максимальное напряжение: питания (VS) = ± 22 В; на входе микросхемы (Vi) = ± 22 В; между прямым и инверсным входами (Vdi) = ± 15 В;
  • пиковый выходной ток IO = 3,5 А;
  • наибольшая мощность рассеивания (при Tк=90 ОС) Ptot = 20 Вт;
  • температура хранения и эксплуатации от -40 до +150 ОС.

Максимальное постоянное питающее напряжении TDA2030A может достигать 44 В.

Электрические параметры

Основные электрические характеристики TDA2030A (при VS=±16 В, температуре окружающей среды TA = +25 ОС):

  • напряжение питания (VS) от ± 6 до ± 22 В;
  • минимальное сопротивлении в нагрузке (RL) — 4 Ом;
  • ток покоя (Id) от 50 мА до 80 мА;
  • ток смещения на входе Ib (при VS=±22 В) от 0,2 мкА до 2 мкА;
  • напряжение смещения на входе Vos (при VS= ±22 В) от ±2 В до ±20 В;
  • ток сдвига на входе: от ±20 нА до ±200 нА;
  • выходная мощность Po (частота сигнала f от 40 до 15 000 Гц): при RL = 4 Ом — от 15 до 18 Вт; при RL= 8 Ом — от 10 до 12 Вт; при RL= 4 Ом и VS = ± 19 В — от 13 до 16 Вт;
  • полоса пропускания BW (при Po = 15 Вт и RL=4) — 100 кГц;
  • скорость нарастания SR = 8 В/мкс;
  • величина гармонических искажений THD (Po от 0,1 до 14 Вт, f = 40 … 15 000 Гц): при RL= 4 Ом до 0,08%; при RL= 8 Ом до 0,5%;
  • отношение сигнал шум: при Po =15 Вт до 106 дБ; Po = 1 Вт до 94 дБ;
  • температура отключения при перегреве +145 ОС.

Аналоги

Наиболее подходящими аналогами у TDA2030A являются: LM1875 и TDA2050. Это самая популярная замена у радиолюбителей для ремонта компьютерной акустики. Не стоит путать их с другой микросхемой — TDA2030, которая почти полностью совпадает маркировкой, но не является идентичной и имеет более низкие параметры.

Подобрать похожий операционный усилитель из отечественных образцов не удастся, так как таких просто нет.

Стоит так же отметить модификации рассматриваемой микросхемы с вертикальными (TDA2030AL, TDA2030AV) и горизонтальными выводами (TDA2030AH) для монтажа на плату. Кроме физически измененного расположения контактов, они больше ничем не отличаются от оригинала.

Применение

TDA2030A широко применяются как при создании простейших одномодульных схем, повторителей сигналов, низкочастотных генераторов, так и современных стереоусилителей средней мощности. На видео представлен материал по самостоятельной сборке одного из таких устройств — одноканального УНЧ.

Производители

DataSheet от микросхемы TDA2030A можно посмотреть от ее выпускающих компании: STMicroelectronics, Unisonic Technologies, Contek Microelectronics Co. В нашей стране они широко распространены от STM. Кроме самих микросхем, на прилавках российских магазинов радиотоваров можно встретить готовые модули, с одноименным названием и необходимой обвязкой.

Усилитель мощности звуковой частоты на микросхеме TDA7388 класса AB

 TDA7388 (усилитель класса AB)

 Тест, обзор, осциллограммы


Четырёхканальный усилитель мощности звуковой частоты на микросхеме TDA7388 (4 x 41 W) — мощный УНЧ класса AB


 

Обзор посвящен одноплатному усилителю мощности звуковой частоты (УМЗЧ, УНЧ) класса AB на основе микросхемы TDA7388 номинальной мощностью 4 x 41 Вт.

В обзоре будут приведены технические характеристики микросхемы усилителя низкой частоты TDA7388, кратко разобрана схемотехника тестируемого одноплатного усилителя, показаны осциллограммы работы усилителя, а также сделаны полезные выводы и критические замечания.

Купить плату усилителя на основе TDA7388 можно на Алиэкспресс, например, здесь

. Цена на дату обзора — около $10.

Схема подключения тестируемого одноплатного усилителя (вид сверху):

(тестируемый усилитель низкой частоты на TDA7388; изображение с официального сайта AliExpress)

Примечание: величина питающего напряжения на изображении (12-28 V) указана с ошибкой. Напряжение в 28 Вольт — это не рабочее, а предельно-допустимое в режиме покоя. Рабочий диапазон напряжений составляет 8 — 18 Вольт. Напряжение 28 В нельзя подавать на плату даже в состоянии покоя, поскольку на плате под напряжением питания находится электролитический конденсатор с номинальным напряжением в 25 В.

Усилитель (микросхема) TDA7388 — технические характеристики:

Максимальная выходная мощность на канал  4 x 41 Вт (RL = 4 Ohm)
Максимально-допустимая рассеиваемая мощность  80 Вт (при температуре корпуса до 70 градусов)
Подключение нагрузки  Мостовая схема, 4 независимых канала
Максимально-допустимый ток выхода 4.5 А (5.5 А для одиночных импульсов до 0.1 мс)
Номинальное напряжение питания  8…18 В
Рекомендуемое сопротивление нагрузки  >= 4 Ом
Коэффициент нелинейных искажений < 0.15% (PO=4 W, RL = 4 Ohm)
Шум на выходе  100 мкВ (макс.), 70 мкВ (тип)

Здесь надо обратить внимание, что, хотя согласно первой строке таблицы, микросхема может отдавать одновременно по 4-м каналам суммарно 164 Вт, этот режим — кратковременный. Во 2-ой строке таблицы указано, что рассеиваемая мощность микросхемы не должна превышать 80 Вт; а это, при типовом КПД усилителей класса AB до 70%, делает невозможной длительную работу при суммарной мощности в нагрузке свыше 100 — 120 Вт.

Полосу пропускания производитель не указал. Видимо, предполагается, что полоса частот не хуже стандартного звукового диапазона 20 Гц — 20

кГц.

Полностью все характеристики и типовая схема включения TDA7388 приведены в техническом описании (datasheet) TDA7388 (PDF, 210 Kb).

Теперь — углубимся в практику и обратимся к внешнему виду тестируемого усилителя.
 

Внешний вид и конструкция одноплатного 4-канального усилителя класса AB на микросхеме TDA7388 с однополярным питанием

Никакой документации в комплекте усилителя не было, но на плате и на странице продавца на Алиэкспресс всё подписано достаточно подробно, поэтому с подключением проблем не было.

Единственное замечание: в комплекте, к сожалению, не было кабелей для подключения входного сигнала. Лично у меня подходящий кабель нашелся; но тем, у кого подходящего кабеля нет, следует заранее озаботиться этой проблемой (или подключить входной сигнал банальной пайкой).

Посмотрим на плату усилителя в различных ракурсах (кликнуть для увеличения, откроется в новом окне):

Подробно назначение элементов будет описано позднее, а пока только отметим, что номинал «большого» электролита в центре платы составляет 4700 мкФ * 25 В; что вполне соответствует предельно-допустимому напряжению для микросхемы и всей платы (18 В).

Следующий ракурс:


 

Все внешние подключения осуществляются без помощи пайки — с помощью клеммников под винт и разъёмов для входящих аудиосигналов и управления. По крайней мере, так задумано. Реальность же будет упираться в отсутствие надлежащих кабелей в комплекте.

Теперь — вид сзади (на радиатор):


 

Обратная сторона платы:

Обратная сторона платы почти полностью покрыта слоем металлизации, соединённым с «землёй» — это очень полезно для защиты от помех.

Но плохо то, что печатный проводник, идущий от положительного клеммника питания к микросхеме, довольно узкий и длинный. А ведь по нему при высокой мощности на выходе могут течь большие токи от всех 4-х каналов сразу! Возможно, есть смысл в параллель этому печатному проводнику припаять дополнительно обычный провод.

Флюс отмыт хорошо.

По углам платы видны отверстия для прикрепления платы в используемой конструкции.

Несмотря на весь гламур платы, обнаружился и недостаток в теплоотводе от микросхемы. Откручивание радиатора показало, что между ним и микросхемой TDA7388 нет никакого термоинтерфейса.

В связи с этим перед дальнейшими испытаниями задняя поверхность микросхемы была слегка зачищена и на неё было нанесено немного термопасты для процессоров.

В следующей главе разберём, что к чему и зачем на этой плате усилителя.
 

Схемотехника одноплатного 4-канального усилителя класса AB на микросхеме TDA7388

Посмотрим на плату усилителя вертикально сверху:


 

Теперь посмотрим на саму плату без радиатора и разберёмся, что на ней для чего.

По краям слева и справа — клеммники для подключения 4-х выходов усилителя. Если нужно использовать только два или три выхода, то лишние можно не подключать, но запараллеливать с «рабочими» выходами для повышения мощности их нельзя.

Элементов на плате — не много.

В центре — электролит 4700 мкФ * 25 В, необходимый для сглаживания пульсаций питания, предотвращения самовозбуждения и т.п.

Керамические конденсаторы C2, C11…C13 соединены в параллель между собой и в параллель электролиту. Их задача — подавление высокочастотных помех и, опять же, подавление самовозбуждения.

Конденсаторы C6…C8 служат для отрезания постоянной составляющей от входного сигнала.

Резистор R2 и светодиод в нижней части платы (на снимке) отвечают просто за индикацию факта подачи питания.

Электролит C4 — времязадающий для функций плавного включения/выключения усилителя.

Белый двухконтактный разъём «MUTE» предназначен для кратковременного прерывания звука (активизируется замыканием контактов).

Два белых разъёма (IN1 и IN2) справа внизу — входы для 4-х каналов, L (левый), G (земля), R (правый).

Сдвоенный микропереключатель над ними запараллеливает каналы L-L и R-R, если сигнал — не четырёхканальный, а двухканальный (стерео). Прослушивать его в таком режиме можно аж на 4-х колонках (по две на каждый канал, но не параллельно, а каждая на своих выходах).

На фотографии микрики показаны в состоянии «замкнуто».

Белый двухконтактный разъём с обозначением DCout предназначен для передачи питания с платы на другие устройства, например, на темброблок или предусилитель.

И, наконец, трёхконтактный клеммник слева внизу, предназначенный для подачи питания: у него есть особенность.

Эта особенность — третий контакт, обозначенный как REM, и выполняющий функцию «Stand-BY», т.е. перехода в «спящий» режим с малым потреблением. Активизируется низким уровнем (соединением с «землёй» или низким уровнем цифрового сигнала). Если управление этим сигналом не требуется, то следует соединить его с плюсом питания.

Важное замечание: на плате нет диода «защиты от дурака» в цепи питания, в связи с чем перепутывать полярность питания нельзя ни разу!!!

Схема применения микросхемы из даташит на микросхему TDA7388 такова (блок-схема и пример принципиальной схемы):


 

Микросхема снабжена различными видами защит: от перегрева, от короткого замыкания на землю или на питание, от перегрузки по току и др.

Примечание: нумерация элементов «обвязки» на схеме не совпадает с нумерацией на плате.

Остальную «мелочёвку» на плате рассматривать не будем.
 

Испытания УНЧ на микросхеме TDA7388

При измерениях использовались лабораторный блок питания LW-K3010D (обзор), генератор FY6800 (обзор), цифровой осциллограф Hantek DSO5102P (обзор).

Испытания проводились при двух напряжениях питания: 12 В (наиболее распространённый вариант в автомобилях и при аккумуляторном питании) и 18 В (максимально-допустимое).

Сначала было замерено потребление платы усилителя без подачи сигнала. Ток потребления холостого хода менялся в зависимости от напряжения питания и составлял следующие значения (округлённо):
     8 В — 170 мА
   12 В — 180 мА
   18 В — 200 мА.
   Такие значения тока покоя — умеренные, но назвать их пренебрежимо-малыми нельзя (имеется небольшой нагрев радиатора даже в состоянии покоя).

При напряжении питания ниже 8.0 В терялась работоспособность усилителя: искажалась форма сигнала, падала амплитуда даже для небольших сигналов.

Шумы усилителя оказались очень малы и практически не заметны (можно услышать, только вплотную приблизив ухо к колонке).

 

Испытания при напряжении питания 18 В, нагрузка 4 Ом

Эту часть испытаний проводим в максимально-допустимом режиме: с питанием 18 Вольт и с нагрузкой 4 Ом (нагрузка — только в испытуемом канале, остальные каналы — без нагрузки).

Начинаем, как обычно, с синуса. Частота сигнала, где это не оговорено особо, составляет 1 кГц.

На осциллограмме показан предельный уровень сигнала, когда искажения синуса малы и находятся на грани обнаружения. Мощность на нагрузке в таком режиме составила 30.8 Вт.

Потребляемая мощность от источника питания — 43.2 Вт, КПД = 71% (возможна ошибка в несколько процентов из-за неточности измерений с помощью осциллографа).

Ещё немного добавляем уровень сигнала. Искажения уже становятся хорошо заметны «невооруженным глазом» (изменён масштаб по оси времени):

При длительном прогоне этого теста радиатор усилителя нагревался очень сильно, корпус микросхемы разогрелся до 79 градусов (измерено инфракрасным термометром Benetech GM531).

Теперь — сигнал треугольной формы для оценки линейности в предельном режиме.

Первая картинка — при сигнале, близком к ограничению, но не доходящем до него:


 

Осциллограмма — вполне благопристойная.

Следующая картинка — треугольник, но немного превышающий уровень ограничения:

Вблизи вершин наблюдается клиппинг, но в окрестностях клиппинга никаких нештатных явлений нет.

Для красоты — ещё картинки с пилой и обратной пилой (без клиппинга):

Линейность — на очень хорошем уровне.

Теперь запускаем прямоугольник 10 кГц на максимальной амплитуде, близкой к клиппингу:

Мощность на нагрузке в этом режиме составила 58.5 Вт. Это кажется превышением максимально-допустимой мощности по спецификациям, но в спецификациях мощность указана для синуса (прямоугольник более выгоден энергетически).

Фронты прямоугольного сигнала:

Фронты крутыми на назовёшь, но они вполне приемлемы.

Далее исследуем поведение усилителя на синусоидальных сигналах высокой частоты (>= 20 кГц). Они выходят за границы слышимости, но интересны для анализа работы усилителя.

При небольших амплитудах синусоидальный сигнал 20 кГц сохраняет чистоту, но чем ближе к ограничению, тем сильнее искажается форма:


 

Ещё сильнее этот эффект проявляется на частоте 50 кГц:

На этой осциллограмме заметна сильная несимметричность вершин: острая верхняя вершина и тупая нижняя.

Теперь изучим форму сигнала отдельно на положительном и отрицательном плечах выхода (выход там — мостовой, поэтому нагрузка подключается не между выходом и землёй, а между положительным и отрицательным плечами выхода).

При небольших уровнях сигнала его форма на разных плечах строго симметрична, но при подходе к уровню ограничения симметричность теряется: верхняя вершина заостряется, нижняя — затупляется.

Но, тем не менее, на нагрузке за счёт «взаимоуничтожения» этих искажений результирующий сигнал (разность между плечами) получается симметричным:

 

Испытания при напряжении питания 12 В, нагрузка 4 Ом

Напряжение питания в 12 Вольт — одно из самых распространённых в природе, поэтому хотя бы одно измерение при таком напряжении сделать надо.

Синус 1 кГц, амплитуда выше уровня ограничения (клиппинга):

Эта осциллограмма приведена просто для того, чтобы показать, какую мощность можно «выжать» из усилителя при стандартном питании в 12 Вольт.

Отдаваемая в нагрузку мощность в таком режиме составила 17.1 Вт.

 

Амплитудно-частотная характеристика (напряжение питания 18 В, нагрузка
 4 Ом)

АЧХ снималась с помощью подачи на вход усилителя сигнала с линейно-нарастающей частотой; а затем фиксировалась осциллограмма, снятая по максимумам сигнала. Она и представляет собой АЧХ усилителя.

Первый проход, диапазон 10 Гц — 50 кГц:

Один период повторения сигнала с линейно-нарастающей частотой отмечен красной рамкой, он и представляет собой АЧХ в диапазоне 10 Гц — 50 кГц.

Масштаб графика по горизонтали — 4.3 кГц/деление.

Падение АЧХ к концу измеряемого диапазона — заметное, но в допустимое отклонение минус 3 дБ вполне укладывается. А в диапазоне до 20 кГц — тем более.

Второй проход, диапазон 10 Гц — 1000 Гц (для более детального просмотра нижних частот):

Масштаб графика по горизонтали — 87 Гц/деление.

В начале полосы частот (вблизи 10 Гц) заметен существенный спад; граница по уровню минус 3 дБ проходит на частоте 32 Гц.

Эта проблема поправима, если заменить конденсаторы во входных цепях на более ёмкие (можно повысить в 2-3 раза, не более).

 

Окончательный диагноз одноплатного 4-канального усилителя мощности звуковой частоты на микросхеме TDA7388

В целом усилитель показал себя положительно, но не без оговорок.

Вблизи уровня ограничения (клиппинга) его поведение не идеально.

Кроме того, он искажает форму сигнала на высоких частотах. Формально они находятся за пределом порога слышимости; но, тем не менее, можно сказать, что «что-то здесь не так».

В «плюсы» можно записать высокую отдаваемую мощность и хорошую работу на уровнях сигнала, находящихся на уровне хотя бы на 10% ниже уровня клиппинга.

Благодаря необходимости в лишь самой минимальной обвязке, микросхема TDA7388 может использоваться во многих малогабаритных аудио-устройствах с низковольтным и автономным питанием.

Надо сказать, что у микросхемы TDA7388 есть близкий аналог, совпадающий даже по цоколёвке: это — микросхема TDA7850 (обзор).

TDA7850 имеет более высокую отдаваемую мощность и улучшенные характеристики в области высоких частот; а её выход построен на транзисторах MOSFET, имеющих малое остаточное напряжение в открытом состоянии.

В то же время, общий вклад цены микросхемы в окончательную стоимость устройства не слишком высок; поэтому использование TDA7850 будет предпочтительнее TDA7388 (если есть выбор).

Рекомендации

В первую очередь, помним о теплоотводе. При использовании этого одноплатного усилителя на мощности вблизи максимума (особенно — по всем каналам одновременно) штатного теплоотвода может быть недостаточно.

В таких случаях рекомендуется заменить теплоотвод на другой с большей эффективной поверхностью, либо создать принудительную вентиляцию.

Также следует помнить и о том, что микросхема имеет относительно небольшой коэффициент усиления (26 дБ, т.е. 20 раз). В связи с этим необходимо позаботиться о предварительном усилителе, желательно, с темброблоком.

Кроме того, для усилителей на основе этой микросхемы подойдёт не всякий блок питания. Он должен быть способным отдавать на усилитель достаточно высокий ток, рассчитанный на максимальный сигнал по всем используемым каналам одновременно.

Для стационарных устройств можно использовать, например, достаточно мощный импульсный блок питания (банальный трансформатор с выпрямителем — далеко не лучший вариант).

При питании от автономного источника это должен быть аккумулятор (или батарея) с высоким током выхода.

Купить протестированную плату усилителя на основе TDA7388 можно на Алиэкспресс, например, здесь. Цена на дату обзора — около $10.

Если у других продавцов эта плата найдётся дешевле, то тоже можно брать — товар одинаковый.
 

Обзоры других усилителей класса AB — здесь.
 

Обзоры усилителей класса D — здесь.
 

Весь раздел «Сделай сам! (DIY)» — здесь.
 

Вступайте в группу SmartPuls.Ru  Контакте! Анонсы статей и обзоров, актуальные события и мысли о них.

   Искренне Ваш,
   Доктор
  
28 ноября 2020 г.

 

                Порекомендуйте эту страницу друзьям и одноклассникам                      

 

 

При копировании (перепечатке) материалов активная ссылка на источник (сайт SmartPuls.ru) обязательна!

УНЧ НА TDA7384

   Интегральная специализированная микросхема TDA7384 является квадрофоническим усилителем мощности низкой частоты. Выходная мощность, по словам производителя, доходит до 40 ватт на канал. К сожалению это не совсем правильные данные, если конечно микросхема питается от 12 вольт, по закону Ома в реальности она дает 18-20 ватт на нагрузку 4Ом и до 36 ватт на нагрузку 2Ом. 

Цоколёвка микросхемы

   Микросхема TDA7384 активно используется в автомагнитолах, обеспечивает весьма неплохое звучание. Внутри микросхемы стандартный транзисторный усилитель, выходные каскады которых работают в режиме АВ, поэтому качество звука достаточно качественное до тех пор, пока превышается номинальное напряжение входного сигнала. Это напряжение не должно превышать 3 вольта, берется от предварительного усилителя автомагнитолы. Кстати, микросхемы TDA7384, TDA7386, TDA7385, TDA7383, TDA7381 имеют одинаковую схему подключения и отличаются лишь выходной мощностью.

Типовая принципиальная схема усилителя на TDA7384

   На некоторых форумах можно прочесть негативные отзывы о микросхеме, в частности то, что микросхема имеет плохие показатели, греется сильно, звук обрывистый, много хрипов и шумов. Лично делал много усилителей на этой микросхеме и ничего подобного не замечал, просто нужно уметь правильно обращаться с микросхемами такого рода. 

   Во время пайки установите микросхему на теплоотвод, это не даст ее перегреваться, также спасает от статического воздействия. Важным моментом является, фильтрационная часть именно от правильного фильтра по питанию зависит дальнейшая работа усилителя. 

   Дроссель — предназначен для частичного подавления высокочастотных сетевых помех. Полностью гасить ВЧ шумы, по крайней мере, одним дросселем, к сожалению, нам не удастся, поэтому иногда используют два дросселя. Электролитические конденсаторы берите с большой емкостью, они играют важную роль для стабилизации напряжения и подавления низкочастотных помех. 

   Микросхема TDA7384 имеет режимы Standby и Mute (режим сна и отключения звука соответственно).  Усилитель также имеет функцию Rem. 

   Входные провода следует использовать экранированные, это не даст звуковому сигналу портиться до входа в микросхему. В данном случае монтаж выполнен на монтажной плате сделанной по технологии ЛУТ.

Originally posted 2019-01-06 04:18:19. Republished by Blog Post Promoter

Микросхема TDA8561Q (datasheet на русском)

TDA8561Q представляет собой интегральный усилитель мощности класса B в 17-выводном корпусе SOT243-1. Содержит 4 усилителя по 12 Вт с несимметричными выходами (SE — Single-Ended), которые можно объединить в мостовые схемы (BTL — Bridge Tied Load), получив 2 канала по 24 Вт. Устройство разработано в первую очередь для автомобильных приложений, поэтому имеет минимум внешних компонентов, очень высокую надежность и широкий диапазон рабочих температур.

ОСОБЕННОСТИ

  • Требует всего нескольких компонентов
  • Высокая выходная мощность
  • Четыре канала SE (4 x 12 Вт) или стерео BTL (2 x 24 Вт)
  • Низкое напряжение смещения
  • Фиксированный коэффициент усиления
  • Диагностический выход (искажения, короткое замыкание и температурный детектор)
  • Прекрасное подавление пульсаций напряжения источник
  • Выбор режима MODE (активный, приглушение (MUTE) или режим ожидания (STD-BY))
  • Аварийное отключение нагрузки
  • Низкая мощность рассеивания в любом состоянии короткого замыкания
  • Тепловая и электростатическая защиты
  • Не боится переполюсовки
  • Бесшумное включение/выключение
  • Низкое температурное сопротивление
  • Идентичные входы (инвертирующий и неинвертирующий)

 КРАТКИЕ СПРАВОЧНЫЕ ДАННЫЕ

Параметр Значение
Напряжение питания 6 … 18 В
Максимальный импульсный выходной ток 4 А
Ток покоя 80 мА
Потребляемый ток в режиме ожидания 0,1 … 100 мкА
Включение с мостовыми выходами (стерео)
Выходная мощность (RLOAD = 4 Ом, THD = 10%) 24 Вт (typ)
Подавление пульсаций напряжения питания 48 дБ (min)
Уровень выходных шумов (RIN = 0) 70 мкВ
Входной импеданс 25 кОм
Максимальное напряжение смещения 150 мВ
Включение с несимметричными выходами (четыре канала)
Выходная мощность (RLOAD = 4 Ом, THD = 10%) 7 Вт
Выходная мощность (RLOAD = 2 Ом, THD = 10%) 12 Вт
Подавление пульсаций напряжения питания 48 дБ (min)
Уровень выходных шумов (RIN = 0) 50 мкВ
Входной импеданс 50 кОм

Рис. 1. Структура микросхемы TDA8561Q 

Вывод Символ Описание
1 -INV 1 Неинвертирующий вход 1
2 GND(S) Общий провод (сигнальный)
3 INV 2 Инвертирующий вход 2
4 RR Подавление пульсаций напряжения питания
5 VP1 Питание
6 OUT 1 Выход 1
7 GND 1 Общий провод 1 (силовой)
8 OUT 2 Выход 2
9 n.c. Не используется
10 OUT 3 Выход 3
11 GND 2 Общий провод 2 (силовой)
12 OUT 4 Выход 4
13 VP2 Питание
14 MODE Выбор режима работы
15 INV 3 Инвертирующий вход 3
16 VDIAG Диагностический выход
17 -INV 4 Неинвертирующий вход 4

ФУНКЦИОНАЛЬНОЕ ОПИСАНИЕ

Усиления каждого из каналов TDA8561Q фиксировано и составляет 20 дБ (26 дБ – BTL).

Использование вывода 14 (MODE) позволяет получить:

  • режим ожидания с потребляемым током меньше 100 мкА
  • малый ток управления включением, удешевляющим схему коммутации
  • режим MUTE

Чтобы избежать щелчка при включении, производитель рекомендует держать усилитель с отключенным звуком (вывод 14) не менее 100 мс (для того чтобы успели зарядиться входные конденсаторы). Для этого можно использовать микроконтроллер или внешнюю цепь задержки. На рис. 2 показана схема, медленно увеличивающая управляющее напряжение для 14 вывода микросхемы.

Рис. 2. Схема задержки включения для TDA8561Q

TDA8561Q имеет на своем борту динамический детектор искажений (DDD — Dynamic Distortion Detector), который активируется в случае появления значительных искажений выходного сигнала в любом из каналов. Происходит это ввиду эффекта насыщения: когда с увеличением входного сигнала выходной перестает увеличиваться, «упираясь» в напряжение питания усилителя. На графике такого процессы будет виден сигнал, теряющий свою форму за счет «обрезания» в граничных значениях (рис. 3). В зарубежной литературе такой процесс называется клиппингом (англ. clipping — обрезание, срезывание).

Рис. 3. Работа схема DDD (слева BTL режим, справа — SE)

При срабатывании DDD напряжение на 16 выводе микросхемы становится близкой к нулю. Эта информация может быть использована аудио процессором для уменьшения уровня подаваемого сигнала на усилитель, чтобы ограничить искажения. Уровень напряжения на 16 выводе не зависит от того, какое количество каналов имеют искаженные сигналы, достаточно появления искажений в любом из них. При проектировании следует знать, что 16 вывод имеет выход с открытым коллектором.

При замыкании одного или нескольких выводов на силовые цепи (GND или Vp) выходные каскады сразу выключаются, и 16 вывод TDA8561Q переходит в низкий уровень. В таком состоянии микросхема будет находиться до момента снятия КЗ. Время восстановления составляет 20 мс.

Если КЗ происходит в нагрузке, то выходные каскады отключаются на 20 мс. В последующих 50 мкс схема контроля проверяет состояние нагрузки на присутствие КЗ. Если ситуация не изменилась, то схема вновь отключает выходные каскады на 20 мс, и так далее. Благодаря рабочему циклу 20 мс / 50 мкс средний ток потребления при КЗ в нагрузке составляет около 40 мА, при этом мощность рассеивания очень мала. Состояние 16 вывода так же периодически меняется: 20 мс низкого уровня, затем 50 мкс высокого (рис. 4).

Рис. 4. Осциллограма диагностического выхода при КЗ в нагрузке

К диагностическому выходу так же подведен температурный детектор. При нагревании кристалла микросхемы до Tvj = 1500 C, вывод 16 становиться активным и переходит низкий уровень.

МАКСИМАЛЬНЫЕ ЗНАЧЕНИЯ (в соответствии с IEC 134)

Параметр Значение
Напряжение питания в активном режиме 18 В
Напряжение питания в неактивном режиме 30 В
Пиковый выходной ток (непериодический)  6 А
Пиковый выходной ток (периодический) 4 А
Температура хранения -55 … +150 0С 
Температура окружающей среды -40 … +85 0С
Температура кристалла +150 0С
Безопасное напряжение КЗ 18 В
Обратное напряжение (переполюсовка) 6 В
Общая мощность рассеивания 60 Вт

Тепловое сопротивление (в соответствии с IEC 747-1) «кристалл — окружающая среда» Rthja = 40 К/Вт, сопротивление «кристалл – корпус» Rthjc = 1.3 К/Вт. На рис. 5 показаны эквивалентные схемы тепловых сопротивлений.

Рис. 5. Эквивалентные схемы тепловых сопротивлений (слева BTL режим, справа — SE)

DC ХАРАКТЕРИСТИКИ (VP = 14.4 В, Tamb = 250 C, схема измерения на рис. 6)

Параметр Значение
Напряжение питания 6 … 18 В
Ток покоя 80 … 160 мА
Выходное напряжение (DC) (прим. 1)
6.9 В
Напряжение смещения (DC) 150 мВ
Вывод 14 (MODE)
Напряжение включения 8.5 В (min)
Напряжение для активации режима MUTE 3,3 … 6,4 В
Выходное напряжение в режиме MUTE 2 мВ
Напряжение для активации режима STD-BY 0 … 2 В
Ток управления для STD-BY 100 мкА
Ток включения 12 … 40 мкА
Вывод 16 (диагностический выход)
Напряжение активного состояния выхода (КЗ или клиппинг) 0.6 В

AC ХАРАКТЕРИСТИКИ (VP = 14.4 В, Tamb = 250 C, RLOAD = 4 Ом, f = 1 кГц)

Параметр Значение
Стерео BTL схема (рис. 6)
Выходная мощность THD = 0.5% (прим. 5) 15 … 19 Вт
Выходная мощность THD = 10% (прим. 5) 20 … 24 Вт
Коэффициент нелинейных искажений POUT = 1 Вт 0.1%
Полоса пропускания (THD = 0.5%, POUT = 15 Вт) 20 … 15 000 Гц
Завал на низких частотах по уровню -1 дБ 45 Гц
Завал на высоких частотах по уровню -1 дБ 20 кГц
Коэффициент усиления по напряжению 26 дБ (typ)
Подавление пульсаций источника питания (прим. 2) 48 дБ
Входной импеданс 25 … 38 кОм

Уровень шумов на выходе RIN = 0 (прим. 3)

70 мкВ (typ)
Уровень шумов на выходе RIN = 10 кОм (прим. 3) 100 мкВ (typ)
Уровень шумов на выходе в режиме MUTE (прим. 3 и 4) 60 мкВ (typ)
Разделение каналов RIN = 10 кОм 40 дБ
Разбаланс каналов 1 дБ (max)
Четыре канала SE выход (рис. 7)
Выходная мощность THD = 0.5% (прим. 5) 4 … 5 Вт
Выходная мощность THD = 10% (прим. 5) 5,5 … 7 Вт
Коэффициент нелинейных искажений POUT = 1 Вт 0.1%
Выходная мощность RLOAD = 2 Ом THD = 0.5% (прим. 5) 7,5 … 10 Вт
Выходная мощность RLOAD = 2 Ом THD = 10% (прим. 5) 10 … 12 Вт
Завал на низких частотах по уровню -3 дБ 45 Гц
Завал на высоких частотах по уровню -1 дБ 20 кГц
Коэффициент усиления по напряжению 20 дБ
Подавление пульсаций источника питания (прим. 2) 48 дБ
Входной импеданс 50 … 75 кОм
Разделение каналов RIN = 10 кОм 40 дБ

Примечания

1. В диапазоне 18 В < VP < 30 В постоянное напряжение на выходе ≤ VP/2

2. Подавление пульсаций (RR) измеряется на выходе микросхемы при подключении источника сигнала с импедансом 0 Ом с максимальным значение амплитуды 2 В (пик-пик) и частотой от 100 Гц до 10 кГц

3. Измерение шума производиться в диапазоне 20 … 20 000 Гц

4. Уровень шума на выходе при Vi = 0 В

5. Выходная мощность измеряется непосредственно с выводов микросхемы

Рис. 6. Схема BTL включения TDA8561Q

Рис. 7. Схема SE включения TDA8561Q

Рис. 8. Схема SE включения (вариант 2)

Рис. 9. Чертеж корпуса SOT243-1

На рис. 6 показана схема включения TDA8561Q для BTL (мостового) выхода, которая используется чаще всего, так как с микросхемы можно снять максимально возможную мощность 2 х 24 Вт. Для такой схемы минимальное сопротивление нагрузки 4 Ом. 

На рис. 7 и 8 в двух вариантах показаны схемы с SE выходами. Отличаются они построением выходных цепей, а именно, использованием конденсаторов. Как видно, на рис. 7 к каждому выходу подключен свой конденсатор, а в следующей схеме такой конденсатор всего один, но имеющий большую емкость — 2200 мкФ. Если этот конденсатор выйдет из строя и произойдет КЗ его пластин, то через открытый диод D1 (катод окажется на общем проводе) сигнал придет на внутреннюю схему TDA8561Q, которая в свою очередь, активирует режим MUTE, что позволяет микросхеме снизить выходной ток и не перегреться. 

За более подробной информацией следует обратиться к заводскому техническому описанию TDA8561Q Datasheet 

ПОХОЖИЕ МАТЕРИАЛЫ

Hi-Fi усилитель на микросхеме TDA7294 / TDA7293

Hi-Fi усилитель на микросхеме TDA7294 (TDA7293) имеет хорошие параметры и великолепное звучание. Этот усилитель легко сделать самому. Можно купить печатную плату усилителя, а можно печатную плату сделать самостоятельно – получится не хуже.

Hi-Fi усилитель TDA7294

Можно даже сказать, что это Hi-End усилитель на микросхеме TDA7294, потому что в Hi-End существуют усилители на таких же или подобных микросхемах (например Gain Card), но этот усилитель значительно лучше. Фактически из микросхемы выжато все, на что она способна. А эта микросхема очень неплохая и усилитель на TDA7294 звучит намного лучше, чем все усилители производства СССР, и не хуже, чем многие европейские, американские и японские усилители производства не только XX, но и XXI века.

Работает с колонками сопротивлением 4…16 ом. В принципе может работать с нагрузкой сопротивлением от 2 ом, но при напряжении питания 24…26 вольт и с хорошим охлаждением.

Вот отзыв из Дании о звучании усилителя:

First impression on your TDA7293 is a much more detailed and open way of playing music.
This is compared against a traditional PCB for 2 x TDA without your improvements.
———————————————————————————
Первое впечатление на вашем TDA7293 — более детальный и открытый способ воспроизведения музыки.
Это сравнивается с традиционной печатной платой для 2-х TDA без ваших улучшений.

Усилитель, собранный в Дании

А этот усилитель работает в США:

Dead quiet with speakers hooked up. Dead quiet with signal inputs connected. No feedback loops or hum. Sounds very good on the test speaker system. Lower frequency response is very good. ———————————————————————— Мертвая тишина с подключенными динамиками. Мертвая тишина при подключенных сигнальных входах. Никаких петель обратной связи или гула. Звучание очень хорошее на тестовой акустической системе. Низкочастотная характеристика очень хорошая.

Усилитель, собранный в США

К усилителю можно подключить клип-детектор (clip-detector). Он показывает даже небольшую перегрузку усилителя, при которой начинает снижаться качество звучания.

Микросхема TDA7293 немного лучше, чем микросхема TDA7294, поэтому рекомендую использовать именно ее.

Об усилителе

Этот усилитель сделан не по типовой схеме из даташита (datasheet), которая всегда является максимально простой и максимально дешевой. В основе этого усилителя лежат многочисленные исследования, некоторые из них вы можете найти на моем сайте. Hi-Fi усилитель на TDA7294 использует инвертирующее включение микросхемы (инвертирующий усилитель имеет небольшие преимущества перед неинвертирующим) и используется много лет. За это время изготовлено несколько сотен экземпляров усилителя, и я получил множество отзывов о высоком качестве его звучания. Также эта схема скопирована на разных сайтах и обсуждается на многих интернет-форумах. Но кто может рассказать об этой схеме лучше, чем ее автор?

В этой статье вы найдете всю необходимую информацию, чтобы не только самостоятельно собрать усилитель своими руками, но и сделать его таким, как вам нужно.

Важно! Здесь не дается никаких рекомендаций по использованию «правильных проводов», «волшебных конденсаторов» и прочих выдумок и маркетинговой ерунды. На самом деле большинство аудиофильских мифов бессмысленно. А некоторые из них являются реально вредными. Я расскажу, как сделать технически правильный усилитель, который будет хорошо работать. Ведь то, что плохо работает, хорошо звучать не может.

Я не буду приводить все параметры усилителя, а только самые главные:

  • Реально достижимая максимальная выходная мощность – 20…80 Вт.  Она зависит от сопротивления нагрузки и напряжения питания.
  • Коэффициент усиления усилителя – 23 раза (27 дБ). Такой коэффициент усиления достаточен для того, чтобы можно было работать без предусилителя – в подавляющем большинстве случаев нет необходимости дополнительно усиливать входной сигнал. При работе от обычной звуковой карты или CD плеера, величины входного сигнала достаточно, чтобы получить максимальную выходную мощность до 70 Вт на нагрузке 8 ом и более 100 Вт на нагрузке 4 ома. Реальная мощность будет меньше, так как выходная мощность будет ограничиваться возможностями самой микросхемы и блока питания. Поэтому можно поставить регулятор громкости на вход усилителя и обойтись без предусилителя.
  • Диапазон частот микросхемы при таком способе включения примерно равен 3 Гц … 450 кГц. На этих частотах микросхема работает вполне хорошо. Однако такой широкий частотный диапазон реально не нужен и даже является вредным. Поэтому в моём усилителе он ограничивается искусственно. И составляет примерно 20 Гц … 50 кГц (вы можете отрегулировать частотный диапазон  усилителя самостоятельно). Ограничение частотного диапазона, во-первых улучшает работу микросхемы и снижает уровень искажений (а динамические искажения, которые могут возникнуть в усилителях с глубокой отрицательной обратной связью – эти искажения в моём усилителе вообще не возникают!). Во-вторых, ограничение частотного диапазона усилителя полезно как колонкам, подключенным к усилителю, так и людям, которые через этот усилитель слушают музыку. Про то, как правильно выбрать частотный диапазон усилителя, написано ниже.
  • Коэффициент нелинейных искажений Кг (коэффициент гармоник, THD) – 0,003…0,02%.

Коэффициент гармоник – это один из главных параметров, характеризующий качество звучания, поэтому в рекламных целях его стараются сделать наиболее красивым. Для этого прибегают к различным ухищрениям: измеряют на частоте, на которой он наименьший; измеряют при «удобном» значении выходной мощности, где Кг наименьший; учитывают не все гармоники спектра искажений. Иногда даже измеряют Кг без нагрузки. При этом искажения, вносимые выходным каскадом усилителя, значительно снижаются – ведь выходной ток усилителя равен нулю. Часто при измерении Кг усилитель питают от специального стабилизированного источника питания, что также позволяет получить более красивые рекламные числа.

Я измерял искажения честно. При измерениях усилитель работал на нагрузку 6 ом и питался от реального источника питания. Кроме того, я измерял Кг на разных частотах таким образом, чтобы учитывалось максимальное количество гармоник спектра искажений (измерялись все гармоники с частотами до 95 кГц). И еще я измерял Кг при различных значениях выходной мощности усилителя. Так что вместо одного числа – значения коэффициента гармоник в каких-то одних условиях измерений, я получил графики.

Зависимость Кг от частоты тестового сигнала при выходной мощности 20 Вт. Учитывались все гармоники в полосе частот до 95 кГц. Разрядность измерений 24 бита.

Hi-Fi усилитель на TDA7294. Зависимость коэффициента гармоник THD от частоты тестового сигнала.

Зависимость Кг от выходной мощности при частоте тестового сигнала, равной 1 кГц.

Hi-Fi усилитель на TDA7294. Зависимость коэффициента гармоник THD от выходной мощности.

Обратите внимание, что на этом графике коэффициент гармоник значительно растет при выходной мощности, более 30 Вт. Дело в том, что усилитель при измерениях питался от реального источника питания, рассчитанного на максимальную выходную мощность 25 Вт. Поэтому этот усилитель работает отлично при выходной мощности не больше 25 Вт.

Если вам нужна другая величина максимальной выходной мощности, вы ее можете получить, использовав соответствующий блок питания. Про него ниже.

Спектр искажений усилителя при выходной мощности 20 Вт на нагрузке 6 ом очень узкий.

Hi-Fi усилитель на TDA7294. Спектр искажений THD.

В нем содержится не более семи высших гармоник, причем амплитуда гармоники убывает с ростом ее номера (амплитуды 6-й и 7-й гармоник меньше -100 дБ и на график эти гармоники не попали). Это означает, что в усилителе отсутствует неприятный «транзисторный звук».

Спектр интермодуляционных искажений (IMD), измеренный на частотах 18 кГц и 19 кГц при выходной мощности 20 Вт на нагрузке 6 ом. Это очень жесткий тест, когда усилитель работает в самых плохих условиях. Тем не менее, в спектре присутствует только одна пара боковых частот (17 кГц и 20 кГц), что характерно только для высококачественных усилителей.

Hi-Fi усилитель на TDA7294. Спектр интермодуляционных искажений.

Все спектры узкие, что доказывает высокую линейность усилителя.

В этом Hi-Fi усилителе на микросхеме TDA7294 практически исключена возможность появления динамических искажений при работе совместно с реальными звуковоспроизводящими устройствами.

Усилитель отлично справляется с «трудной» нагрузкой. Такой нагрузкой являются колонки, причем некоторые из них «более легкие», а некоторые «более трудные». Результаты, демонстрируемые усилителем, и сравнение его с некоторыми дорогими усилителями описано в статье Работа усилителя на микросхеме TDA7294 на трудную нагрузку.

Важно! Работа усилителя очень сильно зависит от источника питания. Фактически усилитель занимается тем, что передает энергию из источника питания в колонки. Но делает это под управлением звукового сигнала. Передача энергии происходит так, чтобы в колонках сигнал был точно такой же, как и на входе усилителя.

Hi-Fi усилитель на микросхеме TDA7294 (TDA7293) — схема

Схема Hi-Fi усилителя на микросхеме TDA7293 (TDA7294) показана на рисунке. Конденсатор Cx не имеет порядкового номера. Это сделано для совместимости с самодельной печатной платой: я добавил конденсатор Cx позже.

Hi-Fi усилитель на TDA7294. Принципиальная схема.

Схема Hi-Fi усилителя на TDA7293.

Описание усилителя, его свойства и принцип работы описаны в статье Усилитель на TDA7293 / 7294 с Т-образной ООС.

Усилитель не содержит дефицитных деталей и каких-нибудь сложных вещей. Поэтому собрать усилитель своими руками может даже начинающий.

Чертеж печатной платы для самостоятельного изготовления усилителя приведены в статье по ссылке выше. Можно купить печатную плату усилителя, изготовленную промышленным способом: Купить печатную плату. Далее описывается вариант с печатной платой промышленного изготовления, но все это подходит и для усилителя на самодельной печатной плате.

На что обратить внимание

В усилителе можно использовать как TDA7294, так и TDA7293. В зависимости от того, какая микросхема используется, на плате в соответствующем месте устанавливается перемычка.

  1. Важно! Микросхема TDA7293 может работать в режиме микросхемы TDA7294. Если перемычка на плате установлена в положение TDA7294, то можно устанавливать как микросхему TDA7294, так и микросхему TDA7293. При этом не все преимущества микросхемы TDA7293 будут использованы.
  2. Микросхема TDA7294 в режиме TDA7293 работать не может! Если перемычка на плате установлена в положение TDA7293, то микросхему TDA7294 использовать нельзя!

Микросхема TDA7293 немного лучше, чем TDA7294: у нее чуть больше выходная мощность и качество звучания, поэтому я рекомендую использовать именно TDA7293.

Емкости конденсаторов C1, C2, Cx не обязательно должны быть такими, как на схеме. Вы их выбираете самостоятельно, исходя из того, какие именно частотные свойства усилителя вы хотите получить.

Емкость конденсатора С1 зависит от сопротивления регулятора громкости.

Усилитель в целом (не только эта печатная плата, а усилитель полностью) будет иметь максимальное качество только в том случае, если абсолютно все его части правильно сделаны и соединены. Об этом в конце статьи.

Используемые детали

Усилитель доступен для сборки даже начинающими и малочувствителен к качеству комплектующих. Но для получения наилучших параметров и максимально хорошего звука усилитель должен быть собран из качественных деталей. Качественные – это не обязательно дорогие.

Комплектующие неизвестного производителя лучше не использовать: они могут иметь плохие параметры. При применении таких комплектующих, усилитель может работать плохо или вообще не работать.

Список используемых деталей (BOM List) можно загрузить по ссылкам:

На русском языке:

In English:

Резисторы

В усилителе используются недорогие металлопленочные резисторы. Все резисторы кроме R9 мощностью 0,125…0,25 Вт. Если R9 российского производства, то  достаточна мощность 0,5 Вт. Если R9 не российского производства, то рекомендуется устанавливать R9 мощностью 1 Вт. Это надежнее для работы на максимальной мощности или в качестве измерительного усилителя.

Если планируется стерео усилитель или многоканальный усилитель, то резисторы, включенные в цепь отрицательной обратной связи (R2…R5), желательно использовать с точностью 1% или лучше (более точные, чем 0,25% не нужны). В этом случае разбаланс громкости стереоканалов будет минимальным. Если доступны только резисторы точностью 5%, то их следует по возможности подобрать одинакового сопротивления во всех каналах. Другие резисторы не критичны к величине точности.

Большое значение имеет резистор R10. Этот резистор служит для разделения земли в усилителе. Но входная и выходная земли должны быть не только разделены, но и обязательно связаны. Если резистор R10 отсутствует, имеет плохой контакт или слишком большое сопротивление, то усилитель работать не будет. Поэтому важно, чтобы этот резистор был надежным и качественным и имел требуемое сопротивление. Аудио качество этому резистору не нужно.

В принципе, резистор R10 можно заменить перемычкой.

Керамические конденсаторы

Конденсаторы C1 и Cx керамические из качественной низковольтной керамики, с максимальным рабочим напряжением 50 вольт. Качественная керамика определяется по температурному коэффициенту емкости конденсатора (ТКЕ, TCC). Эти конденсаторы должны быть с ТКЕ класса НП0 (NP0), или С0G. Иногда вместо цифры 0 пишут букву О (НПО, NPO) – это то же самое. Производитель конденсаторов является важным. Конденсаторы noname лучше не использовать. Подойдут, например, Murata, Vishay, EPCOS. Можно использовать конденсаторы российского производства.

Выбор емкости конденсаторов C1 и Cx

Конденсатор С1 обрезает высокие частоты, поступающие на вход усилителя (он образует фильтр нижних частот), и тем самым подавляет высокочастотные помехи. Однако при этом сужается диапазон рабочих частот усилителя в области высоких частот. Емкость конденсатора С1 выбирается исходя из величины сопротивления регулятора громкости и требуемой частоты среза фильтра нижних частот (ФНЧ, LPF), который образует этот конденсатор совместно с резистором R1 и сопротивлением регулятора громкости. Я предлагаю на выбор одну из двух частот: 50 кГц и 70 кГц.

Частота среза 50 кГц выбирается для более сильного подавления возможных высокочастотных помех, поступающих на вход.

Источниками таких помех может быть как аппаратура связи (мобильные устройства, Wi-Fi и Bluetooth, радиосвязь, телевидение), так и другие промышленные и бытовые устройства.

Но высокочастотные помехи возникают не только из-за наводок систем радиосвязи. Ультразвук может поступать на вход усилителя с проигрывателя CD (точнее, его ЦАПа) — недостаточно отфильтрованная частота дискретизации. Или, например, с проигрывателя виниловых грампластинок — там ультразвук образуется при движении иглы звукоснимателя по канавке грампластинки.

Если вы уверены в отсутствии высокочастотных помех, то частоту среза входного фильтра можно выбрать равной 70 кГц. В этом случае усилитель может иметь максимальную рабочую частоту примерно 50 кГц.

При выборе частоты среза входного фильтра равной 50 кГц усилитель может иметь максимальную рабочую частоту примерно 40 кГц.

Значения емкости конденсатора C1 в зависимости от величины сопротивления регулятора громкости и требуемой частоты среза входного фильтра.

Сопротивление регулятора громкости, кОмЕмкость конденсатора С1, необходимая для получения частоты среза входного фильтра 50 кГц, пФЕмкость конденсатора С1, необходимая для получения частоты среза входного фильтра 70 кГц, пФ
Регулятор громкости на входе усилителя отсутствует: используется предусилитель или громкость регулируется звуковой картой компьютера 2200 1500
5 1200 820
10 820 560
20 510 360
30 360 240
50 220 160
100 120 82

Конденсатор Cx выполняет несколько функций одновременно:

  • — улучшает устойчивость усилителя;
  • — увеличивает глубину отрицательной обратной связи (ООС) на высоких частотах и снижает искажения;
  • — на высоких частотах форсирует сигнал в цепи ООС, что практически исключает возможность появления динамических искажений.

Конденсатор Cx также как и C1 уменьшает верхнюю граничную частоту усилителя.

Оба конденсатора работают на частотах выше 20 кГц, поэтому на воспроизведение высоких звуковых частот они практически не влияют. Совместное использование этих конденсаторов приводит к тому, что динамические искажения в усилителе вообще не возникают. Однако некоторые люди хотят получить усилитель с частотным диапазоном до 40…50 кГц. Это их право, несмотря на то, что большинство людей не слышит сигналов выше частоты 20 кГц (небольшое исследование на эту тему опубликовано в статье Исследование верхней границы слуха). Кроме того, влияние любых фильтров на частотную характеристику происходит плавно, поэтому даже если верхняя граничная частота усилителя равна 50 кГц, на частоте 20 кГц амплитудно-частотная характеристика усилителя (АЧХ) имеет завал, хоть и микроскопический.

Выбор величины емкости конденсатора Cx.

Вариант 1. Частота среза входного фильтра НЧ равна 70 кГц.

Емкость конденсатора Cx, пФ Верхняя граничная частота усилителя по уровню -3 дБ, кГц Завал АЧХ усилителя на частоте 20 кГц, дБ
47 54 0,5
56 50 0,6
68 46 0,65
75 44 0,7
82 42 0,8

Вариант 2. Частота среза входного фильтра НЧ равна 50 кГц.

Емкость конденсатора Cx, пФВерхняя граничная частота усилителя по уровню -3 дБ, кГцЗавал АЧХ усилителя на частоте 20 кГц, дБ
47 42 0,8
56 40 0,9
68 37 1

Завал АЧХ на частоте 20 кГц величиной 0,8 дБ, а тем более 1 дБ может показаться слишком большим. Но на самом деле он незаметен:

  • он ниже порога чувствительности слуха на этой частоте,
  • на частоте 20 кГц уже практически нет никакого звука,
  • не все люди эту частоту слышат

На самом деле емкость этих конденсаторов может немного отличаться от указанной. Изменение емкости частотозадающих конденсаторов на 10…20% будет незаметно. Но если изменять емкость этих конденсаторов, то все же лучше в сторону расширения АЧХ: C1 увеличивать, а C2 и Cx уменьшать.

Пленочные конденсаторы

Конденсаторы C2, C4, C6, C7, C9 пленочные лавсановые (другие названия диэлектрика – майлар, полиэстер, MKT).

Самым важным для звука является конденсатор C2. Он должен быть хорошего качества. На этом месте можно применить конденсатор с диэлектриком из полипропилена (MKP). Разницы в звуке вы, скорее всего, не заметите, но все равно будет приятно, что вы сделали максимум для получения высокого качества звучания.

На самом деле, для получения хорошего звука гораздо важнее использовать правильный блок питания и правильный монтаж блоков усилителя внутри корпуса. Но в любом случае конденсатор C2 не должен быть плохим.

Конденсатор С6 меньше всего влияет на качество звучания. В принципе, его даже можно исключить из схемы. Тем не менее, даже на этом месте использовать плохой конденсатор не рекомендуется.

Конденсатор C4 улучшает устойчивость усилителя. Его максимальное рабочее напряжение может быть до 250 вольт. Если есть возможность выбора, то этот конденсатор рекомендуется выбирать наибольшего размера из всех доступных, но такой, чтобы его можно было нормально установить на плату. При работе усилителя через этот конденсатор проходит сравнительно большой высокочастотный ток, и конденсатор может нагреваться. Чем больше размер конденсатора, тем меньше нагрев. Будьте благоразумными! Размер конденсатора 7,5 мм вполне достаточен!

Конденсаторы C7 и C9 помогают конденсаторам C8 и C10 снабжать усилитель энергией на высоких частотах. Емкость этих конденсаторов 2,2…4,7 мкФ, максимальное рабочее напряжение не менее 63 вольт. Конденсаторы должны быть качественными, чтобы хорошо работать. Чем больше емкость, тем лучше, но будьте разумными. Важно, чтобы длина выводов этих конденсаторов была минимальной – индуктивность длинных выводов будет мешать их работе. Поэтому конденсатор меньшей емкости с короткими выводами будет работать лучше, чем конденсатор большей емкости, но с длинными выводами.

«Зеленые» конденсаторы можно использовать в позициях C4 и C6.

Хорошие конденсаторы не обязательно дорогие. Более того, лучше использовать «обычные» конденсаторы известного производителя, чем конденсаторы неизвестного производителя, заявленные «For Audio».

Выбор емкости конденсатора C2

Величина емкости конденсатора C2 определяет как нижнюю граничную частоту усилителя, так и завал АЧХ усилителя на низких частотах. Этот конденсатор совместно с входным сопротивлением усилителя образует фильтр верхних частот (ФВЧ, HPF), пропускающий частоты выше 10…25 Гц и подавляющий частоты, лежащие ниже этого значения.

Как выглядит амплитудно-частотная характеристика в области низких частот при различных значениях емкости конденсатора C2, показано на рисунке (высокие частоты на этом рисунке изображены условно).

АЧХ усилителя при разных значениях C2.

Параметры усилителя в зависимости от емкости конденсатора C2.

Емкость конденсатора C2, мкФ Нижняя граничная частота усилителя по уровню -3 дБ, Гц Завал АЧХ усилителя на частоте 20 Гц, дБЗавал АЧХ усилителя на частоте 25 Гц, дБЗавал АЧХ усилителя на частоте 30 Гц, дБ
0,22 22 3,3 2,5 1,8
0,33 14 1,8 1,3 0,9
0,47 10 0,9 0,6 0,5
0,68 7 0,5 0,3 0,2
1,0 5 0,2 0,2 0,1
1,5 3 0,1 0,1 0,05
Стратегия выбора величины емкости конденсатора C2

Чем емкость C2 больше, тем меньше нижняя частота среза усилителя (то есть усилитель достаточно сильно усиливает более низкие частоты), и тем меньше завал АЧХ на низких звуковых частотах.

Но сказать, что чем емкость C2 больше, тем низкие частоты воспроизводятся лучше, будет неверно.

Действительно, если АЧХ ваших колонок начинается с 40 Гц, то всё, что происходит ниже 30 Гц вас не должно беспокоить.

Правильнее будет сказать так: если емкость конденсатора C2 меньше некоторого значения, то громкость самых низких частот звукового диапазона будет уменьшаться. Например, если C2 = 0,68 мкФ, то завал АЧХ на частоте 20 Гц составляет 0,5 дБ – это намного меньше, чем предел чувствительности слуха на этой частоте, так что такой завал мы наверняка не услышим. При этом усилитель воспроизводит частоты, начиная с 7 герц. Если же емкость конденсатора C2 уменьшить до 0,1 мкФ, то громкость на самых-самых низких частотах немного снизится. Мы заметим это лишь на очень хорошей фонограмме и отличных колонках. И то, только при сравнительном прослушивании. Но ведь заметим!

А нужны ли настолько низкие частоты?

Утверждают, что если усилитель воспроизводит абсолютно все низкие частоты, начиная с постоянного напряжения, то это улучшает звук. Рассказывают даже о постоянной составляющей звука. Это все рекламные и маркетинговые уловки, не имеющие ничего общего с действительностью.

Постоянная составляющая звука – это атмосферное давление, и изменить его неспособна ни одна колонка. А инфразвуковые частоты, которые могут попасть на выход усилителя и воспроизвестись колонками, вредны для человека. Например, инфразвуковые частоты, совпадающие с частотой альфа-ритма головного мозга (частоты 7…15 Гц), могут вызвать головную боль, дезориентацию и даже панику.

Большое количество инфразвуковых частот образуется при воспроизведении виниловых грампластинок. Особенно старых: покоробленных и имеющих эксцентриситет. Но даже при воспроизведении новых грампластинок инфразвук все же возникает: он создается и двигателем проигрывателя (рокот) и физическими процессами трения иглы в канавке. Подробно об этом писал Дуглас Селф (Douglas Self) в книге Electronics for Vinyl.

К счастью, большинство звуковых колонок на таких частотах не могут создать значительного звукового давления, но лучше, если эти частоты обрезать еще в усилителе.

Другой причиной для отказа от воспроизведения очень низких частот, являются физические процессы в громкоговорителях. Для равной громкости при снижении частоты, ход диффузора растет пропорционально второй степени. То есть, если частота снизилась вдвое, ход диффузора должен вырасти в 4 раза. На самом деле ход диффузора растет еще сильнее из-за уменьшения чувствительности слуха на самых низких частотах. Но диапазон линейного хода громкоговорителя ограничен, поэтому низкие частоты значительного уровня могут перегрузить громкоговоритель, и будет искажаться весь звук вообще.

Особенно подвержены этому явлению колонки с фазоинвертором (ФИ) – на частотах ниже частоты настройки ФИ, ход диффузора ничем не ограничен. При этом колонка звук практически не излучает, так как происходит акустическое короткое замыкание: звук, излучаемый громкоговорителем и звук, излучаемый фазоинвертором, вычитаются друг из друга практически до нуля.

В результате получается, что слышимая перегрузка отсутствует, а звук плохой. Так что с этой точки зрения, ограничение воспроизведения очень низких частот положительно сказывается на работе всей системы, на качестве звучания и на восприятии звука человеком.

С другой стороны, чем выше частота среза усилителя, тем хуже переходные процессы при воспроизведении низкочастотного музыкального сигнала (не бесконечно, а до определенных пределов). Басы, особенно в колонках с фазоинвертором, получаются немного более затянутыми.

Так что с этой точки зрения сильно увеличивать нижнюю граничную частоту усилителя тоже нежелательно.

Что же делать?

Выход такой: частота среза фильтра верхних частот, образованного конденсатором C2, должна быть в 2…3 раза меньше, чем нижняя рабочая частота колонок, подключенных к этому усилителю. Но не ниже 10 Гц. И не бойтесь завала АЧХ на низких частотах! Завал в 1 дБ на частотах ниже 30 Гц на слух незаметен.

Лично я чаще всего использую конденсатор C2 емкостью 0,33 мкФ, и реже емкостью 0,47 мкФ.

Для выбора емкости конденсатора C2 воспользуйтесь этой таблицей.

Назначение усилителя Емкость конденсатора C2, мкФ
Колонки среднего качества с нижней рабочей частотой 50…80 Гц. Особенно рекомендуется при воспроизведении винила 0,22
Колонки более высокого качества с нижней рабочей частотой 30…40 Гц Высококачественные колонки с мощными басами и нижней рабочей частотой 20…30 Гц при воспроизведении винила 0,33
Высококачественные колонки с мощными басами и нижней рабочей частотой 20…30 Гц. Качественный сабвуфер при воспроизведении винила 0,47
Качественный сабвуфер при воспроизведении винила Качественный сабвуфер 0,68
Высококачественный сабвуфер 1,0
Сабвуфер для маньяков 1,5

Для себя и на заказ (по согласованию с заказчиками после изучения их требований и их аппаратуры) я обычно делаю два варианта усилителя (используется предварительный усилитель с регулятором громкости):

  1. «Стандартный» с таким набором номиналов элементов: С1 = 2200 пФ (частота среза входного фильтра 50 кГц), Cx = 47 пФ, C2 = 0,33 мкФ полипропиленовый (MKP) Epcos или К78-19.
  2. «С расширенным частотным диапазоном». С таким набором номиналов элементов: С1 = 1500 пФ (частота среза входного фильтра 70 кГц), Cx = 47 пФ, C2 = 0,47 мкФ полипропиленовый (MKP) Epcos или К78-19.

Амплитудно-частотные характеристики этих двух вариантов усилителя показаны на рисунке.

Электролитические конденсаторы

В позициях C3 и C5 должны быть обычные качественные конденсаторы. Конденсатор C3 задает время включения усилителя и на звук не влияет. Но если он некачественный или имеет большую утечку, то усилитель может не включиться. При некачественном конденсаторе C5 максимальная неискаженная выходная мощность оказывается намного меньше, чем могла бы быть.

Конденсаторы C8 и C10 выполняют сразу три функции:

  1. Дополнительно подавляют пульсации напряжения питания.
  2. Подпитывают усилитель на пиках громкости. Конденсаторы C8 и C10 установлены очень близко к микросхеме, и проводники, идущие от этих конденсаторов, очень короткие. Поэтому эти проводники имеют очень маленькое сопротивление и индуктивность. В результате при необходимости вся энергия этих конденсаторов быстро поступает в микросхему и передается на выход в громкоговорители.
  3. Пропускают через себя ток громкоговорителей на средних и высоких частотах. В результате этот ток замыкается наиболее коротким путем.

Все эти функции на самом деле объединены. Физически это одна функция. Я их разделяю мысленно, чтобы удобнее было их анализировать.

Функции конденсаторов C8 и C10 очень важны, поэтому эти конденсаторы должны иметь хорошее качество. Очень полезно в этой позиции использовать конденсаторы типа Low ESR или Low Impedance.

Однако будьте благоразумны! Важность качества конденсаторов C8 и C10 зачастую преувеличивается. Нет смысла применять экзотические «волшебные» суперконденсаторы. Вполне достаточно хороших конденсаторов от надежного производителя. Важно, чтобы эти конденсаторы были правильно впаяны с плату. При этом они имеют выводы минимальной длины, а значит минимальное сопротивление и индуктивность.

Использовать конденсаторы C8 и C10 емкостью меньше, чем 1000 мкФ не рекомендуется. Значительно увеличивать их емкость тоже не рекомендуется. Можно использовать конденсаторы емкостью 2200 мкФ, но при качественном источнике питания разницы не будет.

На высоких частотах электролитическим конденсаторам C8 и C10 помогают пленочные конденсаторы C7 и C9, поэтому эти конденсаторы также должны иметь хорошее качество.

Установка микросхемы TDA7294

В зависимости от применяемой микросхемы на плате устанавливается перемычка в нужной позиции.

Установка перемычки TDA7294 или TDA7293

Если перемычка установлена в положение TDA7293, то пустую квадратную контактную площадку с надписью TDA7294 можно залить припоем.

Заливка контактной площадки

Так будет совсем-совсем немного, но лучше.

Микросхема должна быть установлена на радиаторе площадью не менее 700 квадратных сантиметров. При установке микросхемы на радиатор необходимо использовать термопасту. Радиатор должен свободно охлаждаться воздухом.

Важно! Корпус микросхемы соединен с минусом источника питания, поэтому, чтобы избежать короткого замыкания источника питания, надо либо устанавливать микросхему через изолирующую прокладку (и изолировать винт, которым микросхема крепится к радиатору), либо надежно изолировать радиатор от корпуса.

В первом варианте микросхема охлаждается немного хуже. Во втором есть возможность случайно замкнуть радиатор, находящийся под напряжением, на корпус.

Поступайте так, как вам удобнее.

На один радиатор можно установить несколько микросхем, при этом площадь радиатора увеличить в столько раз, сколько микросхем на него установлено. Но провода питания при этом должны подходить к каждой из плат усилителя. Нельзя «пускать питание» от одной микросхемы к другой через радиатор! Тот факт, что фланец микросхемы соединён с минусом питания не означает, что микросхема может получать энергию питания через свой фланец!

Крепить плату к радиатору можно просто прикрутив к нему микросхему. Этот способ применим, если на плате не используются тяжелые экзотические компоненты и если при эксплуатации усилителя отсутствует вибрация. Пример такого крепления платы в корпусе усилителя показан на странице Четырехканальный усилитель.

Габариты платы и присоединительные размеры показаны на рисунке. Фланец микросхемы выступает за габариты платы на 1…2 миллиметра в зависимости от того, как микросхема сориентирована при пайке.

Для более надежного крепления можно использовать специальное крепежное отверстие под винт с резьбой М3. Это отверстие изолировано от схемы.

Принцип использования этого отверстия довольно прост, главное, чтобы ничего не замкнуло.

Идея крепления

Подключение регулятора громкости

Если предусилитель отсутствует, то регулятор громкости подключается непосредственно к усилителю. Важно, чтобы входные цепи не имели контакта с «землей» или с корпусом усилителя. 

В качестве регулятора рекомендуется использовать переменный резистор (потенциометр) сопротивлением 30…50 кОм. Предельные значения сопротивления регулятора громкости 5…100 кОм, но при этом возможно небольшое ухудшение качества звучания.

Переменный резистор лучше использовать с экспоненциальной зависимостью сопротивления от угла поворота. Тогда при вращении ручки регулятора, громкость будет изменяться пропорционально углу поворота. Такие переменные резисторы российского производства имеют в обозначении букву В, а резисторы произведенные не в России – букву A.

Правильное подключение блоков внутри усилителя

Взаимное соединение блоков усилителя является очень важным. Если сделать неправильно, то можно получить очень плохой звук. Усилитель даже может самовозбуждаться. В правильном подключении блоков нет никакого волшебства, чистая физика.

Подробно описано в статье Подключение блоков внутри усилителя.

Источник питания для усилителя

Работа усилителя очень сильно зависит от источника питания. Фактически усилитель занимается тем, что передает энергию из источника питания в колонки. Но делает это под управлением звукового сигнала. Передача энергии происходит так, чтобы в колонках сигнал был точно такой же, как и на входе усилителя. Как сделать правильный и хороший блок питания описано в статье Блок питания для TDA7294.

О том, как правильно сделать усилитель и источник питания, чтобы получить максимальное качество звучания, написано в этих статьях:

Дополнительная информация об усилителях и повышении качества звучания:

Ссылки приведенные в статье

Усилитель на TDA7293 / 7294 с Т-образной ООС

Блок питания для TDA7294

Разделение земли в усилителе

Подключение блоков внутри усилителя

Работа усилителя на микросхеме TDA7293 (TDA7294) на “трудную” нагрузку

Клип-детектор (clip-detector) для усилителя на TDA7293

Исследование верхней границы слуха

Информация, позволяющая лучше понять работу усилителя и получить максимум качества звучания

Hi-Fi усилитель на микросхеме TDA7294

Клиппинг (cliping) в усилителе

Расчет источника питания усилителя

Трансформатор для питания усилителя

Правильный выпрямитель

Выпрямитель для усилителя или сага о быстром диоде

Раздельное питание каналов стерео усилителя

Массив конденсаторов – мифы и реальность

Режимы Mute и StandBy в микросхеме TDA7294 / TDA7293

Дополнительная полезная информация

Сравнительное прослушивание усилителей

Звучание конденсаторов в фильтрах акустических систем

Реальный скин-эффект в кабелях

25.03.2020

Total Page Visits: 5127 — Today Page Visits: 14

Усилитель звукового сигнала мощностью 600 Вт / Хабр

Предлагаю вашему вниманию разработку прототипа усилителя звука мощностью 600 Вт

В усилителе используется микросхема TPA3255 производства компании Texas Instruments. Это высокоэффективный, высококачественный четырехканальный усилитель класса D.

Модель платы усилителя

Принцип работы достаточно простой. На вход микросхемы подается аналоговый сигнал, он преобразуется в PWM и подается на выходные силовые каскады.

Нас интересует один из режимов работы микросхемы, PBTL параллельное мостовое включение выходных каскадов. Этот режим обеспечивает максимальную выходную мощность.

Конфигурирование режимов работы микросхемы осуществляется подключением входов управления в заданные состояния, что позволяет работать усилителю без управляющего микроконтроллера.

Кроме режима PBTL микросхема поддерживает другие режимы работы, основные из них:

  • SE – четыре отдельных канала с выходной мощностью до 148 Вт на канал в зависимости от выходной нагрузки и допустимых искажениях;

  • PBL – два канала с выходной мощностью до 315 Вт на канал в зависимости от выходной нагрузки и допустимых искажениях.

Кроме этого, внешние входы синхронизации позволяют включать несколько микросхем параллельно и суммировать выходную мощность для получения более 600 Вт.

Схема включения микросхемы TPA3255

Рассмотрим включение микросхемы более детально

Питание микросхемы:

  • PVDD силовое питание выходных каскадов усилителя 53.5 В;

  • GVDD питание драйверов затворов 12 В;

  • VDD питание схемы управления и подготовки сигнала 12 В.

Кроме этого, внутри микросхемы есть источник опорного напряжения VBG, источник питания аналоговой части AVDD 7.75 В, источник питания цифровой части DVDD 3.3 В. Эти источники не предназначены для использоваться снаружи микросхемы, но должны быть подключены к внешним фильтрующим конденсаторам емкостью 1 мкФ.

Входы питания PVDD, GVDD, VDD микросхемы защищены схемой контроля понижения напряжения питания (UVP — Under Voltage Protection) При срабатывании этой защиты будут отключены выходные каскады усилителя и выход статуса состояния FAULT будет переключен в логический 0, вплоть до устранения причины.

Режим работы PBTL задается подключением входов M1 и M2 к общему проводу, и заземлением аналоговых входов INPUTC и INPUTD. В этом режиме на входы INPUTA и INPUTB подается балансный аудиосигнал с номинальным уровнем 2 V RMS. Выходы OUTA и OUTC включаются параллельно, выходы OUTB и OUTD включаются параллельно.

Время задержки при включении задается конденсатором на выводе C_START, для режима PBTL его емкость должна быть 47 нФ.

Частота PWM сигнала задается резистором на выводе FREQ_ADJ

Номинал резистора на выводе FREQ_ADJ

Частота PWM

30 кОм

450 кГц

20 кОм

500 кГц

10 кОм

600 кГц

Чем выше частота, тем больше динамические потери в выходных каскадах. И тем легче отфильтровать частоту PWM в выходном сигнале.

Защита от перегрузки и короткого замыкания выходных каскадов настраивается резистором на выводе OC_ADJ .

Контроль перегрузки реализован отдельно для верхнего и нижнего транзистора каждого выходного полумоста.

Схема защиты от перегрузки может работать в двух режимах CB3C (Cycle By Cycle Current Control) и Latching Over Current.

В режиме CB3C ограничение тока происходит непосредственно на каждом цикле PWM с выводом нулевого сигнала на выход статуса CLIP_OTW, при этом для каждого цикла, в котором сработала защита, увеличивается счетчик перегрузки для каждого цикла PWM, без перегрузки – счетчик перегрузки уменьшается. Когда счетчик перегрузок доходит до максимального значения (например, при коротком замыкании на выходе) каскад полностью отключается, устанавливается статус на выходе FAULT в ноль, вплоть до сброса состояния микросхемы сигналом RESET.

В режиме Latching Over Current при обнаружении перегрузки выходной каскад отключается, устанавливается статус на выходе FAULT в ноль, вплоть до сброса состояния микросхемы сигналом RESET.

Режим работы схемы защиты устанавливается номиналом резистора подключенного к входу OC_ADJ

Сопротивление резистора подключенного к входу OC_ADJ

Режим работы схемы защиты

Уровень тока при срабатывании защиты

22 кОм

CB3C

17.0 A

24 кОм

CB3C

15.7 A

27 кОм

CB3C

14.2 A

30 кОм

CB3C

12.9 A

47 кОм

Latched OC

17.0 A

51 кОм

Latched OC

15.7 A

56 кОм

Latched OC

14.2 A

64 кОм

Latched OC

12.9 A

Для нашего применения мы используем режим CB3C с током ограничения 17 А. Выбираем резистор сопротивлением 22 кОм.

Микросхема имеет защиту от перегрева с двумя уровнями:

  • Overtemperature Warning – OTW , температура кристалла микросхемы превысила 120°C с выводом нулевого уровня на выход статуса CLIP_OTW. При охлаждении микросхемы состояние возвращается в рабочий режим.

  • Overtemperature Error – OTE, температура кристалла микросхемы превысила 155°C, каждый выходной канал переводится в отключенный режим, на выход статуса FAULT выводится низкий уровень. Микросхема вернется в рабочий режим после сброса сигналом RESET.

Вход RESET предназначен для остановки усилителя, отключения выходных каскадов, сброса состояний защиты микросхемы. Активный уровень низкий. Вход требует внешней подтяжки к уровню 3.3 В. При переводе входа RESET в логическую единицу запускается процедура конфигурирования усилителя в соответствии с режимами заданными на входах управления.

Выходы FAULT и CLIP_OTW сообщают о состоянии внутренних схем защиты. Оба выхода типа ’открытый коллектор’ с внутренней подтяжкой к 3.3 В. Оба выхода имеют низкий активный уровень. По сути, выход CLIPOTW символизирует о необходимости уменьшить уровень входного сигнала, а выход FAULT означает о наличии серьезного сбоя в работе усилителя.

Выходы BSTA BSTB BSTC BSTD предназначены для подключения конденсаторов питания драйверов затворов верхних транзисторов соответствующего полумоста.

Входы OSCIOM и OSCIOP предназначены для синхронизации PWM нескольких микросхем усилителей работающих на общую нагрузку. Такой режим позволяет получить мощности на нагрузке более 600 Вт.

Описание схемы

принципиальная схема усилителя

Для питания усилителя требуется источник питания на 53,5 В. Пиковая мощность, которую может выдать усилитель 600 Вт. В зависимости от характера музыки средняя мощность может составлять 15% – 30% процентов от пиковой. Источник питания должен обеспечивать среднюю мощность, а пиковая мощность будет браться с конденсаторов, расположенных на плате усилителя. Нужно обратить внимание, что при пиковой мощности 600 Вт токи, протекающие по плате, превышают 10 А, сама плата и компоненты должны обеспечивать работоспособность при таких токах с запасом.

Суммарная емкость конденсаторов на плате по питанию 53.5 В превышает 10000 мкФ. Разряженная емкость для источника питания равносильна короткому замыканию, у большинства источников питания будет срабатывать перегрузка и они не смогут запуститься и выйти на рабочий режим. Для успешной работы с усилителем источник питания должен поддерживать два режима работы: стабилизации напряжения и ограничения по току. Такой источник при старте ограничивает ток в нагрузку, плавно заряжая емкости по питанию в схеме усилителя. Когда напряжение на емкостях достигает заданного уровня, источник переходит в режим стабилизации напряжения.

Для работы усилителя с любым источником питания в усилитель добавлена схема ограничения тока, реализованная на транзисторах Q3 и Q4.

Микросхеме усилителя требуется напряжение 12 В, понижающий преобразователь питания реализован на микросхеме LM2596HVS-ADJ (или LM2596HV-12), обратите внимание, что требуется применять высоковольтный вариант этой микросхемы, именно HV.

Напряжение 3.3 В получаем линейным стабилизатором LM1117-3.3 или ее аналогом.

Для управления вентилятором радиатора охлаждения реализована отдельная схема на терморезисторе Th2 10 кОм, операционном усилителе U1 и транзисторе Q6. Терморезистор начальным сопротивлением 10 кОм в корпусе 0603 размещен под микросхемой усилителя и косвенно измеряет температуру, исходя из этого, температуру включения вентилятора разумно выбрать в районе 45°C – 50°C , несмотря на то, что терморезисторы в таком типоразмере бывают с различными температурными коэффициентами, сопротивление этих резисторов уменьшается в два раза от начального в диапазоне температур от 40°C до 50°C В схеме я использую резистор R45 4,7 кОм для установки уровня срабатывания вентилятора, запаивая параллельный резистор R30 можно уменьшить сопротивление и тем увеличить температуру срабатывания. На операционном усилителе заведена положительная обратная связь для реализации гистерезиса на включение/отключение вентилятора.

Была мысль реализовать плавное включение вентилятора, пропорционально температуре. Сделать это можно либо плавно изменяя напряжение на вентиляторе, либо использовать вентилятор с входом PWM для управления оборотами. В случае с плавным изменением напряжения регулирующий транзистор придется ставить достаточно мощный и на нем будет рассеиваться мощность до трех ватт, что для любительского применения возможно, но вряд ли допустимо в серийном изделии на мой взгляд. Для варианта с регулировкой оборотов вентилятора через вход PWM необходим микроконтроллер, что для данного прототипа мне показалось избыточным, и требуется вентилятор с данным входом.

Охлаждение микросхемы усилителя. Сверху корпуса микросхемы расположена площадка для передачи тепла на радиатор, в отличии от микросхем у которых площадка расположена со стороны платы, такая схема отвода тепла позволяет сократить тепловое сопротивление между корпусом микросхемы и радиатором, тем самым понижая температуру и позволяя увеличить максимальную отдаваемую мощность. У производителя Texas Instruments есть варианты микросхем усилителей с площадкой со стороны платы с меньшей выходной мощностью. При ориентировочном КПД усилителя в 90%, при пиковой мощности, в радиаторе потребуется рассеять около 60 Вт.

Для охлаждения микросхемы заложено крепление штатного радиатора для процессоров Intel под сокет LGA1150/LGA1155/LGA1156. Для передачи тепла от микросхемы на радиатор используется дополнительная пластина.

На вход усилителя требуется подавать дифференциальный сигнал (балансный), это позволяет значительно сократить наводку синфазной помехи на сигнальный кабель.

Для ввода балансного сигнала в усилитель использован разъем профессиональной аудио аппаратуры типа XLR.

Балансный сигнал используется преимущественно в профессиональной звуковой аппаратуре, в других сферах довольно затруднительно найти источник дифференциального сигнала. Для подключения однопроводных источников сигнала в схеме реализована схема согласования на операционных усилителях U3, U4, U5.

Входной буфер на U3 обеспечивает высокое входное сопротивление усилителя и стабильные характеристики независимо от различных возможных источников звука. На входе реализован фильтр второго порядка для удаления из сигнала шумов выше звукового диапазона. Фильтр реализован на проходной емкости защитного супрессора VD2, резистора R27, конденсатора C33 и резистора R26. U3B включен инвертирующим усилителем с коэффициентом усиления равным единице, при необходимости им можно задать предварительное усиление.

На операционном усилителе U4 реализована классическая схема активного регулятора громкости профессиональной звуковой аппаратуры. Эта схема реализует логарифмическую функцию регулировки громкости от угла поворота переменного резистора линейного типа. Второй операционник U4B дополнительно усиливает сигнал в десять раз.

На операционном усилителе U5 реализовано формирование дифференциального сигнала для подачи на микросхему TPA3255.

Как и для большинства импульсных силовых микросхем трассировка печатной платы определяет характеристики и качество работы прибора в целом. Для платы усилителя следует применять стеклотекстолит FR-4 с медной фольгой двойной толщины (2 oz – двухунцевый стеклотекстолит).

Мне довольно трудно оценить насколько интересна тема разработки электроники читателям Хабра и насколько детально имеет смысл описывать устройство, конструкцию или принцип работы. Кроме того, так как при разработке данного проекта отсутствовало реальное техническое задание, то какие то аспекты могут показаться чрезмерными, а какие-то недостаточно проработанными. Если у вас возникло желание реализовать или встроить в свой прибор данный усилитель я готов внести изменения под реальные потребности.

Так же, если у вас есть предложения разработать какую-то плату или схему для публичного доступа, или совместной разработки, готов рассмотреть.

Проект схемы и платы в KiCAD можно найти здесь.

Внес мелкие корректировки в схему. Обновил репозитарий на github. В репозитарий добавил модели в LTspice симуляции схемы заряда емкостей питания и симуляции предусилителя. (LTspice успешно работает в Linux под wine)

Tda 8947 схема усилителя — Клуб строителей

Возможно, вам это будет интересно:

Постоянная ссылка на это сообщение: http://meandr.org/archives/36644

Добавить комментарий

Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Translation

Комментарии

  • redfern89 к записи Регулятор громкости и тембра на TDA7449 + Atmega8
  • baa к записи Цифровой измеритель остатка топлива и напряжения АКБ для автомобиля (ATMega8 и дисплей от Nokia 1110i)
  • rocks11 к записи Зарядное устройство для щелочных, NiCa, NiMH и Li-ion аккумуляторов
  • dda64 к записи Компактный High-end фонокорректор (в соответствии со стандартом RIAA)
  • sergmar76 к записи Автоматическое ЗУ на МК ATmega16A

Полезный совет

© Меандр – практическая электроника.
Копирование материалов сайта возможно только с указанием ссылки на первоисточник – сайт meandr.org

Создано с помощью автором Graphene Themes.

Микросхема TDA8944Jявляется двухканальным усилителем мощности ЗЧ с выходной мощностью 2*7 Вт при нагрузке 8 Омпри напряжении питания 12 В.

Напряжение питания микросхемы может быть от 6 до 18В, номинальное напряжение 12В. Коэффициент гармоник при выходной мощности 8Вт(на канал при Uпит=12В) не более 10%, коэффициент гармоник при выходной мощности 1Вт не белее 0,03%.

Типовая схема подключения

Стабилизированное питание положительно скажется на соотношении сигнал/шум. Для подавления ВЧ помех рекомендуется установить 100нФ конденсатор как можно ближе к выводу подачи питания микросхемы (3,16 выводы и общий провод). Так же необходимо установить конденсатор 1000мкФ или больше, для подавления НЧ помех (как нарисовано на плате).

http://www.semiconductors.philips.com. По материалам сайта rcl-radio.ru .

Смотрите также последние радиоэлектронные схемы

На ИМС TDA7050 можно собрать простой усилитель для наушников. Схема усилителя на TDA7050 практически не содержит внешних элементов, проста в сборке и в настройке не нуждается. Диапазон питания усилителя от 1,6 до 6 В (3-4 В рекомендуемое). Выходная мощность в стерео варианте 2*75 мВт и в мостовом варианте включения 150 мВт. Сопротивление нагрузки в стерео варианте усилителя […]

На рисунке показана схема простого преобразователя на ИМС LM2586. Основные характеристики DC-DC интегрального преобразователя LM2586: Входное напряжение от 4 до 40 В Выходное напряжение от 1,23 до 60 В Частота преобразования 75 … 125 кГц Собственный ток потребления не более 11 мА Максимальный выходной ток 3 А Схема содержит минимальный набор внешних элементов, ИМС LM2586 необходимо установить на […]

На рисунке показана схема усилителя собранного на ИМС LM2877. Усилитель имеет минимальное кол-во внешних элементов, после сборки в настройке не нуждается. Основные технические характеристики усилителя на LM2877: Напряжение питания 6 … 24 В (однополярное) или ±3 … 12 В (двухполярное) Выходная мощность 4 … 4,5 Вт на канал при напряжении питания 20 В и сопротивлении нагрузки 8 […]

Схема преобразователя основана на ИМС LT1070. Схема содержит минимальный набор внешних элементов, проста в сборке. Регулировка выходного напряжения осуществляется подбором сопротивлений R1 и R2. Дроссель L1 рекомендуемы по даташиту PE-92113 , но можно применить другой на номинальный ток 1А, индуктивностью 150 мкГн.Источник — lt1070ck.pdf

Интегральные микросхема STK082 проихзводства фирмы Sanyo выполнена в корпусе SIP10 и представляют собой усилитель мощности низкой частоты в гибридном исполнении. ИМС STK082 предназначена для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре высокого класса с двухполярным питанием. В микросхемах отсутствует защита выхода от короткого замыкания в нагрузке. Основные технические характеристики: Максимальное напряжение питания ± 43 […]

На рисунке показана схема простого усилителя с выходной мощностью 5,8 Вт на канал, усилитель основан на ИМС KA2211 (Samsung). Характеристики ИМС KA2211: Максимальное напряжение питания 25 В Номинальное напряжение питания 13,2 В Рекомендуемый диапазон питающего напряжения 10…18 В Выходная мощность 5,8 Вт на канал КНИ при Rн=4 Ом при максимальной мощности 5,8 Вт … 10 % […]

ИМС MAX4295 представляет собой аудиоусилитель класса D, что дает преимущество в плане энергопотребления при работе от аккумуляторных батарей, поэтому ИМС MAX4295 идеально подойдет для контроля скорости и направления вращения миниатюрных двигателей постоянного тока. На модифицированную схему усилителя ЗЧ вместо входного аудио сигнала подается постоянное напряжение с потенциометра R1. Полное сопротивление потенциометра соответствуют максимальным оборотам двигателя, середина […]

На рисунке показана схема простого усилителя класса АВ на ИМС TDA2002. Усилитель на ИМС TDA2002 имеет минимальный набор внешних элементов, после сборки в настройке не нуждается. TDA2002 имеет защиту от КЗ и тепловую защиту. При напряжении питания 16 В и нагрузке 2 Ом усилитель может достигать до 10 Вт выходной мощности. Напряжение питания может быть в пределах […]

ИМС L5970D — импульсный DC-DC преобразователь, используется в понижающих, повышающих и инвертирующих преобразователях с использованием минимального количества внешних элементов. Основные особенности преобразователя: входное напряжение от 4.4В до 36В; низкое потребление тока в отсутствие нагрузки; внутренняя схема ограничения выходного тока; выходной ток до 1А; функция отключения при перегреве микросхемы; выходное напряжение регулируется внешним делителем от 1.2В до […]

ИМС L4971 представляет собой импульсный понижающий стабилизатор напряжения, с регулируемым выходным напряжение от 3,3 В до 50 В, при входном от 8 В до 55 В. Максимальный ток нагрузки до 1,5А. Внутренняя структура микросхемы содержит источник опорного напряжения 3.3В, функцию изменения рабочей частоты переключений до 300 кГц, мощный силовой ключ в лице n-канального полевого транзистора, […]

Книги по электронике

Учебное пособие разработано на основе Федерального государственного образовательного стандарта среднего профессионального образования по профессии 13.01.10 “Электромонтер по ремонту и обслуживанию электрооборудования (по отраслям)”, укрупненная группа профессий 13.00.00 “Электро- и теплотехника”, входящей в список 50 наиболее востребованных на рынке труда, новых и перспективных профессий, требующих среднего профессионального образования.

Эта книга является логическим продолжением первой книги издательств “Ремонт и Сервис 21” и “СОЛОН-ПРЕСС” (серия РЕМОНТ, выпуск 93) по теме программного ремонта сотовых телефонов. В этом издании приводятся материалы по инженерному программированию и ремонту более 120 моделей телефонов SAMSUNG и около 100 – MOTOROLA.

“>

Adblock detector

TDA2030 Audio Amplifier, Datasheet, Pinout, Features & Applications


Привет, народ! Приветствую вас на борту. Рад тебя видеть. Сегодня в этом посте я подробно расскажу о введении в TDA2030. Это устройство включает в себя микросхему звукового усилителя TDA2030, которая выдает выходную мощность 18 Вт с низким уровнем гармонических искажений. Я предлагаю вам прочитать этот пост до конца, а я проведу вас через все Введение в TDA2030, охватывающее распиновку, техническое описание, функции и приложения. Приступим.

Введение в TDA2030
  • TDA2030 — это монолитная интегральная схема, которая поставляется в пентаваттном корпусе и в основном используется в качестве усилителя низкочастотного класса AB.
  • Аудиоусилитель — это базовая схема, используемая для усиления аудиосигнала, полученного через такое устройство, как микрофон.
  • Звуковые усилители широко используются во множестве приложений, включая Hi-Fi устройства, радиопередатчики, говорящие игрушки, домашние аудиосистемы, роботов, а также в качестве акустического оружия для военных целей.
  • Основное назначение усилителя — преобразовать электрический сигнал в акустический. Любая схема, содержащая аудиосигнал, содержит на выходе и входе усилитель звука.
  • TDA 2030 способен генерировать выходную мощность 14 Вт (d = 0,5%) при 14 В / 4 Ом при ± 14 В или 28 В, обеспечивая выходную мощность 8 Вт на 8 Ом и 12 Вт на нагрузке 4 Ом.
  • Этот модуль имеет широкий диапазон напряжения питания до 36 В.
  • Он работает от одиночного или раздельного источника питания и схемы защиты от коротких замыканий и обеспечивает тепловое отключение.
  • Настройки защиты от короткого замыкания автоматически ограничивают рассеиваемую мощность, сохраняя рабочую точку выходного транзистора в безопасном рабочем диапазоне.
  • TDA2030 обеспечивает высокий выходной ток и очень низкий уровень кроссовера и гармонических искажений.
  • Он также имеет встроенные клеммные колодки для динамиков и индикатор питания на борту, который указывает на работу этого устройства при подаче питания на этот модуль.
  • Это устройство обеспечивает диапазон температур хранения и перехода от -40 до 150 C.
  • Дифференциальное входное напряжение составляет + -15 В, пиковый выходной ток составляет 3,5 А, а рассеиваемая мощность составляет 20 Вт.

TDA2030 Лист данных Перед тем, как применить это устройство в своем проекте, целесообразно просмотреть техническое описание компонента, в котором указаны его основные характеристики. Щелкните ссылку ниже и загрузите техническое описание TDA2030.

TDA2030 Распиновка На следующем рисунке показана распиновка TDA2030.

TDA2030 Характеристики Аудиоусилитель обычно разрабатывается таким образом, что он принимает входной аудиосигнал низкой мощности и, как результат, выдает выходной сигнал с высоким значением мощности.Ниже приведены основные особенности TDA2030.
  • Содержит встроенный индикатор питания
  • Схема моноусилителя 18 Вт
  • Защита от короткого замыкания на массу
  • Диапазон рабочего напряжения = от 6 В до 12 В
  • Одиночный или раздельный источник питания
  • Основные выводы подведены к стандартному штыревому разъему
  • Встроенная микросхема усилителя звука TDA2030A
  • Поставляется со встроенным потенциометром 10K для регулировки громкости
  • Характеристики Встроенные клеммные колодки для динамика
  • Размер модуля = 32 x 24 мм
  • Широкодиапазонное напряжение питания, до 36 В
  • Тепловое отключение

TDA2030 Приложения Ниже приведены основные приложения TDA2030.
  • Используется в Hi-Fi устройствах
  • Передатчик радиоволн содержит усилитель звука
  • Используется в Говорящих игрушках
  • Используется в домашних аудиосистемах и роботах
  • Акустическое оружие для боевых действий
Это все о введении в TDA2030. Надеюсь, эта статья окажется для вас полезной. Если у вас есть какие-либо вопросы, вы можете оставить свой комментарий в разделе ниже. Я хотел бы помочь вам как можно лучше. Не стесняйтесь делиться своими ценными предложениями и отзывами о контенте, которым мы делимся, чтобы мы продолжали создавать качественный контент, адаптированный к вашим точным потребностям и требованиям.Спасибо, что прочитали пост.

TDA7265 Спецификация усилителя звука, распиновка, характеристики и применение


Привет, друзья! Надеюсь, ты сегодня здоров. Приветствую вас на борту. Сегодня в этом посте я расскажу вам о TDA7265. TDA7265 — это двойной стереоусилитель мощности звука класса AB мощностью 25 Вт + 25 Вт. Эта многоваттная ИС в корпусе тщательно разработана для высококачественных приложений по усилению мощности звука. Это устройство принимает низкий входной аудиосигнал и усиливает его до высококачественного аудиовыхода.Я предлагаю вам пристегнуться, поскольку я подробно расскажу о полном введении в TDA7265, включая техническое описание, распиновку, функции и приложения. Давайте сразу перейдем к делу. стереоусилитель мощности, который в основном используется в аудиоусилителях и усилителях с низкочастотными динамиками.
  • Это устройство получает аудиосигнал с низким входным сигналом и преобразует его в аудиосигнал с высокой выходной мощностью.
    • Эта микросхема имеет защиту от короткого замыкания на выходе и имеет вывод включения звука.
    • Для приведения этого устройства в рабочее состояние требуется всего несколько компонентов.
    • Общая рассеиваемая мощность составляет 30 Вт, что соответствует количеству энергии, выделяемой во время работы этого устройства.
    • Поставляется с диапазоном рабочего напряжения от ± 5 до ± 25 В. Диапазон рабочих температур от -20 ° C до + 85 ° C, диапазон температур хранения от -40 ° C до + 150 ° C

    TDA7265 Лист данных Прежде чем применять этот компонент в своем электрическом проекте, целесообразно просмотреть техническое описание устройства, в котором указаны основные характеристики компонента.Щелкните ссылку ниже и загрузите техническое описание TDA7265. Дополнительные конфигурации схемы доступны в техническом описании этого чипа. Вы можете использовать любую конфигурацию, чтобы привести этот чип в рабочее состояние.

    TDA7265 Распиновка TDA7265 имеет 11 контактов на устройстве. На следующем рисунке показана распиновка TDA7265, а в таблице ниже показаны названия контактов и описание каждого контакта на плате.

    TDA7265 Характеристики Ниже перечислены основные особенности TDA7265.
    • Поставляется с широким диапазоном рабочего напряжения
    • Доступен с высокой выходной мощностью: 25 + 25 Вт при RL = 8 Ом, Vs = ± 20 В
    • Характеристики защиты выхода от короткого замыкания
    • Поставляется со штырем включения отключения звука
    • Включает защиту от тепловой перегрузки
    • Несколько компонентов, необходимых для приведения усилителя в рабочее состояние
    • Функция ожидания (низкий Iq)
    • Общая рассеиваемая мощность = 30 Вт
    • Раздельное питание
    • Максимальное напряжение питания = ± 25 В
    • Диапазон рабочего напряжения = от ± 5 до ± 25 В
    • Повторяющийся ток, разрешенный через каждый выход Макс. = 4.5А
    • Температура хранения = от -40 ° C до + 150 ° C
    • Рабочая температура = от -20 ° C до + 85 ° C
    • Нет хлопка при включении / выключении

    TDA7265 Рабочий контур На следующем рисунке показана рабочая принципиальная схема TDA7265. Вам необходимо соединить компоненты, как показано на рисунке ниже. Это вернет ваш усилитель в рабочее состояние.
    • Для питания этой цепи используются два источника питания: один с отрицательным напряжением V-, а другой с положительным напряжением V +.
    • № пин. 11 этого чипа подается с входным аудиосигналом для канала B, и результирующий усиленный выходной сигнал слышен через правый динамик. Пока пин нет. 07 этого чипа выдается с входным аудиосигналом для канала A, и результирующий усиленный выходной сигнал слышен через левый динамик.
    • Источник положительного напряжения используется для питания микросхемы TDA7265, в то время как отдельный блок управления используется для переключения вывода отключения звука на низкий уровень. Два усиленных выхода работают как при работе с двумя источниками питания.

    TDA7265 Приложения TDA7265 используется в следующих приложениях.
    • Используется в стереотелевизорах
    • Используется в усилителях с низкочастотными динамиками
    • Используется в усилителях мощности звука
    • Используется в музыкальных проигрывателях
    • Используется в студенческих и хобби-проектах
    • Используется в гитарных усилителях
    • Используется в музыкальных центрах Hi-Fi
    Это все на сегодня. Надеюсь, вам понравилась эта статья. Если вы не уверены или у вас есть вопросы, вы можете задать их мне в разделе ниже.Я хотел бы помочь вам как можно лучше. Не стесняйтесь делиться своими ценными предложениями и отзывами о контенте, которым мы делимся, поэтому мы продолжаем создавать качественный контент, адаптированный к вашим точным потребностям и требованиям. Спасибо, что прочитали пост.


    JLCPCB — Прототип 10 печатных плат за 2 доллара (для любого цвета)

    Крупнейшее предприятие по производству прототипов печатных плат в Китае, более 600 000 клиентов и более 10 000 онлайн-заказов ежедневно
    Как получить купон на плату за печатную плату от JLCPCB: https://bit.ly/ 2GMCH9w

    TDA2050 Распиновка ИС усилителя звука, техническое описание, характеристики и аналоги

    TDA2050 — это усилитель звука Hi-Fi IC от ST Microelectronics с максимальной выходной мощностью 32 Вт.Он имеет высокое рабочее напряжение 50 В по сравнению с другим усилителем серии TDAxxxx ICS. Он обычно используется в аудиоусилителях класса AB и может передавать музыку мощностью до 50 Вт на динамик 4 Ом.

    Конфигурация контактов
    Описание штыря TDA7265
    Штырь No. Описание контакта Имя контакта
    1 К этому контакту подключен отрицательный источник питания -Vs
    2 Этот контакт принимает усиленный выход канала A ВЫХОД
    3 Положительный источник питания подключен к этому выводу + Vs
    4 Этот вывод принимает усиленный выход канала B ВЫХОД 2
    5 Этот вывод срабатывает на низком уровне для отключения аудиовыхода MUTE
    6 К этому контакту подключен отрицательный источник питания -Vs
    7 Неинвертирующий вход усилителя канала B IN + (2)
    8 Инвертирующий вход усилителя канала B IN- (2)
    9 Этот вывод подключен к земля GND
    10 Инвертирующий вход усилителя канала A IN- (1)
    11 Неинвертирующий вход усилителя канала A IN + (1)

    Номер контакта

    Имя контакта

    Описание

    1

    Неинвертирующий вход

    Неинвертирующий конец (+) усилителя

    2

    Инвертирующий вход

    Инвертирующий конец (-) усилителя

    3

    Земля

    Подключить к земле цепи

    4

    Выход

    Этот вывод выводит усиленный сигнал

    5

    Напряжение питания

    Напряжение питания, минимум 6 В и максимум 36 В

    Характеристики
    • Низкочастотный усилитель класса AB, наиболее подходящий для усиления звука
    • Обеспечивает выходную мощность до 50 Вт
    • Рабочее напряжение: от -25 В до + 25 В
    • Выход: 28 Вт с динамиком 4 Ом
    • Коэффициент усиления напряжения: 80 дБ
    • Отклонение напряжения питания: 45 дБ
    • Имеется тепловая защита и защита от короткого замыкания
    • Совместимость с макетными платами
    • Доступен в корпусе TO220 с 5 выводами

    Примечание: Полную техническую информацию можно найти в техническом описании IC TDA2050 , приведенном в конце этой страницы.

    Альтернатива TDA2050: TDA2030

    Прочие усилители звука: LM386, TDA1554, TDA2030, TDA7294, TDA7265, TDA7279, TDA2005

    Введение в TDA2003

    TDA2050 — усилитель общего назначения 32 Вт IC , который можно использовать в схемах стерео или моно аудио. Усилитель может выдавать ток до 5 А для управления динамиками без каких-либо повреждений. Он также может справляться с короткими замыканиями в шинах переменного и постоянного тока, не убивая себя.Он имеет рабочее напряжение ± 25 В, что позволяет ему работать как с одинарным, так и с двойным напряжением питания. Это делает его надежным для использования в автомобильной аудиотехнике.

    TDA2050 совместим с макетной платой и, следовательно, может быть легко протестирован на макетной плате. Ниже приведен пример схемы приложения для TDA2050. Таблица tda2050 , приведенная внизу этой страницы, содержит более подробную информацию об этой конструкции.

    TDA2050 — это 5-контактная микросхема усилителя.Выводы 5 и 3 используются для питания микросхемы усилителя, а аудиосигнал, который необходимо усилить, подается через вывод 1, который является неинвертирующим входом. Усиленный аудиовыход может быть получен через контакт 4. Значения компонентов, приведенные выше, являются значениями, рекомендованными производителями. Обратите внимание, что эта микросхема в настоящее время устарела и больше не производится, хотя вы можете найти несколько клонов, продаваемых на рынке разными производителями. Для новых разработок используются сменные ИС, такие как LM1875 от Texas Instruments.

    Приложения
    • Используется для усиления аудиосигнала
    • Подходит для усиления большой мощности
    • Возможность работы от двойного / раздельного источника питания
    • Может использоваться для каскадирования аудиоколонок

    Двухмерная модель (PDIP)

    TDA8947J Datasheet PDF — 4-канальный усилитель звука

    Номер детали: TDA8947J

    Функция: 4-канальный усилитель звука

    Корпус: пластик DIL-bent-SIL power 17 выводов

    Производитель: Philips Electronics

    Изображение:

    Описание:

    TDA8947J содержит четыре идентичных усилителя мощности звука.TDA8947J может использоваться в качестве: четырех несимметричных (SE) каналов с фиксированным усилением 26 дБ, двух каналов мостовой нагрузки (BTL) с фиксированным усилением 32 дБ или двух каналов SE (усиление 26 дБ) плюс один канал BTL (усиление 32 дБ), работающий как система 2.1

    Распиновка


    Текст:

    TDA8947J 4-канальный усилитель звука Ред. 02 — 16 июня 2005 г. Лист технических данных 1. Общее описание TDA8947J содержит четыре идентичных усилителя мощности звука. TDA8947J может использоваться как: четыре односторонних канала (SE) с фиксированным усилением 26 дБ, два канала с мостовой нагрузкой (BTL) с фиксированным усилением 32 дБ или два канала SE (усиление 26 дБ) плюс один канал BTL (усиление 32 дБ), работающий как 2.1 система TDA8947J поставляется в 17-выводном блоке питания Dil-Bent-Sil (DBS). TDA8947J совместим по выводам с TDA8944AJ и TDA8946AJ. TDA8947J содержит уникальную схему защиты, основанную исключительно на многократных измерениях температуры внутри микросхемы. Это дает максимальную выходную мощность для всех напряжений питания и условий нагрузки без лишних звуковых отверстий. Можно создать практически любую комбинацию напряжения питания и сопротивления нагрузки, если это позволяют тепловые граничные условия (количество используемых каналов, внешний радиатор и температура окружающей среды).2. Характеристики s SE: от 1 Вт до 25 Вт, BTL: возможность работы от 4 Вт до 50 Вт (система 2.1) s Мягкое ограничение s Режим ожидания и отключение звука s Отсутствие щелчков включения / выключения s Низкий ток ожидания s Подавление пульсаций высокого напряжения питания s Выходы защищены от короткого замыкания на землю, питание и нагрузку. s Термозащита. s Контакт, совместимый с TDA8944AJ и TDA8946AJ. 3. Приложения. . Краткие справочные данные Таблица 1: Обозначение VCC Iq Istb Po (SE) Po (BTL) THD Gv (max) SVRR Краткие справочные данные Параметр Условия Минимальное рабочее напряжение 9 Нет (ограничение) сигнала [1] — ток питания покоя VCC = 18 V; RL = ∞ ток питания в режиме ожидания — выходная мощность SE Выходная мощность BTL максимальное усиление гармонических искажений по напряжению THD = 10%; RL = 4 Ом VCC = 18 В VCC = 22 В THD = 10%; RL = 8 Ом VCC = 18 В VCC = 22 В SE; Po = 1 Вт BTL; Po = 1 Вт SE 7 — 16 25 BTL 31 Подавление пульсаций напряжения питания SE […]


    TDA8947J Datasheet PDF Скачать

    Другие листы данных в файле: TDA8947J

    Цепи усилителя

    TDA — Электросхема.com

    Интегральные схемы серии

    TDA очень хорошо оценены и используются в конструкциях и проектах усилителей. Схемы аудиоусилителей TDA обычно производятся Philips и SGS-THOMSON. Чаще всего используются микросхемы TDA2030 и TDA2003 для небольших комплектов усилителей звука и TDA7294 для усилителей большей мощности.
    В этой статье мы представляем некоторые типичные схемы усилителей со схемами TDA: автомобильные и домашние аудиоусилители с таблицами данных под каждой схемой.

    Перейти к главам:

    Цепи усилителя TDA2003

    TDA2003 — дешевый усилитель, предназначенный для работы от однорельсовых источников питания (униполярных).Он обеспечивает высокий выходной ток (до 3,5 А), очень низкий уровень гармонических и кроссоверных искажений.

    TDA2003 10 Вт автомобильный усилитель звука для радиоприемника

    Мостовой усилитель TDA2003 18 Вт

    TDA2003 может использоваться как BCL (мостовой усилитель) и обеспечивать мощность автомобиля до 18 Вт.

    Цепи усилителя TDA2005

    TDA2005 — двойной усилитель мощности звука класса B, специально разработанный для автомобильных радиоприемников. Его высокая токовая нагрузка (до 3.5 А) и способность управлять нагрузками с очень низким импедансом (до 1,6 Ом) делают эту схему хорошим выбором для дешевых усилителей мощности.

    TDA2005 стереоусилитель 2×10Вт

    Мостовой усилитель TDA2005 20 Вт

    Цепи усилителя TDA2030

    TDA2030 — монолитная интегральная схема в пентаваттном корпусе, предназначенная для использования в качестве усилителя низкой частоты класса AB. Обычно он обеспечивает выходную мощность 14 Вт (d = 0,5%) при 14 В / 4 Ом при ± 14 В или 28 В, гарантированная выходная мощность составляет 12 Вт на нагрузке 4 Ом и 8 Вт на нагрузке 8 Ом

    Схема усилителя TDA2030 20Вт

    TDA2030 Компоновка печатной платы


    TDA2030 Сборка

    TDA2030 Мостовой усилитель 35 Вт

    Схемы усилителя TDA2050

    TDA 2050 — это монолитная интегральная схема в корпусе Pentawatt, предназначенная для использования в качестве аудиоусилителя класса AB.Благодаря своей высокой мощности TDA2050 способен обеспечить до 35 Вт истинной среднеквадратичной мощности при нагрузке 4 Ом при THD = 10%, VS = ± 18 В, f = 1 кГц и до 32 Вт при нагрузке 8 Ом при THD = 10%, VS = ± 22 В, f = 1 кГц. Более того, TDA 2050 обычно обеспечивает музыкальную мощность 50 Вт при нагрузке 4 Ом в течение 1 секунды при VS = 22,5 В, f = 1 кГц.

    Усилитель TDA2050 35Вт

    tda2050 лист данных

    TDA7294 схемы усилителя

    TDA7294 — это монолитная интегральная схема в корпусе Multiwatt15 с высокой выходной мощностью (до 100 Вт), предназначенная для использования в качестве усилителя аудио класса AB в полевых устройствах Hi-Fi (домашняя стереосистема, динамики с автономным питанием, Topclass TV).Благодаря широкому диапазону напряжений и возможности высокого выходного тока он способен подавать самую высокую мощность как на нагрузки 4 Вт, так и на 8 Вт даже при плохой регулировке питания с подавлением высокого напряжения питания.

    TDA7294 усилитель 100Вт

    TDA7294 Компоновка печатной платы


    TDA7294 Сборка

    TDA7294 мостовой усилитель 250 Вт

    % PDF-1.3 % 1 0 объект > поток конечный поток эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > / Родительский 3 0 R / Содержание [35 0 R] / Тип / Страница / Ресурсы> / ProcSet [/ PDF / Text / ImageC] / Шрифт >>> / MediaBox [0 0 595.27563 841.88977] / BleedBox [0 0 595.27563 841.88977] / Аннотации [39 0 R 40 0 ​​R] >> эндобдж 35 0 объект > поток xK $ |

    % PDF-1.3 % 1 0 объект > поток конечный поток эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > / Родительский 3 0 R / Содержание [21 0 R] / Тип / Страница / Ресурсы> / ProcSet [/ PDF / Text / ImageC] / Шрифт >>> / MediaBox [0 0 595.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *