Site Loader

Содержание

Что такое электрическая схема | Электрика в квартире, ремонт бытовых электроприборов

Просмотров 229 Опубликовано Обновлено

В данной статье мы постараемся выяснить, что же такое электрическая схема, и каково ее назначение.

В общепринятом выражении схемой можно назвать документ, включающий в себя составные части какого-либо устройства (изделия), а с помощью условных обозначений на схемах наглядно показываются связи между этими составными частями.

Электрическая схема – это своего рода тот же документ, где обозначены электрические связи между составными частями электроустройства. Т.е. главное назначение электрической схемы – это понятие принципа работы того или иного электроустройства или электроцепи.

Наличие электросхемы дает возможность:

  • выполнять монтаж (сборку) установки (цепи) в соответствии с схемой;
  • осуществлять сверку со схемой при монтаже (для исключения ошибок) и пусконаладочных работах;
  • выполнять диагностику и устранять неисправности при ремонтных работах.

Электрические схемы можно разделить на несколько типов. В зависимости от типа схемы, технические сведения об устройстве и принципе его работы могут быть полными или общими.

Типы электросхем

  • структурные;
  • функциональные;
  • принципиальные;
  • монтажные.

Существуют строгие нормативы, регламентирующие выполнение (черчения) электрических схем. На сегодняшний день таким документом является ГОСТ 2.702-2011, он обязателен для всех типов электросхем.

Структурная электрическая схема

Данная электросхема дает представление о принципе действия устройства (электроустановки) и об основных его функциональных узлах (частях) лишь в общих чертах.
Работа над проектом, чаще всего, начинается именно с этой схемы. Изображение функциональных узлов (частей) выполняется в виде прямоугольников или условных графических изображений. Их реальное расположение при этом не принимается во внимание. Связи между узлами изображаются линиями, а направление протекания электрических процессов – стрелками на этих линиях. Так же на схеме указывают технические параметры функциональных частей в виде поясняющих надписей.

структурная электрическая схема

Функциональная электрическая схема

Электросхема очень похожа на структурную схему. Основное отличие заключается в том, что функциональная схема более детально показывает принцип работы устройства (изделия, установки).

На данной электрической схеме досконально показываются происходящие процессы между функциональными узлами (частями).

функциональная электрическая схема

Принципиальная электрическая схема

Это самая распространенная электрическая схема из всех типов схем, она дает наиболее полное представление о работе всех электроцепей установки. На ней показываются все электрические и магнитные связи между функциональными частями и компонентами электроустановки. Принципиальная электросхема может быть как общей, так и однолинейной. Однолинейная схема проста по восприятию и очень широко применяется в электроэнергетике.

принципиальная электрическая схема

Монтажная электрическая схема

Данная электросхема показывает реальное расположение узлов и агрегатов электрической установки, а также связи между ними (электрические кабели и провода). В монтажной схеме применяется буквенно-цифровое обозначение всех элементов электрической цепи (электрические аппараты, соединения и т.д.) и нумерация проводов и кабелей. После монтажа электроустановки (электроцепи) эта нумерация сохраняется и наносится на провода посредством бирок или цифровых маркеров. Схема используется для непосредственного производства работ или для изготовления изделия.

Монтажная схема иногда носит другое название – схема соединений или схема подключения.

монтажная электрическая схема

Другие типы электрических схем

Стоит отметить, что существует еще несколько типов электросхем. Поговорим о них вкратце.

Топологическая схема (схема расположения) – показывается расположение составных частей (элементов) электроустройства. Также на схеме может указываться расположение устройства или объекта на местности (например, подстанции). Для лучшего восприятия топологическая схема часто выполняется в виде трехмерной модели. Расположение составных частей на схеме соответствует действительному расположению частей объекта в конструкции или на местности.

Мнемоническая схема – такой тип схемы выполняется в виде плаката, на котором показывается реальное состояние коммутационных аппаратов (их действующее положение) на управляемом ими объекте. Основное применение таких схем – диспетчерские пункты на объектах электроэнергетики. Значение мнемонических схем постепенно снижается благодаря повсеместному внедрению компьютеризированных систем управления контролем и сигнализацией.

Кабельные планы – это схема (чертеж) расположения электрических кабелей и проводов с указанием их маркировки.

Сама по себе электрическая схемы мало что дает, если человек не умеет ее правильно читать. О том как правильно читать электрические схемы можно узнать здесь. Особенно это относится к электрическим принципиальным схемам – такие схемы бывают весьма сложными и громоздкими и на их изучение может понадобиться много времени.

Чтобы читать принципиальную схему необходимо знать и понимать принцип действия отдельных приборов, элементов, аппаратов и узлов. Разобравшись в том, как связаны между собой все эти части схемы, можно понять как, собственно, функционирует схема. Другими словами, зная основы построения схем и разбираясь в протекающих там электрических процессах, можно научиться понимать, как работает электроустановка и другое электрооборудование, не пользуясь при этом специальным описанием (мануалом).

Монтажная схема электрической цепи —

§ 31. Принципиальные и монтажные электрические схемы

Простейшая демонстрационная электрическая цепь может содержать всего три элемента: источник, нагрузку и соединительные провода. Однако реальные работающие цепи намного сложнее. Помимо основных элементов они содержат различные выключатели, рубильники, пускатели, контакторы, предохранители, реле в автоматах, электроизмерительные приборы, розетки, вилки и др. При сборке электротехнических цепей электромонтажник руководствуется принципиальной электрической схемой.

Принципиальная электрическая схема представляет собой графическое изображение электрической цепи, на котором её элементы изображаются в виде условных знаков (табл. 10).

Таблица 10.
Условные обозначения элементов электрической цепи


На рисунке 54, а представлена простейшая принципиальная электрическая схема цепи, содержащая источник электрической энергии в виде батареи гальванических элементов, нагрузку в виде лампы накаливания и выключатель.

Рис. 54. Электрические схемы соединения элементов: а — принципиальная, б — монтажная

Принципиальная электрическая схема устройства является графическим документом. Условные обозначения и правила выполнения электрических схем определяются государственным стандартом, который обязаны соблюдать все инженеры и техники.

При вычерчивании электрических схем необходимо соблюдать размеры и пропорции условных графических обозначений (рис. 55).

Рис. 55. Размеры и пропорции условных электротехнических обозначений

Линии связей между элементами схемы проводят параллельно или взаимно перпендикулярно, соблюдая условие замкнутости цепи, наклонные линии не применяются.

Принципиальная схема показывает соединение только основных элементов цепи, без комплектующей арматуры (электророзетки, вилки, ламповые патроны). Поэтому электромонтажнику необходимо иметь ещё одну схему — монтажную.

Монтажная электрическая схема отображает точное расположение элементов относительно друг друга, комплектующую арматуру и места подключения проводов. Пример монтажной схемы приведён на рисунке 54, б. По этой схеме электромонтажник видит, что все элементы электрической цепи крепятся на монтажной плате. Источником служит батарея от карманного фонарика. Монтажные провода, идущие к батарее, припаиваются непосредственно к её электродам. Малогабаритная лампочка вворачивается в ламповый патрон, закреплённый на плате. Монтажные провода крепятся к клеммам лампового патрона с помощью пайки, как и провода к выключателю. Контакты выключателя закреплены также на монтажной плате.

Новые слова и понятия

Принципиальная и монтажная схемы, комплектующая арматура, элементы электрической цепи.

Порядок разработки монтажной схемы, её назначение и сфера применения

В конструкторской документации к любому электротехническому оборудованию в обязательном порядке включается монтажная схема. Давайте рассмотрим, насколько важен этот чертеж, что он позволяет понять персоналу, обслуживающему или эксплуатирующему оборудование, то есть его прямое назначение. Ознакомимся с примерами и принципом построения.

Назначение

Начнем с базисной основы. Для обслуживания, ремонта, монтажа или наладки оборудования необходимо понимать как алгоритм его работы, так и принцип действия. С этой целью в сопроводительную документацию изделий включаются схемы, представляющие собой чертежи, на которых отображаются условные обозначения компонентов и составных узлов устройства, а также существующие между ними связи.

Построение схем выполняется по нормам ЕСКД, которые регулирует соответствующий ГОСТ. Данные чертежи востребованы на этапе проектирования, производства, а также в процессе эксплуатации оборудования. В зависимости от назначения электрические схемы принято классифицировать по типам. Они бывают:

  1. Структурными. Используются для определения основных функциональных узлов устройства, отображения существующих взаимосвязей между ними и общего назначения.
  2. Функциональными. Содержат описание протекающих в участках цепи процессов. На этапе разработки позволяют составить аналитическую модель устройства, дающую представление о его функциональном назначении того или иного узла. В процессе эксплуатации на основании такой схемы обосновывается поведение оборудования, что существенно облегчает диагностику, отладку и ремонт. Пример функциональной схемы управления скоростью вращения двигателя асинхронного типа
  3. Принципиальными. Отображают элементную базу и связь всех компонентов между собой. Именно принципиальные схемы являются базисной основой для процесса разработки электрооборудования. Пример такой схемы показан ниже. Схема управления реверсом двигателя асинхронного типа
  4. Монтажными. Указывают геометрическое положение всех компонентов узла, а также отображают соединения между ними, выполненные связующими элементами. На основе схем данного типа производится сборка электрооборудования или его составных узлов. Рисунок ниже демонстрирует пример монтажной схемы запуска двигателя под управлением реверсивного магнитного пускателя, позволяющей наглядно представить подключение кнопочного поста. Управление реверсом (красным выделен кнопочный пост и магнитные пускатели)
  5. Схемами подключений, отображающих подключение внешних устройств.
  6. Схемами расположений, в отличие от монтажных показывают только положение элементов узла без отображения связей.
  7. Общими, этот тип схем позволяет получить наглядное представление об узлах и связях между всеми элементами, что облегчает понимание устройства сложного объекта.

Подведем итог, без перечисленных выше схем, не только невозможно создать качественное и надежное оборудование, но и затруднительно организовать его квалифицированное обслуживание.

Порядок разработки монтажной электрической схемы

Практикуется несколько способов разработки схем данного типа, выбор того или иного из них зависит как от типа монтажа элементов, так и функционального назначения оборудования. Например, для описания коммутации вторичной цепи используется адресная маркировка. Поскольку данный способ наиболее распространен, распишем порядок его разработки.

В первую очередь на чертеж наносится контур устройства, в который вписаны используемые в оборудовании элементы, например, клемники или рейки с зажимами. Масштаб при этом можно не соблюдать. Сверху чертежа (над контуром) указывается вид, в приведенном ниже примере это надпись «Задняя стенка ящика».

Каждый задействованный в схеме элемент получает уникальный адрес. Для его отображения чертят окружность (диаметр которой от 10 до 12мм.), разделенную горизонтально напополам. В верхнюю часть разделенной окружности заносится номер компонента, а в нижнюю условное обозначение, в соответствии с элементной схемой. Например, для клеммной колодки, состоящей из 10 зажимов, в монтажной схеме каждому из них допускается присвоить уникальный адрес.

Заметим, что элементам, коммутирующим силовые цепи, присваивается только условное обозначение, то есть без номера компонента.

Разработка схемы начинается с составления заготовки, согласно описанным выше правилам. Когда она готова, приступают к обозначению соединений, при этом используются адреса, а не линии. Такой принцип маркировки позволяет легко определять направления проводов, что существенно упрощает процесс монтажа.

Монтажно-коммуникационная схема ящика управления

Для более детального объяснения принципа построения монтажных схем рассмотрим несколько примеров.

Пример: монтажная схема электропроводки 1 комнатной квартиры.

На рисунке ниже приведена типовая схема электрической проводки. Глядя на графическое изображение, становится понятно, что она включает в себя две ветви. Первая обеспечивает поступление электричества в зал и прихожую, вторая предназначена для санузла, кухни и ванной комнаты. При этом обе линии одновременно запитывают как освещение, так и розетки для подключения электроприборов.

Пример монтажной схемы проводки

Безусловно, такой принцип подключения иррационален, поскольку в случае КЗ обесточится полностью помещение. Помимо этого, если планируется установка таких мощных потребителей электроэнергии, как кондиционер, бойлер или электропечь, для каждого из них желательно проводить отдельную линию питания.

Данная схема приведена в качестве примера, чтобы наглядно показать, как имея перед собой графическое изображение проекта, определить его слабые стороны.

Пример монтажной схемы теплого водяного пола в квартире.

Схема соединений может применяться не только для электрооборудования, как видно из рисунка ниже, она отлично отображает структуру теплого пола, подключенного к контуру центральной отопительной системы.

Монтажно-технологическая схема теплого пола

Условные обозначения:

  • 1 – вентиль шарового типа, установленный на подающую линию;
  • 2 – вентиль шарового типа, на выходе;
  • 3 — очищающий фильтр;
  • 4 – клапан на обратную линию;
  • 5 – трехходовая смесительная запорная арматура;
  • 6 – клапан для перезапуска;
  • 7 – насос, обеспечивающий циркуляцию рабочей жидкости;
  • 8 – кран, перекрывающий обратный коллектор;
  • 9 – запорная арматура, перекрывающая вход в подающий коллектор;
  • 10 – корпус обратного коллектора;
  • 11 – подающий коллектор;
  • 12 – запорная арматура шарового типа, перекрывающая обратку;
  • 13 – вентили для перекрытия подачи;
  • 14 – кран для стравливания воздуха;
  • 15 – дренажная запорная арматура;
  • 16 – батарея центрального отопления.

Данная схема приведена в качестве примера, не следует воспринимать такую организацию как эталонную. Если вы хотите сделать водяной теплый пол по такому принципу, то в первую очередь необходимо согласовать свой проект с компанией, предоставляющей услуги центрального отопления.

И в завершении приведем пример грамотно составленной монтажной схемы системы отопления на базе конвектора с термостатом.

Схема соединений отопительной системы с использованием конвекторов

Как правильно читать монтажные схемы.

Для понимания схем необходимо знать условные графические изображения компонентов, их буквенно-цифровые обозначения. Понимание принципа действия и алгоритма работы элементов будет существенно способствовать процессу сборки и отладке. В качестве обоснования таких требований приведем для примера монтажную схему базовой платы коротковолнового трансивера.

Монтажная схема КВ трансивера «Дружба М»

Как видно из рисунка, к схеме прилагается пояснение, в котором содержится необходимая для монтажа информация. Но ее будет явно недостаточно при отсутствии базовых знаний, в результате можно ошибиться с полярностью электролитических конденсаторов или диодов, и собранное устройство не будет функционировать.

Ради справедливости необходимо заметить, что подобную оплошность может допустить и специалист, именно поэтому на монтажных платах, изготовленных промышленным способом, принято наносить расположения элементов и указывать их полярность (см. рис. 9). Это существенно снижает вероятность ошибок при сборке.

Фотография фрагмента монтажной платы, на которою нанесены места «посадки» элементов

Принципиальные и монтажные электрические схемы

Урок 30. Технология 8 класс ФГОС

Конспект урока «Принципиальные и монтажные электрические схемы»

Современное электрическое оборудование в своей работе использует многочисленные технологические процессы, протекающие по различным алгоритмам.

Электромонтёру, напомним, что это специалист, который занимается эксплуатацией, монтажом, наладкой и ремонтом электрооборудования, нужно иметь правильную информацию обо всех особенностях электрооборудования. Для этого создают специальные электрические схемы.

Электросхема представляет собой документ, в котором по определённым правилам обозначаются связи между составными частями устройств, которые работают за счёт протекания электроэнергии.

Проще говоря, электрическая схема – это чертёж или графическое изображение электрооборудования и цепей связи.

Самая простая электрическая цепь может содержать всего лишь три элемента: источник, нагрузку и соединительные провода.

Но в реальности электрические цепи намного сложнее. Они, помимо основных элементов, содержат различные выключатели, рубильники, пускатели, контакторы, предохранители, реле в автоматах, электроизмерительные приборы, розетки, вилки и другое.

Всё это и указывается в электрической схеме и даёт понимание электромонтёрам о том, как работает установка и из каких элементов она состоит.

Основное назначение электросхемы – помощь в подключении установок, а также в поиске неисправности в цепи.

Электрические схемы создаются для электриков всех специальностей. Но каждая отдельная схема имеет свои особенности оформления. Чаще всего электрические схемы делят на принципиальные и монтажные.

Оба типа этих схем очень взаимосвязаны. Они дополняют информацию друг у друга, выполняются по единым стандартам, понятным всем пользователям, но имеют отличия в своём назначении.

Итак, принципиальная электрическая схема представляет собой графическое изображение электрической цепи, на котором все её элементы изображают в виде условных знаков.

На экране вы видите таблицу с условными обозначениями элементов электрической цепи.

Принципиальные электрические схемы создают в первую очередь для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания.

На экране вы видите простейшую принципиальную электрическую схему цепи.

Обратите внимание, она состоит из источника электрической энергии в виде батареи гальванических элементов, нагрузки в виде лампы накаливания и выключателя.

Что касается монтажных электрических схем, то они представляют собой чертежи или эскизы частей электрооборудования, по которым выполняется сборка, монтаж электроустановки. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.

На экране вы видите пример монтажной электрической схемы.

По этой схеме электромонтёр увидит, что все элементы электрической цепи крепятся на монтажной плате. Источником электроэнергии служит батарея от карманного фонарика. Монтажные провода, которые идут к батарее, припаиваются непосредственно к её электродам. А малогабаритная лампочка вворачивается в ламповый патрон, который закреплён на плате. В свою очередь монтажные провода крепятся к клеммам лампового патрона с помощью пайки, как и провода к выключателю. А контакты выключателя также закреплены на монтажной плате.

По указанным примерам схем можно сделать вывод, что основным отличием принципиальной и монтажной электрических схем является то, что принципиальная схема показывает соединение только основных элементов цепи, без комплектующей арматуры (например, электророзеток, вилок, ламповых патронов), а вот монтажная электрическая схема показывает точное (реальное) расположение элементов относительно друг друга, комплектующую арматуру и места подключения проводов.

Получается, что все монтажные схемы создаются на основе принципиальных и содержат всю необходимую информацию по производству монтажа электроустановки, включая выполнение электрических соединений. Без их использования создать качественно, надёжно и понятно для всех специалистов электрические подключения современного оборудования невозможно.

Для того чтобы правильно вычертить электрическую схему нужно обязательно соблюдать размеры и пропорции условных графических обозначений.

Линии связей между элементами схемы обязательно нужно проводить параллельно или взаимно перпендикулярно, соблюдая условие замкнутости цепи, наклонные линии не применять.

На этом уроке мы говорили об электрических схемах. Узнали, что электросхема – это чертёж или графическое изображение электрооборудования и цепей связи. Основное назначение электрической схемы – помощь в подключении установок, а также в поиске неисправности в цепи. Электрические схемы чаще всего делят на принципиальные и монтажные. Принципиальные электрические схемы создают для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.

Что такое электрическая схема

В данной статье мы постараемся выяснить, что же такое электрическая схема, и каково ее назначение.

В общепринятом выражении схемой можно назвать документ, включающий в себя составные части какого-либо устройства (изделия), а с помощью условных обозначений на схемах наглядно показываются связи между этими составными частями.

Электрическая схема – это своего рода тот же документ, где обозначены электрические связи между составными частями электроустройства. Т.е. главное назначение электрической схемы – это понятие принципа работы того или иного электроустройства или электроцепи.

Наличие электросхемы дает возможность:

  • выполнять монтаж (сборку) установки (цепи) в соответствии с схемой;
  • осуществлять сверку со схемой при монтаже (для исключения ошибок) и пусконаладочных работах;
  • выполнять диагностику и устранять неисправности при ремонтных работах.

Электрические схемы можно разделить на несколько типов. В зависимости от типа схемы, технические сведения об устройстве и принципе его работы могут быть полными или общими.

Типы электросхем

  • структурные;
  • функциональные;
  • принципиальные;
  • монтажные.

Существуют строгие нормативы, регламентирующие выполнение (черчения) электрических схем. На сегодняшний день таким документом является ГОСТ 2.702-2011, он обязателен для всех типов электросхем.

Структурная электрическая схема

Данная электросхема дает представление о принципе действия устройства (электроустановки) и об основных его функциональных узлах (частях) лишь в общих чертах.
Работа над проектом, чаще всего, начинается именно с этой схемы. Изображение функциональных узлов (частей) выполняется в виде прямоугольников или условных графических изображений. Их реальное расположение при этом не принимается во внимание. Связи между узлами изображаются линиями, а направление протекания электрических процессов – стрелками на этих линиях. Так же на схеме указывают технические параметры функциональных частей в виде поясняющих надписей. структурная электрическая схема

Функциональная электрическая схема

Электросхема очень похожа на структурную схему. Основное отличие заключается в том, что функциональная схема более детально показывает принцип работы устройства (изделия, установки).
На данной электрической схеме досконально показываются происходящие процессы между функциональными узлами (частями).

Используйте на своих сайтах и блогах или на YouTube кликер для adsense

Принципиальная электрическая схема

Это самая распространенная электрическая схема из всех типов схем, она дает наиболее полное представление о работе всех электроцепей установки. На ней показываются все электрические и магнитные связи между функциональными частями и компонентами электроустановки. Принципиальная электросхема может быть как общей, так и однолинейной. Однолинейная схема проста по восприятию и очень широко применяется в электроэнергетике.

принципиальная электрическая схема

Монтажная электрическая схема

Данная электросхема показывает реальное расположение узлов и агрегатов электрической установки, а также связи между ними (электрические кабели и провода). В монтажной схеме применяется буквенно-цифровое обозначение всех элементов электрической цепи (электрические аппараты, соединения и т.д.) и нумерация проводов и кабелей. После монтажа электроустановки (электроцепи) эта нумерация сохраняется и наносится на провода посредством бирок или цифровых маркеров. Схема используется для непосредственного производства работ или для изготовления изделия.

Монтажная схема иногда носит другое название – схема соединений или схема подключения.

монтажная электрическая схема

Другие типы электрических схем

Стоит отметить, что существует еще несколько типов электросхем. Поговорим о них вкратце.

Топологическая схема (схема расположения) – показывается расположение составных частей (элементов) электроустройства. Также на схеме может указываться расположение устройства или объекта на местности (например, подстанции). Для лучшего восприятия топологическая схема часто выполняется в виде трехмерной модели. Расположение составных частей на схеме соответствует действительному расположению частей объекта в конструкции или на местности.

Мнемоническая схема – такой тип схемы выполняется в виде плаката, на котором показывается реальное состояние коммутационных аппаратов (их действующее положение) на управляемом ими объекте. Основное применение таких схем – диспетчерские пункты на объектах электроэнергетики. Значение мнемонических схем постепенно снижается благодаря повсеместному внедрению компьютеризированных систем управления контролем и сигнализацией.

Кабельные планы – это схема (чертеж) расположения электрических кабелей и проводов с указанием их маркировки.

Сама по себе электрическая схемы мало что дает, если человек не умеет ее правильно читать. О том как правильно читать электрические схемы можно узнать здесь. Особенно это относится к электрическим принципиальным схемам – такие схемы бывают весьма сложными и громоздкими и на их изучение может понадобиться много времени.

Чтобы читать принципиальную схему необходимо знать и понимать принцип действия отдельных приборов, элементов, аппаратов и узлов. Разобравшись в том, как связаны между собой все эти части схемы, можно понять как, собственно, функционирует схема. Другими словами, зная основы построения схем и разбираясь в протекающих там электрических процессах, можно научиться понимать, как работает электроустановка и другое электрооборудование, не пользуясь при этом специальным описанием (мануалом).

Создание электротехнической схемы — Visio

  1. На вкладке Файл нажмите кнопку Новыйи вйдите в поиск по запросу Инженерные шаблоны.

  2. Выберите одно из указанных ниже значений.

    • Основные электротехнические

    • Схемы и логика

    • Плавное питание

    • Системы управления (Промышленная система управления)

    • Части и чертеж сборок

    • Проектирование пунктов и приборов

    • Схема водопроводно-канализационной сети

    • Схема Flow процесса

    • Системы

    • Схема TQM

    • Схема рабочего процесса

  3. Выберите метрическую или американскую систему мер и нажмите кнопку Создать.

    В шаблоне откроется страница в формате неконтразмерного формата в . Вы можете изменить эти параметры в любой момент.

  4. Перетащите фигуры электрооборудования на страницу чертежа. Фигуры могут иметь данные. Вы можете ввести данные фигуры и добавить новые данные в фигуру.

    Ввод данных фигур

    1. Выберите фигуру, щелкните ее правой кнопкой мыши, выберите данные, а затем — Определить данные фигуры.

    2. В диалоговом окне Определение данных фигуры щелкните каждый элемент и введите или выберите значение.

  5. С помощью инструмента Соедините соединителись электрокомпоненты или фигуры соединитегории.

    Использование инструмента «Соединитектор»

    1. Щелкните инструмент Соедините .

    2. Перетащите точку соединения на первой фигуре к точке соединения на второй фигуре. После соединения фигур конечные точки соединительной линии становятся красными.

    Использование фигур соединитегории

    1. Перетащите фигуру соединителевой фигуры на страницу чертежа.

    2. Поместите точки начала соединителю родительской фигуре (фигуре, из нее вы подключаетсяе).

    3. Поместите точки соединитегории фигуре ребенка (фигуре, с какой фигурой вы подключаетсяе).

      Когда соединитектор приклеен к фигурам, конечные точки поворачиваться красным цветом.

  6. Чтобы пометить отдельные фигуры электрооборудования, выберем их и введите текст.

Вам нужны дополнительные возможности?

Поиск образцов электротехнических Visio шаблонов и схем

Однолинейная схема электроснабжения домов и квартир: 2 вида


Что такое однолинейная схема электроснабжения

В принципе название говорит само за себя. Однолинейная схема – это графическое изображение 2-ух или трехфазной сети, которая объединяет все устройства электрической цепи при помощи одной линии,что позволяет достаточно сильно упростить чертежи и планы. При этом все приборы и электрические элементы на схеме имеют определенное обозначение, которое установлено ГОСТом.

Однолинейные схемы бывают нескольких видов:

  1. Исполнительная. Данный вид схемы применяется для уже действующего электроснабжения любого помещения.
  2. Расчетная. А этот вид схемы составляется при строительстве нового объекта. Когда необходимо учесть все нагрузки на электросеть, и основываясь на полученных показателях, рассчитывается сечение нужного кабеля и проводов, указывается маркировка всех электроустановок и мощность приборов.

Это пара основных видов однолинейных схем, которые при грамотном составлении, становятся удобной инструкцией для быстрого монтажа элементов электрической сети. Следующие виды не так распространены, но упомянуть их следует: структурные, принципиальные, функциональные, монтажные. Начертить однолинейную схему можно как самостоятельно своими руками, так и на компьютере с помощью специальной программы.

Программы для рисования электрических схем

Сегодня электрические схемы на листочках практически никто не рисует. Ведь для этого существует множество платных и бесплатных программ, а также онлайн сервисов. Интернет – сила 21 века.

Можно выделить несколько замечательных бесплатных программ для черчения электросхем в доме и квартире на русском языке:

  1. Компас электрик. Программа считается профессиональной. Так как в ней есть собственная база данных и графические обозначения на схемах.
  2. 1-2-3 схема. Программа простая и понятная. Разобраться в ней можно с легкостью, а чертить схемы – одно удовольствие.
  3. AutoCADElectrician. Крутая программа при этом очень простая. Она идеально подойдет как для начинающих, так и для профессиональных электриков.
  4. Эльф. Данная программа – отличный помощник для проектирования схем. Ведь с ее помощью можно не только нарисовать схемы, но и рассчитать сечение кабеля по мощности, а также подобрать автоматические выключатели.
  5. MicrosoftVisio. Эта программа замечательно подойдет для домашнего рисования всех схем. К тому же после создания, ее можно тут же распечатать.

Не стоит забывать, что есть и платные программы для составления электросхем. Они прекрасно подойдут для профессионального электрика. Так как в них шикарный интерфейс, есть все функции и электрические обозначения. Например, программа sPlan.

Как правильно сделать однолинейную схему электроснабжения своими руками

Однолинейная схема электроснабжения должна включать в себя три фазы, которые будут питать объект. А так же линии групповых сетей, которые будут отходить от питающих. При составлении электросхемы необходимо помнить, что ее главная задача давать общее представление о конструкции электропроводки помещения и электроэлементов.

Однолинейная схема рисуется просто:

  1. Сначала чертится линия, которая будет определять многофазное питание.
  2.  А потом рядом с линией ставится цифра с перечеркнутым штрихом. Она соответствует количеству фаз, а штрих – их определению.

Кроме вышеперечисленных элементов в чертеже должны быть изображены все провода и дополнительные детали (например, выключатели, УЗО и т.д.). А чтобы правильно на схеме их обозначить, необходимо изучить ГОСТ.

Обычная однолинейная электросхема дома или квартиры включает в себя: точку, к которой помещение будет подключаться к электросети; вводно – распределительные элементы; точку прибора и его марку; параметры щита; кабель питания; информацию о минимальных и максимальных токах приборов, которые бывают в разных помещениях; расчеты примерных электрических нагрузок. Однолинейную схему электроснабжения рисовать карандашом на листочке нет нужды. Помощь с ее созданием может оказать либо специальная программа, либо онлайн редактор.

Рекомендации: как нарисовать однолинейную схему электроснабжения

Однолинейные схемы бывают двух видов: исполнительные и расчетные. Это зависит от эксплуатационных условий помещения.

Первый вид проектируется при наличие действующих электрических систем.

А второй вид, когда в помещении нет рабочей электроустановки.

В зависимости от вида электросхемы, этапы ее создания будут различны:

  1. В исполнительной электросхеме первым шагом построения будет составление расчетно-вычислительных материалов. Визуально обследуется помещение. И после этого в расчеты вносятся все недоработки и дефекты, которые возникли во время пользования электричеством. А также новые детали и их характеристики. Важно помнить, что при необходимости расчетная часть исполнительной однолинейной схемы может быть увеличены в несколько раз. Самое главное, чтобы все расчеты были верными.
  2. В расчетной электросхеме необходимо составлять именно расчетную однолинейную схему, в которой есть много отличительных принципиальных характеристик. От такой схемы будут зависеть электромонтажные работы, безопасная эксплуатация электросети.

Если говорить в общих чертах, то для рисования однолинейной схемы необходимо: рассчитать все электрические нагрузки и перенести их на бумагу; подобрать все защитные устройства и также изобразить их на бумаге; подобрать все необходимые кабели и провода, и нарисовать их.

Общее представление о линейной схеме электроснабжения

Схема – это изображение в графике каких – либо элементов конструкции, указанные на чертежах. Очень часто для удобства схемы изображаются в упрощенном виде, например, как однолинейная схема электроснабжения. Электросхема является документом, в котором присутствуют все составляющие электроэлементы.

Линейная схема электропроводки отображается в виде перечеркнутой линии с цифрой 3 или прямой линией, которую перечеркивают 3 косых отрезка.

Линейная схема электроснабжения прекрасно подходит не только для домов и квартир, но и для промышленных объектов.

Линейные схемы могут быть нескольких видов:

  1. Исполнительные. Используются в помещениях, в которых уже есть действующая электросеть. Такие схемы нужны для исправления неполадок и дефектов.
  2. Структурные. Схемы такого вида являются общей информацией о характере электроустановки и деталях.
  3. Функциональные. Такие виды схем нужны для передачи функций элементов, которые получают электричество. Показывают связь между всеми механизмами.
  4. Принципиальные. Данный вид электросхем выполняется по мировым стандартам.
  5. Монтажные. Для создания проекта электроснабжения такой вид схем очень важен. Они связаны со строительством объекта. Важно знать, что все указанные элементы и размеры должны быть точными и четкими.

Все электросхемы должны соответствовать определенным правилам и нормам. А также содержать всю информацию об оборудовании и его специфических свойствах, отображать общую картину всего электричества и необходимых деталей, показывать общую картину всего объекта. В обязательном порядке должна присутствовать информация об автономном питании.

Что такое однолинейная схема электроснабжения (видео)

В заключении следует отметить, что специальный проект, а именно однолинейную электросхему, сделать самостоятельно нетрудно. Особенно сейчас, в век технологий и интернета. Ведь есть множество «умных» программ, с помощью которых электросхема будет грамотно составлена.

Программа для начертания схем. Чертим однолинейную схему — обзор бесплатных программ. Что такое принципиальная электрическая схема

Под черчением подразумевается процесс создания изображений предметов с точным воспроизведением их размеров с помощью масштаба. Вычерчивание электрических схем требует соблюдения символов ГОСТ, принятых для обозначения каждого элемента.

Для создания документа на компьютере необходимо программное обеспечение — графический редактор, который преобразует манипуляции пользователя ПК на устройстве ввода информации в чертеж. Созданный документ может сохраняться в электронном виде файлом и/или распечатываться на бумаге в определенном формате.

Вычерчивать электрические схемы можно любым доступным графическим редактором. Однако, приспособленные для этих целей специальные программы значительно облегчают рутинную работу, позволяют пользоваться уже подготовленными заготовками различных элементов из библиотеки, быстро вставлять их в нужное место, удобно редактировать.

Начинающему пользователю следует представлять, что чертежные программы могут поставляться и работать:

1. бесплатно;

2. за деньги.

Во втором варианте функциональные возможности программного обеспечения значительно расширены. Кроме того, за последнее десятилетие среди платных программ в среде инженеров проектировщиков пользуются популярностью целые системы автоматизированного проектирования САПР. Они не только автоматизируют работу, но и выполняют ее очень точно. За счет этого имеют высокую стоимость.

Однако среди САПР стали появляться программы, которые поставляются бесплатно. Их функционал, конечно, немного ограничен, но позволяет создавать качественные электрические схемы на начальном и среднем уровне проектирования.

Программа КОМПАС-3D

Это известная разработка Российских программистов компании АСКОН позволяет вычерчивать схемы в одной плоскости или заниматься 3D моделированием. Ею пользуются студенты, преподаватели и инженеры во многих странах. У программы понятный интерфейс и удобный для черчения набор инструментов.

Для использования различными специалистами графический редактор пополняется дополнительными модулями. Комплект разработок для создания электрических схем имеет большую библиотеку.

Программа работает в прямоугольных декартовых координатах, используя линейные размеры в миллиметрах и угловые в градусах. Справочный материал, встроенный в программу, хорошо изложен и позволяет самостоятельно разобраться во всех возникающих вопросах.

Компас 3D распространяется на платной основе, но производители предоставляют любому желающему возможность оценить работу программы бесплатно в течение месяца. С этой целью можно скачать демоверсию, которая имеет небольшие ограничения.

Программа знаменитой компании Autodesk постоянно совершенствуется уже около 30 лет, считается наиболее функциональной для выполнения сложных проектных работ. Встроенная в графический редактор, помощь подробно объясняет особенности алгоритмов. Однако информации много, а самостоятельно осваивать ее сложно.

Лучше всего для освоения черчения в ней пользоваться консультациями опытного наставника. Даже с его помощью для полного освоения всего функционала потребуется не один месяц кропотливой работы, но для разработки электрических схем осваивать 3D формат не нужно.

Особенность программы — использование для вычислений полярной системы координат и работа с векторами. При вычерчивании для удобства пользователя информация выводится в прямоугольной декартовой системе. Это позволяет определять местоположение точки в двух системах измерений.

Кроме использования информации из обширной библиотеки, можно создать часто вводимые изображения объектов в виде макросов, назначить под них горячие клавиши, а при выводе их на монитор использовать привязку к объекту. Это значительно ускоряет процесс черчения.

Программа имеет многочисленные настройки, которые требуют в начале подробного изучения, но в дальнейшем сильно облегчают работу.

Довольно часто развернутые электрические схемы на бумажном носителе занимают большие габариты. Автокад позволяет создавать чертежи на листах разного размера. Если раньше для распечатки требовался плоттер, то сейчас можно обходиться обыкновенным принтером. В программе реализована возможность деления чертежа на составные части и печати их на листы бумаги формата А4 с последующей склейкой по границам.

Программа Microsoft Visio

Название продукта говорит о принадлежности платного графического редактора к компании, занимающей ведущее место по разработке программного обеспечения. Здесь имеются большие возможности для создания диаграмм, схем и связи их с данными.

Пользователям программ Майкрософт хорошо знаком этот интерфейс. Для вычерчивания электрических схем созданы и помещены в доступную библиотеку специальные шаблоны по различным темам.

Большое количество инструментов сформировано по группам и удобно настраивается под конкретные условия чертежа.

Microsoft Visio работает в прямоугольных координатах и совместима с Word. Поэтому в ней можно создавать графические элементы для вставки в текстовые документы. Это удобно использовать при написании инструкций с целью наглядного пояснения излагаемого материала схемами и диаграммами. Обратная вставка текстов и объектов, созданных в Ворд, также выполняется через буфер памяти.

Начерченные большими размерами электрические схемы тоже можно распечатывать не на плоттере, а на принтере по частям на листах бумаги А4. Как и в Автокаде, для этого надо выставить настройки печати.

Здесь тоже можно создать часто используемые обозначения элементов в качестве шаблонов для применения их при дальнейшей работе. Программа позволяет относительно быстро чертить и рисовать.

Cущественно облегчить работу и ускорить создание качественных схем в Visio можно использую специальные дополнительные библиотеки трафаретов, предназначенные для создания электрических схем электроснабжения, современных устройств электроавтоматики, электропривода и управления. С помощью таких библиотек компонентов очень легко создавать профессиональные схемы в соответствии со стандартами.

Такие комплекты для черчения электрических схем будет полезен в первую очередь, электротехническому персоналу, занимающемуся проектированием, монтажом, наладкой, ремонтом и обслуживанием электроустановок, а так же всем кому необходимо быстро и качественно начертить электрическую схему и оформить в соответствии с ГОСТ.

CorelDRAW Technical Suite

Очень мощная и дорогая графическая программа позволяет выполнять весьма широкий спектр работ архитекторам, дизайнерам и даже модельерам для изготовления объемных изображений. Можно ее использовать для создания электрических схем. Но при этом будут очень занижены ее возможности, что экономически не рационально.

A9CAD 2.2.1

Это тоже продукт компании Autodesk. Он во многом повторяет работу знаменитого AutoCAD, но лишен функции 3D проектирования. Распространяется бесплатно.

Интерфейс программы САПР подогнан под привычный вид программ Windows, а ее размер составляет 15,54 мегабайта. Этот графический редактор поддерживает файлы, созданные в форматах DWG и DXF, которые используются в качестве промышленных стандартов.

Язык английский. Набор инструментов довольно обширен, создан по образцу Автокад. Для редактирования изображений используется масштабирование, работа с окнами и слоями, перемещение, вставка разрывов, вращение, изменение отражения, наложение текста, цветовая палитра и другие функции и стили.

Посредством A9CAD 2.2.1 можно начинать чертить электрические схемы самостоятельно.

В интернете выложено много бесплатно распространяемых графических редакторов. Только компания Autodesk, кроме A9CAD, предлагает еще несколько дополнительных разработок. Чтобы выбрать под себя программу для черчения электрических схем следует оценить свои запросы, возможности и стоящие задачи.

Практическое руководство «Как начертить схему в программе A9CAD» (pdf, 13 стр.):

Сегодня я хочу рассказать об очень удобной среде разработки проектов для Arduino .

Fritzing является превосходным инструментом разработчика с открытым исходным кодом для обучения, прототипирования и обменом проектами на базе Arduino . Он работает на Windows , Mac OS и Linux .

Позволяет вам разработать принципиальную схему устройства, и создать ее представление в виде соединения макетов элементов, которые выглядят очень даже профессионально. Он также дает возможность разработать печатную плату для ее дальнейшего изготовления. В отличие от других систем проектирования, у простой интерфейс, который делает разработку электронных схем интуитивно понятной.

Так выглядит схема соединений

Загружаем и устанавливаем Fritzing

Для установки перейдите на страницу загрузки и выберите вашу операционную систему. Чтобы установить на свой компьютер, следуйте инструкциям на странице. Каких то особенностей в установке нет, поэтому я не буду останавливаться на этом подробнее. «из коробки» уже идет с большим количеством библиотек различных элементов. Есть как основные компоненты, такие как провода, кнопки, резисторы, так и различные специализированные компоненты, такие как платы Arduino и датчики. Если вам нужно добавить новую библиотеку, или же свой компонент в библиотеку — не проблема. Как это сделать, я расскажу в отдельной статье.

Начинаем работать во Fritzing

Когда вы первый раз открываете проект во , перед вами появится такое окошко

Приветственное окно Fritzing

Переключившись на вкладку Макетная плата мы увидим следующий экран

Вкладка «Макетная плата»

В правой части экрана находится находится панель инструментов со всеми элементами и опциями. Если компонент настраивается, то в нижней части панели инструментов отображаются настраиваемые параметры для этого компонента.

Меню компонентов

Давайте разместим компонент какой-нибудь элемент в нижней части макетной платы. Мы будем проектировать простую схему, которая просто питает светодиод. Для нашей схемы нам понадобится один резистор. Выберите и перетащите резистор на рабочую область, как показано ниже.

Выбираем элемент

Перетащите резистор на макетную плату так, чтобы каждый вывод попал на отдельный столбец на плате. Когда компонент подключется к той или иной колонке, весь столбец становится светло-зеленый, как показано ниже. Зеленая линия указывает на электрическое соединение между отверстиями.

Вертикальные столбцы макетной платы соединены между собой

Настраиваем параметры компонентов

Для выделенного элемента мы можем настроить его параметры в нижней части панели инструментов для изменения значения его сопротивления, допуска (tolerance) и расстояние между выводами. Замечу, что расстояние между выводами задается в милах (mil). 1 mil — это 1/1000 дюйма.

Повернуть → Повернуть на 90° по часовой стрелке

Выбираем светодиод

Помещаем светодиод на плате рядом с резистором, как показано ниже. Пока резистор и светодиод не подключены к источнику питания или друг с другом. Обратите внимание, что зеленые линии не соприкасаются.

Размещаем светодиод

Так же, как на реальной макетной плате, мы можем добавить провода, для подключения необходимых нам элементов. Наведите курсор мыши на отверстие на макетной плате и обратите внимание, что оно становится синим. Это означает, что можно начинать вести провод. Щелкните отвертие на макетной плате и, не отпуская левой кнопки мыши, перетащите второй конец провода в требуемую точку. Я подключил положительный вывод светодиода к верхнему ряду контактов на макетной плате и соединил второй вывод светодиода с резистором.

Соединительные провода

Для завершения нашего проекта, добавим источник питания. Выберете и перетащите батарею питания с панели инструментов на макетную плату.

Выбираем элемент питания

Расположите провода питания, как показано ниже — положительный вывод батареи на верхней линии и отрицательный вывод на нижней линии с контактами. Расстояние между выводами на выходе батареи не соответствует расстоянию между верхними шинами питания макетной платы. Поэтому, совместим положительный вывод батареи с верхней шиной питания, а отрицательный вывод переместим на уровень, соответствующий нижней шине питания. Соединение батареи питания с нашей схемой должно в итоге получиться как на рисунке ниже.

Добавляем батарею питания

Вот и все. Наша простенькая схема, включающая батарею питания на 3В, светодиод, токоограничивающий резистор выглядит очень даже прилично. И все это простым перетаскиванием элементов и соединением требуемых выводов! Чтобы использовать ее где-либо, осталось сохранить ее в требуемом нам формате. Для этого заходим в меню программы,

Файл → Экспорт → asImage и выбираем желаемый формат.

На сегодня у меня все, сохраните файл — он нам еще пригодится. В следующей публикации, посвященной Fritzing, я расскажу как создать на основе нашего проекта на макетной плате принципиальную схему устройства.

Можно ли заниматься ардуино проектами без самой платы Arduino? Оказывается, вполне. Благодаря многочисленным онлайн сервисам и программам, которые имеют свое название: эмулятор или симулятор Arduino. Самыми популярными представителями таких программ являются системы Tinkercad от Autodesc, Virtual BreadBoard, Proteus, PSpice, Fritizing и российская FLProg . Также удобную представляют сами разработчики платформы. В этой статье мы рассмотрим один из самых крупных и удобных эмуляторов для начинающих: Tinkercad Circuits Arduino .

Давайте сразу договоримся, что в статье мы будем использовать оба этих термина, хотя их значение вовсе не идентично. Симулятором называют устройство или сервис, имитирующие определенные функции другой системы, но не претендующим на создание точной копии. Это некоторая виртуальная среда, в которой мы просто моделируем другую систему. Эмулятор – это полноценный аналог, способный заменить оригинал. Например, Tinkercad симулирует работу электронных схем и контроллера, но при этом он является эмулятором ардуино, реализуя практически все базовые функции Arduino IDE – от среды редактирования и компилятора до монитора порта и подключения библиотек.

С помощью этого класса программ можно не только рисовать электронные схемы, но и виртуально подключать их к электрической цепи с помощью встроенного симулятора. В режиме реального времени можно наблюдать за поведением схемы, проверять и отлаживать ее работоспособность. Если в такой симулятор добавить виртуальнyю плату Arduino, то можно отследить поведение схемы и в ардуино-проектах. Для отладки скетчей во многих известных сервисах присутствует также возможность загрузки настоящих скетчей, которые “загружаются” в модель и заставляют вести схему с подключенными элементами так же, как и со включенной реальной платой. Таким образом, мы сможем эмулировать работу достаточно сложных проектов без физического подключения Arduino, что существенно ускоряет разработку.

Tinkercad для ардуино

Тинкеркад (Tinkercad Circuits Arduino) – бесплатный, удивительно простой и одновременно мощный эмулятор Arduino, с которого можно начинать обучение электронике и робототехнике. Он предоставляет очень удобную среду для написания своих проектов. Не нужно ничего покупать, ничего качать – все доступно онлайн. Единственное, что от вас потребуется – зарегистрироваться.

Что такое Tinkercad?

Tinkercad – это онлайн сервис, который сейчас принадлежит мастодонту мира CAD-систем – компании Autodesk. Тинкеркад уже давно известен многим как простая и бесплатная среда для обучения 3D-моделированию. С ее помощью можно достаточно легко создавать свои модели и отправлять их на 3D-печать. Единственным ограничением для русскоязычного сегмента интернета долгое время являлось отсутствие русскоязычного интерфейса, сейчас эта ситуация исправляется.

Совсем недавно Тинкеркад получил возможность создания электронных схем и подключения их к симулятору виртуальной платы ардуино. Эти крайне важные и мощные инструменты способны существенно облегчить начинающим разработчикам Arduino процессы обучения, проектирования и программирования новых схем.

История создания

Tinkercad был создан в 2011 году, его авторы – Кай Бекман (Kai Backman) и Микко Мононен (Mikko Mononen). Продукт изначально позиционировался как первая Web-платформа для 3D-проектирования, в которой пользователи могли делиться друг с другом результатами. В 2013 году сервис был куплен компанией Autodesk и дополнила семейство продуктов 123D. За все это время в рамках сервиса пользователями было создано и опубликовано более 4 млн. проектов (3D-моделей).

В июне 2017 г. Autodesk решил перенести часть функционала другого своего сервиса Electroinics Lab Circuits.io, после чего Tinkercad получил крайне важные и мощные инструменты, способные существенно облегчить начинающим разработчикам Arduino процессы обучения, проектирования и программирования новых схем. Если вы уже пользовались Circuits.io, то имейте в виду, что все старые проекты Circuits.io могут быть экспортированы в Tinkercad без каких-либо проблем (о сервисе Circuits.io от Autodesk Electroinics Lab мы постараемся подробно рассказать в одной из следующих статей).

Возможности симулятора Tinkercad для разработчика Arduino

Список основного функционала и полезных фич Tinkercad Circuits:

  • Онлайн платформа, для работы не нужно ничего кроме браузера и устойчивого интернета.
  • Удобный графический редактор для визуального построения электронных схем.
  • Предустановленный набор моделей большинства популярных электронных компонентов, отсортированный по типам компонентов.
  • Симулятор электронных схем, с помощью которого можно подключить созданное виртуальное устройство к виртуальному источнику питания и проследить, как оно будет работать.
  • Симуляторы датчиков и инструментов внешнего воздействия. Вы можете менять показания датчиков, следя за тем, как на них реагирует система.
  • Встроенный редактор Arduino с монитором порта и возможностью пошаговой отладки.
  • Готовые для развертывания проекты Arduino со схемами и кодом.
  • Визуальный редактор кода Arduio.
  • Возможность интеграции с остальной функциональностью Tinkercad и быстрого создания для вашего устройства корпуса и других конструктивных элементов – отрисованная модель может быть сразу же сброшена на 3D-принтер.
  • Встроенные учебники и огромное сообщество с коллекцией готовых проектов.

Звучит фантастично, не правда ли? Не нужно скачивать Arduino IDE, не нужно искать и скачивать популярные библиотеки и скетчи, не нужно собирать схему и подключать плату – все, что нам нужно, находится сразу на одной странице. И, самое главное – это все действительно работает! Давайте уже перейдем от слов к делу и приступим к практическому знакомству.

Первые шаги в Tinkercad

Регистрация онлайн

Для начала работы необходимо получить эккаунт Autocad. Регистрация в Tinkercad абсолютно бесплатная. Зайдите на сайт и выполните простые шаги.

Подтвердив эккаунт по почте, войдите в систему, указав введенные параметры. В верхнем правом углу вы увидите ссылку в личный кабинет. В режиме редактирования профиля вы сможете поменять свой псевдоним, email, описание, установить фотографию, подключить внешние сервисы (здесь мы не будем останавливаться на этой функциональности).

Tinkercad Dashboard – Начальная страница

Преодолев этап регистрации, мы попадем на главную страницу, на которой слева видим список сервисов и под ним – список проектов. Навигация очень проста, хотя некоторые ссылки выглядят не очень заметными, но разобраться, что к чему, можно легко. Выбрав элемент слева мы видим справа список соответствующих объектов. Для раздела Circuits, этими объектами будут схемы и скетчи.

Создаем и редактируем проект

Для создания проекта просто нажимаем кнопку «Создать проект», расположенную под списком проектов. Будет создан проект с названием типа Project N. Нажав на него, мы перейдем в режим просмотра списка схем, включенных в этот проект. Там же мы сможем изменить свойства проекта (включая название), нажав на соответствующий значок сразу под названием.

Добавляем новую схему Circuits

Создать новую схему в Tinkercad можно двумя способами:

  • В меню слева выбрать Circuits и справа над списком схем выбрать команду Create new Circuit (на момент написания статьи все основные интерфейсные элементы не переведены). Новая схема будет создана вне какого-либо проекта.
  • Создать схему в определенном проекте. Для этого надо сначала перейти в окно проекта, а затем нажать на кнопку «Create» сверху над списком. Появится перечень типов схем, мы выбираем Circuit. Созданная схема будет доступна в этом списке и в списке всех проектов в меню Circuits.

После выполнения команды вы сразу же перейдете в режим редактирования схемы, не вводя названия. Имя для схемы формируется автоматически.

  • Чтобы изменить название схемы и отредактировать ее свойства нужно перейти в режим просмотра списка схем, навести на область с названием схемы и нажать на иконку «Настройки». Откроется окно, в котором вы сможете отредактировать параметры.
  • Для удаления схемы надо в том же режиме выбрать в настройках команду «Удалить».
  • Для просмотра краткой информации о схеме нужно просто щелкнуть на ней
  • Для перехода в режим редактирования нужно навести курсор мышки и выбрать появившуюся команду «Изменить».

Все изменения в процессе редактирования схемы сохраняются автоматически.

Описание интерфейса Тинкеркад в режиме редактирования

Нажав на команду «Изменить» мы попадаем в режим редактирования схемы. С помощью удобного и простого графического интерфейса можно нарисовать желаемую электрическую схему. Мы можем выделять, переносить объекты, удалять их привычным всем способом с помощью мыши.

В режиме редактирования рабочее окно сервиса поделено на две половины: снизу расположена панель с закладками – это библиотека компонентов. Над ней находится область визуального редактирования схемы с панелью инструментов и пространством, на котором будет размещена схема.

На полосе инструментов в верхней части слева находятся основные команды:

  • Повернуть элемент
  • Удалить
  • Масштабировать по размерам экрана
  • Отмена
  • Повтор

Кнопки в правой части панели:

В целом интерфейс достаточно прост, не перегружен лишними элементами и интуитивно понятен. Практически любые операции можно выполнить «на ощупь».

Создание схемы в Tinkercad шаг за шагом

В большинстве случае для работы с проектами Arduino выполняется следующий алгоритм действий:

  1. Создаем новую схему или открываем существующую для редактирования.
  2. Используя визуальный редактор, создаем схему (в нашем случае, с включением платы Arduino Uno).
  3. Готовим скетч в редакторе кода и загружаем его в виртуальный контроллер.
  4. Запускаем режим симуляции, при которой плата виртуально подключается к источнику питания и схема начинает работать. Вносим начальные данные для датчиков и наблюдаем реакцию схемы, как визуально, так и на виртуальном мониторе порта внутри самого сервиса.

Давайте рассмотрим каждый из шагов подробнее.

Первый шаг. Создаем схему Circuit

Будем считать, что проект мы уже создали описанным выше способом. Переходим в него и нажимаем на кнопку Create, выбирая тип – Circuit. После этого шага открывается визуальная среда редактирования, в которой мы сможем как нарисовать схему, так и написать и отладить скетч ардуино.

Подготовка электронной схемы

Создавая схему, мы выполняем такой порядок действий:

  • Выбираем нужные компоненты из библиотеки компонентов внизу экрана и размещаем их в поле редактора.
  • Соединяем компоненты с помощью виртуальных проводников, рисуя их мышкой.
  • Редактируем параметры компонентов (например, величину сопротивления у резисторов или цвет проводов).

Операция выбора из библиотеки достаточно проста. Список элементов находится внизу. Выбрав элемент, мы кликаем на нем, затем перемещаем в нужное место на схеме и кликаем повторно. Окно со списком компонентов можно скрыть или показать, нажимая на переключатель «Components» в панели инструментов.




Для работы нам доступно множество уже готовых элементов, от резистора и батарейки до модулей Arduino. Для удобства навигации все элементы разбиты на три вкладки:

  • Basic Components. Основные компоненты
  • Allcomponents. Все доступные компоненты
  • Starters. Готовые предустановленные схемы

Самой интересной для нас сейчас является третья закладка – Starters. Создатели сервиса подготовили несколько готовых схем, которые мы можем сразу же подгрузить в проект и редактировать на свое усмотрение.

Найдите в списке любую схему с Arduino и кликните на нее. После повторного клика элементы схемы будут размещены в области редактирования. Давайте для примеры выберем схему трехнопочного музыкального инструмента. Разместив ее, мы увидим на экране следующее:

Если схема не влезает в экран – выполните масштабирование (нажмите на кнопку масштаба на панели инструментов).

Кликнув на разъем ардуино или ножки электронных компонентов, можно «припаять» к ней провод, который щелчками мышки мы протягиваем по всей нашей плате до желаемой точки.

Углы провода красиво скругляются, есть возможность выравнивать провод по вертикали или горизонтали (появлении синих линий подскажет нам вертикаль и горизонт соответственно). Для отмены установки провода нужно нажать на Esc или мышкой нажать на соответствующую иконку на панели инструментов.

Нажав на компонент, мы можем отредактировать его свойства.

Третий шаг. Программируем скетч виртуального Arduino

Все инструменты для редактирования кода становятся доступны после перехода в соответствующий режим при нажатии на кнопку «Code Editor» в верхней панели.

В режиме редактирования кода нам доступны следующие варианты действий:

  • Загрузить скетч в «виртуальный контроллер» и запустить симулятор.
  • Переключение в визуальный редактор кода типа Scratch.
  • Переключение в текстовый редактор кода.
  • Подключение библиотек.
  • Скачать код на свой компьютер в виде файла с расширением.ino (скетч ардуино).
  • Запустить отладчик с возможностью создания точек остановок и мониторингом состояний переменных.
  • Отобразить или скрыть окно монитора.

По сути, перед нами полноценная среда разработки, обладающая пусть и достаточно скромным, но вполне достаточным для большинства случаев набором инструментов. А наличие в одной среде визуального режима и механизмов отладки делает данный сервис по-настоящему уникальным и крайне удобным для новичков.

Четвертый шаг. Запускаем симулятор ардуино

Есть два способа запуска симулятора. Первый – нажать на кнопку «Start Simulation» в верхней панели. Второй – использовать кнопку Upload&Run в режиме редактирования кода.

В обоих случаях для остановки работы симулятора нужно просто еще раз нажать на верхнюю кнопку (в режиме симуляции надпись изменится на «Stop Simulation»).

Что происходит во время симуляции? А практически то же, что и при подключении питания к реальной схеме. Лампочки горят, из пьезоизлучателя издаются звуки, двигатели крутятся. Мы можем отслеживать текущие показатели (напряжение, ток) с помощью инструментов мониторинга. А можем сами создавать внешние сигналы, подавая на датчики необходимые значения и отслеживать потом реакцию программы. Например, можно задать мышкой расположение объекта до датчика расстояния, значение освещенности для фоторезистора, повернуть ручку потенциометра. Также прекрасно работают такие элементы как LCD дисплей – мы увидим выводимую информацию прямо на экране визуального компонента.


Нет смысла описывать подробно каждую из возможностей. Уверен, что любой начинающий ардуинщик надолго «залипнет» за этими инструментами и попробует все возможности самостоятельно. Очевидно, что виртуальная среда никогда не заменит реальных проектов и настоящий инженер просто обязан реализовывать свои идеи «на железе». Но вот возможность визуализировать идеи, накидать возможные варианты схемы и отладить работу скетча даже без наличия железок, в любом месте, где есть интернет – это стоит многого.

Подводя итоги

В завершении этой статьи – краткого знакомства с новым интересным сервисом Tinkercad Arduino Circuits, хотелось бы еще раз подчеркнуть его ключевые возможности: визуальный редактор схем, визуальный и текстовые редакторы кода, режим отладки, режим симуляции схем, возможность экспорта полученных скетчей и электрических схем в реальные проекты. Возможно, по отдельности каждая из этих возможностей лучше реализована в других мощных инструментах, но собранные вместе, да еще и в виде удобного, простого для освоения web-сервиса, они делают Tinkercad крайне полезным для любого, особенно начинающего, ардуинщика.

Судя по всему, сервис продолжает активно развиваться (небольшие апдейты и улучшения производятся непрерывно), так что, надеюсь, мы еще вернемся к этой теме в наших статьях.

В данной статье будет представлено 20 лучших программ для проектирования электронных схем и печатных плат, включая бесплатные, коммерческие и условно бесплатные программы.

Изучение дизайна макетов или электронных диаграмм не сложно, если вы выберете правильный инструмент дизайна. Для создания списка был использован ряд критериев, таких как:

  • качество программного обеспечения;
  • удобство для пользователя;
  • сложность среды проектирования.

Бесплатное программное обеспечение для рисования электронных схем:

Ниже будет представлен список и краткое описание бесплатных программ для проектирования электронных схем.

LTspice

Это программное обеспечение для моделирования от линейных технологий до разработки электронных схем, моделирования SPICE, диаграмм сигналов и многих других функций:

  • многоязычный графический интерфейс MDI для открытия и редактирования нескольких файлов в сеансе;
  • встроенный редактор схем с базой данных 2 тыс. электронных компонентов;
  • симулятор аналоговых и смешанных схем с режимом импорта файлов SPICE;
  • постпроцессор для генерации графических кривых результатов анализа и отчетов;
  • возможность персонализировать настройки режима отображения и сочетания клавиш;
  • удобные функции масштабирования окна просмотра, печати и копирования в буфер обмена;
  • интегрированная база данных схем выборки LTSpice .ASC.

Узнать больше и скачать LTspice вы можете на нашем .

«Компас-электрик»

Замечательная графическая российская программа, которая является разновидностью программы «Компас». Используется в области электрики для создания схем электрооборудования различных механизмов. Программа имеет обширные возможности. Посредством программы «Компас-электрик» возможно начертить любую электрическую схему.

Программа «Компас-электрик» имеет три версии, различные по своему функционалу: экспресс версия, стандартная версия, профессиональная версия. Основными компонентами данной программы являются:

  • База данных, которая является фундаментом для проектирования документации;
  • Редактор схем и отчетов, в котором происходит сам процесс создания и выпуска готовой документации проектов.

DipTrace

Это программа для проектирования профессиональных печатных плат. Вполне интуитивно понятный интерфейс, огромная функциональность. Dip Trace поддерживает несколько режимов работы. В каждый пакет DipTrace входят следующие программы:

  • редактор схем;
  • программа проектирования контуров — компоновка печатной платы;
  • редактор компонентов;
  • редактор корпуса;
  • автотрассировщик;
  • 3D-визуализация;
  • функция импорта библиотек и проектов из других программ EDA.

Скачать и получить более подробную информацию с обучающей книгой вы можете на нашем .

EasyEDA

Бесплатный и доступный в облачном инструменте EDA, позволяющий создавать схемы, моделировать SPICE и дизайн печатной платы. В его базе данных уже более 70 000 готовых диаграмм и более 15 тысяч библиотек PSpice, которые позволяют быстро рисовать диаграммы в веб браузере. Проекты, подготовленные в EasyEDA, могут быть опубликованы или сохранены в облаке. Файлы также можно экспортировать во многие форматы, включая JSON.

Программное обеспечение EasyEDA совместимо с инструментами Altium, Eagle KiCad и LTspice, откуда вы можете импортировать дополнительные библиотеки. По желанию производитель предлагает относительно недорогую конструкцию печатной платы в соответствии с созданной конструкцией. Благодаря доступу к приложениям в облаке мы получаем удобство, мобильность и совместимость между устройствами.

TinyCAD

Это программа для рисования схем в Windows, доступная для бесплатной загрузки с SourceForge. Поддерживает стандартные и пользовательские библиотеки символов. TinyCAD чаще всего используется для создания:

  • однолинейных диаграмм;
  • создания блок-схем;
  • разработки технических чертежей для целей презентации.

Xcircuit

Бесплатная программа для рисования схем из Open Circuit Designs, разработанная для среды Unix / Linux, но вы можете использовать ее в Windows, если у вас есть работающий сервер или Windows API. Существует множество бесплатных версий.

Dia

Это базовый инструмент проектирования с возможностью рисования блок-диаграмм. Dia — программа для начинающих, только для людей, входящих в область рисования электронных схем. Программа имеет лицензию GPL и доступна в версиях Mac и Linux (без версии для Windows). Чаще всего используется для построения блок-схем.

Pspice — Student Version

Бесплатная версия программного обеспечения Pspice была создана для студентов. Он содержит ограниченные версии таких продуктов, как: PSpice A / D 9.1, PSpice Schematics 9.1, Capture 9.1. Позволяет разрабатывать и моделировать аналоговые и цифровые схемы.

SmartDraw

Программные шаблоны проектирования электро схем из SmartDraw LCC, считается одним из лучших САПРОВ для рисования электронных схем, блок-схем, HVAC, и т.д.

Бесплатная версия SmartDraw представляет собой усеченный вариант платного программного обеспечения, в котором отсутствует расширенные функции.

1-2-3 схема

Это простая программа редактор для создания электро схем, которая позволит вам быстро и просто создать, и начертить любую схему любого уровня сложности. В приложении вы имеете возможность создавать электро схемы щитков для жилищных комплексов, стоит заметить, что программа на русском языке, поэтому удобна в применении.

1-2-3 схема является одним из бесплатных приложений, которое позволяет укомплектовывать электрощиты Хагер (Hager) оборудованием того же производителя. Основной особенностью программы относится такая функция, как сам по себе выбор корпуса для электрощита, который отвечает всем требованиям и нормам безопасности. Выбор производится непосредственно из ряда моделей Hager.

Более подробную информацию о программе вы можете найти на нашем .

Microsoft Visio

Основной задачей программы является разработка и создание с помощью шаблонов рисование разного рода электронных схем. Программа имеет возможность создавать:

  • разнообразные инженерные и технические рисунки;
  • электронные схемы;
  • составлять эффектные презентации;
  • разрабатывать организационные схемы, маркетинговые и многие другие.

Кроме широких возможностей, программа имеет богатый набор готовых элементов, шаблоны visio для электро схем, а также библиотеку красивых объемных рисунков. Создание различных электронных схем не является единственной задачей для MS Visio.

KiCad

Это пакет с открытым исходным кодом, который был создан французом Жан-Пьером Шаррас. Данное программное обеспечение включает в себя ряд интегрированных независимых программ, таких как:

  • kicad — приложение для управления проектами;
  • EESchema — расширенный редактор схем, с помощью которого можно создавать иерархические структуры;
  • Pcbnew — редактор для создания печатных плат на основе схемного дизайна;
  • gerbview — средство для просмотра файлов gerber и многие другие.

KiCad совместим со многими ОС, так как основан на библиотеке wxWidgets.

Более подробную информацию вы можете найти на нашем .

CadSoft Eagle

Высококачественная программа для проектирования печатных плат от немецкой компании CadSoft, входящей в состав Premier Farnell plc. EAGLE является аббревиатурой для легко применимого графического редактора макетов, что означает простой в использовании графический редактор.

CadSoft Eagle завоевала большую популярность из-за простоты и возможности использовать одну из версий — Eagle Light бесплатно. Бесплатная версия программы не позволяет создавать электронные схемы в коммерческих целях.

Программа доступна для операционных систем Windows, Linux, OS X.

Платное программное обеспечение для рисования электронных схем:

Ниже представлен список и краткое описание платных программ для проектирования электронных схем.

OrCAD

Самая популярная программа компании Cadence, содержащая полную среду для коммерческих проектов PCB, содержит все компоненты, необходимые для проектирования печатных плат, такие как:

  • модуль для введения схем;
  • редактор печатных плат с интегрированным управлением проектирования.

Чтобы повысить эффективность дизайна, программа предлагает интерактивную технологию проводки Push & Shove.

TINA-TI

Недорогое решение от DesignSoft, созданное для предприятий и фрилансеров. Он позволяет создавать:

  • схемы;
  • компоновку компонентов;
  • моделирование;
  • множество дополнительных функций.

Примечательной особенностью является также тестирование систем в режиме реального времени.

Altera

Предоставляет полный набор инструментов программирования для каждого этапа проекта, включая программные обеспечения:

  • NIOS II для проектирования встроенных систем;
  • DSP Builder для проектирования цифровых систем обработки сигналов;
  • Quartus II и ModelSim для построения логических систем.

Система Altera Max + Plus II (многоадресная матричная программируемая логическая пользовательская система) представляет собой интегрированную среду для проектирования цифровых схем в программируемых структурах. Система Max + Plus II включает 11 интегрированных прикладных программ.

Altium Designe

Комплект Altium Designer включает в себя четыре основных модуля:

  • редактор схем;
  • 3D- дизайн печатной платы;
  • разработка программируемой вентильной матрицы (FPGA) и управление данными.

Как правило, Altium Designer является дорогим ПО, но отличается способностью добиваться быстрых результатов для сложных схем.

P-Cad

Это программа для создания печатных плат и электронных схем. В пакет P-CAD входят два основных компонента:

  • P-CAD Schematic — редактор схем;
  • P-CAD pcb — редактор печатных плат.

На протяжении долгого времени данной программой пользовалось огромное количество российских разработчиков электронных схем, главной причиной этой популярности стал достаточно интуитивно понятный и удобный интерфейс. На данный момент производитель прекратил поддержку данного ПО, заместив ее программой Altium Designer.

Proteus Design Suite

Это полное программное решение для моделирования схем и проектирования печатных плат. Он содержит несколько модулей для схемного захвата, прошивки IDE и компоновки печатных плат, которые отображаются в виде вкладок внутри единого интегрированного приложения. Это обеспечивает плавный рабочий процесс AGILE для инженера проектировщика и помогает продуктам быстрее выйти на рынок.

Пробная версия приложения имеет полный функционал, но не имеет возможности сохранения файлов.

sPlan

Простой в использовании инструмент, который зарекомендовал себя в области инженерии, ремесел, образования, исследований и обучения. Он также стал полезным инструментом для многих частных пользователей.

Создавайте профессиональные планы за очень короткое время, от простой схемы до сложных планов. Особенностями данной программы являются:

  • расширяемая библиотека символов;
  • индивидуальные страницы с листами форм;
  • список компонентов;
  • автоматическая нумерация компонентов;
  • удобные инструменты рисования.

В бесплатной версии нельзя сохранять, экспортировать и печатать файлы.

Напишите в комментариях, какие программы для создания схем и дизайна электронных схем вы используете?

На сегодня мы приготовили для вас статью с обзором самых популярных и многофункциональных программ для черчения. Специалисты, архитекторы, дизайнеры, студенты, а так же любители с помощью этих программ для черчения смогут находить решения для проектирования интерьеров, домов, специализированных установок и в целом создавать свои проекты с максимальной эффективностью.

Все программы для черчения из данного обзора имеют просто огромное количество специализированных инструментов и образцов инструментов, таким образом программы позволяют выполнять проекты практически в полуавтоматическом режиме. Более популярным названием таких программ для черчения является системы автоматизированного проектирования, сокращенно САПР.

Безусловно самой популярно и многофункциональной программой для черчения от наших отечественных разработчиков является КОМПАС-3D. Данной программой в ВУЗах России пользуются практически все студенты, а многие инженеры считают данную программу наилучшей.


Программа для черчения КОМПАС-3D имеет достаточной простой и понятный интерфейс, множество инструментов, богатую справочную информацию по работе с программой и в ней вы с легкостью сможете подправить любые огрехи на чертежах быстро и легко.


Кроме того КОМПАС-3D позволяет проектировать детали и сборочные чертежи в 3D виде, в последующем можно перенести готовую модель и в 2D чертежи или наоборот.

КОМПАС-3D, обычно, идет в комплекте с дополнительными модулями программы для проектирования трубопроводов, электрических схем, пружин, систему прочностного анализа.

AutoCAD

AutoCAD – как и КОМПАС-3D, не менее популярная инженерная программа, но более сложна в освоении. Лучше всего данную программу изучать под прочтение методического пособия, чтобы разобраться во всех возможностях и преимуществах этой программы для черчения.


AutoCAD имеет ряд некоторых возможностей, позволяющих в некотором роде автоматизировать черчение в программе. В ней этой САПР можно с легкостью проставить размеры на чертеже, быстро исправить мелки ошибки на готовом чертеже, вести построение геометрических фигур в автоматическом режиме, задавая только размеры фигур.


AutoCAD так же позволяет разрабатывать быстро и легко 3D детали. В целом возможности этой программы для черчения очень велики, которые накапливались с момента выхода первой версии программы (почти 30 лет).

A9CAD

A9CAD – является бесплатной программой для черчения, получила признание многих пользователей, которые считают, что она мало в чем уступает такому гиганту САПР, как AutoCAD.

Не зря пользователи сравнивают данную программу для черчения с AutoCAD, ведь они практически схожи, стоит хотя бы обратить внимание на интерфейс A9CAD.

В программе можно создавать двухмерные чертежи разной сложности, проставлять размеры на чертежах, имеется поддержка слоев.

CorelDRAW Technical Suite

Не отстает в области разработки программ для черчения и такой разработчики гигант, как Corel, создав свой инженерный продукт CorelDRAW Technical Suite. С помощью данной комплексной САПР можно разрабатывать не только чертежи с широкими возможностями графического дизайна, но и полный спектр технической документации (справочники, методические руководства и т.п.).

Данная комплексная программа для черчения будет полезна инженерам, архитекторам, дизайнерам и даже модельерам при создании новых моделей одежды. В ней можно так же создавать трехмерные модели помимо двухмерных.

Разработчики программы заботятся о ее функциональности и быстро действии, так в последних версиях программы для черчения появились новые возможности для создания трехмерных моделей, улучшили производительность программного продукта, появились новые инструменты редактирования чертежей и многое другое.

VariCAD

Мультиплатформенной системой автоматизированного проектирования различных графических объектов в 2D и 3D является VariCAD, предназначенная в первую очередь для машиностроительного проектирования. Помимо этого данная программа для черчения предоставляет механические части расчетов, инструменты для обработки листового материала, символы и библиотека стандартных механических частей.

Графический интерфейс программы был сделан специально для быстрого выполнения двухмерного или трехмерного моделирования. Имеются инструменты для легкого проектирования трубопроводов и резервуаров.

Программа для черчения позволяет автоматические создать из трехмерной модели двухмерные чертежи, в обратном порядке не получится.

LibreCAD

LibreCAD – это бесплатная программа для черчения, являющаяся в полной мере системой автоматизированного проектирования двухмерных чертежей. Разработчики относят программу для выполнения задач в сфере архитектуры и машиностроения.

Функционал программы можно расширять дополнительными подключаемыми плагинами. В возможностях программы можно не сомневаться, разработчики уверяют, что программа может быть использована даже в составлении 2D карт звездного неба, солнечной системы или для представления очень маленьких объектов, например молекул.

С интерфейсом программы можно быстро разобраться, так как он устроен довольно просто.
Программа поддерживает слои, группировку объектов, командную строку и другие различные функции.

Graphite

Graphite – профессиональное, но в то же время легкое, программное решение для создания 2D и 3D чертежей и схем. Имеет просто огромное количество различных функций и инструментов для быстрого создания чертежей.

Программа для черчения прекрасно подойдет для студентов технических ВУЗов, инженеров-конструкторов и просто любителей. Может создавать многостраничные PDF-документы, пользовательские библиотеки, точный экспорт и импорт чертежей в форматах популярных САПР.

FreeCAD

FreeCAD – эффективный развивающийся проект, представляющий собой бесплатную программу для черчения в лице системы автоматизированного проектирования, задачей которой является полноценная замена дорогостоящих систем САПР. Поэтому проектирование в FreeCAD ничем не будет отличаться от проектирования в вышеприведенных программах.

В программе можно создавать трехмерные модели с последующим автоматическим созданием двухмерных чертежей проекций этих моделей. Можно производить импорт чертежей в большом количестве форматов. В наличии имеется множество инструментов для черчения.

В программе можно выполнять логические операции, экспортировать 3D геометрию для последующего высококачественного рендеринга в сторонних программах, а так же программа поддерживает работу с макросами. И в то же время программа является абсолютно бесплатной и мультиплатформенной.

DraftSight

DraftSight – еще одна бесплатная программа для черчения, которая является системой САПР профессионального уровня, отличающаяся от подобных программ своей простотой в использовании. Эта программа должна прекрасно подойти для студентов, которым приходится на всей стадии обучения чертить помногу. Так же может заменить платный аналог AutoCAD или же КОМПАС-3D.

Данная программа для черчения отличается от аналогов своей простотой в использовании и легким интерфейсом.

Судя по набору инструментов на уровне AutoCAD, бесплатности программы для черчения, по полной поддержке DWG и DXF форматов чертежей можно предугадать, что программа может стать одной из первых профессиональных систем САПР.

Наш обзор программ для черчения подошел к концу и выбирать программу для каждого придется лично самому, в зависимости от того, что вы хотите от нее получить в итоге, важен ли вам русский интерфейс программы и отдельное приложение или же комплексное решение. Все приведенные в обзоре инженерные программы для черчения по-своему хороши, так что выбор стоит за вами.

T- FLEX Электротехника предложил эффективные инструменты для разработки электрических схем

На дворе третье тысячелетие, и его приметы мы замечаем повсюду. Сегодня уже практически невозможно отыскать современное изделие, не использующее электричество. Корабли, самолеты, автомобили, станки, кофеварки — всё это без электричества не работает. Раз электротехническая составляющая есть в любом современном изделии, то и в процессе проектирования нам необходимы инструменты для разработки электрических схем, прокладки жгутов и кабелей, расстановки и подключения аппаратов и электрических машин. Программный комплекс T-FLEX PLM по праву считается одним из самых развитых и мощных инструментов проектирования, подготовки и управления производством, доступным на отечественном рынке.

Рис. 1. Этапы проектирования электротехнических изделий

Воспользуйтесь нашими услугами

Вполне естественно, что разработчики компании «Топ Системы» не могли проигнорировать требования сегодняшнего дня. Поэтому, без долгих слов, представляем вам новый программный продукт комплекса T-FLEX PLM — систему для проектирования электротехнических изделий T-FLEX Электротехника.

Этот продукт, тесно интегрированный в систему проектирования T-FLEX CAD и созданный на основе единой PLM-платформы T-FLEX PLM, позволяет вести коллективную разработку электротехнического изделия, предоставляя инженеру полный набор инструментов для 2D- и 3D-проектирования. Внешне, для пользователя, это выглядит единым системным решением, позволяющим решать задачи комплексного проектирования, одновременно ведя работы над всеми составляющими современного изделия — механической и электротехнической.

Теперь рассмотрим новые возможности, которые стали доступны пользователям комплекса T-FLEX PLM с появлением в этой линейке нового продукта… Но для начала вспомним основную концепцию, в соответствии с которой выстроены все средства автоматизированного проектирования T-FLEX. Вообще словосочетание «автоматизированное проектирование» мы используем настолько часто, что перестали задумываться над его смыслом. А между тем он очень важен. Сегодня в мире очень много систем, предоставляющих инженерам различные программные средства для создания цифровых 3D-моделей, чертежей, оформления сопутствующей документации и технологической подготовки производства. Но, увы, большинство из них — только набор отдельных инструментов для черчения, построения 3D-модели или формирования конструкторско-технологических документов.

Такой подход лишь переносит процесс проектирования с кульмана или письменного стола на компьютер, почти не внося в него средств реальной автоматизации. Подход компании «Топ Системы» с самого первого дня ее существования, а было это долгих 25 лет назад, принципиально иной — средства САПР должны предоставлять пользователю максимально возможный уровень автоматизации процесса проектирования и подготовки производства. Мы не верим в будущее «электронного кульмана», поскольку считаем, что компьютер должен быть полноценным партнером проектировщика. Помогать ему, принимая на себя всю нетворческую часть работы, заботиться об отсутствии «глупых» ошибок, вызываемых невнимательностью или усталостью, и обеспечивать возможности коллективной работы, надежного хранения данных, обеспечения их актуальности и целостности. Все эти идеи были изначально заложены в продукты линейки T-FLEX, и разработчики компании «Топ Системы» всегда следовали им, предоставляя пользователям программы «с интеллектом» и стараясь соответствовать всем самым высоким мировым требованиям. Новый продукт T-FLEX Электротехника — достойное пополнение в этом ряду.

Рис. 2. Разработка принципиальной схемы

Одной из ключевых особенностей нового продукта является возможность синхронного проектирования электрической схемы будущего изделия, его 3D-модели и всей сопутствующей документации. То есть, как и во всех других системах комплекса T-FLEX PLM, мы имеем единую модель данных электротехнической составляющей изделия, которая может быть представлена в виде 3D-модели, принципиальной электрической схемы изделия, перечня элементов, схем подключения и соединения и т.д. Поговорим об этом подробнее и начнем с классической схемы, положенной в основу всего процесса проектирования электротехнических изделий в T-FLEX.

Рис. 3. Создание провода

Мы можем вести процесс проектирования самыми разными способами. Например, проектировать изделия по методике «из учебника». То есть разработать электрическую принципиальную схему, сформировать по ней перечень элементов, таблицы соединений и подключений, на основе этой информации подготовить данные о требуемых покупных изделиях и заняться 3D-моделированием расположения будущих аппаратов, жгутов и разъемов… Процесс правильный, но уж больно несовременный. Сегодня самый ценный и дефицитный ресурс — время. А потому система T-FLEX Электротехника позволяет вести параллельное проектирование, обеспечивая полную синхронность различных процессов разработки. Это означает, что размещение электрических аппаратов, реле, клемм, коробов для прокладки жгутов и других электротехнических компонентов в контексте сборочной 3D-модели изделия может вестись параллельно с разработкой электрической принципиальной схемы и автоматическим (обратите внимание!) формированием перечня элементов и таблиц подключений. Система T-FLEX Электротехника, выстроенная на базе единой модели инженерных данных, поддерживает постоянную ассоциативную связь между условным графическим обозначением любого элемента электрической принципиальной схемы и 3D-моделью соответствующего реального электрического аппарата. Система также «знает» соответствия точек подключения элемента схемы реальным коннекторам для подключения проводов, имеющимся в 3D-модели.

Таким образом, система не только «понимает» электрическую схему изделия, но и контролирует соответствия всех ее компонентов объектам его сборочной 3D-модели. Очевидно, что при таком уровне «осведомленности» T-FLEX Электротехника может автоматически создавать в сборке все необходимые провода, соединяя аппараты в соответствии с принципиальной схемой, контролировать корректность подключений и многое другое. Разработчик в этой ситуации имеет возможность полностью сосредоточиться на интеллектуальной части работы: собрать определенные провода в жгуты, разместить жгуты в коробах, указать траектории огибания элементов конструкции и принять другие инженерные решения, доступные пока лишь инженерному мышлению человека. После этого остается выполнить проверку модели на корректность с точки зрения электрической принципиальной схемы и запустить процесс автоматического (снова обратите на это внимание!) формирования ведомости материалов и кабельных изделий с учетом их реальных длин, оформить раскладку жгутов и других выходных документов. Вот, собственно, и весь процесс… Возможны, конечно, и более «свободные» методы проектирования. Например, опытный инженер может прямо в процессе размещения аппаратов в 3D-модели сразу задать соединяющие их провода… задолго до завершения разработки принципиальной схемы. Система легко допускает и такой подход — вы сможете установить соответствие реальных проводников их обозначениям в схеме позже, после завершения ее разработки.

Рис. 4. Быстрое подключение шнура

Рис. 5. Редактирование траектории прохождения провода

Рис. 6. Подключение кабеля

Мы сознательно упростили описание всего процесса проектирования, чтобы вы не отвлекались на технические особенности реализации и смогли воочию убедиться в реальности партнерства системы проектирования и инженера-разработчика. Теперь можно обсудить и некоторые важные детали, точнее тот развитый сервис, который сопровождает вышеописанные процессы.

Несколько слов о редакторе схем. Очень простой с виду, этот специализированный инструмент позволяет быстро и удобно формировать схемы практически любой сложности. Обширная, легко пополняемая библиотека элементов позволяет формировать иерархические схемы, где любой аппарат на схеме одного уровня может развернуться в отдельную схему уровнем ниже.

И так — без ограничения вложенности. Например, у нас может быть схема электросети завода, в ее составе — схема электропитания цеха, в ней — электрическая схема насосного узла, а в ней, в свою очередь, — отдельная схема электрического шкафа управления насосами. Но главное здесь состоит в том, что все элементы схемы — это не просто графические изображения. Процесс построения схемы — как простой, так и многоуровневой, представляет собой синхронное формирование перечня элементов и топологии электрической составляющей будущего изделия.

Рис. 7. Прокладка жгута

Рис. 8. Раскладка жгута

Итак, формируя изображение схемы, на самом деле мы формируем полноценную цифровую модель будущей сети. Это позволяет вести разработку, начиная с электрической принципиальной схемы или схемы соединений… Жестких требований тут нет, так как и то и другое, как и 3D-модель, — лишь формы представления единой структуры электротехнического изделия. Для удобства и скорости разработки схем в системе T-FLEX Электротехника существует много всевозможного сервиса. Можно одним щелчком мыши разорвать проводник и вставить в разрыв новый элемент. Или, для большего удобства и читаемости схемы, обычным перетаскиванием разнести в разные места отдельные контакты установленного реле. Или сформировать групповые линии связи… Эти и многие другие сервисные функции обеспечивают разработчика всем необходимым инструментом для быстрого и корректного формирования электрических схем. При этом, как и все остальные системы, построенные на базе единой платформы T-FLEX PLM, система T-FLEX Электротехника обеспечивает удобные средства коллективной работы над проектом.

Рис. 9. Редактирование жгута

Другим важнейшим этапом проектирования электрической системы изделия является формирование и прокладка кабельных изделий. На этом этапе определяется длина кабельных трасс и уточняются масс-инерционные характеристики всего изделия. T-FLEX Электротехника обладает развитым набором инструментов для управления траекториями залегания кабельных трасс в 3D-модели. В случае необходимости, к примеру, для того, чтобы установить наконечник на проводник, пользователю достаточно выбрать из библиотеки, входящей в поставку, требуемый тип наконечника, при этом система автоматически рассчитает его положение и определит типоразмер. Установка подходящих разъемов для кабельных изделий в системе тоже осуществляется автоматически согласно электрической принципиальной схеме, при этом пользователю доступен выбор исполнения разъема. Все эти и многие другие «чудеса» — это не что иное, как активное использование возможностей параметризации, которыми славятся все системы комплекса T-FLEX PLM.

Создание жгутов в T-FLEX Электротехника осуществляется в полуавтоматическом режиме. От пользователя требуется проложить траекторию всех ветвей будущего жгута и установить точки входа-выхода в жгут для проводников, а затем просто добавить в жгут уже существующие в 3D-сборке кабельные изделия либо указать линии связи на схеме. Система автоматически определит оптимальные точки входа-выхода и маршрут прохождения провода (кабеля) по жгуту. Полученный жгут может быть выгружен в отдельную ассоциативно связанную деталь для формирования раскладки жгута и сборочного чертежа, а также сопутствующей документации.

Рис. 10. Редактор кабельных изделий (кабель VGA)

Работа по формированию и прокладке жгутов не только очень наглядна и удобна, но еще и предоставляет пользователю целый набор дополнительных сервисов. К примеру, вы можете соединить проводами аппараты внутри электрического шкафа с лампочками, выключателями и другими устройствами управления, расположенными на дверце шкафа. И после этого, пользуясь преимуществами параметрического моделирования системы T-FLEX CAD, посмотреть, как будут располагаться свободно висящие части проводов и кабелей при открытом и закрытом положении дверцы.

Рис. 11. Ведомость материалов

Вообще, визуальная наглядность и простота процесса проектирования кабельных соединений в системе T-FLEX Электротехника создает у пользователя ощущение игры, а не сложной и ответственной работы.

Еще одним достоинством платформенного решения в основе комплекса T-FLEX PLM является повсеместное использование в системе T-FLEX Электротехника всевозможных библиотек и их полная открытость для совершенствования и пополнения. Это позволяет предприятию не только организовать коллективную работу над электротехническими изделиями, но и сформировать ограничительные перечни или библиотеки оригинальных элементов, характерных для специфики конкретного предприятия. Работа системы в единой информационной среде предприятия позволяет быстро наполнить «базу знаний» системы и добиться высокой производительности процесса электротехнического проектирования. При этом все поставляемые библиотечные элементы содержат связанные между собой условные обозначения элементов схем, варианты их представления в виде 3D-моделей, связи точек подключения и 3D-коннекторов и многое другое, что, в конечном счете, делает весь процесс проектирования максимально эффективным. С технической точки зрения, в основе данного инструмента лежит мощнейший механизм структурных элементов, появившийся в системе T-FLEX CAD версии 15 и позволяющий описывать разные прикладные свойства и взаимосвязи объектов, наделяя их «интеллектом». Так, простая соединительная линия начинает «понимать», что она есть электрическое соединение определенного потенциала, соединяющее конкретные аппараты, которому будет соответствовать тот или иной проводник в 3D-модели. Такие «умные» структурные элементы и составляют поставочные библиотеки, которые могут быть легко изменены и дополнены пользователями.

В завершение еще раз вернемся к изначальному постулату, лежащему в основе всего подхода компании «Топ Системы» к разработке инженерного программного обеспечения. Компьютер с системой автоматизированного проектирования — это не электронный кульман. Сегодня это высокопроизводительный интеллектуальный специализированный инструмент, освобождающий инженера от рутины, помогающий, подсказывающий, исправляющий ошибки и… дарящий радость эффективной результативной работы. Системы комплекса T-FLEX PLM — это не простейшие инструменты проектирования и подготовки производства, а настоящие «партнеры» разработчиков, способные реально помогать и облегчать вашу работу.

Авторы: Татьяна Батюченко, Игорь Батюченко, Игорь Кочан
Источник: http://isicad.ru/

Воспользуйтесь нашими услугами

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!

Методическая разработка бинарного урока по черчению и информатике на тему «Схемы. Выполнение электрической схемы в программе КОПМАС 3D»

Ромашина Наталья Александровна, преподаватель математики и информатики

Драгунова Жанна Владимировна, преподаватель черчения

Цели урока:

Формировать знания о назначении и оформлении схем с применением программ КОМПАС 3D

Задачи урока:

  1. Уметь читать и выполнять схематические изображения и схемы.

  2. Развитие пространственного мышления и памяти.

  3. Воспитание стремления добросовестно и рационально выполнять учебные задания, развитие познавательного интереса и логического мышления.

Оборудование урока: мультимедийный комплекс, презентация созданная в программе VS Power Point, раздаточный материал к уроку: тесты, находящиеся на рабочем столе компьютера, чертёжные инструменты и принадлежности.

Поурочный контроль: тестирование, чтение чертежей по плакатам, объяснения по экрану.

Межпредметные связи:

 

План урока:

Ход урока

I этап. Мотивация учебной деятельности.

1) Преподаватель: проверка готовности к уроку, наличие чертежных принадлежностей.

Сегодня мы с вами проведём не обычный урок, а бинарный урок. Оценивать вас будем мы вместе с Натальей Владимировной. Проверим готовность к уроку, а староста группы назовет отсутствующих.

Слайд 1

Цели, задачи ставлю для вас (Научиться читать схемы)

Когда на чертежах не требуется показывать конструкцию изделия и отдельных деталей, а достаточно показать лишь принцип работы, передачу движения (кинематику машины или механизма), пользуются схемами.

Схемой называют конструкторский документ, на котором составные части изделия, их взаимное расположение и связи между ними показаны в виде условных обозначений.

Схема, как и чертеж, — графическое изображение. Разница заключается в том, что на схемах детали изображаются с помощью графических обозначений. Эти обозначения представляют собой значительно упрощенные изображения, напоминающие детали лишь в общих чертах. Кроме того, на схемах изображаются не все детали, из которых состоит изделие. Показывают лишь те элементы, которые участвуют в передаче движения, жидкости, газа, электроэнергии и т.д.

В соответствии с ГОСТ схемы, в зависимости от видов элементов и связей, входящих в состав изделия, подразделяются на следующие виды:

Виды схем

Схемы

К (Кинематические)

П

(Пневматические)

Г

(Гидравли-ческие)

Э

(Электрические)

Схема последовательности передачи движения от двигателя через передаточный 

механизм к рабочим органам машины

Схемы взаимной связи между отдельными приборами, средствами автоматизации и вспомогательной аппаратурой.

Схема пути прохождения жидкости

Соединение электрических элементов устройства вне зависимости от их действительного расположения на плате или в устройстве

Кинематическая схема

Электрическая схема

Гидравлическая схема

В зависимости от назначения схемы подразделяют на следующие типы:

СОЕДИНЕНИЙ (МОНТАЖНЫЕ)

4

СТРУКТУРНЫЕ

1

ТИПЫ

СХЕМ

ФУНКЦИОНАЛЬНЫЕ

2

ПРИНЦИПИАЛЬНЫЕ (ПОЛНЫЕ)

3

РАСПОЛОЖЕНИЯ

7

ПОДКЛЮЧЕНИЯ

5

ОБЩИЕ

6

Обозначение схемы составляют из соответствующих букв и цифр, например:

Г3 – гидравлическая принципиальная схема;

Э4 – электрическая монтажная схема и т.д.

Сегодня мы для выполнения тренировочного практического задания по теме «Схемы» выбрали «Монтажную электрическую схему кабинета информатики»

Электри́ческая схе́ма — это документ, содержащий в виде условных изображений или обозначений составные части, действующие при помощи электрической энергии.

На уроках спецтехнологии мы с вами рассмотрели условные графические изображения электрооборудования.

Вопросы учащимся.

  1. Какие условные графические изображения необходимы для выполнения сегодняшнего задания?

На экране таблица

Условные графические изображения основных элементов электрооборудования.

 

 

 

Провода силовой цепи

 

 

 

 

 

Светильник с лампой накаливания

 

 

 

 

Провода цепи управления

 

 

 

 

 

Лампа сигнальная

 

 

 

 

Пересечение проводов без соединения

 

 

 

 

 

Светильник с ДРЛ

 

 

 

 

Соединения проводов

 

 

 

 

 

Светильник настенный с лампой

накаливания

 

 

 

 

Постоянный ток

 

 

 

 

 

Светильник потолочныйс лампой

накаливания

 

 

 

 

Переменный ток

 

 

 

 

 

Светильник с люминесцентной лампой

 

 

 

 

Вводной щит

 

 

 

 

 

Пусковая аппаратура для люминесцентных ламп

 

 

 

 

Распределительный щит

 

 

 

 

 

Трансформатор однофазный

 

 

 

 

Щит рабочего освещения

 

 

 

 

 

Заземление

 

 

 

 

Щит аварийного освещения

 

 

 

 

 

Звонок электрический

 

 

 

 

Счётчик

 

 

 

 

 

Кнопка звонка электрического

 

 

 

 

Коробка ответвительная

 

 

 

 

 

Двигатель асинхронный с

короткозамкнутым ротором

 

 

 

 

Розетка штепсельная

 

 

 

 

 

Двигатель асинхронный с

фазным ротором

 

 

 

 

Розетка штепсельная с заземляющим контактом

 

 

 

 

 

Предохранитель

 

 

 

 

Розетка накладная с заземляющим контактом

 

 

 

 

 

Катушка электромеханического

устройства

 

 

 

 

Выключатель одноклавишный

 

 

 

 

 

Кнопка «Пуск»

 

 

 

 

Выключатель двухклавишный

 

 

 

 

 

Кнопка «Стоп»

 

 

 

 

Переключатель одноклавишный

 

 

 

 

 

Выключатель трёхполюсный с

автовозвратом

 

 

 

 

Переключатель двухклавишный

 

 

 

 

 

Рубильник однофазный

 

Ответы учащихся

Далее закрепление полученных знаний по тестам.

Преподаватель Ромашина Н.В.

Тест находится на рабочем столе компьютера. Но прежде чем приступить к работе, давайте вспомнить правила техники безопасности при работе с компьютером.

Включают компьютер. Приступаем к работе.

На рабочем столе найдите ярлык «Светильники». Пред вами таблица условных обозначений основных элементов электрооборудования. Напротив каждого элемента расположен неправильный ответ. Ваша задача – исправить ошибки и сохранить результат в папке под своей фамилией. Создавать папки вы умеете. На это задание вам отводится 5 минут.

Здоровьесберегающая пауза: Выпрямили спинки, сели ровно, руки положили на парту, закрыли глаза, глубоко вдохнули и выдохнули. Отметьте свое настроение на середине урока.

Драгунова Ж.В.

Для выполнения практического задания, прошу приготовить необходимые инструменты. Сегодня нам понадобятся:

  1. Линейка

  2. Угольник для выполнения перпендикулярных линий

  3. Циркуль

  4. Карандаши Н и В

  5. Ластик

  6. Формат А4

Вспомнить правила ТБ

В качестве примера выполнения задания рассмотрим схему освещения электромонтажной мастерской.

Схема

Задание учащимся.

Начертить схему освещения кабинета информатики, учитывая следующие размеры:

  1. Диаметр окружности выключателей – 14 мм

  2. Длина лампы люминисцентной – 20 мм

  3. Радиус розетки – 8 мм

  4. Размеры вводного щита:

Длина – 15 мм

Ширина – 10 мм

  1. Радиус ответвительной коробки – 8 мм

Ромашина Н.В.

Для выполнения практического задания нам необходимо вспомнить некоторые геометрические понятия, которые мы будем использовать:

— параллельные прямые

— перпендикулярные прямые

— окружность

— радиус

— диаметр

Ответы учащихся

Драгунова Ж.В.

Рекомендации учащимся:

Схемы выполняют без соблюдения масштаба. Пространственное расположение составных частей установки либо не учитывают вообще, либо учитывают приближенно. Схемы должны выполнять компактно, но без ущерба для ясности и удобства их чтения, в частности расстояния между соседними параллельными линиями связи должны быть не менее 3 мм.

Выполнение практического задания – 20 минут

Ромашина Н.В.

Вы выполнили практическую работу традиционным способом, т.е. с помощью чертежных инструментов и принадлежностей. Но, заглядывая вперед, мы с вами понимаем, что такая технология не приводит к желаемому росту производительности труда и способствует появлению большого количества ошибок.

Современный мир – это мир нанотехнологий, где особое место занимает различное программное обеспечение.

Специально для целей вычерчивания принципиальных электрических схем и автоматического получения перечней элементов к ним создана система КОМПАС-3D .

На этом уроке мы познакомимся с этой программой. Для этого откроем на компьютерах программу КОМПАС 3D и рассмотрим интерфейс программы.

Попрошу для воспроизведения наглядности к доске выйти одного учащегося.

Практическая часть:

  1. Построение линий параллельных и перпендикулярных

  2. Окружности

  3. Прямоугольник

  4. Люминесцентную лампу

  5. Схему (лампа, линии, розетка, выключатели)

Учащиеся выполняют практическую работу (30 минут)

Ромашина Н.В.

Сегодня мы познакомились с системой КОМПАС 3D.

Специально для вашей профессии существует система КОМПАС-Электрик Express содержащая практически все графические обозначения, которые необходимы электромонтеру.

Таким образом, система КОМПАС-Электрик Express обеспечивает создание электрической принципиальной схемы в кратчайшие сроки и без ошибок. Система будет полезна и в тех случаях, когда возникает необходимость получения перечня элементов на основе созданной электросхемы. Схемы

Принципиальная кинематическая схема  — это такая схема, на которой показана последовательность передачи движения от двигателя через передаточный механизм к рабочим органам машины (например, шпинделю станка, режущему инструменту, ведущим колёсамавтомобиля и др.) и их взаимосвязь.

На кинематических схемах изображают только те элементы машиныили механизма, которые принимают участие в передаче движения (зубчатые колёса, ходовые винты, валы, шкивы, муфты и др.) без соблюдения размеров и пропорций.

Кинематическая схема

Тест «Исправь ошибки»

Переключатель одноклавишный

Розетка штепсельная

Выключатель двухклавишный

Заземление

Переменный ток

Соединения проводов

Вводной щит

Светильник с люминесцентной лампой

Провода цепи управления

Коробка ответвительная

Розетка штепсельная с заземляющим контактом

Пересечение проводов без соединения

Переходим к выполнению практического задания по черчению

«Электрическая схема кабинета информатики»

Учитывая, что:

Даются размеры условных изображений

Выполняем задание.

Типы электрических чертежей и схем

Различные типы электрических схем и чертежей

В области электротехники и электроники мы используем различные типы чертежей или схем для представления определенной электрической системы или цепи. Эти электрические цепи представлены линиями для обозначения проводов и символов или значков для представления электрических и электронных компонентов. Это помогает лучше понять связь между различными компонентами.Электрики полагаются на электрическую схему этажа (которая также является электрической схемой) при выполнении любой проводки в здании.

Инженеры используют различные типы электрических чертежей, чтобы выделить определенные аспекты системы, но физическая схема и ее функции остаются прежними. Некоторые из этих электрических чертежей или схем описаны ниже.

Блок-схема

Блок-схема — это тип электрического чертежа, который представляет основные компоненты сложной системы в виде блоков, соединенных линиями, которые представляют их взаимосвязь.Это простейшая форма электрического чертежа, поскольку она только подчеркивает функцию каждого компонента и обеспечивает последовательность процессов в системе.

Блок-схема проще в проектировании и является первым этапом проектирования сложной схемы для любого проекта. В нем отсутствует информация о разводке и размещении отдельных компонентов. Он представляет только основные компоненты системы и игнорирует любые мелкие компоненты. Вот почему; электрики не полагаются на блок-схему.

Пример:

В следующих двух примерах блок-схемы показаны FM-передатчик и частотно-регулируемый преобразователь частоты.

На этой схеме показан процесс преобразования аудиосигнала в сигнал с частотной модуляцией. Это довольно просто и понятно. Каждый блок обрабатывает сигнал и передает его следующему. Практически FM-передатчик не выглядит так, потому что на блок-схеме отсутствуют отдельные компоненты.

На этой блок-схеме показано преобразование трехфазного источника питания переменного тока в постоянный, который снова преобразуется в управляемый источник переменного тока. Это довольно сложный процесс, но эта диаграмма упрощает процесс на блоки для лучшего понимания.

Блок-схема дает представление о том, как выполняется процесс, не вникая слишком глубоко в электрические термины, но этого недостаточно для реализации схемы. Каждый блок представляет собой сложную схему, которую можно объяснить с помощью других методов рисования, описанных ниже.

Принципиальная схема Принципиальная схема

Принципиальная схема электрической цепи показывает полные электрические соединения между компонентами с использованием их символов и линий. В отличие от схемы подключения, в ней не указывается реальное расположение компонентов, линия между компонентами не отображает реальное расстояние между ними.

помогает показать последовательное и параллельное соединение между компонентами и точное оконечное соединение между ними. Можно легко устранить неполадки в определенной схеме, применив теорию электронных схем.

Это наиболее распространенный тип электрических чертежей, который в основном используется техниками при реализации электрических схем. Большинство студентов-инженеров полагаются на принципиальную схему при разработке различных электрических проектов.

Пример:

Это принципиальная схема усилителя напряжения.Он использует различные символы для обозначения электрических компонентов и линий для обозначения электрического соединения между их выводами. Практическая схема может отличаться по внешнему виду, но электрическое соединение и ее функции останутся прежними.

Однолинейная схема или однолинейная схема

Однолинейная схема ( SLD ) или однолинейная схема — это представление электрической цепи с использованием одной линии. Как следует из названия, одна линия используется для обозначения нескольких линий электропередачи, например, в трехфазной системе.

Однолинейная схема не показывает электрические соединения компонента, но может отображать размер и номинальные характеристики используемых компонентов. он упрощает сложные трехфазные силовые цепи, показывая все электрические компоненты и их взаимосвязь.

Они используются для определения и изоляции любого неисправного оборудования в любой энергосистеме во время поиска и устранения неисправностей.

На схеме SLD используются специальные электрические символы и значки для различных компонентов.

Пример:

Типичным примером трехфазной силовой цепи для представления с использованием однолинейной схемы может быть передача и распределение электроэнергии потребителям.

На этой схеме четко показана трехфазная электростанция, которая передает электроэнергию потребителям, указанным ниже. Он проходит через несколько станций, функции и характеристики которых также упоминаются, но их электрические соединения не выделяются.

Связанные сообщения:

Схема подключения

Схема подключения используется для представления электрических компонентов в их приблизительном физическом расположении с использованием их специальных символов и их соединений с помощью линий.Вертикальные и горизонтальные линии используются для обозначения проводов, а каждая линия представляет собой отдельный провод, соединяющий электрические компоненты.

Схема подключения показывает графическое изображение компонентов, которое напоминает их электрическое соединение, расположение и положение в реальной цепи. Это действительно помогает показать соединения в различном оборудовании, таком как электрические панели, распределительные коробки и т. Д. Они в основном используются для монтажа проводки в доме и на производстве.

Пример:

Схема установки трехфазной электропроводки

Это схема установки трехфазной электропроводки в доме.На нем четко показаны компоненты с правильным электрическим подключением. Каждая отдельная линия (с цветовым кодом) представляет определенный фазовый провод и его соединение с каждым компонентом. Такой тип схем используется для электромонтажа дома электриками.

Графическая диаграмма

Графическая диаграмма не обязательно отображает реальную схему. Фактически, он показывает внешний вид схемы в реальном времени. его нельзя использовать для понимания или устранения неисправностей в реальной цепи, и только по этой причине он обычно не используется.Для человека с меньшими знаниями в области электричества невозможно понять, как работает схема, и диагностировать ее.

Пример:

Как видите, графическая диаграмма не предоставляет достаточно информации относительно электрического соединения компонентов.

Связанные сообщения:

Лестничная диаграмма или линейная диаграмма

Лестничная диаграмма — это электрические схемы, которые представляют электрические цепи в отраслях для документирования логических систем управления.Она напоминает лестницу, поэтому ее и называют лестничной диаграммой. Есть две вертикальные линии; левая вертикальная линия представляет шину питания (источник напряжения), а правая вертикальная линия представляет землю или нейтраль. Каждая горизонтальная строка представляет собой параллельную цепь, называемую звеном.

Релейная диаграмма проста, легка для понимания и помогает быстро устранять неисправности в цепи.

Пример:

Логическая диаграмма

Логическая диаграмма представляет логическую схему, показывая сложную схему и процесс с использованием различных блоков или символов.Логические функции представлены их логическими символами, тогда как блоки используются для представления сложной логической схемы. Эти блоки помечены своей логической функцией для лучшего понимания без знания внутренней структуры.

Блоки соединены линиями, которые представляют линии ввода и вывода сигналов.

Логическая схема не показывает электрические характеристики цепи, такие как ток, напряжение, мощность и т. Д., Она представляет только логическую функцию схемы или устройства, в которых сигнал рассматривается в двоичном формате i.е. 1 или 0. Логические схемы обычно используются при проектировании цифровой логики.

Пример:

Это логическая схема однобитового полного сумматора, состоящего из цифровых логических вентилей. Каждая входная линия A и B передает один бит в сумматор, в то время как c in представляет бит переноса из предыдущих сумматоров. Линии вывода обеспечивают сумму и вывод в виде битов.

Связанный пост: Различные типы датчиков с приложениями

Схема стояка

Схема стояка — это иллюстрация физической схемы распределения электроэнергии в многоуровневом здании с использованием одной линии.Он показывает размер кабелепровода, размер провода, номинал автоматического выключателя и других электрических устройств (номинал переключателей, вилок, розеток и т. Д.) От точки входа до небольших ответвлений цепи на каждом уровне. Он разделяет планировку с системой сигнализации, а также телекоммуникационными и интернет-кабелями.

Диаграмма стояка получила свое название, потому что показывает перетекание мощности с одного уровня на другой. В нем не указывается физическое местонахождение оборудования и не содержится лишней информации.

Основное внимание уделяется распределению электроэнергии между различными приборами в здании на каждом уровне.Он предоставляет информацию о том, как работает освещение, отопление, вентиляция и т. Д. В здании, и если есть какая-либо опасность, ее можно легко устранить.

Инженеры-электрики полагаются на схему стояков здания, чтобы избежать любых потенциальных электрических опасностей.

Связанные сообщения:

Электрический план этажа

Это вертикальное представление различных приборов, таких как свет, выключатель, вентиляторы и т. Д. В здании. В нем указывается их точное местоположение с указанием их размера и расстояния от каждой стены и потолка.Он показывает увеличенную версию каждой комнаты сверху. Обычно он содержит легенду, которая дает наглядное объяснение используемых в ней символов.

Индивидуальный план этажа разработан для каждого этажа в многоуровневом здании и используется в электрике для электромонтажа во вновь построенном здании или при перетяжке электропроводки в здании. это помогает определить расположение кабелей внутри стен.

Связанные сообщения:

Схема расположения ИС

Схема расположения ИС или макет ИС (маска) относится к внутренней конструкции полупроводникового компонента.Он состоит из нескольких слоев или масок из металла, оксида и полупроводника, образующих интегральную схему (ИС). Он представляет геометрию, а также размер различных полупроводниковых слоев и их соединения. Он описывает внутреннюю структуру и используется при производстве и проектировании интегральных схем.

Связанные сообщения:

Как создать принципиальную схему

НАЧАТЬ

Очень немногие принципиальные схемы, особенно созданные новичками, создаются с нуля.Пока вы не научитесь создавать свои собственные принципиальные схемы, начните с существующего изображения. Это изображение может быть предоставлено вашим учителем или руководителем. Вы также можете найти его в Интернете. С помощью нашей функции импорта Visio вы также можете загрузить любые существующие файлы Visio в Lucidchart и перейти оттуда.

1. Зарегистрируйтесь для получения учетной записи Lucidchart.

2. Перейдите в Мои документы.

3. Щелкните Создать> Новый документ.

4. Изучите и начните с шаблона принципиальной схемы в разделе UML нашей библиотеки шаблонов или создайте новый документ в Lucidchart.

ДОБАВИТЬ ФОРМЫ И СИМВОЛЫ

5. Затем определите цель для вашей принципиальной схемы. Вы объединяете несколько схем в одну? Добавляете новые компоненты в существующую схему? Убедитесь, что вы понимаете масштаб вашего проекта, в том числе, сколько времени он займет.

6. Пришло время нарисовать принципиальную схему. Начните с основного обзора проводных соединений. В Lucidchart вы можете рисовать линии, представляющие соединения, нажав «L» на клавиатуре, а затем щелкнув и перетащив мышью.Форматирование строки можно изменить, выбрав строку и щелкнув правой кнопкой мыши или выбрав один из параметров на панели свойств в верхней части страницы.

7. При необходимости добавьте компоненты в схему. Обязательно просмотрите всю библиотеку форм принципиальной схемы, чтобы убедиться, что она содержит нужные вам элементы. Если этого не произошло, вы можете легко загрузить изображение со своего рабочего стола или выполнить поиск дополнительных значков в редакторе.

8. Когда вы поместите источник питания на схему, выберите его одним щелчком мыши.Это вызовет меню, в котором вы можете указать его метку, ориентацию и заряд. Еще раз убедитесь, что вы указываете правильное значение для каждого компонента.

9. Продолжайте добавлять элементы к своей принципиальной схеме, пока она не отобразит все соединения между устройствами, включая соединения питания и сигналов. Помните, что принципиальные схемы обычно не отражают физическое расположение компонентов.

ПРОВЕРИТЬ СВОЮ РАБОТУ

10. Ваша диаграмма почти завершена. Но прежде чем использовать ее, задайте себе следующие вопросы:

  • Широко ли доступны компоненты этой диаграммы?

  • Схема ведет себя должным образом?

  • Насколько легко понять диаграмму?

В качестве последнего шага отнесите свою принципиальную схему кому-нибудь, кому вы доверяете, и спросите, имеет ли она смысл.Этот человек должен иметь точку зрения со стороны, которая может внести ценный вклад в вашу работу.

Принципиальная электрическая схема | Элементарная схема и электрическая схема

Электрические принципиальные схемы передают техническому специалисту конкретную информацию. Они иллюстрируют такие элементы, как размер, тип, номер детали и расположение компонента по отношению к другим компонентам схемы.

Диаграммы

могут использоваться для установки, изготовления, поиска и устранения неисправностей, а также для объяснения работы или назначения схемы.Символы используются для обозначения компонентов схемы. Провода или проводники обычно изображаются линиями. Их связи можно показать разными способами. См. Рисунок 1.

Рисунок 1 . Схема проводов. На принципиальной схеме два провода могут пересекаться и не соединяться электрически. Чтобы соединение было выполнено, на перекрестке должна быть показана точка.

Принципиальная схема

Один из основных типов электрических чертежей, с которыми вы столкнетесь, — это схематическая диаграмма.См. Рисунок 2. Это типичная схематическая диаграмма. Он показывает, какие части необходимы и как они соединяются друг с другом. Расстояние между компонентами не является действительным расстоянием.

Основная цель принципиальной схемы — показать, как компоненты соотносятся друг с другом. На диаграммах показано, какие компоненты включены последовательно или параллельно друг другу. Схемы — чрезвычайно ценный инструмент для поиска и устранения неисправностей.

Рисунок 2. Типичная принципиальная схема показывает расположение компонентов и их взаимосвязь

Комбинация счетчиков, электрических схем, схем и теории электроники позволяет технику находить проблемы в цепи. Многие схемы невозможно устранить без помощи схем и применения теории электроники.

Принципиальная электрическая схема и электрическая схема

Рисунок 3 представляет собой сравнение элементарной линейной схемы и электрической схемы.На этом рисунке показана работа типичной системы управления двигателем с остановкой и запуском.

Элементарная линейная диаграмма слева аналогична схематической диаграмме. Он используется в основном в промышленных процессах, чтобы проиллюстрировать, как электрические элементы управления системы связаны друг с другом.

Справа фактическая схема подключения . Это будет использоваться для подключения системы управления.

Элементарная схема ясно показывает, как работает схема, а схема электрических соединений показывает взаимное расположение точек подключения и компонентов в том виде, в каком они фактически находятся в оборудовании.У каждой диаграммы свое предназначение.

Рис. 3. И простая линейная схема, и электрическая схема, показанные здесь, относятся к одной и той же электрической системе,

Элементарная линейная диаграмма используется, чтобы четко показать, как работает схема. Схема подключения используется для установки системы.

Иногда блок-схема используется, чтобы показать, как работает система в целом. Взгляните на рисунок 4, чтобы увидеть блок-схему типичного AM-радио.Компоненты, такие как усилитель, сгруппированы по этапам.

Рисунок 4. Блок-схема используется для иллюстрации взаимосвязи основных электрических систем.

Рисунок 5 представляет собой типичный план электрических цепей, устанавливаемых в одной комнате жилого дома. На чертеже указано общее расположение выключателей, розеток и освещения.

Описания размеров проводов, силы тока переключателя и размеров выключателя не показаны на этом типе плана, потому что электрик должен быть знаком с электрическими нормами, касающимися этих факторов.

Рисунок 5. Типовая планировка жилого помещения, которое будет выполнять электромонтаж.

При построении электрической системы вы можете найти полезным программное обеспечение для проектирования схем. Конструкторы схем в значительной степени полагаются на компьютеры и программное обеспечение для проектирования современных электронных схем. См. Рисунок 6.

В этих программах компоненты можно выбирать из меню и размещать в области рисования. Также можно добавить электронные характеристики для каждого компонента, такие как значения сопротивления, номинальные токи и пределы напряжения.

Рисунок 6. Снимок экрана Multisim Electronics Workbench.

Программные системы могут использоваться не только для рисования электронных схем, но они также могут фактически использоваться для моделирования схемы, как если бы она была построена из электронных компонентов.

Виртуальные счетчики могут быть подключены к разным точкам цепи для экспериментов и тестирования. Полный список материалов можно составить из схемотехники.

Шаблон, необходимый для печатной платы, можно распечатать.Это делает процесс проектирования и тестирования более быстрым и простым, чем если бы схема была построена с использованием реальных компонентов. После того, как конструкция схемы проверена на соответствие требованиям, схема может быть построена с использованием реальных компонентов.

Топ-10 лучших производителей схем 2021

Если вы работаете в области электротехники, вы наверняка знаете, насколько важны принципиальные схемы, когда дело доходит до представления электрической цепи. Благодаря модернизации лучшие производители принципиальных схем значительно упростят вам процесс.

Принципиальные схемы используются на протяжении десятилетий, главным образом, для помощи в планировании компоновки электрической цепи или даже для лучшего понимания схемы процесса. В то время как инженеры рисовали чертежи и схемы и схемы вручную, сейчас все изменилось.

Благодаря быстрому развитию технологий и использованию различных инструментов для визуального представления идей производители принципиальных схем приобрели большую популярность.Они не только полезны для улучшения общей компоновки диаграммы, но также помогают выполнить процесс в кратчайшие сроки и с минимальным риском для ошибок.

Что такое принципиальная схема?

Для тех, кто не имеет представления, принципиальные схемы представляют собой визуальное представление электрической цепи, которая сделана с использованием основных изображений используемых деталей или даже символов, используемых в промышленности.

Доступны два различных типа принципиальных схем — графическая версия и схематическая версия.В графической версии используются стандартные изображения деталей, используемых в схеме, в то время как в схематической версии используются символы промышленного уровня.

Иллюстрированная версия в основном предназначена для людей, у которых меньше технических знаний, и которые просто хотят получить визуальное представление о происходящем. Версия схемы, с другой стороны, в основном предназначена для электриков, которые будут работать над этой схемой и разрабатывать ее в реальном времени. Вот почему он более подробный и содержит больше символов для лучшего понимания.

Наш выбор: 10 лучших производителей схем на 2021 год

Следующая тема обсуждения — это список лучших производителей принципиальных схем. Честно говоря, когда дело доходит до производителей принципиальных схем, вариантов не так много. Но мы отсортировали некоторые из лучших, чтобы вы могли их изучить.

1. Edraw Max

Edraw Max можно считать отличным онлайн-инструментом и одним из лучших разработчиков принципиальных схем в 2021 году, поскольку он бесплатно доступен людям для создания и проектирования аккуратных и наглядных схем.

Эдрав Макс

Можно легко войти в систему через веб-браузер в Windows, Mac и на платформе Linux. Принципиальные схемы могут вызвать некоторую сложность в дизайне, если они созданы с нуля.

Но предоставление готовых принципиальных схем для создания основы промышленного управления, схем и логики, систем и основных электрических схем делает Edraw Max наиболее предпочтительным приложением среди пользователей.

Это также позволяет этим профессионалам совместно работать над существующими проектами через платформу обмена электрическими схемами с помощью привлекательного количества из более чем 800 символов и элементов векторных схем.Другой важной особенностью является то, что окончательные схемы можно экспортировать в форматы с высокой совместимостью для дальнейшего использования.

2. SmartDraw

Первым в списке идет SmartDraw, который известен широким спектром возможностей построения диаграмм.

SmartDraw

Этот инструмент поставляется в двух разных версиях: интерактивная версия для настольных ПК, которую вы можете установить на свой рабочий стол и приступить к работе, или онлайн-версия, к которой можно получить доступ из любой точки мира.

Самое лучшее в этом инструменте — это готовые шаблоны принципиальной схемы, которые у них уже есть. Все, что вам нужно сделать, это выбрать тот, который, по вашему мнению, лучше всего подходит для вас, и затем вносить в них правки по мере продвижения.

Вы можете добавить переключатели цепей, символы и многое другое из множества опций, которые вы получите на платформе. Он также позволяет вам добавлять, удалять или даже редактировать определенные элементы в шаблоне по вашему усмотрению. Как только вы это сделаете, программное обеспечение будет запрограммировано на перегруппировку всего, чтобы уместить все в одном.Это еще одна причина, по которой вам нужно попробовать это.

3. Lucidchart

Когда дело доходит до онлайн-инструментов для построения диаграмм, само собой разумеется, что Lucidchart , возможно, является одним из лучших доступных вариантов.

Lucidchart

Лучшая причина, по которой вам нужно попробовать это для принципиальной схемы, заключается в том, что она позволяет рисовать оба типа, будь то графическая или схематическая версия схемы.

Помимо этого, Lucidchart также обеспечивает большую гибкость, помогая вам выбирать из широкого диапазона доступных для использования символов отраслевого уровня.У них есть различные категории символов, включая резисторы, транзисторы и даже источники питания, к которым вы можете получить дальнейший доступ.

Кроме того, вы также можете импортировать некоторые из существующих файлов с таких платформ, как Visio, Gliffy, Draw.io и т. Д., Что упрощает выполнение работы без каких-либо препятствий. Это также позволяет упростить обмен и презентацию для заинтересованных сторон и других связанных, что является еще одной причиной, по которой вам нужно попробовать это.

4. Визуальная парадигма

Каким бы устрашающим ни выглядело название платформы, Visual Paradigm — еще одна эффективная платформа, которую вы можете использовать для рисования принципиальных схем в реальном времени.

Визуальная парадигма

У них есть ряд форм и шаблонов принципиальных схем, к которым вы можете получить доступ, чтобы выполнить свою работу. Помимо этого, он также позволяет легко делиться, что снова является одной из причин, по которой вам обязательно нужно попробовать его без дальнейших жалоб.

Он также имеет функцию, которая позволяет интегрироваться с MS Office в случае, если вам нужно получить некоторые данные без необходимости перемещаться туда и обратно. Простая функция экспорта и обмена на этой платформе — вот что привлекает внимание.

Visual Paradigm также позволяет вам привлекать соавторов для вашей диаграммы, так что вы можете редактировать их и выполнять работу быстрее без каких-либо дополнительных препятствий для запросов. Он также позволяет вам добавлять комментарии, что снова является причиной, по которой вам это нужно.

5.CircuitLab

CircuitLab — это онлайн-симулятор схем с доступом через браузер, дополненный схемным редактором, который помогает легко создавать и настраивать электрические схемы — цифровые и аналоговые.

CircuitLab

Не требуя каких-либо формальностей по установке, будучи направленным к инструменту для рисования индивидуальных схем одним щелчком мыши, CircuitLab зарекомендовала себя как лучший производитель схем 2021 года.

Этот инструмент структурирован с расширенными функциями и командами для создания эффективных и согласованных принципиальных схем.От простого соединения элементов до простой копии и вставки, применения SPICE-подобных моделей компонентов для обеспечения точности результатов до ручного ввода точных значений, построения произвольных сигналов и настройки схем из набора инструментов и элементов.

В дополнение к другим атрибутам, пользователи могут использовать удобные, безошибочные принципиальные схемы, демонстрирующие необходимые имитации. Полученные схемы можно распечатать и сохранить в формате PNG, EPS или SVG, а также добавить в проектную документацию.

6. Схема

Если название программы было раздачей, Circuit Diagram поможет вам составить различные электрические схемы в режиме онлайн.

Принципиальная схема

Даже этот выпускается в двух версиях: настольной версии, которую вы можете загрузить и установить, и живой версии, доступ к которой вы можете получить в своем браузере. Если вы в пути, мы рекомендуем вам использовать живую версию, так как к ней можно получить доступ из любой точки мира.

Он поставляется с легко редактируемыми шаблонами и доступными символами, которые значительно упрощают выполнение и управление процессом без лишних вопросов.

Вы также можете экспортировать конечный результат в виде изображения, чтобы получить копию и вернуться и отредактировать его в любое время, что обеспечивает очень простой и удобный вариант. Он также поставляется с множеством настраиваемых компонентов и общих компонентов, которые вам понадобятся для создания собственной принципиальной схемы с нуля.

7. Схема.com

Schematics.com — это недавно представленное, полностью бесплатное онлайн-приложение для веб-сайтов, предлагающее пользователям преимущества создания и добавления ценности к большому количеству схематических диаграмм и конструкций электрических схем.

Schematics.com

Этот инструмент обеспечивает легкий доступ к некоторым из новейших и популярных, а также к наиболее часто используемым структурным иллюстрациям электронных компонентов и конфигураций. Этот редактор схем хорошо оборудован интерактивным рабочим пространством, с помощью которого можно легко работать со схемами, перемещаясь по разным областям экрана.

Пользователи могут получить доступ к этому веб-приложению через свои существующие учетные записи Twitter, Facebook и Google без необходимости проходить какие-либо дополнительные регистрационные формальности. В электрические схемы можно встроить виджеты для украшения. Одна из наиболее важных функций, которые предоставляет Schematics.com, заключается в том, что выполняемые проекты могут использоваться коллегами в общественных и частных целях для облегчения совместной работы.

8. KiCAD EDA

KiCAD EDA — это еще одно отличное программное обеспечение для создания и разработки схематических иллюстраций и схем электрических цепей. Это платформа с открытым исходным кодом.

KiCAD EDA

Он также может рассматриваться как пакет автоматизации электронного проектирования с редактором схем. Он широко используется профессионалами в области электроники и новичками в основном для создания иллюстративных макетов печатных плат (PCB) с помощью более 32 медных слоев и толкающего маршрутизатора для маршрутизации дифференциальных пар и настройки длины трассы.

Это приложение могут свободно просматривать его пользователи, которые могут создавать бесчисленное количество дизайнов, не сталкиваясь с какими-либо ограничениями платного доступа, чтобы разблокировать желаемые функции и опции.Эти люди, войдя в программу, могут быстро приступить к созданию электронных схем с помощью обширной библиотеки официально используемых схематических символов. Принципиальные схемы также можно проецировать в трехмерном виде для более точной и интерактивной проверки конструкции.

9. Autodesk Eagle

Autodesk Eagle — это широко используемое программное обеспечение, которое обеспечивает высокоэффективную автоматизацию электронного проектирования (EDA), позволяющую пользователям печатных плат или печатных плат беспрепятственно создавать принципиальные схемы.

Autodesk Eagle

Это связано с его управляемыми сообществом функциями, которые обеспечивают правильное размещение компонентов, а также правильные каналы маршрутизации и обширный библиотечный контент. Самым привлекательным аспектом этого конструктора принципиальных схем является то, что его можно загружать в нескольких доменах, таких как операционные системы Windows, Linux и MAC.

Приложение предлагает огромный выбор компоновок печатных плат с опциями, доступными для поворота, удаления петель и размещения во время трассировки.Он также поддерживает синхронизацию проектов в реальном времени.

Autodesk Eagle также структурирован с помощью симулятора SPICE и предлагает электронную проверку правил, а также многоразовые блоки модульного дизайна, оснащенные перетаскиванием, для точного редактирования схем. Сгенерированные модели печатных плат могут быть загружены с трехмерными элементами и интегрированы с Fusion 360.

10. EasyEDA

EasyEDA — это высококлассное и широко используемое онлайн-программное обеспечение для создания принципиальных схем, которое насчитывает более 1,5 миллионов пользователей по всему миру.

EasyEDA

Этот мощный инструмент для проектирования печатных плат предлагает доступный план подписки и больше всего подходит для совместной работы, поскольку изменения в электрических схемах обновляются автоматически. Также настоятельно рекомендуется из-за его способностей к управлению проектами создавать и разрабатывать как частные, так и общественные проекты, такие как моделирование цепей специй, за короткое время.

Созданные в EasyEDA проекты печатных плат могут быть улучшены с помощью трехмерных изображений для лучшего понимания схем.Существует также доступность огромной библиотеки проектов, которую можно создать или импортировать с существующих платформ для простоты настройки электрических схем. Приложение работает в тесном сотрудничестве с ведущим китайским поставщиком электронных компонентов, LCSC, поскольку оно предлагает компании прямые ссылки на более чем 200 000 компонентов.

Связанный:

  1. 10 лучших разработчиков блок-схем на 2021 год
  2. 10 лучших инструментов для диаграмм UML 2021
  3. Инструменты 10 Best Entity Relationship Diagram (ERD) 2021
  4. 10 лучших создателей диаграмм Венна в 2021 году

Какое значение имеет принципиальная схема?

Теперь, когда вы знаете, что такое принципиальная схема, прежде чем мы перейдем к различным типам создателей принципиальных схем, важно, чтобы вы знали о ее значении.

Принципиальные схемы

помогают во многих отношениях. Некоторые из них включают:

  • Это помогает получить лучшее физическое и визуальное представление о процессе и выходе схемы.
  • Это упрощает общение с электриком, работающим в цепи, в режиме реального времени.
  • Его можно передать в электронном виде.
  • Это дает лучшее представление и позволяет изучить возможные лазейки в этом процессе.

Вердикт

С учетом перечисленных 10 лучших вариантов для лучших разработчиков принципиальных схем мы бы сказали, что среди них выделяется LucidChart.Их библиотека шаблонов и стандарт рисунка выглядят намного более профессионально по сравнению с другими.

Это не обязательно означает, что другие недостойны. Просто он возглавляет список, когда мы говорим о всестороннем пользовательском опыте. Единственным недостатком этого программного обеспечения является тот факт, что их варианты цен могут быть немного пугающими.

Но, помимо этого, их планы стоят вложенных средств. Вы можете получить практический опыт работы со всеми вариантами, которые у них есть.Это помогает лучше пополнять ваше портфолио и делает вас профессионалом, обладающим глубокими техническими знаниями. Но если бюджет ограничен, SmartDraw — следующий лучший вариант, который вы можете попробовать.

Как читать электрические схемы

Масштаб отраженных планов потолка

Отраженные планы потолка должны быть нарисованы в том же масштабе, что и планы этажей. В зависимости от сложности проекта и обработки потолка наиболее распространенным масштабом для жилых и небольших коммерческих проектов является i // = 1′-0 «(метрическая шкала 1:50) и V8» = 1′-0 «(1: 100). метрическая) для крупных коммерческих проектов.Следует отметить масштаб, в котором нарисован план потолка, и разместить его непосредственно под рисунком, рядом с заголовком или непосредственно под ним. Если для объяснения какой-либо детали потолка требуется увеличенная деталь, она помечается примечанием или символом на отдельном крупномасштабном чертеже.

Светильники должны быть нарисованы в виде простых прямоугольников, квадратов или кругов, которые максимально точно отображают фактическое устройство. Упрощенные формы предотвращают беспорядок в обзоре для удобства распознавания. В большинстве случаев осветительный прибор нарисован в масштабе реальных светильников.Однако в некоторых случаях, таких как миниатюрные точечные светильники, размер может быть преувеличен, поскольку правильно масштабированная единица будет слишком мала для отображения на плане.

ПЛАН ЧАСТИЧНО ОТРАЖАЕМЫЙ ПОТОЛОК

Увеличенная деталь затемняющей шторы нарисована в разрезе и привязана к ее местоположению на мелкомасштабном плане отраженного потолка.

Осветительные приборы представлены символами на отраженном плане потолка и привязаны к легенде с указанием технических характеристик.

Составление стандартов для плана потолка с отражением

На отраженном плане потолка должны быть четко видны все стены, перегородки и перекрытия, пересекающиеся с потолком. В нем также должны быть указаны изменения высоты потолка и материалов, таких как освещение, спринклеры, детекторы дыма и диффузоры HVAC, которые прикрепляются к потолку или проникают в него. При составлении отраженных планов потолка дизайнер должен воспроизвести стены и проемы этажа, такие как двери и окна, но не показывать такие элементы, как встроенные шкафы, сантехника и т. Д.

Осветительные приборы и другие электрические элементы, показанные на отраженном плане потолка, снабжены символами, привязанными к легенде. Рекомендуется нарисовать все электрические обозначения на плане до того, как на него будут нанесены размеры или добавлены примечания. В противном случае символ может упасть на размер, что потребует перемещения размера. Расположите светильники на плане потолка в соответствии с концепцией светового оформления. Общие типы осветительных приборов на плане освещения включают накладные, встраиваемые, подвесные и направляющие.

В коммерческих проектах, где есть подвесной потолок, на планах отраженного потолка будут показаны все перегородки, которые проходят через плоскость потолка. Также должны быть показаны линии потолочной сетки (называемые «Т-образными» стержнями). Другая информация, включенная в план отраженного потолка, — это материалы потолка, высота потолка, уклон потолка, изменение высоты потолка, расположение всех осветительных приборов (включая выходное и аварийное освещение), воздухораспределители и вентиляционные отверстия, панели доступа, динамики, спринклер. головы (если используются) и другие предметы, которые касаются потолочной плоскости или являются ее частью.

Далее дизайнер интерьера должен определить, как должен переключаться свет в помещении. Для жилого или небольшого коммерческого назначения

Стандартные световые и электрические символы

Сетка потолка, а также расположенные в ней светильники и другие элементы показаны в масштабе.

Сетка потолка, а также расположенные в ней светильники и другие элементы показаны в масштабе.

Переключение может отображаться либо на отраженном плане потолка, либо на плане электрического освещения.Дизайн переключения должен основываться на том, сколько требуется индивидуального управления и функции освещения. Потребности в энергосбережении и максимальные нагрузки в цепях также определяют количество и расположение переключателей. Как правило, переключатели расположены рядом с дверью или отверстием, ведущим в помещение. Для больших пространств, содержащих более одной записи, может потребоваться несколько мест переключения.

После размещения переключателей определите, какими светильниками они должны управлять, и обведите это на плане.Это можно сделать двумя способами, в зависимости от размера и сложности плана освещения.

Первый метод — провести линию от настенного переключателя до приборов, которыми он управляет. Эта соединительная линия должна быть пунктирной и изогнутой, чтобы отличать ее от других объектов и предметов на чертеже. Изогнутые линии предпочтительнее, поскольку прямые линии могут смешиваться с линиями стен или другими элементами, нарисованными на плане. Соединительная изогнутая линия должна касаться символа розетки или приспособления. Обозначение переключателей может быть простым S.Если конкретный осветительный прибор переключается из двух мест, символы будут S3, чтобы указать, что три элемента (два переключателя и один осветительный прибор) электрически соединены.

Второй способ показать переключение осветительных приборов состоит в том, чтобы присвоить переключателю номер или букву и поместить этот же номер в осветительный прибор, показанный на плане потолка, или рядом с ним. Этот метод используется в основном в коммерческих помещениях, где на плане потолка может быть много переключений и других элементов, поэтому использование линий (первый метод) может усложнить рисунок.

После того, как дизайнер интерьера разработает освещение и переключение, чертеж передается инженеру-электрику, который указывает точную схему, сечения проводов и другие характеристики, необходимые для электрической системы. В жилых помещениях чертеж может быть отдан непосредственно подрядчику, так как схемы и требования здесь не такие сложные, как в коммерческих работах.

Обозначение материалов

При подготовке плана потолка с отражением дизайнер должен указать типы и расположение конкретных потолочных материалов.Это можно сделать, разместив примечания на плане или обозначив обозначения материала потолка. Двумя наиболее распространенными потолочными системами являются потолки из гипсокартона, которые крепятся к вышеупомянутой конструкции, и подвесные акустические потолки. Другая отделка потолка может включать деревянную облицовку, линейный металл или даже открытые деревянные балки и балки. Определение размеров плана потолка в отраженном свете

Поскольку отраженные планы потолка обычно нарисованы в масштабе, соответствующем планам этажей, нет необходимости в большом количестве размеров на плане, если только потолок не сломается или не произойдет изменение материалов там, где они явно не расположены у двери, стены , или расположение столбца.Пока отраженный план потолка нарисован в масштабе, размеры помещений и конструкции могут быть сохранены для плана этажа. Тем не менее, в некоторых случаях размеры блоков и места крепления необходимо определить. Это особенно верно для больших пространств потолка из гипсокартона, где масштаб не так просто определить, как в сборке подвесного потолка с сеткой (где, например, можно сосчитать единицы, чтобы определить местонахождение осветительной арматуры).

При определении размеров отраженного плана потолка можно использовать либо размеры «отделки», либо размеры «обрамления», но выбор должен быть отмечен на планах.Такие элементы, как встраиваемые осветительные приборы, можно точно разместить в готовом пространстве. Если в потолке из гипсокартона будет использоваться светильник типа downlight, он обычно рассчитывается по его центральной точке, поэтому подрядчик по электрике знает, где установить

.

ПЛАН ЧАСТИЧНО ОТРАЖАЕМЫЙ ПОТОЛОК

сбн: i / 4 «= r-o»

шт. Выравнивание и направление рисунков, возможно, потребуется определить прямо на плане. В этих случаях следует давать ссылки, которые легко получить в полевых условиях.Размеры следует отсчитывать от лицевой стороны стены, колонны или воображаемой центральной линии комнаты, как показано на рис. 14-17.

Встраиваемые вниз светильники на этом плане отраженного потолка имеют размеры относительно друг друга и различных стеновых элементов и потолков.

Контрольный список для отраженных планов потолков

Общий

  • Назовите чертеж, отметьте его масштаб и укажите север (или справочное направление).
  • При необходимости разработайте спецификацию материалов для потолочного типа и сопоставьте ее с планом.
  • Разработайте легенду символа освещения и поместите ее на том же листе, что и первый отраженный план потолка (если требуется более одного), или на соседнем листе.
  • Очистите план (или отключите лишнюю информацию в САПР), чтобы стены, пространства и коды клавиш были четкими, темными и очень разборчивыми. Не показывайте предметы, если они не находятся на плоскости потолка или не пересекают ее.
  • Нарисуйте основные потолочные перекрытия или проемы выше и назовите их в примечании, включая панели доступа на чердак.
  • Стенки мешка, если применимо.
  • Определите схемы переключения светильников (если дизайнер интерьера несет эту ответственность) и покажите их методом изогнутой линии или с использованием цифр / букв.
  • Сделайте перекрестную ссылку на отраженный план потолка с другими чертежами (если применимо), тщательно проверяя точность и полноту информации.

Обозначения

  • Отметьте, где уровень потолка изменяется или наклоняется, если это напрямую влияет на осветительные приборы и их установку.
  • Обратите внимание на особенности, зазоры, высоту готового потолка над чистым полом, трассы и другие важные элементы.
  • Сделайте перекрестные ссылки на план с символами и ссылку на график освещения, детали и другие чертежи, если это необходимо.

Размеры

  • Определите размеры расположения осветительных приборов и изменения типов потолков, которые не сразу заметны. Найдите такие предметы, как колонны или существующие стены.
  • Размерные зазоры, соосности и другие контролирующие факторы.
  • Измерьте размеры бухт освещения и другого структурного освещения или создайте их крупномасштабные чертежи и сделайте перекрестные ссылки.

Схема электрооборудования

Электрические планы могут включать электрические розетки, телефоны, устройства связи и другие элементы, требующие электроэнергии. В небольших проектах эти предметы можно показывать вместе с освещением. Пример этого типа чертежа показан на Рисунке 14-18. В крупных коммерческих проектах план электроснабжения, часто называемый планом питания или питания / связи, показывает розетки и соответствующие электрические устройства отдельно (Рисунок 14-19).В большинстве случаев показаны сантехнические приборы и предметы, такие как шкафы и другие встроенные предметы, чтобы более точно согласовать расположение электрических силовых устройств. В некоторых случаях, например, в условиях открытого офиса, дизайнеры также предпочитают показывать мебель, поскольку во многих случаях она напрямую связана с расположением электрических розеток (рис. 14-20). Дизайнер интерьера готовит план электропитания, а затем направляет его инженеру-электрику для детального описания схем, размеров проводов, коробок и других электрических характеристик.На небольших планах жилых домов чертеж передается непосредственно подрядчику по электрике для выполнения работ в соответствии с принятой практикой.

Телефон и другие системы связи также обычно показаны на электрическом плане. Расположение телефонов, систем громкой связи, компьютерных терминалов, устройств внутренней связи и систем безопасности является обязанностью дизайнера интерьера после консультации со специалистами. Разработчик составляет план питания / связи, который схематически показывает, где требуется питание для специального оборудования.Символы для электрических устройств обычно привязаны к легенде, которая находится на том же листе, что и план. Инженер-электрик или другие системные специалисты составляют большую часть подробных спецификаций для этих устройств.

ЭЛЕКТРИЧЕСКИЙ 4 ПЛАН ОСВЕЩЕНИЯ

В крупных коммерческих проектах розетки и схемы указаны в отдельной схеме электроснабжения / электропитания с легендой. Многие архитектурные особенности и другие системы не учитываются, чтобы можно было легко прочитать электрическую схему.

Схема электропитания часто включает в себя телефон и другие устройства связи.

В крупных коммерческих проектах розетки и схемы указаны в отдельной схеме электроснабжения / электропитания с легендой. Многие архитектурные особенности и другие системы не учитываются, чтобы можно было легко прочитать электрическую схему.

Шкала электрических схем

Планы электрооборудования коммерческих помещений обычно имеют тот же масштаб, что и планы этажей. Наиболее распространенный масштаб для коммерческих проектов — V8 «= l’-O» (1: 100 метрическая). Однако в сложных установках масштаб может быть увеличен до V4 «= l’-O» (метрическая шкала 1:50).Следует отметить масштаб, в котором нарисован план, и разместить его рядом с заголовком или непосредственно под ним.

Разработка стандартов для схем электрооборудования

На электрических схемах должны быть показаны все внутренние и внешние стены, лестницы и большие устройства, такие как печи, водонагреватели и т. Д., Требующие питания. Встроенные светильники и мебель, например, в ванных комнатах и ​​кухнях, также должны быть нарисованы, чтобы лучше находить электрические розетки и другие устройства. Стены следует рисовать с использованием более легких линий, чтобы они не преобладали на чертеже.Найдите розетки для удобства на стенах, где они должны быть установлены, и обозначьте размер над чистым полом (A.F.F.). Не забудьте отметить любые особые требования, такие как защита от атмосферных воздействий (WP), разъемная проводка или специальные соединения. Общие электрические символы показаны на Рисунке 14-21.

Обозначение материалов

Электрические схемы в основном схематические. Хотя они нарисованы в масштабе, соответствующем планам этажей, электрические устройства часто слишком малы, чтобы их можно было изобразить на чертеже в их точном масштабе.Они нарисованы как крупный символ, чтобы их было легко узнать. Для простоты рисунка такие материалы, как полы и другие предметы, не разграничиваются.

Расчет электрических схем

Электрические планы нарисованы в масштабе, который обычно соответствует планам этажей. Нет необходимости в большом количестве размеров на электрическом плане, поскольку элементы могут быть расположены в масштабе на планах этажей. Однако в некоторых случаях электрические розетки и другие устройства необходимо подобрать, чтобы точно разместить их там, где к ним будет легко получить доступ, когда в здании есть люди.Это особенно верно для больших пространств стены, где масштаб не может быть точно определен путем масштабирования чертежа. В таких случаях должны быть даны ссылки, которые легко получить в полевых условиях, если размеры измеряются от лицевой стороны стены, колонны или воображаемой центральной линии комнаты. Если для розетки не указан горизонтальный размер, электрик разместит ее максимально близко к замыслу дизайнера. Электрик может прикрепить розетку к стенной стойке, а не размещать ее между двумя стойками, если проектировщик не определил конкретное место.

Хотя большинство электрических розеток не требует точного расположения, есть некоторые исключения, например, в этой зоне бара, где розетки должны согласовываться с оборудованием.

ЧАСТИЧНЫЙ ЭЛЕКТРИЧЕСКИЙ ПЛАН

Контрольный список для схем электрооборудования

Общий

  • Назовите чертеж, отметьте его масштаб и укажите север (или справочное направление).
  • Назовите прилагаемое электрическое расписание и привязайте его к плану.
  • Добавьте примечания, чтобы уточнить любые сокращения, которые не являются общепризнанными.
  • Очистите план (или отключите лишнюю информацию в САПР), чтобы стены, пространства и ключевые электрические коды были четкими, темными и очень разборчивыми.
  • Сделайте перекрестную ссылку на схему электрооборудования с другими чертежами и графиками, тщательно проверяя точность и полноту информации.

Обозначения

  • Обратите внимание на особые ситуации, например, устройства, предоставленные владельцем или другими лицами.
  • Обратите внимание на особенности, зазоры, расположение выпускных отверстий над чистыми полами, шкафами и другими предметами.
  • Отметьте выравнивание и другие важные элементы, влияющие на электрическую схему.

Размеры

  • Размеры расположения розеток и изменения типа пола или стены, влияющие на установку розеток.
  • Нанесение размеров выходов на стены, углы или пересечения стен, а также к другим объектам, например колоннам.
  • Измерьте соответствующие выпускные отверстия на нужном расстоянии от готового пола (A.F.F.).
  • Размерные зазоры, соосности и другие контролирующие факторы.

Механические системы здания обычно называют системой HVAC (отопление, вентиляция и кондиционирование воздуха). Система HVAC обеспечивает комфортную среду обитания в здании. Система не просто обеспечивает отопление зимой и охлаждение летом. Он приносит свежий воздух, циркулирует по помещению и удаляет затхлый воздух и запахи. Он также может обрабатывать воздух для контроля влажности, пыли, пыльцы и других нежелательных условий.

Сантехническая система в здании выполняет ряд различных функций, таких как подача воды к людям и машинам за счет повышения давления (подача воды) и выброс воды для удаления под действием силы тяжести (дренаж). Сантехника обслуживает три основные потребности: она обеспечивает воду для потребления людьми, санитарный отвод отходов и механические системы. Вода может использоваться для оборудования или для обслуживания автоматизированной спринклерной системы, как обсуждается далее в этой главе в разделе «Планы водопровода». Некоторые коммерческие здания могут также иметь систему ливневой канализации, которая защищает крышу или другие участки от дождя или наводнения.Такие системы отделены от трубопроводов бытовой канализации и собираются в ливневую канализацию или направляются в канализацию у обочины. В здании также может быть водопад, фонтан, пруд или другой декоративный элемент со специальной системой рециркуляции воды.

Механические и сантехнические чертежи требуют тесного взаимодействия, координации и совместной работы между различными профессионалами-проектировщиками и подрядчиками. Профессиональные офисы, которые производят чертежи HVAC и сантехники, должны знать об одном

.

Была ли эта статья полезной?

Создать электрическую схему

  1. На вкладке Файл щелкните Новый , а затем найдите шаблоны Engineering .

  2. Щелкните одно из следующего:

    • Базовая электрическая часть

    • Схемы и логика

    • Сила жидкости

    • Промышленные системы управления

    • Детали и сборочный чертеж

    • Проектирование трубопроводов и КИП

    • План водопровода и водопровода

    • Схема процесса

    • Системы

    • Диаграмма TQM

    • Схема рабочего процесса

  3. Выберите Метрические единицы или Единицы США , а затем нажмите Создать .

    Шаблон открывает немасштабированную страницу документа в книжной ориентации. . Вы можете изменить эти настройки в любое время.

  4. Перетащите фигуры электрических компонентов на страницу документа. Фигуры могут иметь данные. Вы можете вводить данные фигуры и добавлять новые данные в фигуру.

    Введите данные формы

    1. Выберите фигуру, щелкните правой кнопкой мыши, щелкните Данные , а затем щелкните Определить данные формы .

    2. В диалоговом окне «Определить данные формы» щелкните каждый элемент и введите или выберите значение.

  5. Используйте инструмент Connector для соединения электрических компонентов или соединителей.

    Используйте инструмент Connector

    1. Щелкните инструментом Connector .

    2. Перетащите из точки соединения на первой фигуре к точке соединения на второй фигуре. Конечные точки соединителя становятся красными, когда фигуры соединяются.

    Используйте соединительные формы

    1. Перетащите фигуру соединителя на страницу документа.

    2. Поместите начальную точку соединителя на родительской фигуре (фигуре, из которой вы соединяетесь).

    3. Поместите конечную точку соединителя на дочерней фигуре (фигуре, к которой вы подключаетесь).

      Когда соединитель приклеивается к фигурам, конечные точки становятся красными.

  6. Обозначьте формы отдельных электрических компонентов, выбрав форму и введя текст.

Хотите больше?

Найдите образцы шаблонов и схем Visio для электротехники

Общие сведения о электрических чертежах




Голы

1.Распознавайте символы, часто используемые на схемах двигателей и управления.

2. Прочтите и постройте лестничные диаграммы.

3. Прочтите электрические схемы, однолинейные и блок-схемы.

4. Ознакомьтесь с клеммными соединениями для различных типов. моторов.

5. Прочтите информацию, содержащуюся на паспортных табличках двигателя.

6. Ознакомьтесь с терминологией, используемой в цепях двигателей.

7. Ознакомьтесь с принципами работы ручных и магнитных пускателей двигателей.

При работе с двигателями используются разные типы электрических чертежей. и их схемы управления. Чтобы облегчить создание и чтение электрические чертежи, используются определенные стандартные символы.

Для чтения чертежей электродвигателя необходимо знать как значение символов и как работает оборудование.

Этот раздел поможет вам понять использование символов в электрических рисунки. В разделе также объясняется моторная терминология и поясняется это с практическим применением.


ЧАСТЬ 1 Символы — сокращения — лестничные диаграммы

Символы двигателя

Цепь управления двигателем может быть определена как средство подачи питания к и отключение питания от двигателя. Символы, используемые для обозначения различные компоненты системы управления двигателем можно рассматривать как тип технической стенографии.

Использование этих символов способствует упрощению схемотехнических схем. и легче читать и понимать.

В системах управления двигателями символы и соответствующие линии показывают, как цепи соединены друг с другом. К сожалению, не все электрические и электронные символы стандартизированы. Вы найдете немного разные символы, используемые разными производителями. Также символы иногда выглядят ничего похожего на настоящую вещь, поэтому вам нужно узнать, что означают символы. FGR. 1 показаны некоторые типичные символы, используемые в принципиальных схемах двигателей.

Сокращения терминов двигателя

Аббревиатура — это сокращенная форма слова или фазы.Заглавные буквы используются для большинства сокращений. Ниже приводится список некоторых сокращения, обычно используемые в принципиальных схемах двигателей.

Переменный ток Якорь ARM АВТО автоматический выключатель BKR COM общий Реле управления CR Трансформатор тока CT DC постоянный ток DB динамическое торможение Поле FLD FWD вперед GRD заземление Мощность в лошадиных силах L1, L2, L3 Соединения линии электропередачи Концевой выключатель LS MAN ручной двигатель MTR Пускатель двигателя M NEG отрицательный NC нормально замкнут NO нормально разомкнутый OL реле перегрузки PH фаза PL контрольная лампа POS положительная мощность PWR PRI первичная кнопка PB

REC выпрямитель REV обратный RH реостат SSW предохранительный выключатель SEC вторичный 1-фазный однофазный соленоид SOL SW-переключатель T1, T2, T3 клеммные соединения двигателя 3-фазный трехфазный трансформатор с выдержкой времени TD

Лестничные схемы двигателей

На чертежах управления двигателем

представлена ​​информация о работе цепи, устройства. расположение оборудования и инструкции по подключению.Символы, используемые для представления переключатели состоят из узловых точек (мест, где друг друга), контактные полосы и специальный символ, который идентифицирует конкретный тип переключателя, как показано в FGR. 2.

Хотя устройство управления может иметь более одного набора контактов, только Используемые в схеме контакты представлены на контрольных чертежах.

Различные схемы управления и чертежи используются для установки, обслуживания, и устранение неисправностей в системах управления двигателем.К ним относятся лестничные диаграммы, электрические схемы, линейные схемы и блок-схемы. «Лестничная диаграмма» (считается некоторыми в виде схематической диаграммы) фокусируется на электрическом функционировании цепи, а не физическое расположение устройства. Например, два кнопки остановки могут физически находиться на противоположных концах длинного конвейера, но электрически рядом на лестничной диаграмме.

Лестничные диаграммы, например, показанная в FGR. 3, нарисованы двумя вертикальные линии и любое количество горизонтальных линий.Вертикальные линии (называемые рельсами) подключаются к источнику питания и обозначаются как линия 1 (L1) и линия 2 (L2). Горизонтальные линии (называемые ступенями) соединяются через L1 и L2 и содержат схему управления.

Лестничные диаграммы предназначены для чтения, как книгу, начиная с вверху слева и читать слева направо и сверху вниз.

Поскольку лестничные диаграммы легче читать, они часто используются при трассировке. через работу цепи.Большинство программируемых логических контроллеров (ПЛК) используют концепцию лестничных диаграмм в качестве основы для своего программирования. язык.


FGR. 1 Символы управления двигателем.


FGR. 2 Переключите компоненты символа.


FGR. 3 Типовая лестничная диаграмма.


FGR. 4 Электропроводка двигателя и цепи управления.

Большинство лестничных диаграмм иллюстрируют только однофазную цепь управления. подключен к L1 и L2, а не к трехфазной цепи питания мотор.FGR. 4 показана схема подключения силовой цепи и цепи управления.

На схемах, включающих проводку силовых цепей и цепей управления, вы можете увидеть: как тяжелые, так и легкие проводники. Жирные линии используются для силовая цепь с более высоким током и более светлые линии для более слаботочной цепь управления.

Показаны проводники, которые пересекаются друг с другом, но не имеют электрического контакта. пересекающимися линиями без точки.

Контактирующие проводники обозначены точкой на стыке.В большинстве случаев управляющее напряжение получается непосредственно от источника питания. цепи или от понижающего управляющего трансформатора, подключенного к источнику питания. схема.

Использование трансформатора позволяет снизить напряжение (120 В переменного тока) для управления. цепи при питании цепи питания трехфазного двигателя с повышенным напряжение (480 В переменного тока) для более эффективной работы двигателя.

Релейная диаграмма дает необходимую информацию для упрощения следования последовательность работы схемы.

Это отличный помощник в поиске и устранении неисправностей, поскольку он наглядно показывает, эффект, который открытие или закрытие различных контактов оказывает на других устройствах в схема. Все переключатели и релейные контакты классифицируются как нормально открытый (NO) или нормально закрытый (NC). Позиции, изображенные на диаграммах, электрические характеристики каждого устройства, которые будут обнаружены, когда куплен и не подключен ни в какую цепь. Это иногда называют как «готовое» или обесточенное состояние.Это важно чтобы понять это, потому что он также может представлять положение обесточивания в цепи. Обесточенное положение относится к положению компонента. когда цепь обесточена или в цепи нет питания. Эта точка отсчета часто используется в качестве отправной точки в анализе. работы схемы.


FGR. 5 Идентификация катушек и связанных контактов.

Обычный метод, используемый для идентификации катушки реле и задействованных контактов им — поместить букву или буквы в круг, представляющий катушка (FGR.5). Каждый контакт, которым управляет эта катушка, будет иметь буква катушки или буквы, написанные рядом с символом контакта.

Иногда при наличии нескольких контактов, управляемых одной катушкой, число добавляется к письму для обозначения контактного номера. Хотя там являются стандартными значениями этих букв, большинство диаграмм содержат список ключей показать, что означают буквы; обычно они взяты из названия устройства.

Нагрузка — это компонент цепи, имеющий сопротивление и потребляющий электрическую энергию. питание подается от L1 к L2.Катушки управления, соленоиды, звуковые сигналы и пилот огни являются примерами нагрузок. Должно быть включено хотя бы одно загрузочное устройство. на каждой ступеньке лестничной диаграммы. Без загрузочного устройства управление устройства будут переключать разомкнутую цепь на короткое замыкание между L1 и L2. Контакты от устройств управления, таких как переключатели, кнопки, и реле считаются не имеющими сопротивления в замкнутом состоянии. Связь контактов параллельно с нагрузкой также может привести к короткому замыканию когда контакт замыкается.Ток в цепи будет минимальным. сопротивление через замкнутый контакт, замыкая нагрузку под напряжением.

Обычно нагрузки размещаются в правой части лестничной диаграммы рядом с к L2 и контактам с левой стороны рядом с L1. Одно исключение из этого правилом является размещение нормально замкнутых контактов, контролируемых устройство защиты двигателя от перегрузки. Эти контакты нарисованы справа сторона катушки стартера двигателя, как показано на FGR.6. Когда две и более загрузки должны быть запитаны одновременно, они должны быть подключены в параллельно. Это гарантирует, что полное линейное напряжение от L1 и L2 будет появляются при каждой загрузке. Если нагрузки подключены последовательно, ни один получит все сетевое напряжение, необходимое для правильной работы. Отзывать что при последовательном соединении нагрузок приложенное напряжение делится между каждая из нагрузок. При параллельном подключении нагрузок напряжение на каждая нагрузка одинакова и равна приложенному напряжению.

Управляющие устройства, такие как переключатели, кнопки, концевые выключатели и давление переключатели управляют нагрузками. Обычно подключаются устройства, запускающие нагрузку. параллельно, а устройства, останавливающие нагрузку, подключаются последовательно. Для Например, несколько пусковых кнопок управляют одним и тем же пускателем двигателя. катушка будет подключена параллельно, а несколько кнопок останова будут подключены последовательно (FGR.7). Все устройства управления идентифицированы с соответствующей номенклатурой устройства (например,г., стоп, старт). Точно так же все нагрузки должны иметь аббревиатуры для обозначения тип нагрузки (например, M для катушки стартера). Часто дополнительный числовой суффикс используется для различения нескольких устройств одного типа. Для Например, цепь управления с двумя пускателями двигателя может идентифицировать катушки как M1 (контакты 1-M1, 2-M1 и т. д.) и M2 (контакты 1-M2, 2-M2 и т. д.).


FGR. 6 Нагрузки размещены справа, а контакты слева.


FGR. 7 Стопорные устройства подключаются последовательно, а пусковые устройства подключаются параллельно.


FGR. 8 Лестничная диаграмма с подробным описанием номеров ступеней.

По мере увеличения сложности схемы управления ее лестничная диаграмма увеличивается в размере, что затрудняет чтение и поиск контактов контролируются какой катушкой. «Нумерация звеньев» используется для помощи в чтении и понимании больших лестничных диаграмм. Каждая ступенька обозначена лестничная диаграмма (ступеньки 1, 2, 3 и т. д.).), начиная с верхней ступеньки и чтение вниз. Ступеньку можно определить как полный путь от L1 до L2, содержащий нагрузку. FGR. 8 иллюстрирует маркировку каждой ступени в линейная диаграмма с тремя отдельными ступенями:

• Путь для ступени 1 завершается нажатием кнопки реверса, цикл кнопка запуска, концевой выключатель 1LS и катушка 1CR.

• Путь для ступени 2 завершается с помощью кнопки реверса, реле контакт 1CR-1, концевой выключатель 1LS и катушка 1CR.Обратите внимание, что ступень 1 и ступень 2 идентифицируются как две отдельные ступени, даже если они контролируют одну и ту же ступеньку. нагрузка. Причина в том, что либо кнопка запуска цикла, либо контакт реле 1CR-1 завершает путь от L1 до L2.

• Путь для ступени 3 завершается через контакт реле 1CR-2 к и соленоид SOL A.

«Числовые перекрестные ссылки» используются вместе с нумерация звеньев для нахождения вспомогательных контактов, управляемых катушками в цепь управления.Иногда вспомогательные контакты не находятся в непосредственной близости на лестничной диаграмме к катушке, контролирующей их работу. Чтобы найти эти контакты, номера звеньев указаны справа от L2 в скобках. на звене катушки, контролирующей их работу.

В примере, показанном в FGR. 9:

• Контакты катушки 1CR появляются в двух разных местах на линии. диаграмма.

• Цифры в скобках справа от линейной диаграммы обозначают расположение линии и тип контактов, контролируемых катушкой.

• Цифры в скобках для нормально разомкнутых контактов имеют без специальной маркировки.

• Номера, используемые для нормально замкнутых контактов, обозначаются подчеркиванием. или завышение числа, чтобы отличить их от нормально разомкнутых контактов.

• В этой схеме катушка управляющего реле 1CR управляет двумя наборами контактов: 1CR-1 и 1CR-2. Это показано цифровым кодом 2, 3.

Для правильного подключите проводники цепи управления к их компонентам в цепи.Метод, используемый для идентификации проводов, зависит от производителя. FGR. 10 иллюстрирует один метод, в котором каждая общая точка в цепи присвоен справочный номер:

• Нумерация начинается со всех проводов, подключенных к стороне L1 устройства. блок питания обозначен номером 1.

• Продолжение в верхнем левом углу диаграммы со звеном 1, новый номер назначается последовательно для каждого провода, пересекающего компонент.

• Электрически общие провода обозначены одинаковыми номерами.

• После того, как был назначен первый провод, напрямую подключенный к L2 (в в этом случае 5) все остальные провода, напрямую подключенные к L2, будут помечены. с таким же номером.

• Количество компонентов в первой строке лестничной диаграммы определяет номер провода для проводников, напрямую подключенных к L2.


FGR. 9 Числовая система перекрестных ссылок.


FGR. 10 Нумерация проводов.


FGR. 11 Альтернативная идентификация проводки с документацией.


FGR. 12 Представление механических функций.


FGR. 13 Заземление управляющего трансформатора: (а) управляющий трансформатор правильно заземлен на сторону L2 цепи; (б) управляющий трансформатор неправильно заземлен на стороне L1 цепи.

FGR. 11 иллюстрирует альтернативный метод присвоения номеров проводов.В этом методе все провода, напрямую подключенные к L1, обозначаются 1, а все подключенные к L2 обозначены 2. После всех проводов с 1 и 2 отмечены, остальные номера присваиваются в последовательном порядке начиная с верхнего левого угла диаграммы.

Преимущество этого метода в том, что все провода подключаются напрямую. до L2 всегда обозначаются как 2. Лестничные диаграммы могут также содержать серию описаний, расположенных справа от L2, которые используются для документирования функция схемы, управляемая устройством вывода.

Пунктирная линия обычно указывает на механическое соединение. Не делают ошибка чтения ломаной линии как части электрической цепи. В FGR. 12 вертикальные пунктирные линии на кнопках прямого и обратного хода указывают на то, что их нормально замкнутые и нормально разомкнутые контакты механически связанный. Таким образом, нажатие на кнопку откроет один набор контактов. и закройте другой. Пунктирная линия между катушками F и R указывает что они механически взаимосвязаны.Следовательно, катушки F и R не могут одновременное закрытие контактов благодаря механическому блокирующему действию устройства.

Когда управляющий трансформатор должен иметь одну из вторичных линий заземлен, заземление должно быть выполнено так, чтобы случайное заземление в цепи управления не запустит двигатель или не сделает кнопку остановки или управление не работает. FGR. 13a иллюстрирует вторичный элемент управления. трансформатор должным образом заземлен на сторону L2 цепи.Когда цепь исправна, вся цепь слева от катушки M является Незаземленная цепь (это «горячая» нога). Путь неисправности к земле в незаземленной цепи вызовет короткое замыкание, вызывая предохранитель управляющего трансформатора разомкнут. FGR. 13b показывает ту же схему неправильно заземлен на L1. В этом случае короткое замыкание на массу на слева от катушки M возбудит катушку, неожиданно запустив двигатель. Предохранитель не сработает, чтобы размыкать цепь и нажимать стопор, но тонна не обесточила бы катушку М.Повреждение оборудования и травмы персонала было бы очень вероятно. Понятно, что выходные устройства должны быть подключены напрямую к заземленной стороне цепи.

ЧАСТЬ 1 ВИКТОРИНА

1. Определите, что означает термин «цепь управления двигателем».

2. Почему символы используются для обозначения компонентов на электрических схемах?

3. Электрическая цепь содержит три контрольных лампы. Что приемлемо можно ли использовать символ для обозначения каждого источника света?

4.Опишите базовую структуру принципиальной электрической схемы.

5. Линии используются для обозначения электрических проводов на схемах.

а. Чем провода, по которым проходит большой ток, отличаются от проводов, нести слабый ток?

г. Как провода, которые пересекаются, но не соединяются электрически, дифференцируются из тех, которые подключаются электрически?

6. Контакты кнопочного переключателя размыкаются при нажатии кнопки. К какому типу кнопок это относится? Почему?

7.Катушка реле с маркировкой TR содержит три контакта.

Какую допустимую кодировку можно использовать для идентификации каждого из контактов?

8. Ступенька на лестничной диаграмме требует наличия двух нагрузок, каждая из которых рассчитана на полное линейное напряжение, запитывается, когда переключатель замкнут. Какая связь нагрузок необходимо использовать? Почему?

9. Одним из требований для конкретного двигателя является наличие шести давлений выключатели должны быть замкнуты до того, как двигатель будет запущен.Какие связи переключателей надо использовать?

10. Маркировка проводов на нескольких проводах электрического панели проверяются и обнаруживают, что имеют тот же номер. Что это значит?

11. Пунктирная линия, обозначающая механическую функцию электрического диаграмма ошибочно принята за проводник и подключена как таковая. Какие два типа проблем, к которым это могло привести?


ЧАСТЬ 2 Электромонтажные схемы — однолинейные блочные схемы

Схемы подключения


FGR.14 Типовая электрическая схема пускателя двигателя.

Этот материал и связанные с ним авторские права являются собственностью и используются с разрешения Schneider Electric.

Электрические схемы используются для демонстрации двухточечной проводки между компонентами. электрической системы, а иногда и их физического отношения друг к другу. Они могут включать идентификационные номера проводов, присвоенные проводникам в лестничная диаграмма и / или цветовое кодирование. Катушки, контакты, двигатели и как показано в фактическом положении, которое можно было бы найти на установке.Эти схемы полезны при подключении систем, потому что соединения могут делаться именно так, как показано на схеме. Схема подключения дает необходимая информация для фактического подключения устройства или группы устройств или для физического отслеживания проводов при поиске и устранении неисправностей. Тем не мение, По такому рисунку сложно определить работу схемы.


FGR. 15 Прокладка проводов в кабелях и коробах.


FGR.16 Электромонтаж с внутренними подключениями магнитного пускателя опущено.

Схемы подключения представлены для большинства электрических устройств. FGR. 14 иллюстрирует типовая электрическая схема, предусмотренная для пускателя двигателя. На диаграмме показано, как можно точнее, фактическое расположение всех составных частей устройства. Открытые клеммы (отмечены открытым кружком) и стрелки представляют собой соединения, сделанные пользователем. Обратите внимание, что жирные линии обозначают цепь питания, а более тонкими линиями показана схема управления.

Прокладка проводов в кабелях и трубопроводах, как показано в FGR. 15, является важной частью электрической схемы. Схема компоновки кабелепровода указывает начало и конец электропроводки и показаны приблизительные путь, пройденный любым каналом при переходе от одной точки к другой. Интегрированный с чертежом такого рода — кабелепровод и спецификация кабеля, которые сводит в таблицу каждый канал по количеству, размеру, функциям и услугам, а также включает количество и размер проводов, проложенных в кабелепроводе.

На электрических схемах показаны подробности реальных подключений. Редко они попытаться показать полную информацию о монтажной плате или оборудовании. В схема подключения FGR. 15, приведенный к более простому виду, показан на FGR. 16 без внутренних соединений магнитного пускателя. Провода заключенные в кабелепровод C1, являются частью силовой цепи и рассчитаны на текущее требование двигателя. Провода, заключенные в кабелепровод C2, являются частью цепи управления нижнего напряжения и рассчитаны на текущие требования управляющего трансформатора.


FGR. 17 Комбинированная разводка и лестничная диаграмма.


FGR. 18 Однолинейная схема моторной установки.


FGR. 19 Однолинейная схема системы распределения электроэнергии.

Электрические схемы часто используются вместе с лестничными диаграммами для упростить понимание процесса управления. Примером этого является проиллюстрировано в FGR. 17. На схеме подключения показаны питание и управление. схемы.

Включена отдельная лестничная диаграмма цепи управления, чтобы более четкое понимание его работы. Следуя лестничной диаграмме видно, что контрольная лампа подключена так, что она будет гореть всякий раз, когда стартер находится под напряжением.

Силовая цепь для ясности опущена, так как ее можно проследить. легко на монтажной схеме (жирные линии).

Однолинейные схемы

Однолинейная диаграмма (также называемая однострочной) использует символы вместе с единой линией, чтобы показать все основные компоненты электрической цепи.Некоторый производители оборудования для управления двигателем используют однолинейный рисунок, например тот, что показан в FGR. 18, как дорожная карта в изучении моторного контроля инсталляции. Установка сведена к максимально простой форме, тем не менее, он по-прежнему показывает основные требования и оборудование в цепи.

Энергетические системы — это чрезвычайно сложные электрические сети, которые могут географически распространяться на очень большие территории. По большей части они также трехфазные сети — каждая силовая цепь состоит из трех проводов и все устройства, такие как генераторы, трансформаторы, выключатели и разъединители и т.п.установлен во всех трех фазах. Эти системы могут быть настолько сложными, что полная стандартная схема, показывающая все соединения, непрактична. В этом случае использование однолинейной схемы — это краткий способ сообщение базовой компоновки компонента энергосистемы. FGR. 19 показана однолинейная схема малой системы распределения электроэнергии. Эти типы диаграмм также называют схемами «стояка мощности».

Блок-схемы

Блок-схема представляет основные функциональные части сложных электрических / электронных системы блоками, а не символами.Отдельные компоненты и провода не показаны. Вместо этого каждый блок представляет электрические цепи, которые выполнять определенные функции в системе. Функции, которые выполняют схемы написаны в каждом блоке.

Стрелки, соединяющие блоки, указывают общее направление тока пути.

FGR. 20 показана блок-схема частотно-регулируемого электродвигателя переменного тока. Частотно-регулируемый привод регулирует скорость двигателя переменного тока, изменяя частота, подаваемая на двигатель.Привод также регулирует мощность напряжение пропорционально выходной частоте, чтобы обеспечить относительно постоянное соотношение (вольт на герц; В / Гц) напряжения к частоте, если требуется характеристиками двигателя переменного тока для создания соответствующего крутящего момента. В Функция каждого блока резюмируется следующим образом:

• На выпрямительный блок подается трехфазное питание частотой 60 Гц.

• Блок выпрямителя — это схема, которая преобразует или выпрямляет трехфазную Переменное напряжение в постоянное.

• Блок инвертора — это схема, которая инвертирует или преобразует вход постоянного тока. напряжение обратно в напряжение переменного тока.

Инвертор состоит из электронных переключателей, которые переключают напряжение постоянного тока. включение и выключение для получения регулируемой выходной мощности переменного тока с желаемой частотой и напряжение.


FGR. 20 Блок-схема частотно-регулируемого привода переменного тока.

ЧАСТЬ 2 ВИКТОРИНА

1. Каково основное назначение электрической схемы?

2.Помимо цифр, какой еще метод можно использовать для идентификации провода на схеме подключения?

3. Какую роль может играть электрическая схема в поиске неисправностей двигателя? схема управления?

4. Перечислите фрагменты информации, которые, скорее всего, можно найти в канале. и перечень кабелей для установки двигателя.

5. Объясните цель использования электрической схемы двигателя вместе с с лестничной схемой цепи управления.

6. Каково основное назначение однолинейной схемы?

7. Каково основное назначение блок-схемы?

8. Объясните функцию выпрямительного и инверторного блоков переменной частоты. Привод переменного тока.


ЧАСТЬ 3 Клеммные соединения двигателя

Классификация двигателей

Электродвигатели были важным элементом нашей промышленной и коммерческая экономика более века.

Большинство используемых сегодня промышленных машин приводится в движение электродвигателями. Отрасли перестанут функционировать без должным образом спроектированных, установленных, и обслуживаемые системы управления двигателем. В целом моторы классифицируются в зависимости от типа используемой мощности (переменного или постоянного тока) и принципа действия двигателя операции. «Генеалогическое древо» моторных типов довольно обширно, как показано вверху следующей страницы:

В США Институт инженеров по электротехнике и радиоэлектронике (IEEE) устанавливает стандарты моторного тестирования и методологий тестирования, в то время как Национальная ассоциация производителей электрооборудования (NEMA) готовит стандарты характеристик двигателя и классификации.

Дополнительно должны быть установлены двигатели в соответствии со статьей 430. Национального электротехнического кодекса (NEC).

Подключение двигателя постоянного тока

В промышленных приложениях используются двигатели постоянного тока, поскольку соотношение скорость-крутящий момент можно легко варьировать. Двигатели постоянного тока имеют регулируемую скорость. плавно спускаемся до нуля, сразу после чего разгон в обратном направление. В аварийных ситуациях двигатели постоянного тока могут подавать более пяти раз. номинальный крутящий момент без остановки.Динамическое торможение (энергия, генерируемая двигателем постоянного тока подается на резисторную сетку) или рекуперативное торможение (двигатель постоянного тока энергия возвращается в источник питания двигателя постоянного тока) может быть получено с двигателями постоянного тока в приложениях, требующих быстрой остановки, что устраняет необходимость в или уменьшение размеров механического тормоза.

FGR. 21 показаны символы, используемые для обозначения основных частей прямого составной двигатель постоянного тока.



FGR. 21 Детали составного двигателя постоянного тока.

Вращающаяся часть двигателя называется якорем; стационарный часть двигателя называется статором, который содержит серию обмотка возбуждения и шунтирующая обмотка возбуждения. В машинах постоянного тока A1 и A2 всегда указывают выводы якоря, S1 и S2 указывают последовательные выводы возбуждения, а Fl и F2 обозначают выводы шунтирующего поля.

Это вид возбуждения поля, обеспечиваемый полем, который отличает один тип двигателя постоянного тока от другого; конструкция арматуры ничего общего с классификацией мотора.Есть три основных типа двигателей постоянного тока, классифицируемых по способу возбуждения поля как следует:

• В шунтирующем двигателе постоянного тока (FGR. 22) используется шунт со сравнительно высоким сопротивлением. обмотка возбуждения, состоящая из множества витков тонкой проволоки, соединенных параллельно (шунт) с арматурой.

• В последовательном двигателе постоянного тока (FGR. 23) используется последовательное поле с очень низким сопротивлением. обмотка, состоящая из очень небольшого количества витков толстого провода, соединенных последовательно с арматурой.

• Составной двигатель постоянного тока (FGR. 24) использует комбинацию шунтирующего поля (многие витков тонкой проволоки) параллельно якорю, а последовательное поле (несколько витков толстой проволоки) последовательно с якорем.


FGR. 22 Стандартные шунтирующие электродвигатели постоянного тока для вращения против часовой стрелки и вращение по часовой стрелке.


FGR. 23 Стандартные соединения двигателя постоянного тока для вращения против часовой стрелки и вращение по часовой стрелке.


FGR.24 стандартных соединения постоянного (кумулятивного) двигателя для счетчика часов мудрое и правое вращение. Для дифференциального соединения, обратное S1 и S2.

Все соединения, показанные на рисунках 22, 23 и 24, выполнены против часовой стрелки. и вращение по часовой стрелке, обращенное к концу, противоположному приводу (конец коллектора). Одна из целей нанесения маркировки на клеммы двигателей в соответствии с к стандарту, чтобы помочь в установлении соединений, когда предсказуемое вращение направление обязательно.Это может быть тот случай, когда неправильное вращение может привести к небезопасной эксплуатации или повреждению. Маркировка клемм обычно используется пометить только те клеммы, к которым нужно подключать извне схемы.

Направление вращения двигателя постоянного тока зависит от направления магнитное поле и направление тока в якоре. Если либо направление поля или направление тока, протекающего через якорь реверсируется, двигатель вращается в обратном направлении.Тем не мение, если оба этих фактора поменять местами одновременно, двигатель будет продолжайте вращаться в том же направлении.

Подключение двигателя переменного тока

Асинхронный двигатель переменного тока является доминирующей технологией двигателей, используемых сегодня, что составляет более 90 процентов установленной мощности двигателей. Индукция двигатели доступны в однофазной (1?) и трехфазной (3?) конфигурациях, размерами от долей лошадиных сил до десятков тысяч Лошадиные силы.Они могут работать с фиксированной скоростью — обычно 900, 1200, 1800, или 3600 об / мин — или быть оснащенным регулируемым приводом.

Наиболее часто используемые двигатели переменного тока имеют конфигурацию с короткозамкнутым ротором. (FGR.25), названный так из-за вставленной в него алюминиевой или медной беличьей клетки. внутри железных пластин ротора. Нет физического электрического подключение к беличьей клетке. Ток в роторе индуцируется вращающееся магнитное поле статора.

Роторные модели, у которых витки проволоки вращают обмотки ротора, так же доступно. Это дорого, но обеспечивает больший контроль над двигателем. эксплуатационные характеристики, поэтому их чаще всего используют для особого крутящего момента приложений для ускорения и для приложений с регулируемой скоростью.


FGR. 25 Трехфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.


FGR. 26 Асинхронный двигатель переменного тока с разделением фаз.


FGR.27 Соединения статора двухфазного двигателя с двойным напряжением.

ПОДКЛЮЧЕНИЯ ДЛЯ ОДНОФАЗНЫХ ДВИГАТЕЛЕЙ

Большинство однофазных асинхронных двигателей переменного мощности для источников питания от 120 до 240 В, 60 Гц. Хотя там это несколько типов однофазных двигателей, они в основном идентичны кроме средств запуска. «Двухфазный двигатель» наиболее широко используется для приложений со средним запуском (FGR.26). Операция сплит-двигателя кратко описывается следующим образом:

• Двигатель имеет пусковую и основную или рабочую обмотки, которые находятся под напряжением. при запуске мотора.

• Пусковая обмотка создает разность фаз для запуска двигателя. и отключается центробежным переключателем при приближении к рабочей скорости. Когда двигатель достигает примерно 75 процентов своей номинальной скорости при полной нагрузке, пусковая обмотка отключена от цепи.

• Мощность двигателя с расщепленной фазой составляет примерно ½ лошадиных сил. Популярные приложения включают вентиляторы, нагнетатели, бытовую технику, такую ​​как стиральные машины и сушилки, и инструменты, такие как небольшие пилы или сверлильные станки, к которым нагрузка прилагается после двигатель набрал свою рабочую скорость.

• Двигатель можно реверсировать, переставив провода к пусковой обмотке. или основной обмотки, но не к обеим. Обычно отраслевой стандарт поменять местами провода пусковой обмотки

В двухфазном двигателе с двойным напряжением (FGR.27) ходовая обмотка разделен на две части и может быть подключен для работы от 120-вольтной или источник 240 В. Две обмотки подключаются последовательно при работе. от источника 240 В и параллельно для работы на 120 В.

Пусковая обмотка подключена к линиям питания низкого напряжения. и по одной линии до середины ходовых обмоток для высокого напряжения. Это гарантирует, что все обмотки получат 120 В, на которые они рассчитаны. работать в.Чтобы изменить направление вращения разветвителя с двумя напряжениями фазного двигателя, поменяйте местами два провода пусковой обмотки.

Двигатели с двойным напряжением подключаются для получения желаемого напряжения следующим образом. схема подключения на паспортной табличке.

Номинальная мощность двухфазного двигателя с двумя напряжениями составляет 120/240 В. любого типа двигателя с двойным напряжением, более высокое напряжение предпочтительнее, когда возможен выбор между напряжениями. Мотор использует столько же мощности и производит такое же количество лошадиных сил при работе от напряжение питания 120 В или 240 В.Однако, поскольку напряжение увеличивается вдвое с 120 В до 240 В ток уменьшается вдвое. Работа двигателя на этом пониженном уровень тока позволяет использовать проводники цепи меньшего диаметра и снижает потери мощности в линии.


FGR. 28 Двигатель с постоянным разделением конденсаторов.

Во многих однофазных двигателях конденсатор используется последовательно с одним из статоров. обмотки для оптимизации разности фаз между пусковой и рабочей обмотками для запуска.Результат — более высокий пусковой крутящий момент, чем у расщепленной фазы. мотор может производить. Есть три типа конденсаторных двигателей: конденсаторные. пуск, при котором фаза конденсатора находится в цепи только при пуске; постоянно разделенный конденсатор, в котором конденсаторные фазы в цепи как для запуска, так и для работы; и двухзначный конденсатор, в котором есть — разные значения емкости для запуска и работы. Перманентный раскол конденсаторный двигатель, изображенный на FGR.28, постоянно использует конденсатор соединены последовательно с одной из обмоток статора. Эта конструкция ниже по стоимости, чем двигатели с конденсаторным пуском, которые включают переключение конденсаторов системы. Установки включают компрессоры, насосы, станки, воздушные кондиционеры, конвейеры, воздуходувки, вентиляторы и другие труднодоступные для запуска приложения.

ТРЕХФАЗНЫЕ ПОДКЛЮЧЕНИЯ ДВИГАТЕЛЯ

Трехфазный асинхронный двигатель переменного тока является наиболее распространенным двигателем, используемым в коммерческих и промышленное применение.

Однофазные двигатели большей мощности обычно не используются, так как они неэффективны по сравнению с трехфазными двигателями. Кроме того, однофазные двигатели не запускаются самостоятельно на своих рабочих обмотках, в отличие от трехфазных моторы.

Двигатели переменного тока большой мощности обычно бывают трехфазными.

Все трехфазные двигатели имеют внутреннюю конструкцию с рядом отдельных намотанные катушки. Независимо от количества отдельных катушек, индивидуальные катушки всегда будут подключены вместе (последовательно или параллельно) для получения трех отдельные обмотки, которые называются фазой A, фазой B и фазой С.Все трехфазные двигатели подключены так, чтобы фазы были подключены друг к другу. конфигурация звезды (Y) или треугольника (?), как показано на FGR. 29.

ПОДКЛЮЧЕНИЯ ДВУХНАПРЯЖНЫХ ДВИГАТЕЛЕЙ


FGR. 29 Трехфазные соединения двигателя звездой и треугольником.

Обычной практикой является производство трехфазных двигателей, которые могут быть подключены работать на разных уровнях напряжения.

Наиболее распространенное номинальное напряжение для трехфазных двигателей — 208/230/460. В.Всегда проверяйте характеристики двигателя или паспортную табличку на предмет надлежащего напряжения. номинал и схема подключения для способа подключения к источнику напряжения.

FGR. 30 иллюстрирует типичную идентификацию терминала и подключение таблица для девятипроводного трехфазного двигателя с двойным напряжением, соединенным звездой. Один конец каждой фазы внутренне постоянно подключен к другим фазам.

Каждая фазная катушка (A, B, C) разделена на две равные части и соединена либо последовательно для работы с высоким напряжением, либо параллельно для работы с низким напряжением операция.Согласно номенклатуре NEMA, эти отведения имеют маркировку от T1 до Т9. Высоковольтные и низковольтные соединения приведены в прилагаемых таблица соединений и клеммная колодка двигателя. Тот же принцип серии Применяется (высоковольтное) и параллельное (низковольтное) подключение катушек для трехфазных двигателей с двойным напряжением, соединенных звездой-треугольником. Во всех случаях обратитесь к электросхеме, поставляемой с двигателем, чтобы убедиться в правильности подключения. для желаемого уровня напряжения.

Прод. к части 2 >>

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *