Схемы электрические. Типы схем / Хабр
Привет Хабр!
Чаще в статьях приводят вместо электрических схем красочные картинки, из-за этого возникают споры в комментариях.
В связи с этим, решил написать небольшую статью-ликбез по типам электрических схем, классифицируемых в Единой системе конструкторской документации (ЕСКД).
На протяжении всей статьи буду опираться на ЕСКД.
Рассмотрим ГОСТ 2.701-2008 Единая система конструкторской документации (ЕСКД). Схемы. Виды и типы. Общие требования к выполнению.
Данный ГОСТ вводит понятия:
- вид схемы — классификационная группировка схем, выделяемая по признакам принципа действия, состава изделия и связей между его составными частями;
- тип схемы — классификационная группировка, выделяемая по признаку их основного назначения.
Сразу договоримся, что вид схем у нас будет единственный —
схема электрическая (Э).
Разберемся какие типы схем описаны в данном ГОСТе.
Далее рассмотрим каждый тип схем более подробно применительно для электрических схем.
Основной документ:
ГОСТ 2.702-2011 Единая система конструкторской документации (ЕСКД). Правила выполнения электрических схем.
Так, что же такое и с чем «едят» эти схемы электрические?
Нам даст ответ ГОСТ 2.702-2011:
Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи.
Схемы электрические в зависимости от основного назначения подразделяют на следующие типы:
Схема электрическая структурная (Э1)
На структурной схеме изображают все основные функциональные части изделия (элементы, устройства и функциональные группы) и основные взаимосвязи между ними. Графическое построение схемы должно обеспечивать наилучшее представление о последовательности взаимодействия функциональных частей в изделии. На линиях взаимосвязей рекомендуется стрелками обозначать направление хода процессов, происходящих в изделии.
Пример схемы электрической структурной:
Схема электрическая функциональная (Э2)
На функциональной схеме изображают функциональные части изделия (элементы, устройства и функциональные группы), участвующие в процессе, иллюстрируемом схемой, и связи между этими частями. Графическое построение схемы должно давать наиболее наглядное представление о последовательности процессов, иллюстрируемых схемой.
Пример схемы электрической функциональной:
Схема электрическая принципиальная (полная) (Э3)
На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии установленных электрических процессов, все электрические взаимосвязи между ними, а также электрические элементы (соединители, зажимы и т.д.), которыми заканчиваются входные и выходные цепи. На схеме допускается изображать соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям. Схемы выполняют для изделий, находящихся в отключенном положении.
Пример схемы электрической принципиальной:
Схема электрическая соединений (монтажная) (Э4)
На схеме соединений следует изображать все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, зажимы и т.д.), а также соединения между этими устройствами и элементами. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии. Расположение изображений входных и выходных элементов или выводов внутри графических обозначений и устройств или элементов должно примерно соответствовать их действительному размещению в устройстве или элементе.
Пример схемы электрической соединений:
Схема электрическая подключения (Э5)
На схеме подключения должны быть изображены изделие, его входные и выходные элементы (соединители, зажимы и т.д.) и подводимые к ним концы проводов и кабелей (многожильных проводов, электрических шнуров) внешнего монтажа, около которых помещают данные о подключении изделия (характеристики внешних цепей и (или) адреса). Размещение изображений входных и выходных элементов внутри графического обозначения изделия должно примерно соответствовать их действительному размещению в изделии. На схеме следует указывать позиционные обозначения входных и выходных элементов, присвоенные им на принципиальной схеме изделия.
Пример схемы электрической подключений:
Схема электрическая общая (Э6)
На общей схеме изображают устройства и элементы, входящие в комплекс, а также провода, жгуты и кабели (многожильные провода, электрические шнуры), соединяющие эти устройства и элементы. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии.
Пример схемы электрической общей:
Схема электрическая расположения (Э7)
На схеме расположения изображают составные части изделия, а при необходимости связи между ними — конструкцию, помещение или местность, на которых эти составные части будут расположены.
Пример схемы электрической расположения:
Схема электрическая объединенная (Э0)
На данном виде схем изображают различные типы, которые объединяются между собой на одном чертеже.
Пример схемы электрической объединенной:
PS
Это моя первая статья на Хабре не судите строго.
Схемы электрические принципиальные | Лаборатория Электронных Средств Обучения (ЛЭСО) СибГУТИ
6.5.1 Схема электрическая принципиальная (код Э3) – схема, определяющая полный состав элементов и связей между ними и дающая детальное представление о принципах работы изделия.
6.5.2 На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии заданных электрических процессов, все электрические связи между ними, а также электрические элементы, которыми заканчиваются входные и выходные цепи.
На схеме допускается изображать соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям.
6.5.3 Схемы выполняют для изделий, находящихся в отключенном состоянии.
В обоснованных случаях допускается отдельные элементы схемы изображать в рабочем положении с указанием на поле схемы режима, для которого изображены эти элементы.
6.5.4 Элементы и устройства, УГО которых установлены в стандартах ЕСКД, изображают на схеме в виде этих УГО.
Элементы или устройства, используемые в изделии частично, допускается изображать неполностью, ограничиваясь изображением только используемых частей или элементов.
6.5.5 Элементы и устройства изображают на схемах совмещенным или разнесенным способом.
При совмещенном способе составные части элементов или устройств изображают в непосредственной близости друг к другу. При разнесенном способе составные части элементов и устройств изображают на схемах в разных местах таким образом, чтобы отдельные цепи изделия были изображены наиболее наглядно. Разнесенным способом допускается изображать все и отдельные элементы или устройства схемы.
Пример выполнения устройств совмещенным и разнесенным способами в соответствии с рисунком 6.16.
совмещенный способ разнесенный способ Рисунок 6.16 – Пример изображения элементов совмещенным и разнесенным способом6.5.6 При оформлении схем, с целью повышения наглядности, рекомендуется использовать строчный способ изображения элементов (устройств), при котором УГО элементов или их составных частей, входящих в одну цепь, изображают последовательно друг за другом по горизонтальной или вертикальной прямой, а отдельные цепи – рядом, образуя параллельные (горизонтальные или вертикальные) строки.
При оформлении схемы строчным способом допускается нумеровать строки арабскими цифрами в соответствии с рисунком 6.17.
Рисунок 6.17 – Пример выполнение схем строчным способом6.5.7 При изображении элементов (устройств) разнесенным способом допускается на свободном поле схемы помещать УГО элементов (устройств), выполненных совмещенным способом. В данном случае элементы (устройства), используемые в изделии частично, изображают полностью с указанием как использованных, так и неиспользованных частей (элементов).
Выводы (контакты) неиспользованных частей (элементов) изображают короче, чем выводы (контакты) неиспользованных частей (элементов) в соответствии с рисунком 6.18.
Рисунок 6.18 – Изображение выводов (контактов) использованных и неиспользованных частей6.5.8 Схемы выполняют в многолинейном или однолинейном изображении. При многолинейном изображении каждую цепь изображают отдельной линией, а элементы, содержащиеся в этих цепях, – отдельными УГО в соответствии с рисунком 6.19.
При однолинейном изображении цепи, выполняющие идентичные функции, изображают одной линией, а одинаковые элементы этих цепей – одним УГО в соответствии с рисунком 6.19.
6.5.9 При необходимости на схеме допускается обозначать электрические цепи по правилам установленным ГОСТ 2.709 – 89 или другим НД, действующим в отрасли.
6.5.10 В случае изображения на схеме различных функциональных цепей, для повышения удобства чтения, допускается эти цепи различать по толщине линий. На одной схеме рекомендуется применять не более трех размеров линий по толщине, при этом на поле схемы при необходимости помещают соответствующие пояснения.
6.5.11 Для упрощения схемы допускается несколько электрически не связанных линий связи сливать в линию групповой связи, но при подходе к контактам (элементам) каждую линию связи изображают отдельной линией.
При слиянии линий связи каждую линию помечают в месте слияния, а при необходимости, и на обоих концах условными обозначениями (цифрами, буквами или их сочетанием) или обозначениями, установленными ГОСТ 2.709 – 89. Линии связи, сливаемые в линию групповой связи, как правило, не должны иметь разветвлений, т.е. всякий условный номер должен встречаться на линии групповой связи два раза. При необходимости разветвлений их количество указывается после порядкового номера линии через дробную черту в соответствии с рисунком 6.20.
Рисунок 6.20 – Пример изображения разветвлений цепей6.5.12 Каждый элемент и (или) устройство, имеющее самостоятельную принципиальную схему и рассматриваемое как элемент, входящие в изделие и изображенные на схеме, должны иметь позиционное буквенно-цифровое обозначение в соответствии с ГОСТ 2.710 – 81.
Устройствам, не имеющим самостоятельных принципиальных схем, и функциональным группам рекомендуется также присваивать обозначения в соответствии с ГОСТ 2.710 – 81.
6.5.13 Позиционные обозначения элементам следует присваивать в пределах изделия. Порядковые номера элементам следует присваивать, начиная с единицы, в пределах группы элементов, которым на схеме присвоено одинаковое буквенное позиционное обозначение, например, С1, С2, С3 и т.д. Буквенные коды элементов схем электрических приведены в приложении Л.
Порядковые номера должны быть присвоены в соответствии с последовательностью расположения элементов на схеме сверху вниз в направлении слева направо.
В технически обоснованных случаях допускается изменять последовательность присвоения порядковых номеров в зависимости от размещения элементов или функциональной последовательности процесса передачи сигналов (информации).
При внесении изменений в схему (корректировке схемы) последовательность присвоения порядковых номеров может быть нарушена.
6.5.14 Позиционные обозначения проставляются на схеме рядом с УГО элементов с правой стороны или над ними.
При изображении на схеме элемента разнесенным способом позиционное обозначение проставляют около каждой составной части в соответствии с рисунком 6.16.
6.5.15 Если в состав изделия входят устройства, не имеющие самостоятельных принципиальных схем, то на схемах таких изделий допускается позиционные обозначения элементам устройств присваивать в пределах каждого устройства.
Если в состав изделия входит несколько одинаковых устройств, то позиционные обозначения элементам устройств следует присваивать в пределах этих устройств.
Порядковые номера элементам следует присваивать по правилам, установленным в 6.5.13 данного пособия.
6.5.16 На схеме изделия, в состав которого входят функциональные группы, позиционные обозначения элементам присваивают в соответствии с 6.5.13, при этом вначале присваивают позиционные обозначения элементам, не входящим в функциональные группы, а затем элементам, входящим в функциональные группы.
6.5.17 Если в изделии имеется несколько одинаковых функциональных групп, то позиционные обозначения элементов, присвоенные в одной из этих групп, следует повторять во всех последующих группах.
Обозначение функциональной группы, указывают около изображения функциональной группы сверху или справа. Пример выполнения данного правила в соответствии с рисунком 6.21.
Рисунок 6.21 – Изображение на схеме одинаковых функциональных группДопускается одинаковые функциональные группы изображать по правилам приведенным в 6.2.3.8.
6.5.18 Если поле схемы разбито на зоны или схема выполнена строчным способом, то справа от позиционного обозначения или под ним допускается указывать в круглых скобках обозначения зон и номера строк, в которых изображены все составные части данного элемента или устройства в соответствии с рисунком 6.22.
6.5.19 Для повышения удобства чтения схемы допускается раздельно изображенные части элементов соединять линией механической связи, указываю щей на принадлежность их к одному элементу. Позиционные обозначения элементов в этом случае проставляют у одного или у обоих концов линии механической связи.
6.5.20 При изображении отдельных элементов устройств в разных местах в позиционные обозначения этих элементов должно быть включено позиционное обозначение устройства, в которое они входят по типу
=А2 – С6Данное обозначение означает конденсатор С6, входящий в устройство А2.
Рисунок 6.22 – Пример простановки позиционных обозначений при разбиении схемы на зоны или выполнении схемы строчным способом6.5.21 При разнесенном способе изображения функциональной группы в состав позиционных обозначений элементов, входящих в эту группу, должно быть включено обозначение функциональной группы по типу
≠T1 — R4Данное обозначение означает резистор R4, входящий в функциональную группу Т1.
6.5.22 При однолинейном изображении около одного УГО, заменяющего несколько УГО одинаковых элементов (устройств), указывают позиционные обозначения всех этих элементов (устройств) в соответствии с рисунком 6.19.
Если одинаковые элементы (устройства) находятся не во всех цепях, изображенных однолинейно, то справа от позиционного обозначения или под ним в квадратных скобках указывают обозначения цепей, в которых находятся эти элементы (устройства) в соответствии с рисунком 6.23.
Рисунок 6.23 – Позиционное обозначение одинаковых элементов при однолинейном изображении, если элементы находятся не во всех цепях6.5.23 На принципиальной схеме должны быть однозначно определены все элементы и устройства, входящие в состав изделия и показанные на схеме.
Данные об элементах и устройствах должны быть записаны в перечень элементов. Связь перечня элементов с УГО элементов и устройств должна осуществляться через позиционные обозначения.
В технически обоснованных случаях допускается все сведения об элементах и устройствах помещать около УГО.
6.5.24 При сложном вхождении, например, когда в устройство, не имеющее самостоятельной принципиальной схемы, входит одно или несколько устройств, имеющих самостоятельные принципиальные схемы, и (или) функциональных групп, или если в функциональную группу входит одно или несколько устройств и т. д., то в перечне элементов в графе «Наименование» перед наименованием устройств, не имеющих самостоятельных принципиальных схем, и функциональных групп допускается проставлять порядковые номера (т.е. подобно обозначению разделов, подразделов и т. д. текстового документа) в пределах всей схемы изделия в соответствии с рисунком 6.24.
Поз. обозн. | Наименование | Кол. | Примечание |
С1…С3 | Конденсатор К10-17а-Н90-0,22мкФ | ||
ОЖ0.460.10 ТТУ | 3 | ||
Резисторы С2-33Н ОЖ0.467.093 ТУ | |||
Резисторы С2-29В ОЖ0.467.099 ТУ | |||
R1…R4 | С2-33Н-0,5-3,3 кОм±5%-А-В-В | 4 | |
R5 | С2-33Н-0,5-10 кОм±5%-А-В-В | 1 | |
R6 | С2-29В-0,5-8,98 Ом±5%-1,0-Б | 1 | |
А2 | 1. Субблок 21-С. ХХХХ.ХХХХХХ.051 | 1 | |
R1…R3 | Резистор С2-33Н-0,5-3,3 кОм±5%-А-В-В | ||
ОЖ0.467.093 ТУ | 3 | ||
Р1 | 1.1 Сумматор | ||
С1, С2 | Конденсатор К10-17а-Н90-0,22мкФ | ||
ОЖ0.460.10 ТТУ | 2 | ||
V1…V4 | |||
Диод 2Д510А ТТ3.362.096 ТУ | 4 | ||
А3…А5 | 2. Субблок АТС. ХХХХ.ХХХХХХ.012 | 3 | |
6.5.25 При необходимости указания около УГО номиналов резисторов и конденсаторов их показывают в соответствии с рисунком 6.25 при этом допускается применять упрощенный способ обозначения единиц измерений.
Для резисторов:
— от 0 до 999 Ом – без указания единиц измерения;
— от 1·103 до 999·103 Ом – в килоомах с обозначением единиц измерения строчной буквой «к»;
— от 1·106 до 999·106 Ом – в мегаомах с обозначением единиц измерения прописной буквой «М»;
— свыше 1·109 Ом – в гигаомах с обозначением единиц измерения прописной буквой «Г»
Для конденсаторов6
— от 0 до 9999·10-12 Ф – в пикофарадах без указания единиц измерения;
— от 1·10-8 до 9999·10-6 Ф – в микрофарадах с обозначением единиц измерения строчными буквами «мк».
6.5.26 Для обеспечения однозначности выполнения электрического монтажа, на схеме необходимо указывать обозначения выводов (контактов) элементов (устройств), нанесенные на изделие или установленные в их документации.
Если в конструкции элемента (устройства) и в его документации обозначения выводов (контактов) не указаны, то допускается условно присваивать им обозначения на схеме, повторяя их в соответствующих конструкторских документах (чертеже, электромонтажном чертеже и т. д.).
При условном присвоении обозначений выводам (контактам) на поле схемы должны быть помещены соответствующие пояснения.
При изображении на схеме нескольких одинаковых элементов (устройств) обозначения выводов (контактов) допускается показывать на одном из них.
При разнесенном способе изображения одинаковых элементов (устройств) обозначения выводов (контактов) необходимо показывать на каждой составной части элемента (устройства).
Для отличия на схеме обозначений выводов (контактов) от других обозначений (например обозначений цепей и т.п.) допускается записывать обозначения выводов (контактов) с квалифицирующим символом в соответствии с ГОСТ 2.710-81.
Рисунок 6.25 – Обозначение номиналов резисторов и конденсаторов6.5.27 Если элемент на схеме показывают разнесенным способом, то поясняющую надпись помещают около одной составной части или на поле схемы около изображения элемента, выполненного совмещенным способом.
6.5.28 Для удобства чтения схемы рекомендуют указывать характеристики входных и выходных цепей изделия (напряжение, сопротивление и т.п.), а также контролируемые параметры на гнездах и т.п. Вместо характеристик или параметров входных и выходных цепей допускается приводить наименования цепей или контролируемых величин.
6.5.29 Если заведомо известно (например, по техническому заданию), что изделие предназначено для работы только в одном конкретном изделии, то на схеме допускается указывать адреса внешних соединений входных и выходных цепей.
Указанный адрес должен обеспечивать однозначность присоединения. Например, если выходной контакт изделия должен быть соединен с шестым контактом второго соединителя устройств А3, то адрес будет записан следующим образом:
=А3 – Х2:6При обеспечении однозначности присоединения допускается указывать адрес в общем виде, например, «Коллектор прибора КИУ».
6.5.30 Характеристики входных и выходных цепей изделия, а также адреса их внешних подключений рекомендуется записывать в таблицы, помещаемые взамен УГО входных и выходных элементов – соединителей, плат и т. д. в соответствии с рисунком 6.26.
Каждой таблице присваивается позиционное обозначение элемента, взамен УГО которого она помещена. Над таблицей допускается указывать УГО контакта – гнезда или штыря.
Для удобства построения схемы допускается таблицы выполнять разнесенным способом.
Порядок расположения контактов в таблице определяется удобством выполнения схемы.
Допускается помещать таблицы с характеристиками цепей около УГО входных и выходных элементов в соответствии с рисунком 6.27.
Рисунок 6.26 – Пример изображения элемента внешнего подключения
|
Аналогичные таблицы рекомендуется помещать на линиях, изображающих входные и выходные цепи при условии, что эти цепи не заканчиваются соединителями. В данном случае таблицам позиционное обозначение не присваивают.
Допускается при необходимости вводить в таблицы другие дополнительные графы, а при отсутствии характеристик цепей или адресов не приводить графы с этими данными. В графе «Конт.» допускается проставлять через запятую последовательные номера нескольких контактов при условии, что они соединены между собой.
6.5.31 Для изображения многоконтактных соединителей допускается применять УГО, не показывающие отдельные контакты. В данном случае сведения о соединении контактов приводят одним из следующих способов:
— около УГО соединителей, на свободном поле схемы или на последующих листах схемы помещают таблицы с указанием адреса соединения. Если таблица расположена на свободном поле схемы или на последующих листах схемы, то над таблицей проставляют позиционное обозначение соединителя. Пример выполнения данного правила в соответствии с рисунками 6.28 и 6.29;
— соединения с контактами соединителя показывают разнесенным способом в соответствии с рисунком 6.30.
В графах таблиц приводят следующие данные:
— в графе «Конт.» – номера контактов соединителя строго в порядке возрастания;
— в графе «Адрес» – обозначение цепи и (или) позиционное обозначение элементов, соединенных с контактами;
— в графе «Цепь» – характеристику цепи;
— в графе «Адрес внешний» – адрес внешнего соединения.
При изображении соединения с контактами соединителя разнесенным способом (в соответствии с рисунком 6.30), точки соединенные штриховой линией с соединителем, означают соединения с соответствующими контактами данного соединителя. Характеристики цепей при необходимости помещают на свободном поле схемы над продолжением линий связи в со-ответствии с рисунком 6.30.
6.5.32 При изображении на схеме элементов, параметры которых подбирают при регулировании, около позиционных обозначений этих элементов на схеме и в перечне элементов проставляют звездочки (например, С5*), а на поле схемы помещают сноску: «*Подбирают при регулировании».
В данном случае в перечень элементов записывают элементы, параметры которых наиболее близки к теоретическим, а предельные значения параметров элементов приводят в графе «Примечание».
Если при регулировании параметра подбирают элементы различных типов, то эти элементы перечисляют в технических требованиях на поле схемы, а в графах перечня элементов приводят следующие данные:
— в графе «Наименование» – наименование элемента и параметр наиболее близкий к теоретическому;
— в графе «Примечание» – ссылку на соответствующий пункт технических требований и предельные значения параметров при подборе.
6.5.33 При изображении устройства в виде прямоугольника допускается в прямоугольнике взамен УГО входных и выходных элементов помещать таблицы с характеристиками входных и выходных цепей в соответствии с рисунком 6.31, а вне прямоугольника – таблицы с указанием адресов внешних присоединений в соответствии с рисунком 6.32. При необходимости допускается в таблицы вводить дополнительные графы.
Рисунок 6.31 – Пример изображения устройства Рисунок 6.32 – Пример изображения устройстваКаждой таблице в данном случае присваивают позиционное обозначение элемента, взамен УГО которого она помещена.
Взамен слова «Конт.» в таблице допускается помещать УГО контакта соединителя (гнездо или вилка) в соответствии с рисунками 6.31 и 6.32.
6.5.32 На поле схемы при необходимости допускается приводить указания о марках, сечениях и расцветках проводов и кабелей (многожильных проводов), для выполнения соединения элементов, а также указания о специфических требованиях к электрическому монтажу конкретного изделия, например требования о взаимном расположении отдельных цепей.
6.5.33 Буквенные коды элементов схем электрических приведены в приложении Л. Примеры выполнения схем электрических принципиальных приведены в приложении М. Условные графические обозначения наиболее употребляемых элементов приведены в приложении Н. Условные графические обозначения наиболее употребляемых устройств связи приведены в приложении П.
классификации разновидностей чертежей – функциональные и структурные типы
Особенности расположения кабелей, жгутов и проводов в составных частях изделия определяет электрическая схема соединений. На ней также изображены места ввода и подключения зажимов, разъёмов и плат. Она даёт понятие об элементах и устройствах, входящих в состав прибора. Все обозначения определены стандартами ГОСТ, поэтому каждый электрик сможет прочитать схему.
Общая классификация
Классификация схем зависит от видов оборудования, приборов и автоматических средств, которые используются — гидравлические, электрические или пневматические агрегаты. По стандартам ГОСТ их все схемы разделяют на две группы — виды и типы.
К первой относят:
- пневматические;
- электрические;
- кинематические;
- гидравлические;
- комбинированные.
Под понятием схемы подразумевают упрощённое изображение соединений между элементами цепи. Чертёж выполняют с использованием стандартных графических условных обозначений, которые позволяют мастеру легко разобраться в принципах работы электрической установки.
Среди типов электрических схем выделяют такие:
- функциональные;
- структурные;
- подключений;
- соединений;
- принципиальные;
- расположения;
- общие.
Схемы соединений
На электрической схеме соединения изображают все детали устройства, а также зажимы, платы и разъёмы. На чертеже видны все входы и выходы, провода и кабели, соединяющие элементы. Сами устройства имеют вид прямоугольников или упрощённых фигур. Детали и соединения изображают в соответствии с ГОСТами. Рядом можно увидеть принципиальные, структурные и функциональные чертежи самого изделия.
Вместо наглядного изображения разрешается помещать в чертежах таблицы с описаниями цепей и адресами их подключений. Графическое размещение элементов обязательно должно соответствовать их реальному расположению в устройстве. Если эта информация неизвестна или чертёж растянулся на несколько листов, то можно не изображать составляющие детали. Не стоит обозначать места выводов элементов, которые уже нанесены на прибор. Кабели и жгуты нумеруют по порядку, проставляя числа по оба конца. Номер кабеля нужно заключать в окружность, которая разрывает провод в месте разветвления жил.
Если у нескольких элементов одинаковое внешнее подключение, то обозначения проставляют только для одного из них. Устройства с отдельными схемами присоединения не нуждаются в изображении мест стыков проводов и входных элементов. В сложных чертежах можно линии кабелей довести только до контурной черты элемента и не изображать их присоединение.
Функциональный чертёж
На функциональной электрической схеме показывают группы элементов и устройств, их связи. Если изделие сложное, то для него изготавливают несколько чертежей, которые изображают процессы в разных режимах работы. Разработчик устанавливает количество схем, детализацию и объем деталей, основываясь на особенностях прибора. На листе должна быть проиллюстрирована последовательность функциональных процессов.
Отдельные детали имеют форму прямоугольника, саму схему изготавливают по принципиальному типу, то есть делают чертёж с поэлементной детализацией. В документе указывают такую информацию:
- технические характеристики деталей;
- поясняющие надписи, диаграммы и таблицы;
- данные о документах, которые являются основной для использования функциональных частей;
- позиционные обозначения групп элементов, их наименования.
Вся информация помещается в прямоугольники, сокращения полностью расшифровывают на полях листа.
Структурный тип
На электрической структурной схеме изображают назначения и соединения функциональных групп. Чертёж даёт мастеру наглядное представление о взаимосвязях всех частей прибора. Группы имеют форму прямоугольников или обозначений, предусмотренных стандартами. Также указываются тип элемента и документ, который является основанием для его применения. Процессы в режиме работы изображают линиями и стрелками.
В случае множества функциональных частей можно вместо изображений их типов и наименований справа от них проставляют нумерацию. На листе должна быть расположена таблица с расшифровкой чисел. Но порядковые цифры ухудшают качество изображения, так как необходимо запоминать все обозначения. Технические характеристики можно узнать благодаря соответствующим диаграммам, таблицам и надписям.
Особенности внешнего подключения
Внешние связи устройства показывают на электрической схеме подключения. На листе изображают сам прибор, выходные и входные детали, концы кабелей и жгутов внешней установки. Дополнительно на листе размещают данные о внешних цепях и адресах проводов. Для сложных изделий допускается иллюстрация в виде упрощённых контуров.
Все входные детали должны быть изображены на местах их действительного размещения. Сверху указываются обозначения, которые присвоены им на принципиальном чертеже. Также необходимо проиллюстрировать все надписи элементов, которые нанесены на само изделие.
Если обозначений на приборе нет, то их присваивают на чертеже и расшифровывают на полях. Возле соединителей указывают наименования документов, кабели изображают линиями. Допускаются надписи расцветки, марки, количества и особенностей сечения проводов.
их классификация и назначение по ГОСТ
При эксплуатации электрического оборудования нередко приходится иметь дело со схематическим обозначением на всевозможных графических изображениях. В них иногда бывает тяжело разобраться даже бывалым электрикам из-за большого разнообразия их типов, которые отличаются назначением и принципом исполнения. Именно поэтому необходимо детально рассмотреть деление на виды электрических схем и особенности каждой из них.
Общая классификация
Само понятие подразумевает под собой комплекс условных обозначений, которые предназначены для определения каких-либо конструктивных элементов или частей. В соответствии с правилами и требованиями ГОСТ 2.701-84 выделяют несколько видов, отличающихся как сферой применения, так и типом устанавливаемых обозначений.
Разделение по видам приведено в таблице ниже:
Таблица: разновидности схема
№ | Вид схемы | Буквенное обозначение |
1 | Электрические | Э |
2 | Гидравлические | Г |
3 | Пневматические | П |
4 | Газовые (кроме пневматических) | X |
5 | Кинематические | К |
6 | Вакуумные | В |
7 | Оптические | Л |
8 | Энергетические | Р |
9 | Деления | Е |
10 | Комбинированные | С |
Так, для одного и того же устройства или объекта, при необходимости, могут разрабатываться сразу несколько схем, поясняющих принцип подключения, работы или реализации функций. Для электротехнического оборудования схемы подразделяются на несколько типов:
- Принципиальные или полные – обозначаются цифрой 3;
- Структурные – обозначаются цифрой 1;
- Функциональные – обозначаются цифрой 2;
- Общие – обозначаются цифрой 6;
- Монтажные или схемы соединений – обозначаются цифрой 4;
- Подключений – обозначаются цифрой 5;
- Расположения и объединенные – обозначаются цифрой 7 и 0 соответственно.
При составлении конкретной схемы используется, как правило, буквенно-цифровые обозначения, к примеру, для электрической функциональной маркировка будет выглядеть как Э2, для газовой структурной Х1 и т.д.
Принципы графического обозначения каких-либо элементов на схемах определяются отраслевыми и государственными стандартами. Они же устанавливают требования к расположению составных частей, их размеры, нанесение шифров, наименований или маркировок.
Определение и назначение каждой электросхемы
Каждый вид электрической схемы реализуется в виде чертежа или графического изображения, выполненного вручную или посредством печатных приспособлений. Основные отличия обусловлены описанием тех или иных функций, указанием последовательности, принципа действия или привязкой к чему-либо.
Принцип построения схем регламентируется стандартом ЕСКД, который реализуется рядом нормативных документов, среди которых достаточно важными считаются ГОСТ 2.702-2011, а также ГОСТ 2.708-81.
Они устанавливают:
- требования к изображениями;
- принципам расположения компонентов;
- оформления чертежей;
- нанесению обозначений и технических характеристик.
Далее детально рассмотрим особенности каждого вида электрических схем.
Принципиальная (полная)
Принципиальная схема предназначена для пояснения принципа действия того или иного устройства. Наиболее часто ее применяют для различных распределительных устройств в силовых цепях, каких-либо приборов и т.д.
Пример принципиальной схемыНа принципиальных схемах обязательно указываются действующие электрические компоненты и проводимые связи между ними, силовые контакты и электрически узлы, соединяющие радиодетали. В свою очередь, такие электрические схемы подразделяются на два подвида: однолинейные и полные.
Однолинейные также называют первичными цепями, на них, как правило, обозначается силовая часть оборудования или электроустановки. С другой стороны однолинейная схема широко распространена для обозначения трехфазных цепей, где все оборудование на трех фазах имеет идентичное расположение и подключение. За счет чего в однолинейном варианте демонстрируется только одна фаза с некоторыми отступлениями в местах, где оборудование на разных фазах отличается.
Кроме силовых цепей существуют и слаботочные, для питания защит, средств измерительной техники и различных электронных устройств. Такие схемы вторичных цепей называются полными, так как показывают полную картину всего оборудования, выделяя даже состояние некоторых контактов и частей оборудования. Увы, из-за сложности современной аппаратуры, далеко не все устройства можно изобразить на одном листе, поэтому полные бывают элементными и развернутыми.
Полная схемаСтруктурная
На структурных схемах осуществляется общее изображение устройства, все компоненты или отдельные узлы которого выполняются в виде блоков, обозначающих оборудование, а связи между блоками могут говорить о тех или иных операциях, связующих отдельные блоки между собой.
Структурная схемаЭтот тип графического изображения призван дать общее представление об устройстве и принципе действия, поэтому на них часто проставлены стрелочки, имеются поясняющие надписи и прочие обозначения, упрощающие понимание процесса или поясняющие работу прибора. Для работы с таким изображением не нужно иметь электротехнического образования, так как ее обозначения будут понятны даже не искушенному в электричестве человеку.
Функциональная
Функциональная схема является более детальным вариантом структурной, на ней также все элементы изображаются отдельными блоками. Главное отличие в том, что каждый блок имеет уже индивидуальную форму обозначения в соответствии с его функциональным назначением. Возможно также выделение различных видов связей между частями, объединение деталей в блоки и т.д.
Функциональная схемаОбщая
Общая схема предназначена для изображения мест расположения электрических аппаратов на местности или в пределах электроустановки. Определяет основные типы электрических соединений этих аппаратов, места их реализации и т.д. Данный тип является обязательным при разработке различных конструкторских документов на этапе проектирования. Но кроме общей, конструкторская документация включает в себя еще две не менее важные схемы – соединений и подключений.
Общая схемаСхема соединений (монтажная)
Схема соединения используется для графического изображения мест подключения электрооборудования. На ней указываются конкретная привязка к частям зданий, распредустановок, по отношению к которым и должен осуществляться монтаж электрооборудования, благодаря чему такой тип схем еще называют монтажными.
Наиболее часто монтажные схемы используются для обозначения разводки электрических цепей в здании, широко применяются во время ремонта, чтобы обозначить места прокладки проводки, установки распределительных коробок и вывода точек подключения к приборам и контактам аппаратов.
Монтажная схемаНа рисунке выше приведен пример монтажной схемы, как видите, для каждого варианта могут устанавливаться свои условные обозначения, указываемые отдельно. Имеются привязки к каждой конкретной комнате и планируемому электрооборудованию, осветительным приборам и т.д. В дальнейшем она используется не только для монтажных работ, но может применяться и в процессе эксплуатации.
Подключений
Схема подключения используется для указания принципов соединения различных электрических или электронных блоков в единую систему. Иногда предполагается, что блоки имеют территориальное разделение, в других ситуациях они могут находиться в пределах одного распределительного устройства, шинной сборки или стойки. Ее пример приведен на рисунке ниже:
Схема подключенияВ зависимости от сложности графического изображения и количества отображаемых подключений оно может дополняться таблицами соединений для пояснения порядка расположения выводов и подключения изделия.
Расположения
Также входит в состав проектной документации и помогает определить местоположения всех частей электроустановки относительно друг друга и других значимых объектов.
Схема расположенияНа схеме расположения могут наноситься:
- составные части всего объекта, а при необходимости и связи между всеми частями;
- соединительные провода, кабели, шнуры и т.д. в упрощенном виде;
- наименование каждого элемента, его тип и документ, на основании которого он применяется.
Такое изображение может выполняться как в двухмерном, так и в трехмерном пространстве. Но в любом случае изображение должно соблюдать масштаб по отношению к натурным размерам и расстояниям.
Трехмерная схема расположенияОбъединенная
Объединенная схемаОбъединенная схема строиться на основании нескольких типов изображений, рассмотренных нами ранее. Такое построение призвано упростить работу электромонтажников или проектировщиков за счет объединения различной информации в единое целое. Но на практике далеко не всегда целесообразно объединять несколько типов графических элементов. Это связанно со сложностью некоторых приборов и устройств, в которых из-за нагромождения элементов довольно сложно объединять разные изображения.
Принципиальные схемы электрических цепей — Вольтик.ру
При разработке электрических/электронных устройств без электрических схем не перейти к созданию этих устройств (кроме самых простых).
Схема электрической цепи – графическое представление всех её элементов, их параметров и соединений между ними. Условные обозначения на схемах стандартизированы ЕСКД (Единая Система Конструкторской Документации).
Схемы электрических цепей по своему назначению делятся на несколько типов. Чаще всего используются принципиальные и монтажные схемы. Принципиальные схемы дают наиболее полное представление о работе и составе устройства, а монтажные схемы используются при проведении монтажных работ. Принципиальная схема, в отличие от монтажной схемы не показывает физическое расположение элементов относительно друг друга. На рисунке внизу можно увидеть отдельные элементы, пример простой принципиальной электрической схемы и направление тока в них.
На электрически заряженные частицы в цепи воздействуют не только силы электрической природы, но и при определённых условиях силы, обусловленные воздействием сторонних процессов, таких как, например, химические реакции, тепловые процессы и прочее. В результате этого в цепях образуется ЭДС (электродвижущая сила). То есть, ЭДС характеризует работу сил неэлектрического происхождения. В международной системе единиц ЭДС измеряется в вольтах, так же как и напряжение.
Ниже приведены условные обозначения самых распространённых радиоэлементов на принципиальных схемах.
Рисовать принципиальные схемы можно как от руки (удобно в небольших проектах), так и с помощью специализированного программного обеспечения, например, Proteus VSM. Proteus позволяет собрать принципиальную схему и эмулировать её работу, если схема содержит микроконтроллер – отладить его прошивку. Его бесплатная версия не позволяет сохранять файлы.
Также можно рекомендовать полностью бесплатную программу Fritzing, помимо создания принципиальных схем имеющую возможность создавать монтажные схемы. Однако, эмулировать работу цепи она не умеет. Fritzing предназначена в первую очередь для создания схем с использованием Arduino.
Принципиальные и монтажные электрические схемы
Современное электрическое оборудование в своей работе использует многочисленные технологические процессы, протекающие по различным алгоритмам.
Электромонтёру, напомним, что это специалист, который занимается эксплуатацией, монтажом, наладкой и ремонтом электрооборудования, нужно иметь правильную информацию обо всех особенностях электрооборудования. Для этого создают специальные электрические схемы.
Электросхема представляет собой документ, в котором по определённым правилам обозначаются связи между составными частями устройств, которые работают за счёт протекания электроэнергии.
Проще говоря, электрическая схема – это чертёж или графическое изображение электрооборудования и цепей связи.
Самая простая электрическая цепь может содержать всего лишь три элемента: источник, нагрузку и соединительные провода.
Но в реальности электрические цепи намного сложнее. Они, помимо основных элементов, содержат различные выключатели, рубильники, пускатели, контакторы, предохранители, реле в автоматах, электроизмерительные приборы, розетки, вилки и другое.
Всё это и указывается в электрической схеме и даёт понимание электромонтёрам о том, как работает установка и из каких элементов она состоит.
Основное назначение электросхемы – помощь в подключении установок, а также в поиске неисправности в цепи.
Электрические схемы создаются для электриков всех специальностей. Но каждая отдельная схема имеет свои особенности оформления. Чаще всего электрические схемы делят на принципиальные и монтажные.
Оба типа этих схем очень взаимосвязаны. Они дополняют информацию друг у друга, выполняются по единым стандартам, понятным всем пользователям, но имеют отличия в своём назначении.
Итак, принципиальная электрическая схема представляет собой графическое изображение электрической цепи, на котором все её элементы изображают в виде условных знаков.
На экране вы видите таблицу с условными обозначениями элементов электрической цепи.
Принципиальные электрические схемы создают в первую очередь для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания.
На экране вы видите простейшую принципиальную электрическую схему цепи.
Обратите внимание, она состоит из источника электрической энергии в виде батареи гальванических элементов, нагрузки в виде лампы накаливания и выключателя.
Что касается монтажных электрических схем, то они представляют собой чертежи или эскизы частей электрооборудования, по которым выполняется сборка, монтаж электроустановки. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.
На экране вы видите пример монтажной электрической схемы.
По этой схеме электромонтёр увидит, что все элементы электрической цепи крепятся на монтажной плате. Источником электроэнергии служит батарея от карманного фонарика. Монтажные провода, которые идут к батарее, припаиваются непосредственно к её электродам. А малогабаритная лампочка вворачивается в ламповый патрон, который закреплён на плате. В свою очередь монтажные провода крепятся к клеммам лампового патрона с помощью пайки, как и провода к выключателю. А контакты выключателя также закреплены на монтажной плате.
По указанным примерам схем можно сделать вывод, что основным отличием принципиальной и монтажной электрических схем является то, что принципиальная схема показывает соединение только основных элементов цепи, без комплектующей арматуры (например, электророзеток, вилок, ламповых патронов), а вот монтажная электрическая схема показывает точное (реальное) расположение элементов относительно друг друга, комплектующую арматуру и места подключения проводов.
Получается, что все монтажные схемы создаются на основе принципиальных и содержат всю необходимую информацию по производству монтажа электроустановки, включая выполнение электрических соединений. Без их использования создать качественно, надёжно и понятно для всех специалистов электрические подключения современного оборудования невозможно.
Для того чтобы правильно вычертить электрическую схему нужно обязательно соблюдать размеры и пропорции условных графических обозначений.
Линии связей между элементами схемы обязательно нужно проводить параллельно или взаимно перпендикулярно, соблюдая условие замкнутости цепи, наклонные линии не применять.
Итоги урока
На этом уроке мы говорили об электрических схемах. Узнали, что электросхема – это чертёж или графическое изображение электрооборудования и цепей связи. Основное назначение электрической схемы – помощь в подключении установок, а также в поиске неисправности в цепи. Электрические схемы чаще всего делят на принципиальные и монтажные. Принципиальные электрические схемы создают для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.
Электрический чертеж – HiSoUR История культуры
Электрический чертеж – это технический чертеж, который показывает информацию о мощности, освещении и коммуникации для инженерного или архитектурного проекта. Любой электрический рабочий чертеж состоит из «линий, символов, размеров и обозначений», чтобы точно передать инженерный проект рабочим, которые устанавливают электрическую систему на работу ».
Электрическая схема представляет собой графическое представление электрической установки, используя в основном электрические символы и соединения. Это контрастирует с электронной схемой, которая дает представление электронной схемы.
На электрической схеме электрические компоненты, электрические соединения, работа и сигнализация однозначно регистрируются системами кодирования, такими как нумерация компонентов, нумерация клемм, расположение, нумерация кабелей и проводов. Электрические компоненты символически показаны на электрической схеме. Сложные расписания отображаются на нескольких страницах и используют перекрестные ссылки. Данные, важные для правильного подключения, эксплуатации и использования, также перечислены в графике; индикация напряжения питания, режим размещения, описание функции сигнализации, диапазон измеренных значений и сигналов, таймеры и настройка термоса. В зависимости от необходимости существуют различные типы электрических схем.
Полный комплект рабочих чертежей для средней электрической системы в крупных проектах обычно состоит из:
План участка, показывающий местоположение здания и внешнюю электрическую проводку
Планы этажей, показывающие расположение электрических систем на каждом этаже
Схемы электропередачи, показывающие панели
Схемы электрических соединений
Расписания и другая информация в сочетании со строительными чертежами.
Электрические составители готовят схемы проводки и компоновки, используемые рабочими, которые строят, устанавливают и ремонтируют электрооборудование и проводку в центрах связи, электростанциях, электрораспределительных системах и зданиях.
[pt_view id=”2c5a0e5joa”]
График обычно имеет несколько мест. Местоположение – это физическое местоположение, в котором расположены компоненты графика. Место также имеет несколько уровней:
уровень здания или обозначение зала, в котором расположен соответствующий шкаф. Каждое здание должно иметь уникальный номер в компании, чтобы местоположение здания однозначно застревало в чертеже макета компании.
шкаф или уровень машины – это обозначение шкафа или машины в здании. Уровень окна местоположения указан в расписании на каждой странице. Части схемы в другом месте показаны в области с пунктирной линией, демаркированной с указанием местоположения. Каждый шкаф или машина должен иметь уникальный номер в здании, так что расположение шкафа или машины однозначно застревает в макете здания.
уровень компонента или обозначение компонента в шкафу. Каждый компонент должен иметь уникальный номер в шкафу или машине, так что расположение компонента однозначно застревает в чертеже шкафа или машины.
уровень зажима или указание зажима компонента. Каждый электрический компонентный соединитель должен иметь уникальный номер, чтобы местоположение зажима было однозначно присоединено к компоненту.
Таким образом, все четко идентифицируется в электрической схеме и может быть точно проверено, где находится каждый терминал.
Электрическая установка, а также график должны быть четкими, что требует жесткой конструкции. Поэтому каждая схема состоит из нескольких кругов, каждая из которых имеет свою типичную функцию:
Силовые цепи делят электрическую энергию с одной пластины на другие платы или машины.
Выключатели питания типичны для привода электродвигателя или машины. Силовая цепь питается контактором. Для защиты двигателя силовая цепь содержит тепловое или моторное защитное устройство. Если привод управляется преобразователем частоты, фактическая схема управления будет напрямую связана с преобразователем частоты.
Цепи управления содержат логику переключателя для правильного управления контакторами силовых цепей. В цепи управления можно найти управляющие устройства, такие как переключатели и кнопки, реле, электронные реле и, возможно, программируемый логический контроллер (ПЛК). Контактор разделяется между цепью управления и силовой цепью: катушка контактора включена в цепь управления, которая определяет вытягивание контактора и некоторые вспомогательные контакты контактора. В силовой цепи находятся основные контакты контактора.
Signalization предоставляет информацию пользователю сигнальными лампами или бузерами или другими HMI. Этот сигнал является двоичным (включен или выключен), а также может быть сообщен сигнальными контактами, доступными для пользователя, например, уведомлением о том, что аппарат находится в эксплуатации или неисправность устройства.
Кольца датчиков соединяют датчики машины с ПЛК или преобразователем, который делает аналоговый сигнал.
Аналоговые схемы содержат аналоговые сигналы. В промышленности используются стандартные сигналы, такие как сигнал 4-20 мА или 0-10 В. Эти сигналы могут быть измеренным значением датчика, преобразованного в стандартный сигнал измерительным преобразователем.
Из-за того, что происходит множество электрических установок, существует несколько типов схем, которые могут использовать каждый, но особенно электроника.
в алфавитном порядке
Схема подключения
Диаграмма, показывающая, где вена подключена к этому зажиму. Такой тип схемы также называется списком буфера обмена или клипа.
Посмотреть
Рисунок, показывающий расположение (спереди или внутри) шкафа электрических устройств.
Блок-график
Принципиальная схема (см. Раздел) конфигурации электрической установки, показывающая блоки (панели или контроллеры) в виде блоков. Такая схема также упоминается как схема конфигурации.
Частичная диаграмма
На частичной диаграмме показана часть электрической системы, характерной для которой отображается полная схема компонента. Другие подключения к компоненту отображаются не напрямую, а часто как ссылка на другое расписание. Компоненты из электрической системы могут быть возвращены в разных (частичных) схемах в отличие от принципиальной схемы (см. Там).
Eendraadsschema
Однопроводная схема показывает принципы электромонтажа в целом. На однострочной диаграмме показаны важные компоненты установки с их основными функциями и наиболее важными соединениями. Пунктирные линии часто указывают сигналы измерения и аналоговые сигналы, которые управляют реле защиты или которые управляют коммутационным оборудованием.
Схема почв
Схема, показывающая линии с числом жил и символов одним способом. Такая схема часто показывает (часть) конфигурации электрической установки. Функция озеленения и блок-диаграмма часто совпадают между собой.
График установки
Производная схемы посадки. Эта диаграмма показывает линии и символы простым способом, часто из одного или нескольких блоков разделения света и мощности. Кроме того, часто отображаются конкретные технические характеристики каждой группы, такие как выходная мощность и номинальный ток. Кроме того, для каждого дистрибьютора указывается общая ожидаемая способность.
Билл установки
Рисунок, показывающий точное местоположение электрических устройств (таких как переключатели, WCD, терминалы данных / телефонии) на архитектурной карте. Монтажные чертежи можно разделить на монтажные чертежи для групп мощности (400/230 В переменного тока), групп света (230 В переменного тока), отсеков электрических двигателей, заземления, связи и противопожарной защиты. Вы также можете комбинировать эти типы элементов с одним (или большим) рисунком (-ами).
Список кабелей
Список всех кабелей (часть) электроустановки, предпочтительно на (альфа) числовом порядке.
Рисунок кабельной петли
Рисунок, показывающий ход кабелей. См. Также схему трубопровода.
Схема ввода
Трубы и трубы, используемые в электромонтаже, показаны на плане пола здания, где расположена установка. Здесь вы также можете установить флаги кабелей. Затем мы говорим о чертеже кабельной петли.
Схема измерения и контроля
Схема измерения и управления (или схема цепи управления) представляет собой диаграмму, показывающую, как прибор в поле подключен к блоку управления. На чертеже схема измерения и управления соответствует схеме схемы. Поскольку здесь часто используется инструмент, устройство также отображает различные настройки, часто на самом чертеже, а также на отдельных листах спецификаций, которые относятся к расписанию. В общем, такую диаграмму также называют ходячей диаграммой (английский).
Чертеж чертежа
Рисунок установки, показывающий электрические компоненты (например, двигатели, переключатели и датчики), которые контролируют установку.
Принципиальный график
Это показывает все соединения и компоненты электрической системы. Все компоненты системы показаны схематично. Характеристика принципиальной схемы заключается в том, когда схема разделена на разные разделы, каждый компонент будет возникать только один раз.
Принципиальная электрическая схема
Схема диаграммы направлена на то, чтобы лучше понять электрическую цепь и посмотреть, сколько проводов применяется. Различают напряжение сети (400/230 В переменного тока) и ток рулевого управления (более низкие напряжения), поэтому часто используется основная блок-схема и блок-схема управления.
Поделиться ссылкой:
- Нажмите, чтобы поделиться на Twitter (Открывается в новом окне)
- Нажмите здесь, чтобы поделиться контентом на Facebook. (Открывается в новом окне)
- Нажмите, чтобы поделиться записями на Pinterest (Открывается в новом окне)
- Нажмите, чтобы поделиться записями на Tumblr (Открывается в новом окне)
- Нажмите, чтобы поделиться на LinkedIn (Открывается в новом окне)
- Нажмите, чтобы поделиться в WhatsApp (Открывается в новом окне)
- Нажмите, чтобы поделиться в Skype (Открывается в новом окне)
- Нажмите, чтобы поделиться в Telegram (Открывается в новом окне)
- Нажмите, чтобы поделиться на Reddit (Открывается в новом окне)
- Нажмите, чтобы поделиться записями на Pocket (Открывается в новом окне)
Как рисовать электрические и электрические схемы
Начните с шаблона принципиальной схемы
Начнем с принципиальной схемы. Чтобы найти шаблон принципиальной схемы, щелкните категорию Engineering & CAD , затем Circuit Panels в браузере шаблонов SmartDraw. Откройте шаблон под названием «Базовая электрическая часть». Хотя вы начнете с пустой страницы, вы заметите широкий спектр электрических символов, прикрепленных к SmartPanel слева от области рисования.Эти конденсаторы, катушки индуктивности, переключатели, резисторы и многое другое упростят построение вашей принципиальной схемы.
Найти другие символы
К каждому шаблону уже пристыковано несколько соответствующих библиотек символов. Вы можете пролистать их или использовать караты (маленькие черные стрелки справа от названия) чтобы развернуть и свернуть любую библиотеку.
Вы также можете перетаскивать библиотеки вверх и вниз по стеку, чтобы изменить их порядок.
Если вам нужно больше символов, щелкните Search symbols синего цвета в верхней части SmartPanel.Откроется вкладка «Символы» с полем поиска, где вы можете искать дополнительные символы в обширной коллекции SmartDraw.
Если вы найдете библиотеку или наборы символов, которые хотите добавить, щелкните три точки и выберите Добавить результат или Добавить библиотеку . Или вы можете просто перетащить из этого представления.
Добавить слой аннотации
Вы можете добавить слой аннотаций, не зависящий от масштаба, ко всей электротехнической и инженерной документации, чтобы улучшить ваши чертежи дополнительной информацией.
Этот слой аннотаций автоматически регулирует свой размер и положение при изменении области рисования (или размера бумаги). Вы можете добавить масштаб, автора и др. информация о дизайне в этом слое точно такая же, как в «просмотре страницы» в традиционной программе САПР.
Чтобы добавить слой аннотации, щелкните Добавить слой аннотации в SmartPanel.
Схема подключения— все, что вам нужно знать о схеме подключения
Что такое электрическая схема?
Схема подключения — это простое визуальное представление физических соединений и физической компоновки электрической системы или цепи.Он показывает, как электрические провода соединяются между собой, а также может показать, где приспособления и компоненты могут быть подключены к системе.
Когда и как использовать электрическую схему
Используйте электрические схемы, чтобы помочь в создании или изготовлении схемы или электронного устройства. Также они пригодятся при ремонте.
Энтузиасты DIY используют электрические схемы, но они также распространены в домостроении и ремонте автомобилей.
Например, строитель дома захочет подтвердить физическое расположение электрических розеток и осветительных приборов с помощью схемы подключения, чтобы избежать дорогостоящих ошибок и нарушений строительных норм.
Как нарисовать электрическую схему
SmartDraw поставляется с готовыми шаблонами электрических схем. Создавайте сотни электрических символов и быстро вставляйте их в свою электрическую схему. Специальные ручки управления вокруг каждого символа позволяют при необходимости быстро изменять их размер или вращать.
Чтобы нарисовать провод, просто нажмите на опцию Draw Lines в левой части области рисования. Если щелкнуть линию правой кнопкой мыши, можно изменить цвет или толщину линии, а также при необходимости добавить или удалить стрелки.Перетащите символ на линию, и он вставится и встанет на место. После подключения он останется подключенным, даже если вы переместите провод.
Если вам нужны дополнительные символы, щелкните стрелку рядом с видимой библиотекой, чтобы открыть раскрывающееся меню, и выберите Еще . Вы сможете искать дополнительные символы и открывать любые соответствующие библиотеки.
Щелкните Set Line Hops в SmartPanel, чтобы показать или скрыть линейные переходы в точках пересечения. Вы также можете изменить размер и форму хмеля.Выберите Показать размеры , чтобы показать длину проводов или размер компонента.
Щелкните здесь, чтобы прочитать полное руководство SmartDraw о том, как рисовать принципиальные и другие электрические схемы.
Чем электрическая схема отличается от схемы?
Схема показывает план и функции электрической цепи, но не касается физического расположения проводов. На схемах подключения показано, как соединяются провода и где они должны располагаться в реальном устройстве, а также физические соединения между всеми компонентами.
Чем электрическая схема отличается от графической схемы?
В отличие от графической схемы, схема подключения использует абстрактные или упрощенные формы и линии для отображения компонентов. Графические схемы часто представляют собой фотографии с этикетками или подробные чертежи физических компонентов.
Стандартные символы электрических схем
Большинство символов, используемых на схеме соединений, выглядят как абстрактные версии реальных объектов, которые они представляют. Например, выключатель будет разрывом линии с линией под углом к проводу, очень похоже на выключатель, который вы можете включать и выключать.Резистор будет представлен серией волнистых линий, символизирующих ограничение тока. Антенна — это прямая линия с тремя маленькими линиями, отходящими на ее конце, очень похожая на настоящую антенну.
- Провод, токопроводящий
- Предохранитель, отключается, когда ток превышает определенную величину
- Конденсатор для хранения электрического заряда
- Тумблер, останавливает ток при открытии
- Кнопочный переключатель, мгновенно разрешает ток при нажатии кнопки, прерывает ток при отпускании
- Аккумулятор, накапливающий электрический заряд и вырабатывающий постоянное напряжение
- Резистор, ограничивает ток
- Провод заземления, используемый для защиты
- Автоматический выключатель, используемый для защиты цепи от перегрузки по току
- Индуктор, катушка, создающая магнитное поле
- Антенна, принимает и передает радиоволны
- Устройство защиты от перенапряжения, используется для защиты цепи от скачков напряжения
- Лампа, излучает свет при протекании тока через
- Диод, позволяет току течь в одном направлении, указанном стрелкой или треугольником на проводе
- Микрофон, преобразует звук в электрический сигнал
- Электродвигатель
- Трансформатор, изменяет напряжение переменного тока с высокого на низкое или наоборот
- Наушники
- Термостат
- Электророзетка
- Распределительная коробка
Примеры электрических схем
Лучший способ понять электрические схемы — это посмотреть на несколько примеров электрических схем.
Щелкните любую из этих схем подключения, включенных в SmartDraw, и отредактируйте их:
Просмотрите всю коллекцию примеров и шаблонов схем подключения SmartDraw
Как читать схему
Добавлено в избранное Любимый 100Обзор
Схемы— это наша карта для проектирования, создания и устранения неисправностей схем. Понимание того, как читать схемы и следовать им, — важный навык для любого инженера-электронщика.
Это руководство должно превратить вас в полностью грамотного читателя схем! Мы рассмотрим все основные условные обозначения:
Затем мы поговорим о том, как эти символы связаны на схемах, чтобы создать модель цепи. Мы также рассмотрим несколько советов и рекомендаций, на которые следует обратить внимание.
Рекомендуемая литература
Понимание схем — это довольно базовый навык работы с электроникой, но есть несколько вещей, которые вы должны знать, прежде чем читать это руководство.Посмотрите эти уроки, если они звучат как пробелы в вашем растущем мозгу:
Условные обозначения на схеме (часть 1)
Готовы ли вы к шквалу компонентов схемы? Вот некоторые из стандартизованных основных схематических символов для различных компонентов.
Резисторы
Самый фундаментальный из схемных компонентов и символов! Резисторы на схеме обычно представлены несколькими зигзагообразными линиями с двумя выводами , выходящими наружу.В схемах, использующих международные символы, вместо волнистых линий может использоваться безликий прямоугольник.
Потенциометры и переменные резисторы
Переменные резисторы и потенциометры дополняют обозначение стандартного резистора стрелкой. Переменный резистор остается устройством с двумя выводами, поэтому стрелка просто расположена по диагонали посередине. Потенциометр — это трехконтактное устройство, поэтому стрелка становится третьей клеммой (дворником).
Конденсаторы
Обычно используются два символа конденсатора.Один символ представляет поляризованный (обычно электролитический или танталовый) конденсатор, а другой — неполяризованные колпачки. В каждом случае есть две клеммы, перпендикулярно входящие в пластины.
Символ с одной изогнутой пластиной указывает на то, что конденсатор поляризован. Изогнутая пластина обычно представляет собой катод конденсатора, который должен иметь более низкое напряжение, чем положительный анодный вывод. Знак плюс также должен быть добавлен к положительному выводу символа поляризованного конденсатора.
Катушки индуктивности
Катушки индуктивностиобычно представлены серией изогнутых выступов или петлевых катушек. Международные символы могут просто обозначать катушку индуктивности как закрашенный прямоугольник.
Переключатели
Коммутаторысуществуют во многих различных формах. Самый простой переключатель, однополюсный / однопозиционный (SPST), представляет собой две клеммы с полусоединенной линией, представляющей привод (часть, которая соединяет клеммы вместе).
Переключатели с более чем одним ходом, такие как SPDT и SP3T ниже, добавляют больше посадочных мест для привода.
Многополюсные переключатели обычно имеют несколько одинаковых переключателей с пунктирной линией, пересекающей средний привод.
Источники энергии
Так же, как существует множество вариантов питания вашего проекта, существует множество символов схем источника питания, помогающих указать источник питания.
Источники постоянного или переменного напряжения
В большинстве случаев при работе с электроникой вы будете использовать источники постоянного напряжения. Мы можем использовать любой из этих двух символов, чтобы определить, подает ли источник постоянный ток (DC) или переменный ток (AC):
Батареи
Батарейки, будь то цилиндрические, щелочные батарейки типа AA или литий-полимерные аккумуляторные батареи, обычно выглядят как пара непропорциональных параллельных линий:
Чем больше пар линий, тем больше ячеек в батарее.Кроме того, более длинная линия обычно используется для обозначения положительной клеммы, а более короткая линия соединяется с отрицательной клеммой.
Узлы напряжения
Иногда — особенно на очень загруженных схемах — вы можете назначить специальные символы для узловых напряжений. Вы можете подключать устройства к этим символам с одним контактом , и они будут напрямую связаны с 5 В, 3,3 В, VCC или GND (землей). Узлы положительного напряжения обычно обозначаются стрелкой, направленной вверх, в то время как узлы заземления обычно включают от одной до трех плоских линий (или иногда стрелку или треугольник, направленную вниз).
Условные обозначения на схеме (часть 2)
Диоды
Базовые диоды обычно представляют собой треугольник, прижатый к линии. Диоды также поляризованы, поэтому для каждого из двух выводов требуются отличительные идентификаторы. Положительный анод — это вывод, входящий в плоский край треугольника. Отрицательный катод выходит за линию символа (воспринимайте его как знак -).
Существует множество различных типов диодов, каждый из которых имеет специальный рифф на стандартном символе диода. Светодиоды (LED) дополняют символ диода парой линий, направленных в сторону. Фотодиоды , которые генерируют энергию из света (в основном, крошечные солнечные элементы), переворачивают стрелки и направляют их в сторону диода.
Другие специальные типы диодов, такие как диоды Шоттки или стабилитроны, имеют свои собственные символы с небольшими вариациями на штриховой части символа.
Транзисторы
Транзисторы, будь то биполярные транзисторы или полевые МОП-транзисторы, могут существовать в двух конфигурациях: положительно легированные или отрицательно легированные.Итак, для каждого из этих типов транзисторов есть как минимум два способа его нарисовать.
Биполярные переходные транзисторы (БЮТ)
БЮТ — трехполюсные устройства; у них есть коллектор (C), эмиттер (E) и база (B). Есть два типа BJT — NPN и PNP — и каждый имеет свой уникальный символ.
Контакты коллектора (C) и эмиттера (E) расположены на одной линии друг с другом, но на эмиттере всегда должна быть стрелка. Если стрелка указывает внутрь, это PNP, а если стрелка указывает наружу, это NPN.Мнемоника для запоминания: «NPN: n ot p ointing i n ».
Металлооксидные полевые транзисторы (МОП-транзисторы)
Как и BJT, полевые МОП-транзисторы имеют три терминала, но на этот раз они названы исток (S), сток (D) и затвор (G). И снова, есть две разные версии символа, в зависимости от того, какой у вас полевой МОП-транзистор с n-каналом или p-каналом. Для каждого типа полевого МОП-транзистора существует ряд часто используемых символов:
Стрелка в середине символа (называемая основной частью) определяет, является ли полевой МОП-транзистор n-канальным или p-канальным.Если стрелка указывает внутрь, это означает, что это n-канальный MOSFET, а если он указывает, это p-канал. Помните: «n is in» (своего рода противоположность мнемонике NPN).
Цифровые логические ворота
Наши стандартные логические функции — И, ИЛИ, НЕ и ИСКЛЮЧАЮЩЕЕ — все имеют уникальные условные обозначения:
Добавление пузыря к выходу отменяет функцию, создавая NAND, NOR и XNOR:
У них может быть более двух входов, но формы должны оставаться такими же (ну, может быть, немного больше), и все равно должен быть только один выход.
Интегральные схемы
Интегральные схемырешают такие уникальные задачи, и их так много, что они действительно не получают уникального символа схемы. Обычно интегральная схема представляет собой прямоугольник с выступающими по бокам выводами. Каждый вывод должен быть помечен как номером, так и функцией.
Схематические символы для микроконтроллера ATmega328 (обычно присутствующего на Arduinos), микросхемы шифрования ATSHA204 и микроконтроллера ATtiny45. Как видите, эти компоненты сильно различаются по размеру и количеству выводов.Поскольку микросхемы имеют такой общий символ схемы, имена, значения и метки становятся очень важными. Каждая микросхема должна иметь значение, точно определяющее название микросхемы.
Уникальные ИС: операционные усилители, регуляторы напряжения
Некоторые из наиболее распространенных интегральных схем получают уникальный символ схемы. Обычно вы увидите операционные усилители, расположенные, как показано ниже, с 5 выводами: неинвертирующий вход (+), инвертирующий вход (-), выход и два входа питания.
Часто в один корпус интегральной схемы встроено два операционных усилителя, для которых требуется только один вывод для питания и один для заземления, поэтому тот, что справа, имеет только три контакта.
Простые регуляторы напряжения обычно представляют собой трехконтактные компоненты с входными, выходными и заземляющими (или регулирующими) контактами. Обычно они имеют форму прямоугольника с выводами слева (вход), справа (выход) и внизу (заземление / регулировка).
Разное
Кристаллы и резонаторы
Кристаллы или резонаторы обычно являются важной частью схем микроконтроллера. Они помогают обеспечить тактовый сигнал. Кристаллические символы обычно имеют два вывода, в то время как резонаторы, которые добавляют два конденсатора к кристаллу, обычно имеют три вывода.
Заголовки и разъемы
Будь то обеспечение питания или отправка информации, разъемы необходимы для большинства цепей. Эти символы различаются в зависимости от того, как выглядит разъем, вот пример:
Двигатели, трансформаторы, динамики и реле
Мы объединим их вместе, так как они (в основном) все так или иначе используют катушки. Трансформаторы (не самые очевидные) обычно включают две катушки, прижатые друг к другу, с парой линий, разделяющих их:
Реле обычно соединяет катушку с переключателем:
Динамики и зуммеры обычно имеют форму, аналогичную их реальным аналогам:
Двигателии обычно имеют обведенную буквой «М», иногда с небольшим количеством украшений вокруг клемм:
Предохранители и PTC
Предохранители и PTC — устройства, которые обычно используются для ограничения больших скачков тока — каждое имеет свой уникальный символ:
Символ PTC на самом деле является общим символом для термистора , резистора, зависящего от температуры (обратите внимание на международный символ резистора там?).
Несомненно, многие символы схем не включены в этот список, но те, что указаны выше, должны дать вам 90% грамотности в чтении схем. В общем, символы должны иметь довольно много общего с реальными компонентами, которые они моделируют. Помимо символа, каждый компонент на схеме должен иметь уникальное имя и значение, которое в дальнейшем помогает его идентифицировать.
Обозначения имен и значения
Один из важнейших ключей к схемотехнической грамотности — это способность распознавать, какие компоненты какие.Компонентные символы рассказывают половину истории, но для завершения каждый символ должен сочетаться с именем и значением.
Имена и значения
Значения помогают точно определить, что такое компонент. Для схемных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, значение говорит нам, сколько у них Ом, фарад или генри. Для других компонентов, таких как интегральные схемы, значением может быть просто название микросхемы. Кристаллы могут указывать свою частоту колебаний как свою ценность.По сути, значение компонента схемы вызывает его наиболее важную характеристику .
Имена компонентов обычно представляют собой комбинацию одной или двух букв и числа. Буквенная часть имени определяет тип компонента — R для резисторов, C для конденсаторов, U для интегральных схем и т. Д. Каждое имя компонента на схеме должно быть уникальным; если в цепи несколько резисторов, например, они должны называться R 1 , R 2 , R 3 и т. д.Имена компонентов помогают нам ссылаться на определенные точки на схемах.
Префиксы имен довольно хорошо стандартизированы. Для некоторых компонентов, таких как резисторы, префикс — это просто первая буква компонента. Другие префиксы имен не столь буквальны; индукторы, например, L (потому что ток уже взял I [но он начинается с C … электроника — глупое место]). Вот краткая таблица общих компонентов и их префиксов:
Имя Идентификатор | Компонент | ||
---|---|---|---|
R | Резисторы | ||
C | Конденсаторы | ||
L | Дроссели | ||
Q | Транзисторы | ||
U | Интегральные схемы | ||
Y | Кристаллы и осцилляторы |
Хотя тезисы являются «стандартизированными» названиями для обозначений компонентов, они не всегда соблюдаются.Вы можете увидеть интегральные схемы с префиксом IC вместо U , например, или кристаллы с маркировкой XTAL вместо Y . Используйте свой здравый смысл при диагностике, какая часть есть какая. Символ обычно должен передавать достаточно информации.
Чтение схемы
Понимание того, какие компоненты есть на схеме, — это более чем полдела на пути к ее пониманию. Теперь все, что осталось, — это определить, как все символы связаны друг с другом.
Сети, узлы и метки
Схематические цепи сообщают вам, как компоненты соединяются вместе в цепи. Цепи представлены в виде линий между клеммами компонентов. Иногда (но не всегда) они имеют уникальный цвет, например, зеленые линии на этой схеме:
Соединения и узлы
Провода могут соединять две клеммы вместе, или их можно соединять десятки. Когда провод разделяется на два направления, образуется соединение . На схемах изображаем стыки с узлами , маленькие точки размещены на пересечении проводов.
Узлыдают нам возможность сказать, что «провода, пересекающие этот переход , соединены ». Отсутствие узла на стыке означает, что два отдельных провода просто проходят мимо, не образуя никакого соединения. (При разработке схем обычно рекомендуется по возможности избегать этих несвязанных перекрытий, но иногда это неизбежно).
Сетевые имена
Иногда, чтобы схема была более разборчивой, мы даем цепи имя и маркируем ее, а не прокладываем провод по всей схеме.Предполагается, что цепи с таким же именем подключены, даже если между ними нет видимого провода. Имена могут быть написаны прямо поверх сети, или они могут быть «тегами», свисающими с провода.
Каждая цепь с таким же именем подключена, как на этой схеме для коммутационной платы FT231X. Имена и метки помогают сохранить схемы от слишком хаотичного (представьте, если бы все эти цепи были действительно соединены проводами). Цепямобычно дается имя, в котором конкретно указывается назначение сигналов на этом проводе.Например, цепи питания могут быть обозначены «VCC» или «5V», а цепи последовательной связи — «RX» или «TX».
Советы по чтению схем
Определить блоки
Действительно обширные схемы следует разбивать на функциональные блоки. Это может быть раздел для ввода мощности и регулирования напряжения, или раздел микроконтроллера, или раздел, посвященный разъемам. Попытайтесь распознать, какие секции какие, и проследить за цепочкой от входа к выходу. По-настоящему хорошие разработчики схем могут даже выложить схему в виде книги: входы слева, выходы — справа.
Если ящик схемы действительно хорош (например, инженер, который разработал эту схему для RedBoard), они могут разделить части схемы на логические помеченные блоки.Распознать узлы напряжения
Узлы напряжения — это одноконтактные компоненты схемы, к которым мы можем подключать клеммы компонентов, чтобы назначить им определенный уровень напряжения. Это специальное приложение имен цепей, означающее, что все клеммы, подключенные к узлу напряжения с одинаковым именем, соединены вместе.
Узлы напряжения с одинаковыми названиями — например, GND, 5 В и 3,3 В — все подключены к своим аналогам, даже если между ними нет проводов.
Узел заземления особенно полезен, потому что очень многие компоненты нуждаются в заземлении.
Таблицы данных по ссылочным компонентам
Если на схеме есть что-то, что не имеет смысла, попробуйте найти таблицу для наиболее важного компонента. Обычно компонент, выполняющий большую часть работы со схемой, — это интегральная схема, такая как микроконтроллер или датчик.Обычно это самый крупный компонент, часто расположенный в центре схемы.
Ресурсы и дальнейшее развитие
Вот и все, что нужно для чтения схем! Знание символов компонентов, отслеживание цепей и определение общих меток. Понимание того, как работает схема, открывает вам целый мир электроники! Ознакомьтесь с некоторыми из этих руководств, чтобы попрактиковаться в новых знаниях схемотехники:
- Делители напряжения — это одна из самых основных принципиальных схем.Узнайте, как с помощью всего двух резисторов превратить большое напряжение в меньшее!
- Как использовать макетную плату — Теперь, когда вы знаете, как читать схемы, почему бы не сделать ее! Макетные платы — отличный способ создавать временные функциональные прототипы схем.
- Работа с проводом — Или пропустите макет и сразу начните с проводки. Умение разрезать, зачищать и подключать провода — важный навык электроники. Последовательные и параллельные схемы
- — Построение последовательных или параллельных схем требует хорошего понимания схем.
- Шитье токопроводящей нитью — Если вы не хотите работать с проволокой, как насчет создания схемы электронного текстиля с токопроводящей нитью? В этом прелесть схематических схем, одна и та же схематическая схема может быть построена множеством различных способов с использованием различных носителей.
| Элементарная схема и электрическая схема
Электрические принципиальные схемы передают техническому специалисту конкретную информацию. Они иллюстрируют такие элементы, как размер, тип, номер детали и расположение компонента по отношению к другим компонентам схемы.
Диаграммымогут использоваться для установки, изготовления, поиска и устранения неисправностей, а также для объяснения работы или назначения схемы. Символы используются для обозначения компонентов схемы. Провода или проводники обычно изображаются линиями. Их связи можно показать разными способами. См. Рисунок 1.
Рисунок 1 . Схема проводов. Два провода могут пересекаться на принципиальной схеме и не соединяться электрически. Чтобы соединение было выполнено, на перекрестке должна быть показана точка.
Принципиальная схемаОдним из основных типов электрических чертежей, с которыми вы столкнетесь, является принципиальная схема. См. Рисунок 2. Это типичная схематическая диаграмма. Он показывает, какие части необходимы и как они соединяются друг с другом. Расстояние между компонентами не является действительным расстоянием.
Основная цель принципиальной схемы — показать, как компоненты соотносятся друг с другом. На диаграммах показано, какие компоненты включены последовательно или параллельно друг другу.Схемы — чрезвычайно ценный инструмент для поиска и устранения неисправностей.
Рис. 2. Типичная схематическая диаграмма показывает расположение компонентов и то, как они соотносятся друг с другом
Комбинация счетчиков, электрических схем, схем и теории электроники позволяет технику находить проблемы в цепи. Многие схемы невозможно устранить без помощи схем и применения теории электроники.
Принципиальная электрическая схема и электрическая схемаРисунок 3 представляет собой сравнение элементарной линейной схемы и электрической схемы.На этом рисунке показана работа типичной системы управления двигателем с остановкой и запуском.
Элементарная линейная диаграмма слева аналогична схематической диаграмме. Он используется в основном в промышленных процессах, чтобы проиллюстрировать, как электрические элементы управления системы связаны друг с другом.
Справа фактическая схема подключения . Это будет использоваться для подключения системы управления.
Элементарная схема ясно показывает, как работает схема, а схема подключения показывает взаимное расположение точек подключения и компонентов, как они фактически присутствуют в оборудовании.У каждой диаграммы свое предназначение.
Рис. 3. И элементарная линейная схема, и электрическая схема, показанные здесь, относятся к одной и той же электрической системе,
Элементарная линейная диаграмма используется, чтобы четко показать, как работает схема. Схема подключения используется для установки системы.
Иногда блок-схема используется, чтобы показать, как работает система в целом. Взгляните на рисунок 4, чтобы увидеть блок-схему типичного AM-радио.Компоненты, такие как усилитель, сгруппированы по этапам.
Рисунок 4. Блок-схема используется для иллюстрации взаимосвязи основных электрических систем.
Рисунок 5 представляет собой типичный план электрических цепей, устанавливаемых в одной комнате жилого дома. На чертеже указано общее расположение выключателей, розеток и освещения.
Описания размеров проводов, силы тока переключателя и размеров выключателя не показаны на этом типе плана, потому что электрик должен быть знаком с электрическими правилами, касающимися этих факторов.
Рисунок 5. Типовая планировка жилого помещения, которое будет выполнять электромонтаж.
При построении электрической системы вы можете найти полезным программное обеспечение для проектирования схем. Конструкторы схем в значительной степени полагаются на компьютеры и программное обеспечение для проектирования современных электронных схем. См. Рисунок 6.
В этих программах компоненты можно выбирать из меню и размещать в области рисования. Также можно добавить электронные характеристики для каждого компонента, такие как значения сопротивления, номинальные токи и пределы напряжения.
Рисунок 6. Снимок экрана Multisim Electronics Workbench.
Программные системы могут использоваться не только для рисования электронных схем, но они также могут фактически использоваться для моделирования схемы, как если бы она была построена из электронных компонентов.
Виртуальные счетчики могут быть подключены к разным точкам в цепи для экспериментов и тестирования. Полный список материалов можно составить из схемотехники.
Шаблон, необходимый для печатной платы, можно распечатать.Это делает процесс проектирования и тестирования более быстрым и простым, чем если бы схема была построена с использованием реальных компонентов. После того, как конструкция схемы проверена на соответствие требованиям, схема может быть построена с использованием реальных компонентов.
Типы электрических чертежей и схем
Различные типы электрических схем и чертежейВ области электротехники и электроники мы используем различные типы чертежей или схем для представления определенной электрической системы или цепи.Эти электрические цепи представлены линиями для обозначения проводов и символов или значков для представления электрических и электронных компонентов. Это помогает лучше понять связь между различными компонентами. Электрики полагаются на электрическую схему этажа (которая также является электрической схемой) при выполнении любой проводки в здании.
Инженеры используют различные типы электрических чертежей, чтобы выделить определенные аспекты системы, но физическая схема и ее функции остаются прежними. Некоторые из этих электрических чертежей или схем описаны ниже.
Блок-схемаБлок-схема — это тип электрического чертежа, который представляет основные компоненты сложной системы в виде блоков, соединенных линиями, которые представляют их взаимосвязь. Это простейшая форма электрического чертежа, поскольку она только подчеркивает функцию каждого компонента и обеспечивает последовательность процессов в системе.
Блок-схема проще в разработке и является первым этапом проектирования сложной схемы для любого проекта.В нем отсутствует информация о разводке и размещении отдельных компонентов. Он представляет только основные компоненты системы и игнорирует любые мелкие компоненты. Вот почему; электрики не полагаются на блок-схему.
Пример:
Следующие два примера блок-схемы показывают FM-передатчик и частотно-регулируемый драйвер VFD.
На этой схеме показан процесс преобразования аудиосигнала в сигнал с частотной модуляцией. Это довольно просто и понятно.Каждый блок обрабатывает сигнал и передает его следующему. Практически FM-передатчик не выглядит так, потому что на блок-схеме отсутствуют отдельные компоненты.
На этой блок-схеме показано преобразование трехфазного источника питания переменного тока в постоянный, который снова преобразуется в управляемый источник переменного тока. Это довольно сложный процесс, но эта диаграмма упрощает процесс на блоки для лучшего понимания.
Блок-схема дает представление о том, как выполняется процесс, не вникая слишком глубоко в электрические термины, но этого недостаточно для реализации схемы.Каждый блок представляет собой сложную схему, которую можно объяснить с помощью других методов рисования, описанных ниже.
Принципиальная схема Принципиальная схема
Принципиальная схема электрической цепи показывает полные электрические соединения между компонентами с использованием их символов и линий. В отличие от схемы подключения, в ней не указывается реальное расположение компонентов, линия между компонентами не отображает реальное расстояние между ними.
помогает показать последовательное и параллельное соединение между компонентами и точное контактное соединение между ними.Можно легко устранить неполадки в определенной схеме, применив теорию электронных схем.
Это наиболее распространенный тип электрических чертежей, который в основном используется техниками при реализации электрических схем. Большинство студентов-инженеров полагаются на принципиальную схему при разработке различных электрических проектов.
Пример:
Это принципиальная схема усилителя напряжения. Он использует различные символы для обозначения электрических компонентов и линий для обозначения электрического соединения между их выводами.Практическая схема может отличаться по внешнему виду, но электрическое соединение и ее функции останутся прежними.
Однолинейная схема
или однолинейная схемаОднолинейная схема ( SLD ) или однолинейная схема — это представление электрической цепи с использованием одной линии. Как следует из названия, одна линия используется для обозначения нескольких линий питания, например, в трехфазной системе.
Однолинейная схема не показывает электрические соединения компонента, но может отображать размер и номинальные характеристики используемых компонентов.он упрощает сложные трехфазные силовые цепи, показывая все электрические компоненты и их взаимосвязь.
Они используются для определения и изоляции любого неисправного оборудования в любой энергосистеме во время поиска и устранения неисправностей.
На схеме SLD используются специальные электрические символы и значки для различных компонентов.
Пример:
Типичным примером трехфазной силовой цепи для представления с использованием однолинейной схемы может быть передача и распределение электроэнергии потребителям.
На этой схеме четко показана трехфазная электростанция, которая передает электроэнергию потребителям, указанным ниже. Он проходит через несколько станций, функции и характеристики которых также упоминаются, но их электрические соединения не выделяются.
Связанные сообщения:
Схема подключенияСхема подключения используется для представления электрических компонентов в их приблизительном физическом расположении с использованием их специальных символов и их соединений с помощью линий.Вертикальные и горизонтальные линии используются для обозначения проводов, а каждая линия представляет собой отдельный провод, соединяющий электрические компоненты.
Схема подключения показывает графическое изображение компонентов, которое напоминает их электрическое соединение, расположение и положение в реальной цепи. Это действительно помогает показать соединения в различном оборудовании, таком как электрические панели, распределительные коробки и т. Д., Они в основном используются для монтажа электропроводки в доме и на производстве.
Пример:
Схема установки трехфазной электропроводкиЭто схема установки трехфазной электропроводки в доме.На нем четко показаны компоненты с правильным электрическим подключением. Каждая отдельная линия (с цветовым кодом) представляет определенный фазовый провод и его соединение с каждым компонентом. Такой тип схем используется для электромонтажа дома электриками.
Графическая диаграммаГрафическая диаграмма не обязательно отражает реальную схему. Фактически, он показывает внешний вид схемы в реальном времени. его нельзя использовать для понимания или устранения неисправностей в реальной цепи, и только по этой причине он обычно не используется.Для человека с меньшими знаниями в области электричества невозможно понять, как работает схема, и диагностировать ее.
Пример:
Как видите, графическая диаграмма не предоставляет достаточно информации относительно электрического соединения компонентов.
Связанные сообщения:
Лестничная диаграмма или линейная диаграммаЛестничная диаграмма — это электрические схемы, которые представляют электрические цепи в отраслях для документирования логических систем управления.Она напоминает лестницу, поэтому ее и называют лестничной диаграммой. Есть две вертикальные линии; левая вертикальная линия представляет шину питания (источник напряжения), а правая вертикальная линия представляет землю или нейтраль. Каждая горизонтальная строка представляет собой параллельную цепь, называемую звеном.
Релейная диаграмма проста, легка для понимания и помогает быстро устранять неисправности в цепи.
Пример:
Логическая схемаЛогическая схема представляет собой логическую схему, показывающую сложную схему и процесс с использованием различных блоков или символов.Логические функции представлены их логическими символами, тогда как блоки используются для представления сложной логической схемы. Эти блоки помечены своей логической функцией для лучшего понимания без знания внутренней структуры.
Блоки соединены линиями, которые представляют входные и выходные линии для сигналов.
Логическая схема не показывает электрические характеристики цепи, такие как ток, напряжение, мощность и т. Д., Она представляет только логическую функцию схемы или устройства, где сигнал рассматривается в двоичном формате i.е. 1 или 0. Логические схемы обычно используются при проектировании цифровой логики.
Пример:
Это логическая схема однобитового полного сумматора, состоящего из цифровых логических вентилей. Каждая входная линия A и B передает один бит в сумматор, в то время как c in представляет бит переноса из предыдущих сумматоров. Линии вывода обеспечивают сумму и вывод в виде битов.
Связанный пост: Различные типы датчиков с приложениями
Схема стоякаСхема стояка — это иллюстрация физической схемы распределения электроэнергии в многоуровневом здании с использованием одной линии.Он показывает размер кабелепровода, размер провода, номинал автоматического выключателя и других электрических устройств (номинал переключателей, вилок, розеток и т. Д.) От точки входа до небольших ответвлений цепи на каждом уровне. Он разделяет планировку с системой сигнализации, а также телекоммуникационными и интернет-кабелями.
Диаграмма стояка получила свое название, потому что она показывает перетекание мощности с одного уровня на другой. В нем не указывается физическое местонахождение оборудования и не содержится лишней информации.
Основное внимание уделяется распределению электроэнергии между различными приборами в здании на каждом уровне.Он предоставляет информацию о том, как работает освещение, отопление, вентиляция и т. Д. В здании, и если есть какая-либо опасность, ее можно легко устранить.
Инженеры-электрики полагаются на схему стояков здания, чтобы избежать любых потенциальных электрических опасностей.
Похожие сообщения:
Электрический план этажаЭто вертикальное представление различных приборов, таких как свет, выключатели, вентиляторы и т. Д. В здании. В нем указывается их точное местоположение с указанием их размера и расстояния от каждой стены и потолка.Он показывает увеличенную версию каждой комнаты сверху. Обычно он содержит легенду, которая дает наглядное объяснение используемых в ней символов.
Индивидуальный план этажа разработан для каждого этажа в многоуровневом здании и используется в электрике для электромонтажа во вновь построенном здании или при перетяжке электропроводки в здании. это помогает определить расположение кабелей внутри стен.
Связанные сообщения:
Схема расположения ИССхема расположения ИС или макет ИС (маска) относится к внутренней конструкции полупроводникового компонента.Он состоит из нескольких слоев или масок из металла, оксида и полупроводника, образующих интегральную схему (ИС). Он представляет геометрию, а также размер различных полупроводниковых слоев и их соединения. Он описывает внутреннюю структуру и используется при производстве и проектировании интегральных схем.
Похожие сообщения:
Схема подключения— подробное руководство
Что такое электрическая схема?
Схема соединений — это визуальное представление компонентов и проводов, относящихся к электрическому соединению.Эта графическая диаграмма показывает нам физические связи, которые намного проще понять в электрической цепи или системе. Одна электрическая схема может обозначать все межсоединения, тем самым сигнализируя об относительных местоположениях. Использование монтажной схемы положительно распознается в проектах по производству или устранению неисправностей в электрической сети. Это может предотвратить множество повреждений, которые даже подорвут электрическую схему.
В этой статье мы узнаем некоторые интересные факты о схеме подключения , их важности и полезном онлайн-инструменте, т.е.е., EdrawMax, чтобы быстро их нарисовать.
Источник изображения : smartdraw.com
Почему мы используем электрические схемы?
Электрические схемы широко используются в производстве схем или других проектах электронных устройств. Компоновка облегчает общение между инженерами-электриками, проектирующими и реализующими электрические схемы.Фотографии также пригодятся при ремонте. Он показывает, была ли установка должным образом спроектирована и реализована, подтверждая регуляторы безопасности.
Схема подключения также может быть полезна при ремонте автомобилей и строительстве домов. Например, домостроитель может легко найти правильное расположение осветительных приборов и электрических розеток, чтобы избежать дорогостоящих дефолтов или любых нарушений кодекса.
Преимущества схем подключения:
Схема подключения дает несколько преимуществ, как указано ниже.
- Диаграммой легко поделиться даже в электронном виде.
- Процесс создания диаграммы быстрый и допускает обычное построение.
- Доступ к сотням и тысячам символов подключения делает схему более понятной.
- Диаграмму легко редактировать в зависимости от различных условий.
- Правильный инструмент обеспечивает точное размещение символов, что невозможно сделать вручную или другими способами.
Тип электросхемы
С использованием различных символов электрическая схема в основном состоит из трех основных типов. Все, что связано с электрической системой, можно отобразить на одной из диаграмм, чтобы убедиться, что соединения работают правильно.Его три основных вида заключаются в следующем.
A. Принципиальные схемы
Схематические диаграммы показывают схему цепи с ее впечатлением, а не подлинным изображением. Они предоставляют только общую информацию и не могут использоваться для ремонта или проверки цепи. Функции различного оборудования, используемого в схеме, представлены с помощью принципиальной схемы, символы которой обычно включают вертикальные и горизонтальные линии.Однако известно, что эти линии показывают поток системы, а не ее провода.
B. Схемы электрических соединений
Схема соединений представляет исходную и физическую схему электрических соединений. Схема разводки на картинке с разными символами показывает точное расположение оборудования во всей цепи. Это гораздо более полезно в качестве справочного руководства, если кто-то хочет узнать об электрической системе дома.Его компоненты показаны на картинке, чтобы их было легко идентифицировать.
C. Иллюстрированный
Это наименее эффективная схема среди электрических схем. Часто это фотографии, прикрепленные к подробным чертежам или этикеткам физических компонентов. Графическое изображение даже не пытается быть четким или эффективным. Человек, хорошо разбирающийся в схемах электропроводки, может понять только изображения.
Схема подключенияVS Принципиальная схема
Концепция может сбивать с толку, поскольку схема соединений указывает на физическую компоновку или расположение компонентов, тогда как схемы показывают функции различного оборудования, используемого в цепи.
Давайте посмотрим на его сходства и различия.
Сходства
Отличия
Как читать электрические схемы: символы, которые вы должны знать
Чтобы прочитать схему соединений , вы должны знать различные используемые символы, такие как основные символы, линии и различные соединения.
Стандартные или основные элементы, используемые в схеме подключения, включают источник питания, заземление, провода и соединения, переключатели, выходные устройства, логический вентиль, резисторы, свет и т. Д.
- Переключатель — Переключатель на электрической схеме включает вспомогательные символы, такие как размыкающий переключатель, размыкающий переключатель, двухпозиционный переключатель, переключатель DPST, переключатель DPDT и т. Д.
- Батарея — Батарея представляет собой более одной ячейки для обозначения электрической энергии. Более того, он работает от постоянного напряжения.
- Резистор — резистор показывает ограничение протекания тока. Он используется вместе с конденсатором в цепи синхронизации.
- Провод и соединение — Обозначения проводов и соединений включают в себя провод, соединенный провод и несоединенный.Соединяемые провода обычно образуют двутавровое соединение, тогда как несоединенные провода представляют собой просто пересекающиеся несоединенные провода.
- Конденсатор — Конденсатор — это накопитель электрического заряда. Этот символ используется с резистором, а также может быть показан как фильтр для пропускания сигналов переменного тока и блокировки сигналов постоянного тока.
- Логический вентиль — Логический вентиль — это своего рода сигнал процесса, используемый для представления Истинный (высокий, 1, вкл., + Vs) или ложный (низкий, 0, выкл., OV).Он также содержит субсимволы, такие как AND, NOT, NAND, NOR и OR.
- Semiconductor — Полупроводниковые символы являются интеллектуальными и обычно используются для обозначения компонентов, таких как биполярный, MOSFET, управляемый выпрямитель, управляемый переключатель, диод, диод, симистор и т. Д.
- Motor — Двигатель представляет собой преобразователь, с помощью которого электрическая энергия преобразуется в кинетическую энергию.
- Динамик — Динамик представляет собой цифровой вход, преобразованный в аналоговые звуковые волны. Это одна из важнейших частей различных продуктов, таких как телефоны и телевизоры.
- Индуктор — это компонент электрической цепи, обладающий индуктивностью. Он также включает в себя различные символы, такие как индуктивность передатчика положения, половина индуктора, взаимная индуктивность и т. Д.
Примеры электрических схем
1.Схема 2-ходового переключателя
В схеме двухпозиционного переключателя необходимо управлять потоком мощности (включение / выключение) на нагрузку (лампу, свет, потолочный вентилятор, розетку и т. Д.). Однако типичная схема будет включать 3-проводной кабель. называется Ромекс. Он состоит из белого, черного и неизолированного медных проводов.
A. Белый провод = нейтраль
B. Черный провод = горячий или силовой
С. Оголенный медный провод = Земля
Подключение двухпозиционного переключателя требует, чтобы вы управляли горячим или черным проводом для включения и выключения нагрузки.
На схеме поясняется, что источник питания входит слева. Здесь единственный провод, то есть черный провод, управляется двухпозиционным переключателем. К одному винту на стороне двухпозиционного переключателя подводится черный или горячий провод. Черный провод также идет от другого винта на двухпозиционном переключателе, идущем к нагрузке.Комбинированные белые провода помогают продолжить цепь.
Источник изображения : how-to-wire-it.com
Также важно подключить коммутатор к заземляющему проводу. Зеленый винт представляет собой заземляющий провод для подключения, как показано ниже.
Источник изображения : инструкции по подключению.com
Теперь все оголенные медные или заземляющие провода подключены. Схема двухпозиционного переключателя, показанная ниже, поможет вам понять основную концепцию подачи электроэнергии к нагрузке. Здесь вы должны воспринимать контролируемую нагрузку как свет.
Источник изображения : how-to-wire-it.com
2.Схема 3-ходового переключателя
Этот трехпозиционный переключатель также использует трехжильный кабель Romex, идущий от источника. Между трехпроводным кабелем и трехпозиционными переключателями также проложен 4-проводный кабель. Трехжильный кабель содержит тот же провод, что и белый провод, черный провод и неизолированный медный провод, тогда как четырехжильный кабель содержит дополнительный красный провод, который также является горячим.
Источник изображения : инструкции по подключению.com
Левая коробка
Здесь левый винт в нижнем положении является стандартным и получает свой черный провод от 3-х проводного источника. Тем не менее, левый винт в верхней части получает черный провод от 4-проводной правой коробки.
Правый бокс
В нем левый винт в нижнем положении получает черный провод от 3-х проводной нагрузки.Левый винт в верхнем положении получает красный провод от 4-х проводной левой коробки. Его правый винт в верхней части получает черный провод от 4-проводной левой коробки.
Источник изображения : how-to-wire-it.com
3. Подключите розетку
Стандартные розетки также являются дуплексными розетками.При подключении розетки необходимо выбрать один из нескольких вариантов. Вам понадобится трехжильный кабель в обеих розетках, чтобы подключить розетку (горячую. Кроме того, вам понадобится четырехжильный кабель, чтобы переключить верхнюю или нижнюю розетку.
Источник изображения : how-to-wire-it.com
Черный или горячий провод, идущий слева, является основным источником питания. Провод перевязан проводом, идущим к черному проводу и выключателю, который далее идет к розетке.
Источник изображения : how-to-wire-it.com
Как нарисовать электрическую схему в Edraw?
После того, как мы получили лучшее понимание основной концепции, теперь мы должны продолжить изучение того, как нарисовать схему подключения с помощью одного из лучших онлайн-инструментов — EdrawMax.Чтобы сделать схему подключения в Интернете, перейдите на официальный сайт Edraw и выполните следующие действия.
Шаг 2: Выберите Электротехника и Базовая электрическая. Поскольку создание электрической схемы — это электрическая концепция, вам необходимо выбрать Электротехника на боковой панели.Это приведет вас к различным параметрам в главном интерфейсе, откуда вы должны перейти к Basic Electrical .
Шаг 3: Создайте шаблон. Следующим шагом будет создание вашего шаблона. Во-первых, вам нужно выбрать значок + Basic Electrical . Этот выбор приведет вас к основному интерфейсу создания диаграммы, как показано ниже.
Шаг 4: Сделайте схему соединений с помощью различных инструментов.
В этом окне вы можете создать свою электрическую схему, выбирая различные символы коммутационной схемы из библиотеки символов. Доступны различные символы, такие как путь передачи, квалификационные символы, полупроводниковые устройства, переключатели и реле, а также другие необходимые электрические символы.
Статьи по теме
Что означает принципиальная схема?
Принципиальная схема — это фундаментальное двумерное представление схемы, показывающее функциональность и возможность соединения между различными электрическими компонентами.Разработчику печатной платы жизненно важно ознакомиться со схематическими обозначениями, которые представляют компоненты на принципиальной схеме.
В этой статье мы обсудим следующие моменты:
Стандарты условных обозначенийСхематические символы регулируются во всем мире двумя стандартами:
IEC 60617: Международная электротехническая комиссия (IEC) выпустила этот стандарт. Он основан на более старом британском стандарте (BS 3939).Эта база данных включает более 1750 условных обозначений.
Стандарт ANSI Y32 : Американский национальный институт стандартов (ANSI). Это обеспечивает множество специальных символов, изначально использовавшихся для авиационных приложений. Ряд незначительных изменений, внесенных в этот стандарт, привели существующий документ в соответствие с IEC.
Какие символы на схемах?В приведенной ниже электронной схеме используется набор стандартизованных символов для обозначения различных электронных компонентов.
Рис. A: Принципиальная схема
Схема показывает 3 компонента (аккумулятор, резистор и светодиод). Эти компоненты связаны друг с другом сетками / дорожками. У каждого компонента есть символ с разными атрибутами. Атрибуты резистора могут быть условным обозначением, значением сопротивления, размером, символом, номинальным напряжением, мощностью и площадью основания. Точно так же батарея и светодиод будут иметь свои атрибуты.
В таблице ниже показаны имена, символы и соответствующие им условные обозначения, используемые в схеме.Обозначения BT, R и LED обозначают батарею, резистор и светодиод соответственно. Эти условные обозначения помогают нам идентифицировать компоненты.
Условные обозначения
Зная символы и их условные обозначения, мы можем интерпретировать любую схему и построить ее соответствующим образом.
Это наиболее распространенные условные обозначения:
Общие условные обозначения
Значения и атрибутыМы знаем, что компоненты можно идентифицировать по их условному обозначению.Однако информации о размерах и мощности этих компонентов нет. Например, рассмотрим базовую электронную схему, показанную в предыдущем разделе рис. а. На схеме видно, что положительный полюс аккумулятора подключен к светодиоду через резистор R. Но другой информации об атрибутах этих компонентов (величине сопротивления резистора и емкости аккумулятора) нет. .
На схематической диаграмме должна быть представлена эта дополнительная информация, чтобы гарантировать выбор соответствующих компонентов. Сопротивление резистора должно быть выражено в омах (Ом). Аккумулятор должен указывать разность потенциалов (напряжение), выраженную в вольтах. Остальные компоненты описаны в других терминах. Например, конденсаторы различаются по величине емкости, выраженной в фарадах (Ф), индуктивности — по значению их индуктивности, выраженной в Генри (Гн).
Иногда символам могут быть присвоены дополнительные атрибуты (номинальная мощность, допуски и т. Д.). Это помогает нам определить подходящие компоненты для схемы.Некоторые из общих атрибутов компонента:
- Символ с формой и булавками
- Значения, такие как сопротивление, емкость и индуктивность компонентов
- Условное обозначение, например, U1, R1, C1 и т. Д.
- Пример максимальных условий эксплуатации: максимальное напряжение для конденсаторов, максимальная мощность для резисторов
- Пример допусков: Для сопротивления: ± 1%, ± 5%
- Обозначение производителя (MPN)
- Посадочные места компонентов (для резисторов: 0402, 0805; для 8-контактной IC: SOIC8)
Значения атрибутов могут варьироваться от очень маленьких до очень больших единиц.Чтобы избежать заполнения принципиальных схем длинными повторяющимися строками нулей для таких значений, как 1 000 000 000 или 0,0000000001, мы используем Международную систему единиц для значений (SI).
В таблице ниже показаны единицы СИ, которые обычно используются на схематических диаграммах.
Префикс | Символ | Значение | Полномочия 10 |
---|---|---|---|
тера | Т | 100000000000 | 10 12 |
гига | G | 100000000 | 10 9 |
мега | M | 1000000 | 10 6 |
кг | к | 1000 | 10 3 |
милли | м | 0.001 | 10 -3 |
микро | u | 0,000 001 | 10 -6 |
нано | n | 0,000 000 001 | 10 -9 |
пик | с. | .000 000 000 001 | 10 -12 |
На схематической диаграмме линии используются для обозначения проводов, а символы используются для обозначения компонентов.
Пример принципиальной схемы
На принципиальной схеме не показано практическое соединение между компонентами или их положение. Он содержит только символы и линии.
Схема соединений — это обобщенное графическое представление электрической цепи. Компоненты представлены в схемах подключения упрощенными формами. Электрические схемы обычно дают подробную информацию о взаимном расположении и расположении устройств.
Пример схемы подключения
Как читать схему печатной платы?Чтобы понять схему печатной платы, нам важно узнать, как компоненты на схеме соединены.Он содержит информацию о различных компонентах и условиях работы схемы.
Принципиальная схема дает следующую информацию:
- Используемые компоненты
- Электрические соединения между выводами компонентов
- Условия эксплуатации, такие как напряжение, ток, допуски
- Специальные инструкции, такие как график импеданса SE (несимметричный), дифференциальные пары и положения компонентов, такие как размещение развязывающих конденсаторов, кристаллов и т. Д.
- Блок-схема
- История изменений (при наличии)
Схематические сети определяют, как компоненты соединяются в цепи. Линия между двумя взаимосвязанными компонентами называется сеткой.
Сети на принципиальной схеме
Соединения и узлыСоединение образуется при пересечении двух или более проводов в одной точке. Это соединение представлено размещением маленькой точки (узла) в точке пересечения, как показано на изображении ниже.Чтобы узнать больше, прочтите Сетевая теория для лучшего проектирования и разработки печатных плат.
Изображение узлов на принципиальной схеме
Узлы помогают нам определить соединение между проводами, пересекающими точку. Отсутствие узла на стыке означает, что два отдельных провода просто проходят без какого-либо электрического соединения.
Именование схемДля того, чтобы схематическая диаграмма была более разборчивой, цепи помечены своими именами, а не нарисованы линиями, чтобы показать связь.Предполагается, что сети с одинаковым именем подключены, даже если видимое соединение не установлено. На изображении ниже показан пример принципиальной схемы, на которой цепи помечены своими именами.
Схема с маркированными сетями
В чем разница между принципиальной схемой и компоновкой?Схема — это чертеж, который определяет логические соединения между компонентами на печатной плате, будь то жесткая печатная плата или гибкая плата.Он в основном показывает вам, как компоненты электрически связаны. Схема содержит список соединений, который представляет собой простую структуру данных, в которой перечислены все соединения в проекте, как указано на чертеже. На изображении ниже показан пример принципиальной схемы.
Пример принципиальной схемы печатной платы
Напротив, компоновка печатной платы показывает точное физическое расположение каждого компонента на печатной плате и показывает физические провода (дорожки), которые соединяют их вместе. Пример компоновки печатной платы показан ниже.
Пример компоновки печатной платы
Как создать принципиальную схему?Если в проекте используется иерархическая схема, в которой многочисленные функциональные схемы взаимосвязаны друг с другом, то она определяет отношения между группами компонентов в различных схематических представлениях.
Ниже приведены шаги, необходимые для создания принципиальной схемы с помощью инструмента PCB CAD:
Генерация символа: этот процесс включает в себя рисование тела компонента, добавление контактов и номеров контактов, определение атрибутов символа и назначение посадочного места.Символы иногда легко доступны в программном обеспечении PCB CAD. Чтобы узнать больше, прочтите статью «Как создать библиотеку схем и символов в KiCad».
Размещение символа компонента: тело символа компонента создается путем помещения замкнутых форм символа в редактор схемной библиотеки.
Чтобы узнать больше о размещении компонентов, прочтите нашу статью «Рекомендации по размещению компонентов при проектировании и сборке печатных плат».
Нумерация контактов: контакты определяют точки подключения на компоненте для входящих и исходящих сигналов.Нумерация выводов сделана для того, чтобы соединения, показанные на схеме, были правильно подключены медью к печатной плате.
Атрибуты символа: в основном состоит из категории, значения, производителя, номера детали производителя и поставщика. Рекомендуется, чтобы каждый символ в вашей схеме имел свое собственное уникальное обозначение, чтобы можно было легко идентифицировать каждую часть.
Каковы правила рисования принципиальных схем?Ниже приведены некоторые из лучших практик, которым следует следовать при рисовании принципиальных схем:
- Электрические соединения между компонентами представлены линиями.Линии, которые пересекаются друг с другом, не соединяются, если в точке пересечения нет узла.
- Всегда рекомендуется иметь только 3 линии, подключенные к узлу.
- В сложных схемах рекомендуется назначать имя цепям. Предполагается, что одноименные сети связаны.
- Номера контактов, полярность, значения и имена цепей должны быть написаны горизонтально.
- Поместите входы слева, а выходы справа.
- Оформление схематических разделов в функциональных блоках.
- Всегда размещайте номера контактов на внешней стороне изображения символа.
- Символы соединения листов всегда следует размещать на крайнем левом или крайнем правом крае страницы.