Гальванометр — Википедия
Схема работы гальванометраГальвано́метр (от фамилии учёного Луиджи Гальвани и слова др.-греч. μετρέω — «измеряю») — высокочувствительный прибор для измерения силы малых постоянных электрических токов. В отличие от обычных микроамперметров шкала гальванометра может быть проградуирована не только в единицах силы тока, но и в единицах напряжения, единицах других физических величин. Шкала может иметь условную, безразмерную градуировку, например, при использовании в качестве нуль-индикаторов.
В июне 1820 года Ганс Эрстед опубликовал описание опыта, для выполнения которого нужно:
Результат: стрелка отклонится от направления магнитного меридиана Земли.
Для усиления действия тока Иоганн Швайггер:
- намотал на прямоугольную рамку несколько витков проводника;
- поместил магнитную стрелку внутрь прямоугольной рамки.
Полученное устройство получило название «мультипликатор» и было продемонстрировано в университете Галле 16 сентября 1820 года. «Мультипликатор» Швейггера можно считать первым гальванометром (точнее, гальваноскопом).
Термин «гальванометр» впервые появился в 1836 году, произошёл от фамилии учёного Луиджи Гальвани.
В 1821 году Поггендорф усовершенствовал конструкцию «мультипликатора», снабдив его измерительной шкалой.
В 1823 году Авогадро и Микелотти предложили «мультипликатор», в котором стрелка была подвешена на шёлковой нити над разграфленным (линованым) сектором (прообраз шкалы), а всё устройство помещалось под стеклянным колпаком[1].
Ещё 1821 году Ампер сконструировал «астатический аппарат», представлявший собой две жёстко связанные параллельные магнитные стрелки. Полюса стрелок были направлены в противоположные стороны, поэтому направление стрелок не зависело от направления магнитного поля Земли. Нити были подвешенны над проводником. Устройство показало, что магнитная стрелка, избавленная от влияния магнитного поля Земли, ориентируется перпендикулярно проводнику с током.
13 мая 1825 года на заседании Моденской академии Леопольдо Нобили[1] представил первый «астатический гальванометр» (см. рисунок). Аппарат представлял собой сочетание «астатического аппарата» Ампера с подвеской на нити. Этот прибор на протяжении нескольких десятков лет оставался наиболее чувствительной разновидностью гальванометров.
В 1826 году Поггендорф ввёл метод зеркального отсчёта, развитый впоследствии Гауссом (1832) и применённый в «зеркальном гальванометре» Вебером (1846).
В 1825 году Антуан Беккерель предложил эскиз «дифференциального гальванометра».
В 1833 году Нервандер предложил первый гальванометр, отградуированный в абсолютных единицах[2].
В 1837 году Клод Пулье предложил «тангенциальный гальванометр» или «тангенс-буссоль». Маленькая магнитная стрелка с длинным медным указателем, была установлена на игле над расчерченным на градусы кругом, была помещена в центре вертикального кольца из проводника диаметром 40‑50 см. Перед началом измерений следовало сориентировать кольцо в плоскости магнитного меридиана Земли.
В 1840 году Вебер использовал усовершенствованную модель «тангенциального гальванометра»[3], в котором вместо кольца из проводника использовались две соединённые последовательно катушки с проводником расположенные в параллельных плоскостях, а магнитная стрелка помещалась между ними, что обеспечивало более равномерное распределение магнитного поля, создаваемого током.
Вебер создал теорию «тангенциального гальванометра», показав как электрический ток может быть измерен в абсолютных единицах через его действие на горизонтально подвешенную стрелку после того как горизонтальный компонент магнитного поля Земли в абсолютных единицах был установлен. С этого момента до приблизительно 1890 годов для прецизионных (обладающий высокой точностью) измерений электрического тока использовались различные виды «тангенциальных гальванометров». Электрические лаборатории в те времена не использовали железных конструкций искажающих магнитное поле Земли.
Различные типы «тангенциальных гальванометров» предлагали Гельмгольц (1849), Кольрауш (1882).
В 1846 году Вебер представил «электродинамический гальванометр», у которого между двумя катушками, расположенными вертикально в параллельных плоскостях, вместо компаса подвешивалась на ленте третья катушка меньшего размера, намотанная бифилярно[4]. Все три катушки соединялись последовательно. Подвес ориентировал подвижную катушку перпендикулярно плоскости, в которой установлены неподвижные катушки и обеспечивал противодействующий момент. При протекании тока в цепи подвижная катушка стремилась ориентироваться параллельно остальным. В качестве указателя использовалось зеркало.
В 1858 году Уильям Томсон (лорд Кельвин) разработал и запатентовал свой «зеркальный гальванометр» (см. рисунок) для подводного трансатлантического телеграфа. Гальванометр представлял собой[5] массивную вертикальную катушку из медной проволоки в шелковой изоляции в центре которой имелась небольшая полость. Четыре миниатюрных магнита были приклеены к оборотной стороне зеркала, подвешенного на шёлковой нити в этой полости. Магниты образовывали астатическую систему, влияние магнитного поля Земли дополнительно компенсировалось установкой постоянного магнита наверху прибора. Изменяя высоту магнита можно было регулировать чувствительность прибора. При пропускании тока через катушку зеркало поворачивалось, отклоняя падающий луч света. При этом сопротивление воздуха, испытываемое зеркалом при вращении, за счёт небольшого зазора между краем зеркала и стенками полости позволяло демпфировать случайные колебания измеряемого сигнала. Гальванометр отличался очень высокой чувствительностью. Проекция пятна света на экран позволяла наблюдателю фиксировать колебания уровня сигнала при передаче сообщения независимо от смещения нулевого положения и при этом, за счёт эффективного успокоения, позволял принимать больше сигналов за единицу времени. Прибор использовался в составе трансатлантического телеграфа до 1870 года.
Марсель Депре предложил поместить железную стрелку между полюсами сильного постоянного магнита, поле которого ориентирует стрелку аналогично действию магнитного поля Земли. Катушка, окружающая собой стрелку, помещается так, что ток, напротив, стремится установить стрелку перпендикулярно к этому направлению. Таким прибором можно было пользоваться вблизи металлоконструкций и даже работающих динамо-машин
В 1881 году[6]Жак-Арсен д’Арсонваль и Марсель Депре разработали гальванометр[7] (см. рисунок) с подвижной катушкой из проводника, намотанного на прямоугольную рамку и подвешенного между полюсами постоянного магнита. Измеряемый ток подводился к катушке по металлической ленте на которой она была подвешена, противодействующий момент создавался винтовой пружиной[8]. В качестве указателя использовалось зеркало, закреплённое на катушке. Внутрь катушки был помещён неподвижный цилиндр из мягкого железа, что обеспечило равномерное распределение магнитного потока для различных положений катушки. Благодаря этому отклонение рамки прямо пропорционально току в катушке, и гальванометр Д’Арсонваля-Депре, в отличие от более ранних конструкций, имеет равномерную шкалу. Этот прибор послужил первым образцом магнитоэлектрического измерительного механизма.
В 1888 году Эдвард Вестон внёс[9] ряд усовершенствований в конструкцию Д’Арсонваля-Депре:
- предложил изготавливать рамки для намотки подвижной катушки прибора из металла — такая металлическая рамка, помещённая в поле постоянного магнита, позволяет обеспечить успокоение подвижной части без громоздких дополнительных приспособлений;
- предложил использовать в измерительных приборах полюсные наконечники из мягкого железа для концентрации магнитного потока создаваемого постоянным магнитом;
- использовал для опоры подвижной части каменные подпятники ранее применявшиеся для изготовления часов (до того, большинство приборов изготавливалось на подвесах или растяжках), что позволило создать щитовые приборы с горизонтальной осью вращения подвижной части;
- использовал для создания противодействующего момента плоские спиральные пружины (как в балансом колесе наручных часов) из немагнитного материала с низким сопротивлением (фосфористой бронзы), которые одновременно использовались в качестве проводника для подачи тока на подвижную катушку.
Последние два решения характерны для относительно более грубых приборов со стрелочным указателем.
Чаще всего гальванометр используют в качестве аналогового измерительного прибора. Используется для измерения силы постоянного тока, протекающего в цепи.
Гальванометры конструкции д’Арсонваля/Уэстона, используемые на сегодняшний день, сделаны с небольшой поворачивающейся катушкой, находящейся в поле постоянного магнита. К катушке прикреплена стрелка. Маленькая пружина возвращает катушку со стрелкой в нулевое положение. Когда постоянный ток проходит сквозь катушку, в ней возникает магнитное поле. Оно взаимодействует с полем постоянного магнита, и катушка, вместе со стрелкой, поворачивается, указывая на протекающий через катушку электрический ток.
Основная чувствительность гальванометра может быть, например, 100 мкА (при падении напряжения, скажем, 50 мВ, при полном токе). Используя шунты, можно измерять большие токи.
Так как стрелка прибора находится на небольшом расстоянии от шкалы, может возникнуть параллакс. Чтобы его избежать, под стрелкой располагают зеркало. Совмещая стрелку со своим отражением в зеркале, можно избежать параллакса.
Магнитоэлектрический гальванометр[править | править код]
Магнитоэлектрический гальванометр[10] представляет собой проводящую рамку (обычно намотана тонким проводом), закреплённую на оси в магнитном поле постоянного магнита. При отсутствии тока в рамке рамка удерживается пружиной в некотором нулевом положении. Если же по рамке протекает ток, то рамка отклоняется на угол, пропорциональный силе тока, зависящий от жёсткости пружины и индукции магнитного поля. Стрелка, закреплённая на рамке, показывает значение тока в тех единицах, в которых отградуирована шкала гальванометра.
От прочих конструкций магнитоэлектрическая система отличается наибольшей линейностью градуировки шкалы прибора (в единицах силы тока или напряжения) и наибольшей чувствительностью (минимальным значением тока полного отклонения стрелки).
Электромагнитный гальванометр[править | править код]
Электромагнитный гальванометр — исторически самая первая конструкция гальванометра. Содержит неподвижную катушку с током и подвижный магнит (в приборах постоянного тока) или сердечник из магнитомягкого материала (для приборов, измеряющих и постоянный, и переменный ток), втягиваемый в катушку или поворачивающийся относительно неё.
Данная конструкция отличается большей простотой, отсутствием необходимости делать катушку возможно меньшего размера и веса (что требуется для магнитоэлектрической системы), отсутствием проблемы подведения тока к подвижной катушке. Однако такие приборы отличаются существенной нелинейностью шкалы (из-за неравномерностей магнитного поля сердечника и краевых эффектов катушки) и соответствующей сложностью градуировки. Тем не менее, применение данной конструкции приборов в качестве амперметров переменного тока относительно большой величины оправдано большей простотой конструкции и отсутствием дополнительных выпрямительных элементов и шунтов. Вольтметры же переменного и постоянного тока электромагнитной системы наиболее удобны для контроля узкого диапазона значений напряжения, так как начальный участок шкалы прибора сильно сжат, а контролируемый участок может быть растянут.
Тангенциальный гальванометр[править | править код]
Тангенциальный гальванометр созданный компанией Баннела около 1890 года.Тангенциальный гальванометр — один из первых гальванометров, использовавшихся для измерения электрического тока. Работает с помощью компаса, который используется для сравнения магнитного поля, создаваемого неизвестным током, с магнитным полем Земли. Своё название прибор получил от тангенциального закона магнетизма, в котором говорится, что тангенс угла наклона магнитной стрелки пропорционален соотношению сил двух перпендикулярных магнитных полей. Впервые это было описано Клодом Пулье в 1837 году.
Тангенциальный гальванометр состоит из катушки, сделанной из изолированной медной проволоки, намотанной на немагнитную рамку, расположенную вертикально. Рамка может поворачиваться вокруг вертикальной оси, проходящей через её центр. Компас расположен горизонтально и в центре круговой шкалы. Круговая шкала разделена на четыре квадранта, каждый из которых проградуирован от 0° до 90°. К магнитной стрелке компаса прикреплён длинный алюминиевый указатель. Чтобы избежать ошибок из-за параллакса под стрелкой устанавливают плоское зеркало.
В процессе работы гальванометр устанавливают так, чтобы стрелка компаса совпала с плоскостью катушки. Затем к катушке подводят измеряемый ток. Ток создаёт магнитное поле на оси катушки, перпендикулярное магнитному полю Земли. Стрелка реагирует на векторную сумму двух полей и отклоняется на угол, равный тангенсу отношения этих полей.
Теория[править | править код]
Гальванометр ориентирован так, что плоскость катушки параллельна магнитному меридиану Земли, то есть горизонтальной составляющей BH{\displaystyle B_{H}} магнитного поля Земли. Когда ток проходит через катушку, в катушке создается магнитное поле, перпендикулярное катушке. Величина магнитного поля:
- B=μ0nI2r,{\displaystyle B={\mu _{0}nI \over 2r}\,,}
где:
- I{\displaystyle I} — ток, А;
- n{\displaystyle n} — число витков катушки;
- r{\displaystyle r} — радиус катушки.
Два перпендикулярных поля векторно складываются и стрелка компаса отклоняется на угол θ{\displaystyle \theta }, равный:
- θ=arctgBBH.{\displaystyle \theta =\operatorname {arctg} {\frac {B}{B_{H}}}\,.}
Из тангенциального закона
- B=BHtgθ,{\displaystyle B=B_{H}\operatorname {tg} \theta \,,}
то есть
- μ0nI2r=BHtgθ,{\displaystyle {\mu _{0}nI \over 2r}=B_{H}\operatorname {tg} \theta \,,}
или
- I=(2rBHμ0n)tgθ{\displaystyle I=\left({\frac {2rB_{H}}{\mu _{0}n}}\right)\operatorname {tg} \theta }
или
- I=Ktgθ,{\displaystyle I=K\operatorname {tg} \theta \,,}
где K{\displaystyle K} — понижающий коэффициент тангенциального гальванометра.
Одна из проблем тангенциального гальванометра — сложности при измерении очень больших и очень малых токов.
Измерение магнитного поля Земли[править | править код]
Тангенциальный гальванометр также можно использовать для измерения горизонтальной составляющей геомагнитного поля. Для этого низкое напряжение питания, подключают последовательно с реостатом, гальванометром и амперметром. Гальванометр располагают так, чтобы магнитная стрелка была параллельна катушке, при отсутствии в ней тока. Затем на катушку подаётся напряжение, которое регулируют реостатом до такой величины, чтобы стрелка отклонилась на угол 45° и величина магнитного поля на оси катушки становится равной горизонтальной составляющей геомагнитного поля Земли. Это поле можно рассчитать через ток, измеренный амперметром, число витков катушки и её радиус.
Электродинамический гальванометр[править | править код]
В качестве подвижного и неподвижного элемента используются катушки с током. Частный случай — низкочастотный аналоговый ваттметр.
Вибрационный гальванометр[править | править код]
Вибрационные гальванометры являются разновидностью зеркальных гальванометров. Собственная частота колебаний движущихся частей настроена на строго определённую частоту, обычно 50 или 60 Гц. Возможны более высокие частоты до 1 кГц. Поскольку частота зависит от массы подвижных элементов, высокочастотные гальванометры имеют очень малые размеры. Настройка вибрационного гальванометра осуществляется изменением силы натяжения пружины.
Вибрационные гальванометры переменного тока предназначены для определения малых значений силы тока или его напряжения. Подвижная часть подобных приборов имеет достаточно низкий момент инерции. Их наиболее распространенное применение в качестве нуль-индикаторов в мостовых схемах переменного тока и компараторах. Резкий резонанс колебаний в вибрационном гальванометре, делает его очень чувствительным к изменениям частоты измеряемого тока и может быть использован для точной настройки приборов.
Тепловой гальванометр[править | править код]
Тепловой гальванометр состоит из проводника с током, удлиняющимся при нагреве, и рычажную систему, преобразующую это удлинение в движение стрелки.
Апериодический гальванометр[править | править код]
Апериодическим называют гальванометр, стрелка которого после каждого отклонения становится тотчас в положение равновесия, без предварительных колебаний, как это бывает в простом гальванометре[11].
Прочие элементы и особенности конструкции[править | править код]
- Балансирующие элементы. При отсутствии таковых гальванометр рассчитан на работу или только в горизонтальном положении шкалы, или только в вертикальном.
- Арретир — элементы конструкции прибора, обеспечивающие фиксацию механизма в транспортном, нерабочем положении.
- Успокоитель — воздушный (в виде лепестка, перемещающегося внутри специального профиля) или электромагнитный (короткозамкнутый виток). Служит для сведения к минимуму времени измерения. Может отсутствовать в баллистическом гальванометре.
- Пружины, как правило, являются проводниками, по которым ток подаётся к рамке магнитоэлектрического или к подвижной рамке электродинамического прибора. В некоторых конструкциях осью и одновременно крутильным пружинами являются проводники, на которых растягивается рамка.
- Крепление одной из пружин изготавливается поворотным и служит для установки стрелки в нулевое положение шкалы при отсутствии тока.
- Как и в иных стрелочных измерительных приборах, шкала, помимо градуировки, может для повышения точности считывания показаний прибора иметь зеркало, в котором отражается часть стрелки прибора. Зеркало облегчает правильное позиционирование глаза наблюдателя, при котором направление взгляда перпендикулярно плоскости шкалы.
Зеркальный гальванометр[править | править код]
Большой точности измерений, а также наибольшей скорости реакции стрелки можно достигнуть, используя зеркальный гальванометр, в котором в качестве указателя используется небольшое зеркальце. Роль стрелки играет луч света, отражённый от зеркала. Зеркальный гальванометр был изобретен в 1826 году Иоганном Христианом Поггендорфом.
Зеркальные гальванометры широко использовались в науке, до того как были изобретены более надёжные и стабильные электронные усилители. Наибольшее распространение они получили в качестве записывающих устройств в сейсмометрах и подводных коммуникационных кабелях. В настоящее время высокоскоростные зеркальные гальванометры используют в лазерных шоу, для того чтобы перемещать лазерные лучи и создавать красочные фигуры в дыму вокруг аудитории. Некоторые виды таких гальванометров применяют для лазерной маркировки разнообразных вещей: от ручных инструментов до полупроводниковых кристаллов.
Измерительные приборы[править | править код]
Гальванометр является базовым блоком для построения других измерительных приборов. На основе гальванометра можно построить амперметр и вольтметр постоянного тока с произвольным пределом измерения.
Для получения амперметра необходимо подключить шунтирующий резистор параллельно гальванометру.
Для получения вольтметра необходимо подключить гасящий резистор (добавочное сопротивление) последовательно с гальванометром.
Если к гальванометру не подключено никаких дополнительных резисторов, то его можно считать как амперметром, так и вольтметром (в зависимости от того, как гальванометр включен в цепь и как интерпретируются показания).
Экспонометр, термометр[править | править код]
В сочетании с датчиком света (фотодиодом) или температуры (термоэлементом), гальванометр может быть использован в качестве, соответственно, экспонометра в фотографии, измерителя разности температур и т. п.
Баллистический гальванометр[править | править код]
Для измерения заряда, протекающего через гальванометр в виде короткого одиночного импульса, используется баллистический гальванометр, в котором наблюдают не отклонение рамки, а её максимальный отброс после прохождения импульса.
Нуль-индикатор[править | править код]
Гальванометр используется также в качестве указателя (нуль-индикатора) отсутствия тока (напряжения) в цепях. Для этого он обычно исполняется с нулевым положением стрелки посередине шкалы.
Механическая запись электрических сигналов[править | править код]
Гальванометры используется для позиционирования писчиков в осциллографах, например в аналоговых электрокардиографах. Они могут иметь частотный отклик в 100 Гц и отклонение писчиков в несколько сантиметров. В некоторых случаях (у энцефалографа) гальванометры настолько сильны, что двигают писчики, находящиеся в непосредственном контакте с бумагой. Их пишущий механизм может быть основан на жидких чернилах или на подогреве писчиков, двигающихся по термобумаге. В других случаях гальванометры не обязаны быть столь сильными: контакт с бумагой происходит периодически, поэтому требуется меньше усилий на перемещение писчиков.
Оптическая развёртка[править | править код]
Системы зеркальных гальванометров используются для позиционирования в лазерных оптических системах. Обычно это механизмы высокой мощности с частотным откликом свыше 1 кГц.
Современное состояние[править | править код]
В современных условиях аналого-цифровые преобразователи и приборы с цифровой обработкой сигналов и числовой индикацией величин заменяют гальванометры в качестве измерительных приборов, особенно в составе универсальных (авометров) и в механически сложных условиях работы.
Получение, хранение и обработка данных в компьютерных системах по гибкости значительно превышает все способы фиксации электрических сигналов самописцами на бумаге.
Зеркальные гальванометры также потеряли своё значение в системах развёртки, сначала с появлением электронно-лучевых устройств, а там, где необходимо, управление внешним световым потоком — с появлением эффективных пьезоэлектрических устройств и сред с управляемыми свойствами (например, жидких кристаллов). Однако на базе зеркальных гальванометров выпускаются устройства для отклонения луча лазера в лазерной технологии и установках для лазерных шоу (англ.).
- ↑ 1 2 Марио Льоцци История физики — М.: Мир, 1970 — С. 252.
- ↑ 1 2 Гальванометр // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- ↑ Joseph F.Keithley. The story of electrical and magnetic measurement: from 500 B.C. to the 1940s. — New York: IEEE Press, 1999. ISBN 0-7803-1193-0. — С. 113.
- ↑ Joseph F.Keithley. The story of electrical and magnetic measurement: from 500 B.C. to the 1940s. — New York: IEEE Press, 1999. ISBN 0-7803-1193-0. — стр.114
- ↑ J.Munro. Heroes of the Telegraph. — Project Gutenberg, 1999 (недоступная ссылка)
- ↑ В различных источниках указываются даты от 1880 года до 1886 года. Вероятно, прибор с подвижной катушкой, запатентованный Д’Арсонвалем в 1881 году, в дальнейшем совершенствовался.
- ↑ Joseph F.Keithley. The story of electrical and magnetic measurement: from 500 B.C. to the 1940s. — New York: IEEE Press, 1999. ISBN 0-7803-1193-0. — стр.196
- ↑ Видеоролик с коротким описанием гальванометра Д’Арсонваля-Дюпре.
- ↑ Measuring invisibles Weston Electrical Instrument Corporation 1938 Newark N.J. — С. 22.
- ↑ Гальванометр // Словарь естественных наук.
- ↑ Апериодический гальванометр // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
что измеряет этот прибор? Какое действие электрического тока в нем используется? Изобретатель гальванометра и принцип его работы
На рынке измерительных приборов производители представляют достаточно широкие модельные ряды устройств, предназначенных для замеров сопротивления, напряжения и силы тока, то есть омметров, вольтметров и амперметров. Однако в некоторых ситуациях незаменимыми становятся гальванометры, описание принципов работы которых и характеристики разновидностей можно найти на многих специализированных ресурсах. Подобное оборудование актуально в ситуациях, когда требуется измерить малые токи или выявить отсутствие напряжения в сетях, имеющих различные параметры.
Что это такое?
По сути, любой гальванометр представляет собой прибор, разработанный для измерения параметров электрических сетей. С учётом характеристик данных устройств следует отметить, что речь идёт о минимальных значениях количества электричества, силы тока и сопротивления. К примеру, для определения наличия и минимальных показателей I на конкретных участках цепи используют гальванометры с повышенной чувствительностью.
Впервые особенности отклонения магнитной стрелки под воздействием электрического тока в проводнике описал Ганс Эрстед ещё в 1820 году. В то время подобное явление рассматривалось в качестве способа измерения тока. Говоря об изобретателе гальванометра, необходимо отметить, что первым упомянул подобный прибор Иоганн Швейгер. Это произошло 16 сентября 1820 года и связано с университетом Галле. Сам же термин появился только в 1836-м и произошёл от фамилии учёного Луиджи Гальвани.
Изначально действие устройства основывалось на силе магнитного поля Земли. Подобные образцы измерительного оборудования назвали тангенциальными гальванометрами. Перед использованием их требовалось сориентировать в пространстве. Позже на свет появился первый астатический прибор, создатели которого использовали противоположно направленные магниты. Подобный подход позволил исключить фактор воздействия упомянутого магнитного поля планеты.
Современные устройства на схемах отмечаются в соответствии с действующим ГОСТом на схеме. Гальванометр имеет обозначение в виде стрелки, направленной вверх и расположенной внутри круга.
Несмотря на кажущуюся простоту конструкции, эти приборы имеют ряд важных особенностей.
- Один из главных параметров – это постоянная, значение которой определяет расстояние между зеркалом и шкалой и высчитывается с учётом стандартного отрезка длиной 1 метр. В ситуациях с переносными устройствами эта величина является ценой одного деления шкалы. Для стационарных моделей она составляет 10–11 А/м/мм, а для мобильных – 10-8 или же 10-9 А/дел. В обоих случаях допустима 10-процентная погрешность в обе стороны.
- Невозвращение стрелки к нулевой отметке в процессе её перемещения от крайней точки шкалы, то есть так называемое постоянство нуля. Этот показатель в числовом выражении наносится на шкалу в виде ромбообразного символа.
- Наличие такого конструктивного элемента, как магнитный шунт. Его положение меняется поворотом специальной ручки, что, в свою очередь, приводит к изменению постоянной гальванометра и показателя магнитной индукции в зазоре. С учётом данного момента техническая документация, включая паспорт измерительного прибора, содержит значения постоянной при двух положениях магнитного шунта, то есть во введённом и выведенном состоянии.
- Присутствие корректора, с помощью которого осуществляется перемещение стрелки между двумя крайними положениями.
- Наличие арретира, который представляет собой неотъемлемую часть всех современных приборов, имеющих подвесы. Этот элемент позволяет надёжно зафиксировать подвижную часть и тем самым минимизировать риск повреждения прибора в процессе его транспортировки.
- Возможность установки электростатического экранирования для обеспечения максимально эффективной защиты устройства от I утечек.
Определённые особенности конструкции гальванометров связаны именно с наличием упомянутой подвижной части. В частности, регулировка успокоения, пропорционального её колебаниям, осуществляется путём подборки внешнего сопротивления (R).
В паспорте каждого прибора в обязательном порядке прописывается максимально значение этого параметра, являющееся критическим.
На практике в подавляющем большинстве случаев наружное сопротивление устанавливают с максимальным приближением к критическому показателю. Это, в свою очередь, исключает риск возникновения колебаний стрелки (указателя) в пределах положения равновесия.
Функции
У многих возникает вполне логичный вопрос, касающийся того, для чего нужен гальванометр в физике и повседневной жизни. Как уже было отмечено, этот прибор измеряет параметры электрической сети. При этом его функционирование базируется на преобразовании тока в механическое движение, в результате которого на шкале отображаются искомые показатели.
Как правило, рассматриваемое оборудование выполняет функции аналоговых приборов, измеряющих силу тока в сети.
Специалистами, представляющими разные отрасли, гальванометры используются для того, чтобы получить данные, подтверждающие нахождение искомых параметров в определённых пределах. Это позволяет эффективно контролировать состояние электрических цепей и своевременно выявлять неисправности.
Важно помнить, что чаще всего отклонение параметров от установленных норм свидетельствует о сбоях в работе систем.
С учётом того, какая именно часть устройства является подвижной, гальванометры делятся на две основные категории. Это, в свою очередь, определяет их функциональность. Так, к первой разновидности относятся приборы с подвижными магнитами, а ко второй – оборудование с подвижными токопроводами. Оба типа одинаково эффективны при измерении в конкретный момент времени медленно меняющегося тока, а также тока быстро меняющего соответственного напряжения. Помимо этого, в перечень функций входит учёт общего действия тока в течение заданного временного промежутка, осуществляемый, как правило, флюметрами и баллистическими гальванометрами.
Устройство и принцип работы
Отвечая на вопрос, как устроен подобный прибор, следует отметить, что конструкция самого простого гальванометра, появившегося на свет ещё в самом начале XIX столетия, включала в себя магнитный указатель (стрелку), которая подвешена на тонкой нити и помещена внутри неподвижной катушки. Как только в этой проволочной конструкции появляется электрический ток, стрелка отклоняется от своего исходного положения. При отсутствии тока в системе указатель будет оставаться неподвижным, то есть стрелка показывает на нулевую отметку.
Многие модели современных гальванометров представляют собой магнитоэлектрические устройства, в которых используется действие электрического тока. Их стандартная конструкция предусматривает наличие следующих элементов.
- Постоянный магнит.
- Поворачивающаяся катушка, расположенная между полюсами.
- Облегчённый указатель (стрелка), который соединён с катушкой и образует с ней одну ось вращения. Если в последней отсутствует ток, то указатель фиксируется на нулевой отметке при помощи возвратной пружины.
В поле постоянного магнита помещается катушка (обмотка), на которой закреплена стрелка-указатель. В своём исходном положении эта конструкция удерживается упомянутой выше пружиной.
При прохождении через катушку электрического тока в ней сразу же появляется магнитное поле. Параллельно при этом возникает взаимодействие между ним и полем постоянного магнита. При этом обмотка вместе с указателем начинает отклоняться от нуля, что является сигнализатором наличия тока в системе. Как только электрический ток исчезает, магнитное поле катушки тоже пропадает. В этот момент под действием пружины стрелка возвращается в исходное положение. И речь в данном случае идёт о визуальной демонстрации отсутствия тока в цепи. Другими словами, выполняется одна из функций гальванометра, то есть проверка наличия напряжения.
Разбираясь с особенностями устройства, необходимо отметить, что на сегодняшний день широко используются разные модификации описываемых устройств.
Так, мобильные устройства оснащены подвижной рамкой, которая фиксируется на растяжках, а также интегрированной шкалой и стрелочным или световым указателем. Стационарные модели гальванометров устанавливают по уровню, а на рамке при этом закрепляется небольшое по размерам зеркало. Такие устройства комплектуются выносной шкалой со световым указателем, характеризующейся максимальной чувствительностью. При помощи отражающегося от зеркала и параллельно перемещающегося по шкале луча света осуществляется контроль углового движения рамки. Такие приборы рамочного типа на практике используют в качестве нуль-индикаторов, то есть приборов, фиксирующих отсутствие в сети электрического тока или напряжения. Они позволяют в условиях лабораторий осуществлять фиксацию параметров при минимальных показателях I и U.
Практически все гальванометры оснащены магнитными шунтами, положение которых регулируется наружной ручкой для того, чтобы изменялся показатель индукции в рабочем зазоре. Подобным образом можно изменять значения искомых параметров не менее, чем в три раза с учётом требований актуальных стандартов. За перемещение указателя в обе стороны от нулевой отметки отвечает специальный корректор.
Ещё одним важным моментом является необходимость эффективной защиты гальванометров от помех.
Наиболее актуально это для высокочувствительных приборов. Так, для стационарных моделей измерительной техники часто сооружают специальную основу (фундамент), надёжно предотвращающую механические воздействия. Утечки тока, как уже было отмечено, предотвращают за счёт экранирования. Помимо всего прочего, необходимо отметить, что каждый тип современных измерительных приборов имеет свои особенности конструкции и принципа действия.
Отличия от амперметра
Независимо от специфики конструкции и спектра выполняемых операций, любой гальванометр – это электроизмерительное устройство, характеризующееся повышенной чувствительностью и используемое для определения силы тока незначительной величины. При этом многих интересует, в чём именно заключается разница между этими образцами измерительной техники и классическими амперметрами. Прежде всего следует отметить, что последние представляют собой оборудование для нахождения величины силы тока, измеряемой в амперах.
Шкала подобных устройств с учётом диапазона осуществляемых ими измерений может быть градуирована в микроамперах, миллиамперах, амперах и килоамперах.
В отличие от микроамперметра, который тоже способен определять показатели сравнительно небольших токов, шкала гальванометра градуируется несколькими электрическими величинами. В их перечень входят в том числе и единицы напряжения.
Ещё один важный момент заключается в том, что описываемые измерительные приборы могут иметь условную градуировку. Чаще всего такую шкалу можно встретить в ситуациях, при которых гальванометр выполняет функции нуль-индикатора.
Виды
Невзирая на то, что все описываемые измерительные приборы имеют одинаковый принцип действия, существует целый перечень их разновидностей. При этом каждый вид устройств отличается от других конструкцией и функционалом. Богатый выбор позволяет приобрести оборудование, в полной мере соответствующее всем требованиям и предпочтениям потенциального покупателя. В то же время некоторым достаточно тяжело разобраться в разнообразии доступных моделей и таких обозначениях, как, к примеру, М-001.
Так, гальванометры М195 и М195/1 предназначены для нулевых измерений. Стоит отметить, что все представленные на рынке образцы оборудования отличаются друг от друга прежде всего конструктивно. Магнитоэлектрические приборы имеют электропроводящую рамку, закрепляемую в процессе эксплуатации на специальной оси, размещённой в магнитном поле. Отклонение указателя от нулевого положения определяется величиной подаваемого тока, индукцией и жёсткостью возвратной пружины.
Главной характеристикой этого типа устройств является их повышенная чувствительность.
Особенность тангенциальных гальванометров – это наличие компаса, необходимого для сравнения магнитных полей электрического тока и Земли. Название устройства получили из-за того, что их функционирование основано на тангенциальном законе магнетизма. Катушка в данном случае выполнена из меди и имеет изоляцию. Сама рамка располагается вертикально и в процессе эксплуатации прибора проворачивается вокруг своей оси. Компас при этом находится в горизонтальной плоскости и в самом центре круглой шкалы. Перед началом работы тангенциальный гальванометр располагают таким образом, чтобы стрелка компаса совпадала с плоскостью обмотки. После этого через неё пропускают ток, создающий магнитное поле на оси катушки.
Стоит отметить, что искусственное поле – это перпендикуляр к магнитному полю планеты.
В результате указатель устройства реагирует на оба активных поля и отклоняется на определённый угол от нулевой отметки, который является тангенсом отношения искусственного и естественного полей.
Помимо уже описанных, существуют также следующие разновидности гальванометров.
- Электромагнитные приборы, имеющие довольно простую конструкцию, главными элементами которой являются неподвижная катушка и свободный магнит или же сердечник. При прохождении электрического тока этот подвижный элемент поворачивается или же втягивается в катушку. Основным минусом таких моделей стал нелинейность шкалы, что создаёт трудности при градуировке. В подавляющем большинстве случаев электромагнитные гальванометры эксплуатируются в качестве амперметров переменного тока.
- Электродинамические устройства, в которых катушки выполняют функции статичных и подвижных элементов.
- Зеркальные, отличающиеся от подавляющего большинства своих «собратьев» максимальной точностью. В этом оборудовании при снятии показаний используются небольшие зеркала и световой луч, отражаемый ими. В своё время данный тип гальванометров достаточно широко использовался.
- Вибрационные модели, являющиеся вариацией на тему зеркальных измерительных приборов. Одна из их основных особенностей – это компактные размеры и малый вес. Настройка устройства осуществляется посредством натяжения пружины.
- Тепловые гальванометры, конструкция которых включает в себя систему рычагов и проводник. При прохождении через последний электрического тока его длина изменяется (увеличивается). Параллельно с этим рычаги преобразуют данную деформацию проводника в отклонение стрелки-указателя.
- Апериодические. В данном случае суть функционирования оборудования сводится к тому, что после каждого отклонения стрелка гальванометра возвращается в положение равновесия.
- Баллистические устройства, используемые для определения параметров одиночных электрических импульсов. Подвижные элементы таких моделей характеризуются повышенной инерцией, что отличает их от остальных модификаций.
Помимо всего перечисленного, стоит уделить внимание также струнным гальванометрам. Речь в данном случае идёт об одной из первых конструкций, которая изначально применялась в медицине. Создателем прибора в 1895 году стал голландский физиолог Виллем Эйнтховен. Измерительное устройство состояло из кварцевой нити, которая за счёт своей минимальной толщины была способна совершать колебания под действием воздуха. Она удерживалась в магнитном поле под напряжением.
Все перечисленные разновидности гальванометров характеризуются простотой конструкции и эксплуатации. Однако за счёт активного внедрения передовых технологий и инновационных технических решений в наши дни практически повсеместно используются электронные измерительные приборы. Их основными преимуществами являются надёжность и, конечно же, максимальная точность.
Как правильно использовать?
Гальванометры можно с уверенностью назвать целым классом измерительного оборудования, характеризующегося максимальным уровнем точности и используемого для исследований величины электрического тока, проходящего через проводники, а также других его параметров. За счёт широкого ассортимента моделей и их функциональных возможностей эти измерительные приборы успешно эксплуатируются на производстве, в быту и в лабораторных условиях. При этом простейшее устройство можно изготовить своими руками.
Гальванометр работает как в качестве самостоятельного оборудования, отображающего параметры малых токов или выполняющего функции нуль-индикаторов, так и в виде основного блока других приборов. Так, существует вариант использования описываемой техники в качестве амперметра и вольтметра. Для этого потребуется:
- подключить шунтирующее сопротивление параллельно с устройством для определения силы тока в амперах;
- установить в цепи добавочное сопротивление последовательно для измерения напряжения.
Помимо указанных вариантов, гальванометры способны эффективно выполнять функции других приборов.
- Термометра в тандеме с датчиком температуры и экспонометра при подключении фотодиода.
- Измерителя заряда. Речь в данном случае идёт об эксплуатации именно баллистических гальванометров, предоставляющих возможность определить параметры одиночных импульсов, при прохождении которых происходит резкое движение (отброс) рамки.
- Индикатора нуля, эффективно определяющий отсутствие электрического тока в цепи при фиксации указателя на нулевой отметке, градуированной соответствующим образом шкалы.
- Устройства для записи сигналов осциллографа. Конструктивные особенности позволяют подключить гальванометр непосредственно к так называемому писчику. В итоге при фиксации любого импульса прибор моментально реагирует и параллельно активирует пишущее устройство, которое, в свою очередь, отображает все данные на бумаге.
- Средства для выполнения оптической развёртки. Имеется в виду использование зеркальных моделей в системах лазерной оптики.
На данный момент аналоговые конструкции активно сдают свои позиции, уступая место современным, цифровым устройствам. В соответствии с актуальными статистическими данными, наиболее распространёнными сейчас являются зеркальные гальванометры. Они до сих пор достаточно широко эксплуатируются в качестве элементов различных лазерных установок. Это обусловлено их способностью отклонять лучи лазера.
Независимо от типа измерительного оборудования, его конструкции и функциональных возможностей, к его эксплуатации следует подходить грамотно. Параллельно требуется помнить о технике безопасности, поскольку речь идёт о работе с электрическим током. Не менее важными моментами будут правила хранения и обслуживания приборов, закреплённые в соответствующих инструкциях.
В следующем видео вы подробно узнаете о том, что такое вертикальный гальванометр и какие его принципе работы.
Условные обозначения, применяемые в электрических схемах. Гальванометр как обозначается на схеме
Обозначения на схеме | Смысл |
Катушка индуктивности | |
Трансформаторы без сердечника и с ферромагнитным сердечником | |
Выключатель | |
Резистор нерегулируемый | |
Резистор регулируемый (реостат) | |
Резистор регулируемый (потенциометр) | |
Конденсатор (общее обозначение) | |
Амперметр | |
Вольтметр | |
Ваттметр | |
Микроамперметр | |
Миллиамперметр | |
Милливольтметр | |
Омметр | |
Мегомметр | |
Гальванометр | |
Диод полупроводниковый | |
Элемент гальванический или аккумуляторный (допускается знаки полярности не указывать) | |
Электронный диод а/ прямого накала б/ косвенного накала | |
Электронный триод |
studfiles.net
Приборы.
Трафарет Visio Приборы.
Приборы измерительные.
Фигуры условных обозначений приборов измерительных многофункциональные — схожие по измеряемым величинам или параметрам, включены в одну фигуру Visio.
Трансформация условных обозначений производится в таблице данных фигуры, путем выбора соответствующих позиций из выпадающих списков: Назначение, Тип прибора, и Характеристика.
Таблица данных фигуры условного обозначения прибора измерительного.
Таким образом, к примеру первая фигура из трафарета, путем комбинации пунктов таблицы данных фигуры, позволит получить 180 условных обозначений вольтметра с различными функциональными особенностями.
Перед тем, как будут приведены примеры условных обозначений входящих в трафарет, посмотрите пример трансформации фигур на видео:
Примеры условных обозначений:
1. Условные обозначения приборов измерительных напряжения.
Киловольтметр. Вольтметр. Милливольтметр.Микровольтметр. Вольтметр двойной. Вольтметр дифференциальный.
2. Условные обозначения приборов измерительных тока.
Килоамперметр. Амперметр.Миллиамперметр. Микроамперметр.
3. Условные обозначения приборов измерительных мощности.
Вольтамперметр. Мегаваттметр. Киловаттметр.Ваттметр. Ваттметр суммирующий.
Мегаварметр. Киловарметр. Варметр.
4. Условные обозначения приборов измерительных сопротивления.
Мегаомметр. Килоомметр. Омметр.Миллиомметр. Микроомметр.
5. Условные обозначения приборов измерительных прочих электрических параметров.
Частотомер. Волномер.Фазометр, измеряющий сдвиг фаз. Фазометр, измеряющий коэффициент мощьности.
Индикатор полярности. Измеритель уровня сигнала.
6. Условные обозначения приборов измерительных неэлектрических параметров.
Термометр. Тахометр. Соленометр.Измеритель давления. Измеритель уровня жидкости.
7. Условные обозначения прочих измерительных приборов.
Гальванометр. Синхроноскоп. Осцилоскоп.Гальванометр I или U. Гальванометр мгновенной мощности.
8. Условные обозначения электрических часов.
Часы вторичные (часы, минуты). Часы вторичные (часы, минуты, секунды).Часы вторичные с контактным устройством. Часы вторичные синхронные, на 50 Гц.
Часы первичные (часы, минуты). Часы первичные (часы, минуты, секунды).
Часы первичные с контактным устройством. Часы первичные синхронные, на 50 Гц.
Выбор параметров для условных обозначений приборов измерительных.
1. Тип прибора.
Для всех условных обозначений измерительных приборов (кроме условных обозначений электрических часов), в таблице данных фигуры, можно выбрать тип прибора: показывающий, регистрирующий или показывающий и регистрирующий.
Например, для условного обозначения вольтметра:
Прибор электроизмерительный показывающий, вольметр. Прибор электроизмерительный регистрирующий, вольметр.Прибор электроизмерительный комбинированный (показывающий и регистрирующий), вольметр.
Для всех остальных условных обозначений приборов, тип прибора можно изменить аналогично.
Примечание: для условных обозначений приборов измерительных неэлектрических параметров, кроме указанных типов, можно выбрать датчик.
Например, для условного обозначения измерителя давления:
Измеритель давления показывающий. Измеритель давления регистрирующий.Измеритель давления комбинированный (показывающий и регистрирующий). Датчик давления.
Для остальных условных обозначений приборов для неэлектрических величин, аналогично.
2. Характеристика прибора.Для всех условных обозначений измерительных приборов, в том числе и д
Наименование |
Обозначение |
1а. Датчик измеряемой неэлектрической величины |
|
1. Прибор электроизмерительный |
|
а) показывающий |
|
б) регистрирующий |
|
в) интегрирующий (например, счетчик электрической энергии) |
|
Примечания: 1. При необходимости изображения нестандартизованных электроизмерительных приборов следует попользовать сочетания соответствующих основных обозначении, например, комбинированный прибор, показывающий и регистрирующий. 2. Для указания назначения электроизмерительного прибора в его обозначение вписывают условные графические обозначения, установленные в стандартах ЕСКД. а также буквенные обозначения единиц измерения или измеряемых величин, которые помещают внутри графического обозначения электроизмерительного прибора |
|
a) амперметр |
|
б) вольтметр |
|
в) вольтметр двойной |
|
г) вольтметр дифференциальный |
|
д) вольтамперметр |
|
е) ваттметр |
W |
ж) ваттметр суммирующий |
∑W |
з) варметр (измеритель активной мощности) |
var |
и) микроамперметр |
μA |
к) миллиамперметр |
тА |
л) милливольтметр |
mV |
м) омметр |
Ω |
н) мегаомметр |
MΩ |
о) частотомер |
Hz |
п) волномер |
λ |
р) фазометр: измеряющий сдвиг фаз |
φ |
измеряющий коэффициент мощности |
cosφ |
с) счетчик ампер-часов |
Ah |
т) счетчик ватт-часов |
Wh |
у) счетчик вольт-ампер-часов реактивный |
varh |
ф) термометр, пирометр |
t° (допускаетсяΘо) |
х) индикатор полярности |
+ — |
и) тахометр |
n |
ч) измеритель давления |
Pa или Р |
т) измеритель уровня жидкости |
|
ш) измеритель уровня сигнала |
dB |
3. В обозначения электроизмерительных приборов допускается вписывать необходимые данные согласно действующим стандартам на электроизмерительные приборы. 4. Если необходимо указать характеристику отсчетного устройства прибора, то в его обозначение вписывают следующие квалифицирующие символы: а) прибор, подвижная часть которого может отклоняться в одну сторону от нулевой отметки: |
|
вправо |
|
влево |
|
б) прибор, подвижная часть которого может отклоняться в обе стороны от нулевой отметки |
|
допускается применять обозначение |
Гальванометр — это… Что такое Гальванометр?
Схема работы гальванометраГальвано́метр (от фамилии учёного Луиджи Гальвани и др.-греч. μετρέω «измеряю») — высокочувствительный прибор для измерения малых постоянных и переменных электрических токов. В отличие от обычных микроамперметров шкала гальванометра может быть проградуирована не только в единицах силы тока, но и в единицах напряжения, других физических величин, или иметь условную, безразмерную градуировку, например, при использовании в качестве нуль-индикаторов.
История
Отклонение магнитной стрелки под действием тока, протекающего в проводнике было впервые описано Гансом Эрстедом в 1820 году. Это явление рассматривалось, как один из способов измерения электрического тока. Самое раннее упоминание о гальванометре сделал Иоганн Швейгер в университете Галле 16 сентября 1820 года. Термин гальванометр впервые появился в 1836 году по фамилии ученого Луиджи Гальвани.
Первоначально в инструментах использовалась сила магнитного поля Земли и они назывались тангенциальными гальванометрами. Перед работой их необходимо было ориентировать в пространстве. Позже был разработан астатический гальванометр, в котором использовались противоположно направленные магниты для того, чтобы исключить влияние магнитного поля Земли. Наиболее чувствительный гальванометр — гальванометр Томсона или зеркальный гальванометр был изобретен Уильямом Томсоном(Лордом Кельвином) и запатентован им в 1858 году. Вместо магнитной стрелки он использовал легкое маленькое зеркало с магнитной пылью, подвешенное на нити. Под действием даже небольших токов зеркало отклоняло луч света, играющего роль стрелки.
Ранние гальванометры с подвижным магнитом имели существенный недостаток: любые магниты или железные предметы воздействовали на гальванометр и отклонение стрелки не было прямо пропорционально протекающему току. В 1882 году Жак-Арсен д’Арсонваль и Марсель Депре разработали гальванометр с неподвижным магнитом и движущейся проволочной катушкой, подвешенной на тонких проводах. В железной трубке внутри катушки сосредотачивалось магнитное поле. К катушке прикреплялось легкое зеркало, которое отклоняло луч света под действием тока в катушке. Получившийся гальванометр был очень чувствителен и позволял обнаружить ток силой 10 микроампер.
Эдвард Уэстон усовершенствовал эту конструкцию. Он заменил тонкие провода на спиральные пружины, как в балансом колесе наручных часов. Он разработал метод стабилизации магнитного поля постоянного магнита, так что точность инструмента не уменьшалась с течением времени. Уэстон заменил зеркало на стрелку и использовал плоское зеркало под стрелкой для исключения параллакса при наблюдениях.
В 1888 году Уэстон запатентовал свое устройство, который стал стандартным прибором в электрооборудовании. Такая конструкция и сегодня используется в гальванометрах с подвижной катушкой Долгое время стрелочные гальванометры оставались наиболее массовой разновидностью электроизмерительных приборов.
Принцип действия
Чаще всего гальванометр используют в качестве аналогового измерительного прибора. Он используется для измерения постоянного тока, протекающего в цепи. Гальванометры конструкции д’Арсонваля/Уэстона используемые на сегодняшний день сделаны с небольшой поворачивающейся катушкой, находящейся в поле постоянного магнита. К катушке прикреплена стрелка. Маленькая пружина возвращает катушку со стрелкой в нулевое положение.
Когда постоянный ток проходит сквозь катушку, в ней возникает магнитное поле. Оно взаимодействует с полем постоянного магнита, и катушка, вместе со стрелкой, поворачивается, указывая на протекающий через катушку электрический ток.
Основная чувствительность гальванометра может быть, например, 100 мкА (при падении напряжения, скажем, 50 мв, при полном токе). Используя шунты можно измерять большие токи.
Так как стрелка прибора находится на небольшом расстоянии от шкалы, может возникнуть параллакс. Чтобы его избежать, под стрелкой располагают зеркало. Совмещая стрелку со своим отражением в зеркале, можно избежать параллакса.
Разновидности и устройство
Магнитоэлектрический[1]
Представляет собой проводящую рамку (обычно намотана тонким проводом), закреплённую на оси в магнитном поле постоянного магнита. При отсутствии тока в рамке она удерживается пружиной в некотором нулевом положении. Если же по рамке протекает ток, то рамка отклоняется на угол, пропорциональный силе тока, зависящий от жёсткости пружины и индукции магнитного поля. Стрелка, закреплённая на рамке, показывает значение тока в тех единицах, в которых отградуирована шкала гальванометра.
От прочих конструкций магнитоэлектрическая система отличается наибольшей линейностью градуировки шкалы прибора (в единицах силы тока или напряжения) и наибольшей чувствительностью (минимальным значением тока полного отклонения стрелки).
Электромагнитный
Исторически самая первая конструкция гальванометра. Содержит неподвижную катушку с током и подвижный магнит (в приборах постоянного тока) или сердечник из магнитомягкого материала (для приборов, измеряющих и постоянный, и переменный ток), втягиваемый в катушку или поворачивающийся относительно неё.
Данная конструкция отличается большей простотой, отсутствием необходимости делать катушку возможно меньшего размера и веса (что требуется для магнитоэлектрической системы), отсутствием проблемы подведения тока к подвижной катушке. Однако такие приборы отличаются существенной нелинейностью шкалы (из-за неравномерностей магнитного поля сердечника и краевых эффектов катушки) и соответствующей сложностью градуировки. Тем не менее, применение данной конструкции приборов в качестве амперметров переменного тока относительно большой величины оправдано большей простотой конструкции и отсутствием дополнительных выпрямительных элементов и шунтов. Вольтметры же переменного и постоянного тока электромагнитной системы наиболее удобны для контроля узкого диапазона значений напряжения, так как начальный участок шкалы прибора сильно сжат, а контролируемый участок может быть растянут.
Тангенциальный
Тангенциальный гальванометр созданный компанией Баннела около 1890.Тангенциальный гальванометр — один из первых гальванометров, использовавшихся для измерения электрического тока. Он работает с помощью компаса, который используется для сравнения магнитного поля создаваемого неизвестным током с магнитным полем Земли. Свое название он получил от тангенциального закона магнетизма, в котором говорится, что тангенс угла наклона магнитной стрелки пропорционален соотношению сил двух перпендикулярных магнитных полей. Впервые это было описано Клодом Пулье в 1837 году.
Тангенциальный гальванометр состоит из катушки, сделанной из изолированной медной проволоки, намотанной на немагнитную рамку, расположенную вертикально. Рамка может поворачиваться вокруг вертикальной оси, проходящей через ее центр. Компас расположен горизонтально, в центре круговой шкалы. Круговая шкала разделена на четыре квадранта, каждый из которых проградуирован от 0° до 90°. К магнитной стрелке компаса прикреплен длинный алюминиевый указатель. Чтобы избежать ошибок из-за параллакса под стрелкой устанавливают плоское зеркало.
В процессе работы гальванометр устанавливают так чтобы стрелка компаса совпала с плоскостью катушки. Затем к катушке подводят измеряемый ток, который создает магнитное поле на оси катушки, перпендикулярное магнитному полю Земли. Стрелка реагирует на векторную сумму двух полей и отклоняется на угол равный тангенсу отношения этих полей.
Теория
Гальванометр ориентирован так, что плоскость катушки параллельна магнитному меридиану, т.е горизонтальной составляющей магнитного поля Земли. Когда ток проходит через катушку в ней создается магнитное поле, перпендикулярное первому, силой:
где I — ток в амперах, n — число витков катушки и r — радиус катушки. Эти два перпендикулярных поля векторно складываются и стрелка компаса отклоняется на угол:
Из тангенциального закона, , т.е.
или
или , где K — понижающий коэффициент тангенциального гальванометра.
Одна из проблем тангенциального гальванометра — сложности при измерении очень больших и очень малых токов.
Измерение геомагнитного поля Земли
Тангенциальный гальванометр также можно использовать для измерения горизонтальной составляющей магнитного поля. Для этого низкое напряжение питания, подключают последовательно с реостатом, гальванометром и амперметром. Гальванометр располагают так, чтобы магнитная стрелка была параллельна катушке, при отсутствии в ней тока. Затем на катушку подается напряжение, которое регулируют реостатом до такой величины, чтобы стрелка отклонилась на угол 45 градусов и величина магнитного поля на оси катушки становится равной горизонтальной составляющей геомагнитного поля. Это поле можно рассчитать через ток, измеренный амперметром, число витков катушки и ее радиус.
Электродинамический
В качестве и подвижного, и неподвижного элемента используются катушки с током.
Вибрационный
Вибрационные гальванометры являются разновидностью зеркальных гальванометров. Собственная частота колебаний движущихся частей настроена на строго определенную частоту, обычно 50 или 60 Гц. Возможны более высокие частоты до 1 кГц. Поскольку частота зависит от массы подвижных элементов, высокочастотные гальванометры имеют очень малые размеры. Настройка вибрационного гальванометра осуществляется изменением силы натяжения пружины. Вибрационные гальванометры переменного тока предназначены для определения малых значений силы тока или его напряжения. Подвижная часть подобных приборов имеет достаточно низкий момент инерции. Их наиболее распространенное применение в качестве нуль-индикаторов в мостовых схемах переменного тока и компараторах.Резкий резонанс колебаний в вибрационном гальванометре, делает его очень чувствительным к изменениям частоты измеряемого тока и может быть использован для точной настройки приборов
Тепловой
- Содержат проводник с током, удлиняющийся при нагреве, и рычажную систему, преобразующую это удлинение в движение стрелки.
Апериодический
Апериодическим называют гальванометр, стрелка которого после каждого отклонения становится тотчас в положение равновесия, без предварительных колебаний, как это бывает в простом гальванометре[2].
Прочие элементы и особенности конструкции
- Балансирующие элементы. При отсутствии таковых гальванометр рассчитан на работу или только в горизонтальном положении шкалы, или только в вертикальном.
- Арретир — элементы конструкции прибора, обеспечивающие фиксацию механизма в транспортном, нерабочем положении.
- Успокоитель — воздушный (в виде лепестка, перемещающегося внутри специального профиля) или электромагнитный (короткозамкнутый виток). Служит для сведения к минимуму времени измерения. Может отсутствовать в баллистическом гальванометре.
- Пружины, как правило, являются проводниками, по которым ток подаётся к рамке магнитоэлектрического или к подвижной рамке электродинамического прибора. В некоторых конструкциях осью и одновременно крутильным пружинами являются проводники, на которых растягивается рамка.
- Крепление одной из пружин изготавливается поворотным и служит для установки стрелки в нулевое положение шкалы при отсутствии тока.
- Как и в иных стрелочных измерительных приборах, шкала, помимо градуировки, может для повышения точности считывания показаний прибора иметь зеркало, в котором отражается часть стрелки прибора. Это зеркало облегчает правильное позиционирование глаза наблюдателя, при котором луч зрения перпендикулярен плоскости шкалы.
Зеркальный гальванометр
Большой точности измерений, а также наибольшей скорости реакции стрелки можно достигнуть, используя зеркальный гальванометр, в котором в качестве указателя используется небольшое зеркальце. Отражённый от него луч света играет роль стрелки. Зеркальный гальванометр был изобретен в 1826 году Иоганном Христианом Поггендорфом. Зеркальные гальванометры широко использовались в науке, до того как были изобретены более надежные и стабильные электронные усилители. Наибольшее распространение они получили в качестве записывающих устройств в сейсмометрах и подводных коммуникационных кабелях. В настоящее время высокоскоростные зеркальные гальванометры используют в лазерных шоу, для того чтобы перемещать лазерные лучи и создавать красочные фигуры в дыму вокруг аудитории. Некоторые виды таких гальванометров применяют для лазерной маркировки разнообразных вещей: от ручных инструментов до полупроводниковых кристаллов.
Применение
Измерительные приборы
Гальванометр является базовым блоком для построения других измерительных приборов. На основе гальванометра можно построить амперметр и вольтметр постоянного тока с произвольным пределом измерения:
Если к гальванометру не подключено никаких дополнительных резисторов, то его можно считать как амперметром, так и вольтметром (в зависимости от того, как гальванометр включен в цепь и как интерпретируются показания).
Экспонометр, термометр
В сочетании с датчиком света (фотодиодом) или температуры (термоэлементом), гальванометр может быть использован в качестве, соответственно, экспонометра в фотографии, измерителя разности температур и т. п.
Баллистический гальванометр
Для измерения заряда, протекающего через гальванометр в виде короткого одиночного импульса, используется баллистический гальванометр, в котором наблюдают не отклонение рамки, а её максимальный отброс после прохождения импульса.
Нуль-индикатор
Гальванометр используется также в качестве указателя (нуль-индикатора) отсутствия тока (напряжения) в электрических цепях. Для этого он обычно исполняется с нулевым положением стрелки посередине шкалы.
Механическая запись электрических сигналов
Гальванометры используется для позиционирования писчиков в осциллографах, например в аналоговых электрокардиографах. Они могут иметь частотный отклик в 100 Гц и отклонение писчиков в несколько сантиметров. В некоторых случаях (у энцефалографа) гальванометры настолько сильны, что двигают писчики, находящиеся в непосредственном контакте с бумагой. Их пишущий механизм может быть основан на жидких чернилах или на подогреве писчиков, двигающихся по термобумаге. В других случаях гальванометры не обязаны быть столь сильными: контакт с бумагой происходит периодически, поэтому требуется меньше усилий на перемещение писчиков.
Оптическая развёртка
Системы зеркальных гальванометров используются для позиционирования в лазерных оптических системах. Обычно это механизмы высокой мощности с частотным откликом свыше 1 кГц.
Современное состояние
В современных условиях аналого-цифровые преобразователи и приборы с цифровой обработкой сигналов и числовой индикацией величин заменяют гальванометры в качестве измерительных приборов, особенно в составе универсальных (Авометров) и в механически сложных условиях работы.
Получение, хранение и обработка данных в компьютерных системах по гибкости значительно превышает все способы фиксации электрических сигналов самописцами на бумаге.
Зеркальные гальванометры также потеряли своё значение в системах развёртки, сначала с появлением электронно-лучевых устройств, а там, где необходимо управление внешним световым потоком — с появлением эффективных пьезоэлектрических устройств и сред с управляемыми свойствами (например, жидких кристаллов). Однако на базе зеркальных гальванометров делаются устройства для отклонения луча лазера в лазерной технологии и установках для лазерных шоу (англ.).
См. также
Примечания
Литература
Ссылки
Условные обозначения. Электроизмерительные приборы (гост 2.729-68)
Наименование | Обозначение |
Прибор электроизмерительный: |
|
а) показывающий | |
б) регистрирующий | |
в) интегрирующий (например, счетчик) | |
Примечание: Для указания назначения электроизмерительного прибора в его обозначение вписывают условные графические обозначения, установленные в стардартах ЕСКД, а также буквенные обозначения единиц измерения или измеряемых величин, например: |
|
а) амперметр | A |
б) вольтметр | V |
в) вольтамперметр | VA |
г) ваттметр | W |
д) варметр | var |
е) микроамперметр | μA |
ж) милливольтметр | mA |
з) омметр | Ω |
и) мегаомметр | MΩ |
к) частотометр | Hz |
л) фазометр: | |
измеряющий сдвиг фаз | φ |
измеряющий коэффициент мощности | cosφ |
м) счетчик ампер-часов | Ah |
н) счетчик ватт-часов | Wh |
о) счетчик вольт-ампер-часов | varh |
п) термометр | t ° |
р) индикатор полярности | ± |
с) измеритель уровня сигнала | dB |
Электросчетчик | |
Гальванометр | |
Осциллограф | |
Датчик измеряемой неэлектрической величины | |
Датчик давления с токовым выходом | |
Датчик температуры | |
Термопара (утолщенная сторона изображения обозначает отрицательную полярность) | |
Наименование | Обозначение |
Условные обозначения на станках
Некоторые символические знаки на пультах управления промышленных станков
Наименование | Символ | Наименование | Символ |
Сеть | Главный рубильник | ||
Электропривод | Смазка | или | |
Пуск | Охлаждение | ||
Стоп | Гидростанция (гидравлика) | ||
Автоматическая работа | Быстрый (ускоренный) ход | ||
Полуавтоматическая работа | Толчковый режим (наладка) | ||
Кнопочное (ручное) управление | Управление от педали | ||
Местное освещение | Зажим, отжим | ||
Движение стола (вверх-вниз) | Влево-вправо | ||
Вперед | Назад | ||
Включение, отключение блокировки дверей электрошкафа | Ограждение открыто | ||
Наименование | Символ | Наименование | Символ |
Цветовое обозначение в электроустановках шин, проводов, проводников
Цветовое обозначение шин (ПУЭ/ Минэнерго СССР.—6-изд,. перераб. и доп.)
Согласно шестого издания ПУЭ в электроустановках должна быть обеспечена возможность легкого распознавания частей, относящихся к отдельным их элементам (простота и наглядность схем, надлежащее расположение электрооборудования, надписи, маркировка, расцветка).
Буквенно-цифровое и цветовое обозначения одноименных шин в каждой электроустановке должны быть одинаковыми.
Шины должны быть обозначены:
ГОСТ 2.736-68 Единая система конструкторской документации (ЕСКД). Обозначения условные графические в схемах. Элементы пьезоэлектрические и магнитострикционные; линии задержки (с Изменениями N 1, 2), ГОСТ от 14 августа 1968 года №2.736-68
ГОСТ 2.736-68
Группа Т52
Единая система конструкторской документации
ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ
Элементы пьезоэлектрические и магнитострикционные; линии задержки
Unified system of design documentation. Graphical symbols in diagrams. Piezoelectric and magnetostriction elements; delay lines
МКС 01.080.40
33.120
Дата введения 1971-01-01
1. РАЗРАБОТАН И ВНЕСЕН Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР
РАЗРАБОТЧИКИ
В.Р.Верченко, Ю.И.Степанов, Е.Г.Старожилец, В.С.Мурашов, Г.Г.Геворкян, Л.С.Крупальник, Г.Н.Гранатович, В.А.Смирнова, Е.В.Пурижинская, Ю.Б.Карлинский, Г.С.Плис, Ю.П.Лейчик
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартов, мер и измерительных приборов при Совете Министров СССР от 14.08.68 N 1303
3. Стандарт полностью соответствует СТ СЭВ 4075-83
4. ВЗАМЕН ГОСТ 7624-62 в части разд.15
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка | Номер пункта |
ГОСТ 2.721-74 | 2, табл.2, п.4 |
6. ИЗДАНИЕ (апрель 2010 г.) с Изменениями N 1, 2, утвержденными в июне 1984 г., апреле 1987 г. (ИУС 10-84, 7-87), Поправкой (ИУС 3-91)
1а. Настоящий стандарт распространяется на электрические схемы изделий всех отраслей промышленности и устанавливает условные графические обозначения элементов пьезоэлектрических, магнитострикционных, линий задержки и элементов электромеханических фильтров, выполняемых вручную или автоматизированным способом.
(Введен дополнительно, Изм. N 1).
Обозначения пьезоэлектрических и магнитострикционных элементов
1. Обозначения пьезоэлектрических и магнитострикционных элементов приведены в табл.1.
Таблица 1
Наименование | Обозначение |
1. Элемент пьезоэлектрический: | |
а) с двумя электродами | |
б) с тремя электродами | |
в) с четырьмя электродами | |
Примечание. Если необходимо показать, что пьезоэлектрический элемент находится в вакууме, его обозначение помещают в изображение вакуумного баллона. Например, резонатор пьезоэлектрический вакуумный с двумя пьезоэлектрическими элементами | |
2. Элемент магнитострикционный: | |
а) однообмоточный | |
б) многообмоточный (например, трехобмоточный) | |
3. Электрет | |
4. Элемент подачи механических колебаний |
Специальные квалифицирующие символы для указания в условных графических обозначениях физических свойств элементов и линий задержки
2. Специальные квалифицирующие символы для указания в условных графических обозначениях физических свойств элементов и линий задержки приведены в табл.2.
Таблица 2
Наименование | Обозначение |
1. Линия задержки. Общее обозначение | |
Примечания: | |
1. Длина обозначения не устанавливается. | |
2. При необходимости над обозначением задержки помещают указания о времени задержки (например, время задержки 20 мкс) | |
3. Если линия задержки обладает дисперсионными свойствами, над обозначением задержки проставляют соответствующие знаки: | |
а) линия с линейной зависимостью дисперсии от частоты | |
б) линия с нелинейной зависимостью дисперсии от частоты | |
4. Квалифицирующие символы общего применения по ГОСТ 2.721 | |
2. Окончание магнитострикционного провода: | |
а) несогласованное по импедансу | |
б) согласованное по импедансу | |
3. Четырехполюсник |
1, 2. (Измененная редакция, Изм. N 1, Поправка).
Обозначения линий задержки
3. Обозначения линий задержки приведены в табл.3.
Таблица 3
Наименование | Обозначение | |
Форма 1 | Форма 2 | |
1. Общее обозначение | ||
2. Пьезоэлектрическая | ||
3. Магнитострикционная | ||
4. Электромагнитная: | ||
а) с сосредоточенными параметрами (искусственная) | ||
Примечания: | ||
1. Знак задержки допускается не указывать. Количество полуокружностей определяется количеством отводов, например, двухотводная | ||
2. При изображении развернутой схемы линии задержки над обозначениями элементов, входящих в состав этой линии, рекомендуется указывать обозначение задержки. | ||
б) с распределенными параметрами (коаксиальная). | ||
Примечания: | ||
1. В структурных и функциональных схемах применяют линии задержки по форме 2, в остальных схемах — по форме 1. | ||
2. В форме 1 обозначения преобразователей могут быть повернуты на 90°. | ||
Например: | ||
3. Время задержки может быть указано около выхода. Например: | ||
4. Количество выходов или отводов может быть любым. Например, магнитострикционную линию задержки с двумя выходами и временем задержки 20 и 50 мкс обозначают | ||
5. Электромагнитную линию задержки с сосредоточенными параметрами и двумя отводами обозначают | ||
6. В форме 1 применяют разнесенное изображение. Например: | ||
а) вход | ||
б) промежуточный выход | ||
в) конечный выход |
(Введен дополнительно, Изм. N 1).
Примеры построения условных графических обозначений пьезоэлектрических и магнитострикционных устройств
4. Примеры построения условных графических обозначений пьезоэлектрических и магнитострикционных устройств приведены в табл.4.
Таблица 4
Наименование | Обозначение | |
Форма 1 | Форма 2 | |
1. Линия задержки с пьезоэлектрическим преобразователем с твердым материалом | ||
2. Линия задержки с пьезоэлектрическим преобразователем с жидким наполнителем, например, ртутным, с указанием времени задержки 20 мкс | ||
3. Линия задержки с магнитострикционным преобразователем и согласованным по импедансу проводом | ||
4. Регулируемая линия задержки: | ||
а) пьезоэлектрическая | ||
б) коаксиальная | ||
в) электромагнитная с сосредоточенными параметрами (искусственная) | ||
5. Пьезоэлектрический фильтр | ||
6. Общее обозначение электромеханического фильтра: | ||
а) с пьезоэлектрическими преобразователями | ||
б) с магнитострикционными преобразователями | ||
7. Пьезоэлектрический составной фильтр |
(Измененная редакция, Изм. N 2).
5. Размеры (в модульной сетке) основных условных графических обозначений и их элементов приведены в приложении 2.
(Введен дополнительно, Изм. N 1).
ПРИЛОЖЕНИЕ 1. (Исключено, Изм. N 2).
Приложение 2 (справочное). Размеры (в модульной сетке) основных условных графических обозначений и их элементов
ПРИЛОЖЕНИЕ 2
Справочное
Наименование | Обозначение |
1. Элемент пьезоэлектрический: | |
а) с двумя электродами | |
б) с тремя электродами | |
2. Элемент магнитострикционный однообмоточный |
ПРИЛОЖЕНИЕ 2. (Введено дополнительно, Изм. N 1).
Электронный текст документа
подготовлен АО «Кодекс» и сверен по:
официальное издание
Единая система конструкторской документации.
Обозначения условные графические в схемах:
Сб. ГОСТов. — М.: Стандартинформ, 2010