Главные схемы электростанций и подстанций
Електроенергетика мережi, обладнання
- Деталі
- Категорія: Навчання
- генерація
- схеми
- КРП
- навчання
Зміст статті
- Главные схемы электростанций и подстанций
- Главные схемы ТЭЦ
- Главные схемы подстанции
Сторінка 1 із 3
1. Виды схем и их назначение
Главная схема электрических соединений электростанции (подстанции) — это совокупность основного электрооборудования (генераторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями.
Выбор главной схемы является определяющим при проектировании электрической части электростанции (подстанции), так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собственных нужд, схем вторичных соединений, монтажных схем и т. д.
На чертеже главные схемы изображаются в однолинейном исполнении при отключенном положении всех элементов установки. В некоторых случаях допускается изображать отдельные элементы схемы в рабочем положении.
Рис. 1. Виды схем (на примере подстанции 110/10 кВ)
Все элементы схемы и связи между ними изображаются в соответствии со стандартами единой системы конструкторской документации (ЕСКД).
В условиях эксплуатации, наряду с принципиальной, главной схемой, применяются упрощенные оперативные схемы, в которых указывается только основное оборудование. Дежурный персонал каждой смены заполняет оперативную схему и вносит в нее необходимые изменения в части положения выключателей и разъединителей, происходящие во время дежурства.
При проектировании электроустановки до разработки главной схемы составляется структурная схема выдачи электроэнергии (мощности), на которой показываются основные функциональные части электроустановки (распределительные устройства, трансформаторы, генераторы) и связи между ними. Структурные схемы служат для дальнейшей разработки более подробных и полных принципиальных схем, а также для общего ознакомления с работой электроустановки.
На рис. 1,б показана главная схема этой же подстанции без некоторых аппаратов — трансформаторов тока, напряжения, разрядников. Такая схема является упрощенной принципиальной схемой электрических соединений. На полной принципиальной схеме (рис.1, в) указывают все аппараты первичной цепи, заземляющие ножи разъединителей и отделителей, указывают также типы применяемых аппаратов.
В 1-й части записывают одну или несколько букв латинского алфавита (буквенные коды для элементов электрических схем приведены в таблице приложения к лекции 1), во 2-й части — одну или несколько арабских цифр, характеризующих порядковый номер элемента. Например, QS1 — разъединитель №1, Q2 — выключатель № 2; QB —
2. Основные требования к главным схемам электроустановок
При выборе схем электроустановок должны учитываться следующие факторы:
1) значение и роль электростанции или подстанции для энергосистемы.
Электростанции, работающие параллельно в энергосистеме, существенно различаются по своему назначению. Одни из них, базисные, несут основную нагрузку, другие, пиковые, работают неполные сутки во время максимальных нагрузок, третьи несут электрическую нагрузку, определяемую их тепловыми потребителями (ТЭЦ). Разное назначение электростанций определяет целесообразность применения разных схем электрических соединений даже в том случае, когда количество присоединений одно и то же.
2) положение электростанции или подстанции в энергосистеме, схемы и напряжения прилегающих сетей. Шины высшего напряжения электростанций и подстанций могут быть узловыми точками энергосистемы, осуществляя объединение на параллельную работу нескольких электростанций. В этом случае через шины происходит переток мощности из одной части энергосистемы в другую — транзит мощности. При выборе схем таких электроустановок в первую очередь учитывается необходимость сохранения транзита мощности.
Схемы распредустройств 6—10 кВ зависят от схем электроснабжения потребителей: питание по одиночным или параллельным линиям, наличие резервных вводов у потребителей и т. п.;
3) категория потребителей по степени надежности электроснабжения. Все потребители с точки зрения надежности электроснабжения разделяю на три категории.
Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего оборудования.
Для электроснабжения особой группы электроприемников I категории предусматривается дополнительное питание от третьего независимого источника питания. Независимыми источниками питания могут быть местные электростанции, электростанции энергосистем, специальные агрегаты бесперебойного питания, аккумуляторные батареи и т. п.
Электроприемники II категории — электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.
Допускается питание электроприемников II категории по одной воздушной линии, если обеспечена возможность проведения аварийного ремонта этой линии за время не более 1 суток. Допускается питание по одной кабельной линии, состоящей не менее чем из двух кабелей, присоединенных к одному общему аппарату. При наличии централизованного резерва трансформаторов и возможности замены повредившегося трансформатора за время не более 1 суток допускается питание от одного трансформатора.
4) перспектива расширения и промежуточные этапы развития электростанции, подстанции и прилегающего участка сети. Схема и компоновка распределительного устройства должны выбираться с учетом возможного увеличения количества присоединений при развитии энергосистемы. Поскольку строительство крупных электростанций ведется очередями, то при выборе схемы электроустановки учитывается количество агрегатов и линий вводимых в первую, вторую, третью очереди и при окончательном развитии ее.
Для выбора схемы подстанции важно учесть количество линий высшего и среднего напряжения, степень их ответственности, а поэтому на различных этапах развития энергосистемы схема подстанции может быть разной.
Поэтапное развитие схемы распределительного устройства электростанции или подстанции не должно сопровождаться коренными переделками. Это возможно лишь в том случае, когда при выборе схемы учитываются перспективы ее развития.
При выборе схем электроустановок учитывается допустимый уровень токов КЗ. При необходимости решаются вопросы секционирования сетей, деления электроустановки на независимо работающие части, установки специальных токоограничивающих устройств. Из сложного комплекса предъявляемых условий, влияющих на выбор главной схемы электроустановки, можно выделить основные требования к схемам:
1) надежность электроснабжения потребителей;
2) приспособленность к проведению ремонтных работ;
3) оперативная гибкость электрической схемы;
4) экономическая целесообразность.
Надежность — свойство электроустановки, участка электрической сети или энергосистемы в целом обеспечить бесперебойное электроснабжение потребителей электроэнергией нормированного качества. Повреждение электрооборудования в любой части схемы по возможности не должно нарушать электроснабжение, выдачу электроэнергии в энергосистему, транзит мощности через шины. Надежность схемы должна соответствовать характеру (категории) потребителей, получающих питание от данной электроустановки.
Надежность можно оценить частотой и продолжительностью нарушения электроснабжения потребителей и относительным аварийным резервом, который необходим для обеспечения заданного уровня безаварийной работы энергосистемы и ее отдельных узлов.
Приспособленность электроустановки к проведению ремонтов определяется возможностью проведения ремонтов без нарушения или ограничения электроснабжения потребителей. Есть схемы, в которых для ремонта выключателя надо отключать данное присоединение на все время ремонта, в других схемах требуется лишь временное отключение отдельных присоединений для создания специальной ремонтной схемы; в-третьих, ремонт выключателя производится без нарушения электроснабжения даже на короткий срок. Таким образом, приспособленность для проведения ремонтов рассматриваемой схемы можно оценить количественно частотой и средней продолжительностью отключений потребителей и источников питания для ремонтов оборудования.
Оперативная гибкость электрической схемы определяется ее приспособленностью для создания необходимых эксплуатационных режимов и проведения оперативных переключений.
Наибольшая оперативная гибкость схемы обеспечивается, если оперативные переключения в ней производятся выключателями или другими коммутационными аппаратами с дистанционным приводом. Если все операции осуществляются дистанционно, а еще лучше средствами автоматики, то ликвидация аварийного состояния значительно ускоряется.
Оперативная гибкость оценивается количеством, сложностью и продолжительностью оперативных переключений.
Экономическая целесообразность схемы оценивается приведенными затратами, включающими в себя затраты на сооружение установки ~ капиталовложения, ее эксплуатацию и возможный ущерб от нарушения электроснабжения. Подробно методика подсчета приведенных затрат изложена ниже.
3. Структурные схемы электростанций и подстанций
Структурная электрическая схема зависит от состава оборудования (числа генераторов, трансформаторов), распределения генераторов и нагрузки между распределительными устройствами (РУ) разного напряжения и связи между этими РУ.
На рис. 2 показаны структурные схемы ТЭЦ. Если ТЭЦ сооружается вблизи потребителей электроэнергии U = 6 — 10 кВ, то необходимо иметь распределительное устройство генераторного напряжения (ГРУ). Количество генераторов, присоединяемых к ГРУ, зависит от нагрузки 6—10 кВ. На рис. (2, а) два генератора присоединены к ГРУ, а один, как правило, более мощный,—к распределительному устройству высокого напряжения (РУ ВН). Линии 110—220 кВ, присоединенные к этому РУ, осуществляют связь с энергосистемой.
Если вблизи ТЭЦ предусматривается сооружение энергоемких производств, то питание их может осуществляться по ВЛ 35—110 кВ. В этом случае на ТЭЦ предусматривается распределительное устройство среднего напряжения (РУ СН) (рис. 2, б). Связь между РУ разного напряжения осуществляется с помощью трехобмоточных трансформаторов или автотрансформаторов.
При незначительной нагрузке (6 —10 кВ) целесообразно блочное соединение генераторов с повышающими трансформаторами без поперечной связи на генераторном напряжении, что уменьшает токи КЗ и позволяет вместо дорогостоящего ГРУ применить комплектное РУ для присоединения потребителей 6—10 кВ (рис. 2, б). Мощные энергоблоки 100—250 МВт присоединяются к РУ ВН без отпайки для питания потребителей. Современные мощные ТЭЦ обычно имеют блочную схему.
На рис. 3 показаны структурные схемы электростанций с преимущественным распределением электроэнергии на повышенном напряжении (КЭС, ГЭС, АЭС). Отсутствие потребителей вблизи таких электростанций позволяет отказаться от ГРУ. Все генераторы соединяются в блоки с повышающими трансформаторами. Параллельная работа блоков осуществляется на высоком напряжении, где предусматривается распределительное устройство (рис. 3, а).
Рис. 2. Структурные схемы ТЭЦ
Рис. 3. Структурные схемы КЭС, ГЭС, АЭС
Рис. 4. Структурные схемы подстанций
Если электроэнергия выдается на высшем и среднем напряжении, то связь между РУ осуществляется автотрансформатором связи (рис. 3,6)
- Наступна
- Попередня
- Наступна
Близьки публікації
- Подстанции систем электроснабжения
- Схемы электроснабжения городов
- Схемы электроснабжения промышленных предприятий
- Основное оборудование электрических станций и подстанций
- Главные схемы электрических соединений подстанций
Copyright © 2007 — 2022 Електроенергетика При цитуванні — посилання є обов`язковим (в інтернеті — активне гіперпосилання).
Наверх
Главная электрическая схема — Большая Энциклопедия Нефти и Газа, статья, страница 2
Cтраница 2
Рациональное проектирование сетевых ПС всех типов и категорий и, в частности, рациональное и экономичное построение главных электрических схем, выбор параметров оборудования и аппаратуры, а также оптимальная их расстановка представляют сложную и ответственную задачу. [16]
Основным узловым вопросом, оптимальное решение которого определяет все свойства, особенности и техническую характеристику ПС, является главная электрическая схема. При этом под главной электрической схемой не следует понимать просто начертание электрических связей, присоединений и цепей. [17]
Информационные функции, выполняемые АСУ ТП на крупных системообразующих подстанциях, в основном аналогичны функциям, выполняемым системами по главной электрической схеме электростанций. [18]
Так как в ремонтных режимах значительно снижается уровень надежности работы электростанций, ПТЭ требуют, чтобы все ремонтные схемы, связанные с выводом основного оборудования и элементов главной электрической схемы в ремонт, специально разрабатывались и утверждались руководством энергопредприятия. [19]
Условные обозначения электрических схем. [20] |
На рис. 1 — 9 приведена принципиальная тепловая схема энергетического блока мощностью 300 тыс. кет — основного блока, сооружаемого в течение пятилетия 1966 — 1970 гг. На рис. 1 — 10 изображена главная электрическая схема ГРЭС мощностью 1200 Мет, а на рис. 1 — 11 — главная схема электрических соединений ТЭЦ-400 на рис. 1 — 12 — условные обозначения. [21]
Электротехническая часть станции характеризуется не только параметрами ее элементов, но и схемой их соединения. Различают главную электрическую схему ( определение см. в § 1.5) и электрическую схему собственных нужд станции. Однако выделение последней из общей схемы электрических соединений условно; поскольку источниками энергии для электроснабжения собственных нужд являются генераторы станции и энергосистема, то схема собственных нужд должна быть органически увязана с главной электрической схемой. Особенно ярко эта связь проявляется для пиковых и полупиковых электростанций. [22]
При управлении технологическим процессом электростанции возникает необходимость дискретного воздействия ( закрыть, открыть, включить, отключить) на исполнительные органы. В главной электрической схеме такими органами являются приводы выключателей, установленных в цепях генераторов, трансформаторов, линий; в системе собственных йужд — приводы ( электродвигатели) рабочих машин и запорно-регу-лирующей арматуры. Включение и отключение электродвигателей осуществляется коммутационными аппаратами — выключателями, магнитными пускателями, контакторами. [23]
Основным узловым вопросом, оптимальное решение которого определяет все свойства, особенности и техническую характеристику ПС, является главная электрическая схема. При этом под главной электрической схемой не следует понимать просто начертание электрических связей, присоединений и цепей. [24]
Схема электроснабжения системы с. н. КЭС. [25] |
Поскольку тепловая схема и главная электрическая схема КЭС построены по блочному принципу без поперечных связей, то и схему системы с. Это означает, что для электроснабжения системы с. [26]
Последовательность их изложения примерно соответствует порядку, принятому в настоящее время в проектных институтах. Здесь освещается методика проектирования главной электрической схемы ( гл. [27]
Система относится к категории САПР низшего уровня и предназначена для проектирования электроустановки с. Функциональные связи с теплотехнической подсистемой и подсистемой главной электрической схемы нашли отражение во входной ( переменной) информации. [28]
Двадцатичетырехфазная схема преобразовательного блока с фазоповоротным трансформатором. Т1 Т2 — преобразовательные трансформаторы. ТЗ — фазоповоротный. [29] |
Рассмотрим некоторые схемные решения преобразовательных подстанций, позволяющие реализовать вьщачу мощности от приливных электростанций и использовать особенности работы гидротурбин с изменяемой частотой вращения. На рис. 4.12, как вариант решения, показана главная электрическая схема с двойной трансформацией и 12-фазными преобразователями. Основным достоинством этой схемы является симметричность режима при аварийных отключениях отдельных групп агрегатов. [30]
Страницы: 1 2 3
4 Выбор главной схемы соединений пс
Главная схема электрических соединений определяет основные качества электрической части подстанций: надежность, экономичность, ремонтопригодность, безопасность обслуживания, удобство эксплуатации, удобство размещения электрооборудования, а также возможность дальнейшего расширения.
В большинстве случаев выбор схемы базируется на технико-экономических расчетах. А для подстанций с двумя напряжениями схема определяется однозначно, и ее проектирование сводится к выбору уже существующих типовых схем – это упрощенные, с сокращенным числом выключателей или без них (блочные схемы), схемы мостиков, схемы с короткозамыкателями и отделителями.
В соответствии с нормами технологического проектирования главная схема электрических соединений подстанции выбирается с использованием схем РУ 35…750 кВ, утвержденных Минэнерго и согласованных с Госстроем.
Для дальнейшего проектирования выбрана блочная схема с двумя перемычками на разъединителях, на подстанции установлены 2 силовых трансформатора типа ТД-16000/35.
Со стороны высшего напряжения для обеспечения надежности и безопасности установлены высоковольтные выключатели и разъединители. Также предусмотрена установка трансформаторов тока с амперметрами.
Со стороны низшего напряжения также установлены высоковольтные выключатели, разъединители. Помимо них установлены предохранители. Схема предполагает выбор трансформаторов тока и напряжения с измерительными приборами и счетчиками энергии. На станции устанавливаются 2 трансформатора собственных нужд.
На каждом фидере предусмотрен высоковольтный выключатель, трансформатор тока с амперметром и счетчиками энергии.
Схема изображена на рисунке 4.1.
Рисунок 4.1 – Главная схема соединений ПС 35/10 кВ
5 Расчет токов короткого замыкания
Расчет токов КЗ производится для выбора (проверки) электрических аппаратов, шин, кабелей и изоляторов в аварийном режиме, выбора средств ограничения токов КЗ (ректоров), а также проектирования и настройки устройств релейной защиты и автоматики. Расчетное время КЗ t расч, согласно ПУЭ, оценивают в зависимости от цели расчета. При проверке электрооборудования на термическую стойкость t расч принимается равным сумме времени действия основной защиты ближайшего выключателя и полного времени отключения этого выключателя:
(5.1)
где
С учетом действительных характеристик современных выключателей, получим расчетное время КЗ 0,1 с. Для заданной схемы сетевого района составляется однолинейная схема замещения, в которую вводятся все источники питания, участвующие в питании места КЗ, и все элементы электроснабжения (трансформаторы, воздушные и кабельные линии, реакторы), расположенные между ними и местом КЗ. При этом элементы связей заменяют соответствующими сопротивлениями в относительных единицах с указанием порядковых номеров индуктивных сопротивлений и их величин, приведенных к базисной мощности.
5.1 Расчёт короткого замыкания на шинах высшего напряжения
Составим схему замещения для расчёта трёхфазного КЗ на шинах ВН ПС (рисунок 5.1 ).
Sб=100 МВА, Uб1=115 кВ, Uб2=37 кВ.
С1:(5.1)
(5.2)
(5.3)
(5.4)
(5.5)
(5.6)
(5.7)
(5.8)
(5.9)
(5.10)
(5.11)
(5.12)
(5. 13)
(5.14)
(5.15)
(5.16)
(5.17)
(5.18)
Рисунок 5.1 – схема замещения
Эквивалентируем схему замещения (рисунок 5.1), тогда для рисунка 5.2 получим:
(5.19)
(5.20)
(5.21)
(5.22)
(5.23)
(5.24)
Рисунок 5.2 – схема замещения
Замещения (рисунок 5.2), тогда для рисунка 5.3 получим:
(5.25)
(5.26)
(5. 27)
(5.28)
(+0,07=0,81 т.к. демпферные обмотки) (5.29)
Для С-1: (5.30)
Для Gэкв: (по расчётным кривым из [10]);.
Рисунок 5.3 – схема замещения
Переведём в номинальные единицы:
(5.31)
(5.32)
Ударный ток
(5.33)
Куд=1,8; Та=0,042 с. Данные из [2].
Апериодическая составляющая тока КЗ.
(5.34)
Результаты расчёта сведены в таблицу 5. 1
5.2 Расчёт короткого замыкания на шинах низшего напряжения
Рисунок 5.4 – схема замещения
В силу особенности схемы РУ НН, схема замещения, учитывая предыдущее эквивалентирование, примет вид как на рисунке 5.4. Эквивалентируем схему замещения (рисунок 5.4), тогда для рисунка 5.5 получим:
Рисунок 5.5 – Схема замещения
(5.34)
(5.35)
Для С-1: ;
Для Gэкв: (по расчётным кривым из [10] );.
Ударный ток
Апериодическая составляющая тока КЗ.
Результаты расчёта сведены в таблицу 5.1
Таблица 5.1 — Результаты расчёта токов короткого замыкания
Расположение точки КЗ | Iп, кА | iа,Т=0,1с,кА | i(3)у,кА | |||
t=0 с. | t=0,1 с. | |||||
На шинах ВН | 1,885 | 1,783 | 0,63 | 4,8 | ||
На шинах НН | 3,02 | 2,87 | 1,01 | 7,69 |
Значения токов короткого замыкания, полученные в результате расчёта, являются относительно небольшими, по сравнению с токами на которые рассчитаны вакуумные и элегазовые выключатели, поэтому при подборе соответствующего оборудования не возникнет препятствий. Применение секционирования шин РУ НН, а также силовых трансформаторов с расщеплённой обмоткой достаточно.
6 Выбор шин, аппаратов и изоляторов
Основная электрическая схема: теория, компоненты, работа, схема
Хотите создать сайт? Найдите бесплатные темы и плагины WordPress.
Основная электрическая цепь состоит из трех основных компонентов , источника напряжения , нагрузки и проводников . На рисунке 1 показана базовая схема. Эта схема состоит из батареи в качестве источника электроэнергии, лампы в качестве электрической нагрузки и двух проводов в качестве проводников, соединяющих батарею с лампой.
Аккумулятор
В источнике этой цепи, аккумуляторе, происходит химическая реакция, которая приводит к ионизации. Эта ионизация производит избыток электронов (отрицательный заряд) и истощение электронов (положительный заряд).
Рис. 1. Базовая электрическая цепь (схема) состоит из трех основных компонентов: источника, нагрузки и проводников.
Аккумулятор имеет две клеммы. Эти клеммы являются точками соединения двух проводников. Одна клемма отмечена знаком плюс (+), а другая знаком минус (–). Эти две маркировки называются маркировкой полярности.
Не все электрические устройства имеют маркировку полярности. Однако, если полярность имеет решающее значение, она будет отмечена на устройстве. Необходимо соблюдать правильную полярность, чтобы избежать повреждения оборудования и/или персонала.
Нагрузка
Нагрузка создается, когда электрическая энергия, вырабатываемая в цепи, преобразуется в какую-либо другую форму энергии, такую как тепло, свет или магнетизм. Нагрузкой в простой электрической цепи на рис. 1 является лампа, излучающая свет.
Источник и нагрузка должны соответствовать номинальному напряжению. Если лампа рассчитана на 6 вольт, то и аккумулятор должен быть рассчитан на 6 вольт.
Если батарея рассчитана на более низкое номинальное напряжение, лампа будет тусклой или не загорится. Если батарея рассчитана на гораздо более высокое напряжение, лампа будет повреждена из-за избыточной электрической энергии.
Проводник
Проводники, которые мы используем, представляют собой два медных провода, покрытых пластиковым изоляционным покрытием. Медный провод обеспечивает путь, по которому может течь электрическая энергия, в то время как пластиковое покрытие ограничивает передачу электрической энергии медному проводу. Это делает путь проводника безопасным для персонала.
Это завершает описание основных компонентов электрической цепи, в которой электрическая энергия передается по электрическим проводникам через устройство, где она затем преобразуется в какую-либо полезную форму.
Напряжение
Ионизация может быть вызвана такими силами, как тепло, свет, магнетизм, химическое воздействие или механическое давление. Это приводит к созданию электрического напряжения.
Что такое напряжение? Напряжение — это сила потока электронов. В только что описанной простой электрической цепи источником электрической энергии была батарея. Этот аккумулятор рассчитан на 6 вольт.
Вольт (В) — это электрическая единица, используемая для выражения количества присутствующего электрического давления или количества электрической силы, возникающей в результате химического действия внутри батареи.
Термин «напряжение» используется для выражения количества электрической силы почти так же, как мы используем лошадиные силы для выражения количества механической силы для автомобиля.
Электрическое давление или напряжение также могут быть выражены как потенциал, разность потенциалов или как электродвижущая сила (ЭДС). Для наших целей эти термины означают одно и то же. Напряжение обычно обозначается заглавной буквой E или V.
Ток
Электрический ток — это поток электронов. Количество электронов, протекающих мимо любой заданной точки за одну секунду, измеряется в электрической единице ампер (А).
Ампер обозначается буквой I. Помните, что кулон — это количество электронов.
Ампер характеризует скорость потока электронов, проходящего мимо любой данной точки цепи. Один ампер равен одному кулону заряда, протекающего мимо точки за одну секунду.
Сравните воздушный шар, наполненный воздухом, с электрической батареей. На рисунке 2 количество молекул воздуха в воздушном шаре представляет собой количество электронов или кулонов. Величина давления воздуха внутри воздушного шара выражается в фунтах на квадратный дюйм (PSI) давления воздуха.
В батарее величина электрического давления внутри батареи выражается как номинальное напряжение батареи.
Скорость потока воздуха из воздушного шара аналогична потоку электронов, или току, из батареи. Ток от батареи в электрической цепи представляет собой объем потока электронов, проходящий через данную точку, и измеряется в амперах или амперах.
Так же, как воздух будет продолжать выходить из шара, пока шар не опустеет, поток электронов может продолжаться до тех пор, пока в батарее присутствует напряжение или электрическое давление.
Рис. 2. Баллон похож на источник электричества. Воздух, выходящий из воздушного шара, подобен электронам, вытекающим из источника.
Сопротивление
Все электрические цепи имеют сопротивление. Сопротивление — это сопротивление потоку электронов. Сопротивление измеряется в омах, а электрический символ ома — Ω (греческая буква омега).
Значения сопротивления элементов и соединений различаются в зависимости от атомной структуры материала.
Хороший проводник электричества — это все, что допускает свободный поток электронов. плохой проводник электричества представляет собой материал, который не допускает свободного потока электронов. Очень плохие проводники называются изоляторами.
Полупроводник — это материал, ограничивающий поток свободных электронов. Полупроводник не считается ни хорошим проводником, ни плохим проводником электричества. Полупроводниковые материалы лежат в основе современных электронных приложений. Некоторые примеры проводников и изоляторов перечислены на рис. 3.9.0003
Рисунок 3. Общие проводники и изоляторы
Обратите внимание, что земля может быть хорошим проводником электричества. Есть много факторов, которые определяют, будет ли земля хорошим проводником.
Электропроводность земли в первую очередь зависит от ее органического состава и минералов, содержащихся в почве в любом данном месте.
Количество влаги в почве также определяет величину сопротивления почвы. Влага может повлиять на электропроводность многих материалов. Это может даже заставить изолятор стать хорошим проводником.
Возьмем в качестве примера дерево. Когда древесина сухая, она классифицируется как изолятор, но когда древесина становится влажной или влажной, она ведет себя скорее как полупроводник.
Именно внешнее кольцо атома определяет, является ли элемент хорошим или плохим проводником. Если во внешнем кольце есть только один электрон, этот электрон может быть довольно легко освобожден от своей орбиты внешней силой.
Если на внешней орбите много электронов, электроны крепче удерживаются на орбите. Их труднее освободить от атома. Элементы, которые не отдают легко электрон, изоляторы .
На рис. 4 показан атом меди. Обратите внимание, что у этого атома только один электрон на внешней орбите. Этот электрон может быть легко освобожден внешней силой. Медь является отличным проводником электричества.
Рисунок 4. Медный элемент является отличным проводником. У него только один электрон на внешней орбите. Этот электрон может быть легко сброшен со своей орбиты внешней силой.
- Вы также можете прочитать: разница между проводником, полупроводником и изолятором
Существует два типа электрического тока: постоянный (постоянный ток) и переменный (переменный ток). Разница между этими токами заключается в том, как они протекают по электрической цепи.
Постоянный ток протекает только в одном направлении через электрическую цепь. Примером постоянного тока является стандартная батарея. Батарея имеет установленную полярность (положительные и отрицательные клеммы) и производит электрический ток только в одном направлении.
С другой стороны, переменный ток , как следует из его названия, течет в обоих направлениях. Сначала он течет в одном направлении, а затем меняет свое течение на противоположное. См. рис. 5.
Рис. 5. Постоянный ток течет в одном направлении, в то время как переменный ток постоянно меняет направление.
В переменном токе нет маркировки положительной или отрицательной полярности, потому что полярность меняется очень быстро в типичной электрической цепи переменного тока.
Термины «период» и «герц» используются для описания того, насколько быстро ток меняется или меняет направление в цепи.
Обычный поток тока против теории потока электроновЦепь переменного тока с частотой 60 циклов (работающая на частоте 60 Гц) меняет направление 120 раз в секунду. Это стандарт для переменного тока в США.
Приблизительно 200 лет назад ученые предположили, что электричество имеет как положительную, так и отрицательную полярность. В то время они произвольно решили, что электрический ток течет от плюса к минусу. Хотя на самом деле это никогда не было доказано как факт, эта теория была принята в течение довольно долгого времени. Эта теория известна как обычная теория течения .
По мере развития наших научных знаний и открытия атомной и полупроводниковой электроники стало очевидно, что традиционная теория протекания тока неверна. Общепризнанно, что на самом деле движутся электроны, перетекая от отрицательного к положительному, а не от положительного к отрицательному. Эта более новая теория известна как теория потока электронов .
- Вы также можете прочитать: Разница между переменным и постоянным током
Появление этой новой теории вызвало споры, которые продолжаются до сих пор. На протяжении более 150 лет все схемы были основаны на старой традиционной теории протекания тока.
Многие схемы и устройства, используемые до сих пор, основаны на традиционной теории. Независимо от того, какая теория используется для объяснения явлений электроники, наиболее важным моментом является то, что при построении схем с устройствами, требующими определенной полярности, необходимо соблюдать правильную полярность. См. рис. 6.
Рис. 6. Теория потока электронов и традиционная теория течения.
Последовательное и параллельное соединениеСуществует два способа соединения компонента в электрическую цепь: последовательное или параллельное . Рисунок 7 и Рисунок 8 иллюстрируют два типа соединений.
Схема на рис. 7 состоит из трех ламп, подключенных к батарее. В этой цепи есть только один путь, по которому могут течь электроны.
Когда электронам нужно следовать только по одному пути, такая цепь называется последовательной. Говорят, что лампы соединены последовательно по отношению друг к другу.
Рис. 7. Три лампы, соединенные последовательно.
Рисунок 8. Три лампы, соединенные параллельно
На рисунке 8 три лампы соединены параллельно. В этой цепи есть три разных пути, по которым электроны следуют от клеммы батареи к клемме батареи.
Вы нашли apk для Android? Вы можете найти новые бесплатные игры и приложения для Android.
Внутри главного электрощита
Любой ремонт электрооборудования в вашем доме включает в себя отключение питания в цепи, над которой вы будете работать, и вы делаете это на главном электрощите. Вы можете знать сервисную панель как блок выключателя , в то время как в торговле она официально называется центром нагрузки.
Главный сервисный щит похож на распределительный щит для всего электричества в доме. Он получает входящую мощность от коммунальной компании и распределяет ее по каждой из цепей, питающих различные источники света, розетки, приборы и другие устройства по всему дому. Все, кроме входящего сетевого питания, может быть отключено и включено на главной сервисной панели.
За панельной дверью
Сервисная панель представляет собой стальной ящик с откидной дверцей или подъемной панелью спереди. Открыв дверь, вы можете получить доступ ко всем автоматическим выключателям на панели. Как правило, одна панель питает весь дом, но также может быть другая, меньшая панель, называемая субпанелью , которая может использоваться для обслуживания определенной зоны, например, пристройки, большой кухни или отдельного гаража. Подпанель работает так же, как основная сервисная панель, но питается от главной панели дома, а не напрямую от инженерных сетей.
Каждый автоматический выключатель управляется рычагом, который можно вручную установить в положение ВКЛ или ВЫКЛ. Если автоматический выключатель срабатывает, обычно из-за перегрузки или другой проблемы с цепью, рычаг автоматически перемещается в третье положение между ON и OFF. Выключатели должны иметь маркировку, указывающую на основную зону или устройство, обслуживаемое цепью выключателя. Этикетки могут быть наклейками или написанными от руки словами рядом с выключателями или на листе, приклеенном к внутренней стороне панели двери.
Примечание: В старых домах, где электроснабжение не было модернизировано, могут быть сервисные панели с предохранителями, а не с автоматическими выключателями, которые были стандартными с 1960-х годов.
Home-cost.comВнутри сервисной панели
Когда вы открываете дверцу панели, вы получаете доступ к выключателям автоматического выключателя, но это все. И это то, что нужно большинству домовладельцев. Однако, чтобы попасть внутрь панели для установки или замены автоматического выключателя, необходимо снять защитную крышку вокруг выключателей, известную как 9.0257 глухая передняя крышка . Мертвая передняя крышка обычно удерживается на месте с помощью винта в каждом углу. Снятие крышки открывает доступ ко всем компонентам панели. Некоторые панели имеют отдельную дверцу и крышку; другие имеют дверь и крышку как части одного и того же блока.
Предупреждение: Всегда отключайте главный выключатель (см. следующий слайд) перед снятием заглушки передней крышки. Это отключает питание всех автоматических выключателей и бытовых цепей, но не отключить питание от утилиты. Линии коммунальных услуг и клеммы, к которым они подключаются внутри панели , остаются под напряжением (по току смертоносного тока) , если коммунальная компания не отключит подачу в дом.
Смотреть сейчас: все, что вам нужно знать о блоке выключателя
Главный автоматический выключатель
Главный автоматический выключатель — это большой выключатель, обычно расположенный в верхней части панели, но иногда внизу или вдоль одной из сторон. Он контролирует всю силу филиал автоматические выключатели (выключатели, управляющие отдельными цепями) в щите.
Электроэнергия поступает от линий коммунальных услуг, проходит через электросчетчик снаружи вашего дома и продолжается в сервисной панели. Однако некоторые системы включают в себя отдельный выключатель между счетчиком и панелью. Главный выключатель используется для одновременного включения или выключения питания всех параллельных цепей.
Главный автоматический выключатель также определяет общую силу тока сервисной панели, и на нем будет число, обозначающее ее мощность, например, 100, 150 или 200. Стандарт для новых панелей сегодня составляет 200 ампер, но панели могут иметь еще большая емкость.
Предупреждение: Главный автоматический выключатель отключает питание всех ответвленных цепей, но не отключает питание от коммунальной сети. Линии коммунальных услуг и клеммы, к которым они подключаются внутри панели , остаются под напряжением (проводят смертельный электрический ток) , если коммунальная компания не отключит подачу в дом.
Горячие шины
Два толстых черных служебных провода, питающих главный автоматический выключатель, несут по 120 вольт от электросчетчика и питают две «горячие» шины в панели. Автоматические выключатели защелкиваются на одной или обеих шинах, обеспечивая питание цепей. Однополюсные автоматические выключатели обеспечивают 120 вольт и подключаются только к одной горячей шине.
Двухполюсные автоматические выключатели обеспечивают подачу напряжения 240 вольт в цепь и защелкиваются на обеих горячих шинах. Электрический ток выходит из сервисного щита через горячие провода, которые подключены к автоматическим выключателям. Однополюсные выключатели имеют один горячий провод (обычно черный), а двухполюсные выключатели имеют два горячих провода, которые могут быть черного, красного, белого или другого цвета.
Нейтральная шина
После того, как питание покидает электрощит через провод(а) цепи и выполняет свою работу через электрические устройства (лампочки, розетки и т. д.), электрический ток возвращается обратно в сервисный щит через нейтраль (обычно белый) провод цепи, который подключается к нулевой шине. Шина подключается к основной служебной нейтрали и возвращает ток обратно в электросеть.
Во многих сервисных панелях нейтральная шина также служит шиной заземления и является местом, где заканчиваются отдельные провода заземления цепи из неизолированной меди. В этом случае его часто называют шина нейтрали/заземления .
Основная соединительная перемычка
Основная соединительная перемычка обеспечивает заземление между шиной нейтрали/земли и сервисной панелью. Другое заземляющее соединение осуществляется проводником заземляющего электрода или GEC. Это оголенный медный провод, который соединяет шину нейтрали/заземления с заземляющим стержнем, вбитым в землю рядом с сервисной панелью, или с металлической арматурой в фундаменте дома. Это окончательное заземляющее соединение с землей позволяет безопасному прохождению блуждающего электрического тока (например, импульса, вызванного молнией) в окружающую почву.
Шина заземления
Некоторые сервисные панели имеют отдельную шину для подключения заземляющего провода вместо шины нейтрали/заземления. В этом случае шина заземления электрически связана с шиной нейтрали только в основных щитах обслуживания; в подпанелях шина заземления и нейтральная шина не соединены друг с другом.
Автоматические выключатели
Автоматический выключатель является слабым звеном в каждой электрической цепи. Но это хорошо, так как он рассчитан на безопасный сбой. Чрезмерный ток в цепи предотвращается использованием 9устройства защиты от перегрузки по току 0257, , такие как автоматические выключатели (или, в более старых системах, предохранители). Автоматические выключатели подключаются к горячим шинам и бывают разных марок, типов и мощностей:
- Однополюсные выключатели обеспечивают 120 вольт и обычно имеют номинал 15 или 20 ампер. Эти выключатели обслуживают большинство цепей в вашем доме.
- Двухполюсные выключатели обеспечивают 240 вольт и бывают номиналами от 15 до 50 ампер. Эти выключатели обычно обслуживают специальные цепи для крупных бытовых приборов, таких как электрические сушилки, плиты и кондиционеры.
- Прерыватели цепи защиты от замыканий на землю (GFCI) защищают всю цепь от замыканий на землю, помогая предотвратить опасность поражения электрическим током.
- Дугогасительные выключатели (AFCI) защищают всю цепь от дуговых замыканий и помогают предотвратить пожары в доме. Некоторые выключатели двойного назначения могут одновременно обеспечивать защиту как GFCI, так и AFCI.
Понимание вашей домашней электрической системы
- Панель обслуживания электрооборудования
- Домашняя электропроводка
- Электрические розетки и розетки
- Удлинители
Введение
Электричество играет важную роль в функционировании вашего дома. Когда мы смотрим телевизор, питаем системы отопления и охлаждения или заряжаем мобильный телефон, мы полагаемся на электрическую систему нашего дома, которая обеспечивает нас энергией, когда и где она нам нужна.
Понимая основы распределения электроэнергии по дому, вы сможете поддерживать эту важную систему в исправном состоянии и в безопасном рабочем состоянии:
Электричество поступает в ваш дом через коммуникационную головку из ряда наружных линий электропередач или подземного соединения. Типичная сервисная головка состоит из двух 120-вольтовых проводов и одного нейтрального провода, по которым подается питание на освещение и бытовые приборы по всему дому.
Цепи на 120 вольт используют одну фазу электроснабжения для питания стандартных бытовых приборов. Однако для некоторых более крупных приборов, таких как водонагреватели, электрические пылесосы или сушилки для белья, требуется 240-вольтовая цепь, которая создается с использованием как 120-вольтовых проводов, так и нейтрального провода.
Электросчетчик устанавливается на улице, где электричество входит в ваш дом. Это устройство используется для измерения количества электроэнергии, потребляемой в вашем доме. Счетчик контролируется вашей электроэнергетической компанией и защищен законом — вмешательство в его работу чрезвычайно опасно и незаконно.
Щит электроснабжения является центральным распределительным пунктом для подачи электроэнергии к выключателям, розеткам и приборам по всему дому. Расположенная рядом с электросчетчиком сервисная панель оснащена выключателями или предохранителями, которые отключают питание цепей в случае отказа электрической системы.
Заземление — это метод, используемый для соединения электрической системы с землей с помощью провода. Заземление обеспечивает критическую защиту от поражения электрическим током и поражения электрическим током за счет использования заземляющего стержня в качестве третьего пути для проведения электричества в случае короткого замыкания или перегрузки. Заземление поможет защитить человека, работающего с системой, самой системы и любых приборов и оборудования, подключенных к системе.
Посмотрите видеоролик о безопасности домашней электрической системы (или Seguridad del sistema eléctrico de la casa), чтобы получить наглядное представление о вашей домашней электрической системе. Вы также можете посетить виртуальный дом для интерактивного тура по базовой электрической системе и электрическим устройствам, которые обычно используются в современных домах.
Вернуться к началу
Электрощит
В каждом доме есть сервисный щит, который распределяет электричество по выключателям, розеткам и приборам. Панель обслуживания обычно находится в подвале, гараже или хозяйственном помещении.
Когда короткое замыкание или перегрузка отключают питание цепи, здесь можно восстановить поток. Кроме того, здесь вы отключите питание цепи перед началом проекта или ремонта.
Предохранители и автоматические выключатели
Все сервисные панели оснащены предохранителями или автоматическими выключателями, которые защищают провода в каждой цепи от перегрева и возникновения пожара. Как правило, в старых сервисных панелях используются предохранители, а в более современных системах — автоматические выключатели.
Предохранители и автоматические выключатели — это предохранительные устройства, помогающие предотвратить перегрузку домашней электросети и предотвратить возгорание. Они останавливают электрический ток, если он превышает безопасный уровень для какой-либо части вашей домашней электросистемы.
Плавкие предохранители
Сервисные панели, установленные до 1965 года, используют плавкие предохранители для защиты каждой отдельной цепи. Ранние предохранители обычно использовались в сервисных панелях на 30 и 60 ампер. Сегодня в новых домах требуются сервисные панели на 100–200 ампер, чтобы обеспечить надлежащую защиту.
Существует несколько различных типов предохранителей, и поначалу выбор правильного может показаться запутанным. Каждый предохранитель маркируется кодом, в котором содержится информация о типе цоколя и степени выдержки времени, если таковая имеется.
Инструкции по замене предохранителей:
Если предохранитель перегорел, его необходимо вывинтить и выбросить. При замене предохранителей в сервисной панели:
- Всегда проверяйте, чтобы заменяемый предохранитель соответствовал номинальному току цепи.
- Никогда не заменяйте предохранитель на предохранитель с большей силой тока. Это очень опасная практика и серьезная опасность возгорания.
Автоматические выключатели
Все новые дома защищены автоматическими выключателями. В отличие от предохранителя, который необходимо заменить при перегорании, сработавший автоматический выключатель можно механически сбросить, чтобы возобновить работу после устранения проблемы. Сработавший выключатель, вероятно, является результатом слишком большого количества приборов, перегружающих цепь, и его следует немедленно устранить.
Инструкции по сбросу сработавшего выключателя:
- Отсоедините или выключите электроприборы в комнате.
- Найдите панель главного выключателя и откройте крышку.
- Найдите сработавший выключатель или перегоревший предохранитель. Сработавший автоматический выключатель будет находиться в выключенном положении или в промежуточном положении между включенным и выключенным.
- Для сброса прерывателя выключите его, а затем снова включите. Это может восстановить электроэнергию в комнате. Если проблема не исчезнет, могут возникнуть более серьезные проблемы. Обратитесь к электрику для диагностики проблемы.
Прерыватели цепи дугового замыкания (AFCI)
AFCI — это новые защитные устройства, которые заменяют стандартные автоматические выключатели в электрической сервисной панели. AFCI обеспечивают повышенную защиту от дополнительных опасностей возгорания, известных как дуговые замыкания. Дуговое замыкание — это опасная электрическая проблема, вызванная повреждением, перегревом или нагрузкой на электропроводку или устройства. Без AFCI дуговые замыкания могут быть скрыты от глаз, пока не станет слишком поздно.
В отчете Министерства жилищного строительства и городского развития США о здоровых домах отсутствие AFCI указано среди основных бытовых опасностей, связанных с ожогами и травмами, связанными с пожаром.
На самом деле, эти устройства настолько эффективны, что Национальный электротехнический кодекс требует, чтобы они использовались для защиты почти каждой цепи в доме с 2008 года. , или около одной трети домов в Соединенных Штатах старше 50 лет, и исследования показали, что частота пожаров в этих стареющих домах непропорционально высока. Многие старые дома были построены с электрическими системами и компонентами, которые больше не являются безопасными и могут рассматриваться как пожароопасные.
Возгорание и другие проблемы с электробезопасностью могут возникнуть из-за старения, неправильной установки и модификации или неправильного использования. Важно определить, какой тип, цвет и размер провода необходим, чтобы правильно реагировать на опасные ситуации, прежде чем они станут критическими.
Проводка с ручками и трубками: 1800–1930-е годы
Проводка с ручками и трубками была разработана как система под открытым небом, в которой использовались керамические ручки для отделения проводов от горючего каркаса. Эти подвесные провода были направлены через керамические трубки, чтобы предотвратить контакт с деревянным каркасом и возникновение пожара. Сегодня проводка с ручкой и трубкой считается пожароопасной, поскольку она не является заземленной системой и более подвержена повреждениям в результате старения и неправильного ремонта.
Алюминиевая проводка: с 1960-х по 1970-е годы
Поскольку в 1960-х годах цены на медь взлетели до небес, стало обычным делом производить домашние электрические провода с использованием алюминия вместо меди. Подсчитано, что в период с 1962 по 1972 год почти два миллиона домов были оснащены алюминиевой проводкой.
Многие розетки и выключатели, произведенные в то время, не предназначались для использования с алюминиевой проволокой. Это неадекватное оборудование в сочетании с плохой практикой установки привело к ослаблению электрических соединений, что представляет потенциальную опасность возгорания.
Лучший способ определить, есть ли в доме алюминиевая проводка, — это нанять лицензированного квалифицированного электрика, но можно также идентифицировать систему с алюминиевой проводкой, проверив кабели, проходящие через подвал или чердак, чтобы увидеть, не кабель имеет маркировку «AL» или «алюминий».
Если в вашем доме есть алюминиевая проводка, которая была проложена в 1960-х или 70-х годах, попросите лицензированного квалифицированного электрика убедиться, что все соединения выполнены надлежащим образом с помощью электромонтажных устройств и другого оборудования, сертифицированного для использования с алюминиевой проволокой.
Дома, построенные сегодня, могут иметь провода из алюминиевого сплава, используемые для проводников служебных входов и крупных бытовых приборов. При условии, что все соединения, автоматические выключатели и устройства помечены буквами «AL», эти типы установок допустимы при установке в соответствии с Национальным электротехническим кодексом.
Заземленные электрические системы: с 1940-х по настоящее время
Электричество всегда стремится вернуться к своему источнику и замкнуть непрерывную цепь. Типичная электрическая цепь в вашем доме имеет два проводника: горячий и нейтральный. Электричество проходит от сервисного щитка к бытовой технике по горячему проводу и возвращает ток на основной сервисный щит через нейтральный проводник. Третий или «заземляющий» провод также подключается ко всем розеткам и металлическим коробкам в вашем доме.
Эта критически важная функция безопасности предназначена для значительного снижения вероятности поражения электрическим током или ударом током в случае короткого замыкания. Заземляющие провода подключаются непосредственно к земле через металлический заземляющий стержень или трубу с холодной водой. Если произойдет короткое замыкание или перегрузка, любое дополнительное электричество попадет по заземляющему проводу на землю.
Вернуться к началу
Электрические розетки и розетки
Электрические розетки — это место, где вы чаще всего ежедневно взаимодействуете с электрической системой вашего дома.
Поляризованные и заземленные розетки: 1920-е годы – настоящее время
С 1920 года в большинстве домов были установлены поляризованные розетки с двумя вертикальными прорезями разного размера. Эти розетки сконструированы таким образом, что прорезь для нейтрального провода шире, чем прорезь для провода под напряжением, что затрудняет вставку электрической вилки неправильным образом. При использовании с поляризованной вилкой эти розетки обеспечивают защиту, направляя электрический ток.
Розетки с заземлением имеют круглое отверстие для заземляющего провода в дополнение к двум вертикальным прорезям. Круглая прорезь соединена с заземляющим проводом. Розетки с заземлением должны быть установлены во всех современных домах. Если в вашем доме нет розеток с заземлением, то в вашей электрической системе, скорее всего, отсутствуют важные функции безопасности. Проконсультируйтесь с электриком по поводу обновления вашего дома.
Сосуды с защитой от несанкционированного доступа (TRR)
Каждый год около 2400 детей получают сильный удар током и ожоги, когда они втыкают предметы в прорези электрических розеток. По оценкам, в связи с этим погибает от шести до 12 детей в год. Розетки с защитой от несанкционированного доступа (TRR) выглядят как стандартные настенные розетки, но они оснащены внутренним механизмом затвора, который не позволяет детям втыкать в розетку такие предметы, как шпильки, ключи и скрепки.
Эта система подпружиненных заслонок в розетке TRR открывается только при одновременном приложении одинакового давления к обеим заслонкам, например, при вставке электрической вилки. В отличие от пластиковых крышек, TRR обеспечивают автоматическую и непрерывную защиту детей.
В то время как больницы требовали TRR на протяжении десятилетий, издание 2008 года Национального электротехнического кодекса предписывало устанавливать эти специализированные розетки в новостройках.
Прерыватели цепи замыкания на землю (GFCI)
С 1970-х годов прерыватели цепи замыкания на землю (GFCI) спасли тысячи жизней и помогли вдвое сократить количество случаев поражения электрическим током в домашних условиях.
GFCI — это устройства электрической безопасности, которые отключают электрические цепи при обнаружении замыкания на землю или токов утечки. Человек, который станет частью пути для тока утечки, будет сильно поражен электрическим током или поражен электрическим током. Эти розетки предотвращают смертельный удар током, быстро отключая питание цепи, если электричество, втекающее в цепь, хоть немного отличается от возвращающегося.
GFCI следует использовать в любом помещении или на открытом воздухе, где вода может вступить в контакт с электрическими изделиями. Издание 2008 года Национального электротехнического кодекса в настоящее время требует, чтобы GFCI использовались во всех кухнях, ванных комнатах, гаражах и на открытом воздухе. GFCI следует тестировать один раз в месяц, чтобы убедиться, что они работают правильно.
Вернуться к началу
Удлинители
Удлинители — это удобный способ обеспечить питание там, где вам это нужно, при работе в доме или рядом с ним, но их неправильное использование может быть опасным и даже смертельным. Помните о безопасности с помощью этих простых советов от ESFI.
Советы по безопасности удлинителя:
- Удлинители следует использовать только на временной основе.
- Убедитесь, что удлинители правильно рассчитаны для использования по назначению, внутри или снаружи, и соответствуют или превышают потребности в мощности используемого прибора или устройства.
- Перед использованием проверьте шнуры на наличие повреждений. Проверьте наличие треснутых или изношенных штекеров, ослабленных или оголенных проводов и ослабленных соединений.
- Никогда не используйте шнур, который кажется горячим или каким-либо образом поврежденным.
- Не прокладывайте удлинители через стены или потолки. Это может привести к перегреву шнура, что создает серьезную опасность возгорания.
- Не прибивайте и не прикрепляйте электрические шнуры к стенам или плинтусам.
- Убедитесь, что шнуры не зажаты дверями, окнами или тяжелой мебелью, что может повредить изоляцию шнура.
- Держите удлинители вдали от мест с интенсивным движением, таких как дверные проемы или пешеходные дорожки, где о них можно споткнуться.
- Полностью вставляйте вилки, чтобы ни одна часть штырей не была видна при использовании удлинителя.
Убедитесь, что все удлинители сертифицированы признанной на национальном уровне испытательной лабораторией, такой как UL, CSA или ETL, и прочитайте инструкции производителя.
Удлинитель для наружного применения Советы по безопасности:
- При работе на открытом воздухе используйте только устойчивые к атмосферным воздействиям удлинители большого сечения с пометкой «для использования вне помещений». Эти устойчивые к атмосферным воздействиям шнуры имеют дополнительную защиту в виде защитного покрытия, разработанного для того, чтобы выдерживать более суровые внешние условия и предотвращать просачивание воды.
- Убедитесь, что номинальная сила тока наружных удлинителей выше, чем у электрического изделия, с которым они используются.