Site Loader

Содержание

3 схемы подключения люминесцентной лампы без дросселя и стартера.

Лампы дневного света несмотря на всю их «живучесть», по сравнению с обычными лампочками накаливания, в один прекрасный момент также выходят из строя и перестают светить.

Конечно, срок их службы не сравнить со светодиодными моделями, но как оказывается, даже при серьезной поломке, все эти ЛБ или ЛД светильники опять можно восстановить без каких либо серьезных капитальных затрат.

В первую очередь вам нужно выяснить, что же именно сгорело:

  • сама люминесцентная лампочка

Как это сделать и быстро проверить все эти элементы, читайте в отдельной статье.

Если сгорела сама лампочка и вам надоел такой свет, то вы легко можете перейти на светодиодное освещение, без какой-либо серьезной модернизации светильника. Причем делается это несколькими способами.

Одна из наиболее серьезных проблем — это вышедший из строя дроссель.

Большинство при этом считают такой люминесцентный светильник полностью негодным и выбрасывают его, либо перемещают в кладовку на запчасти для остальных.

Сразу оговоримся, что запустить ЛБ светильник без дросселя, просто выкинув его из схемы и не поставив туда чего-нибудь другого, у вас не получится. В статье пойдет речь об альтернативных вариантах, когда этот самый дроссель можно заменить другим элементом, имеющимся у вас под рукой дома.

Как запустить лампу дневного света без дросселя

Что советуют делать в таких случаях самоделкины и радиолюбители? Они рекомендуют применить, так называемую бездроссельную схему включения люминесцентных ламп.

В ней используется диодный мост, конденсаторы, балластное сопротивление. Несмотря на некоторые преимущества (возможность запуска сгоревших ламп дневного света), все эти схемы для рядового пользователя темный лес. Ему гораздо проще купить новый светильник, чем паять и собирать всю эту конструкцию.

Поэтому сперва рассмотрим другой популярный способ запуска ЛБ или ЛД ламп со сгоревшим дросселем, который будет доступен каждому. Что вам для этого потребуется?

Вам понадобится старая сгоревшая энергосберегающая лампочка с обычным цоколем Е27.

Конечно, схему с ее использованием нельзя считать абсолютно бездроссельной, так как на плате энергосберегайки дроссель все таки присутствует. Просто он по габаритам гораздо меньше, так как экономка работает на частотах до нескольких десятков килогерц.

Этот минидроссель ограничивает ток через лампу и дает высоковольтный импульс для зажигания. Фактически это ЭПРА в миниатюрном варианте.

Раньше была большая рекламная компания по замене ламп накаливания на энергосберегающие. Сегодня уже их активно меняют на светодиодные.

Выкидывать в мусорку экономки не рекомендуется, впрочем как и отдельные модели светодиодных.

Поэтому некоторые сознательные и бережливые граждане, которые еще не сдали их в специальные пункты приема, хранят подобные изделия у себя на полках в шкафчиках.

Меняют их не зря. Эти лампочки в рабочем состоянии очень вредны для здоровья, как в плане пульсаций света, так и в отношении излучения опасного ультрафиолета.

Хотя ультрафиолет не всегда бывает вреден. И порой приносит нам много пользы.

При этом не забывайте, что теми же самыми негативными факторами, в равной степени обладают и линейные люминесцентные модели. Именно ими активно пугают любителей выращивать растения под светом фитоламп.

Но вернемся к нашим энергосберегайкам. Чаще всего у них перестает работать светящаяся спиральная трубка (пропадает герметичность, разбивается и т.д.).

При этом схема и внутренний блок питания остаются целыми и невредимыми. Их то и можно использовать в нашем деле.

Сперва разбираете лампочку. Для этого по линии разъема, тонкой плоской отверткой вскрываете и разделяете две половинки.

При разделении ни в коем случае не держитесь за стеклянную трубчатую колбу.

Далее вытаскиваете плату. На ней находите места, к которым подключаются проводки от «нитей накала» колбы. Они обычно идут в виде штырьков.

При разборе запомните, какая пара куда подключена. Эти штырьки могут находиться как с одной стороны платы, так и с разных сторон.

Всего у вас должно быть 4 контакта, куда вам и следует подпаять в дальнейшем провода.

Ну и естественно не забываем про питание 220В. Это те самые жилки, которые идут от цоколя.

Все что нужно сделать далее, это припаять по два проводника к каждому контакту на плате (от бывших нитей накала трубок) и вывести их к боковым штырькам лампы дневного света.

То есть, отдельно два провода справа и два провода слева. После чего, остается только подать напряжение 220В на схему энергосберегайки.

Лампочка дневного света будет прекрасно гореть и нормально работать. Причем для запуска вам даже не нужен стартер. Все подключается напрямую.

Если стартер в схеме присутствует, его придется выкинуть или зашунтировать.

Как выбрать мощность энергосберегающей лампы

Запускается такой светильник моментально, в отличие от долгих морганий и мерцаний привычных ЛБ и ЛД моделей.

Какие есть недостатки у такой схемы подключения? Во-первых, рабочий ток в энергосберегайках при равной мощности, меньше чем у линейных ламп дневного света. Чем это чревато?

А тем, что выбрав экономку равной или меньшей по мощности с ЛБ, ваша плата будет работать с перегрузкой и в один прекрасный момент бабахнет. Чтобы этого не случилось, мощности плат от экономок в идеале должны быть на 20% больше, чем у ламп дневного света.

То есть, для модели ЛДС на 36Вт, берите плату от лапочки на 40Вт и выше. Ну и так далее, в зависимости от пропорций.

Если вы переделываете светильник с одним дросселем на две лампочки, то учитывайте мощности обеих.

Почему еще нужно брать именно с запасом, а не подбирать мощность КЛЛ равную мощности ламп дневного света? Дело в том, что в безымянных и недорогих лампочках КЛЛ, реальная мощность всегда на порядок меньше заявленной.

Поэтому не удивляйтесь, когда подключив к старому советскому светильнику ЛБ-40, плату от китайской экономки на те же самые 40Вт, вы в итоге получите негативный результат. Это не схема не работает — это качество товаров из поднебесной не соответствует «железобетонным» советским гостам.

2 схемы бездроссельного включения ламп дневного света

Если вы все таки намерены собрать более сложную конструкцию, при помощи которой запускаются даже сгоревшие линейные светильники, то давайте рассмотрим и такие случаи.

Самый простейший вариант — это диодный мост с парой конденсаторов и подключенная последовательно в цепь в качестве балласта, лампочка накаливания. Вот схема такой сборки.

Главное преимущество ее в том, что подобным образом можно запустить светильник не только без дросселя, но и перегоревшую лампу, у которой вообще нет целых спиралей на штырьковых контактах.

Для трубок мощностью 18Вт подойдут следующие компоненты:

  • диодный мост GBU408
  • конденсатор 2нФ (до 1кв)
  • конденсатор 3нФ (до 1кв)
  • лампочка накаливания 40Вт

Для трубок в 36Вт или 40Вт емкости конденсаторов следует увеличить.  Все элементы соединяются вот таким образом.

После чего схемка подключается к лампе дневного света.

Вот еще одна подобная бездроссельная схема.

Диоды подбираются с обратным напряжением не менее 1kV. Ток будет зависеть от тока светильника (от 0,5А и более).

Зажигаем сгоревшую лампу

В данной схеме при сгоревшей лампе двойные штырьки на концах замыкаются между собой.

Подбор компонентов в зависимости от мощности лампы, делайте ориентируясь на табличку ниже.

Если лампочка целая, перемычки все равно устанавливаются. При этом не требуется предварительный разогрев спиралей до 900 градусов, как в исправных моделях.

Электроны необходимые для ионизации, вырываются наружу и при комнатной температуре, даже если спираль и перегорела. Все происходит за счет умноженного напряжения.

Весь процесс выглядит следующим образом:

  • первоначально в колбе разряд отсутствует
  • затем на концы подается умноженное напряжение
  • свет внутри за счет этого моментально зажигается
  • далее загорается лампочка накаливания, которая своим сопротивлением ограничивает максимальный ток
  • в колбе постепенно стабилизируется рабочее напряжение и ток
  • лампочка накаливания немного тускнеет

Недостатки подобной сборки:

  • низкий уровень яркости
  • повышенная пульсация

А еще при питании люминесцентных ламп постоянным напряжением, вам придется очень часто менять полярность на крайних электродах колбы. Проще говоря, перед каждым новым включением переворачивать лампу.

В противном случае пары ртути будут собираться только возле одного из электродов и светильник без периодического обслуживания долго не протянет. Это явление называется катафорез или унос паров ртути в катодный конец светильника.

Там где подключен «плюс», яркость будет меньше и этот край начнет чернеть значительно быстрее.

Особенно это заметно при монтаже светильников ЛБ в холодных помещениях — гараж, сарай, коридор, подвал. Если колба не прогрета, она может даже не запуститься.

В этом случае стоит до нее дотронуться теплой рукой и она тут же начинает гореть.

Поэтому запомните — люминесцентная лампа это источник света переменного тока. Постоянный ей противопоказан и убивает лампу. Особенно импортные дохнут очень быстро.

Еще один минус подобных диодных схем, про который мало кто говорит — итоговый ток потребления из розетки. Для 40Вт ЛБ лампочки при не идеально подобранных компонентах, ток потребления из сети 220В может доходить до 1А.

А это даже превышает нагрузку обычной лампы накаливания в 200Вт. Вот это экономия у вас получится!

Поэтому какой из способов подойдет именно вам, решайте сами, исходя из имеющихся под рукой запчастей и познаний в электронике.

Страница не найдена — ЛампаГид

Светодиоды

Уже невозможно представить современное освещение без использования светодиодов. Они используются буквально во всех возможных

Прочее

Просмотр кинофильмов дома на большом экране – это весьма распространенное желание. Но его реализация

Производственные помещения

Социологи проводили исследования, показавшие, что самочувствие и мотивация спортсменов напрямую зависит от освещения спортивной

Компоненты

Многие задаются вопросом, как правильно паять SMD-компоненты. Но перед тем как разобраться с этой

Светодиоды

При использовании осветительных LED-лент необходимы определенные источники питания. Поскольку вариантов освещения с применением таких

Квартира и офис

На протяжении всего своего существования человечество пыталось окружить себя комфортом. Мягкая мебель, ковры, музыка

Страница не найдена — ЛампаГид

Люминесцентные лампы

«Да будет свет!» – сказал монтер. Мы давно привыкли, что везде у нас светло.

Квартира и офис

Стиль лофт получил широкое распространение – сегодня он встречается в барах, ресторанах, торговых комплексах,

Светодиоды

Светодиод – полупроводниковый оптический прибор, пропускающий электрический ток в прямом направлении. При подключении инверсионно

Квартира и офис

Точечный объект – это такая маленькая штучка, о которой нам известно только местоположение в

Прочее

Благодаря умным смартфонам (пардон за тавтологию – smart и означает «умный»), сейчас все у

Светодиоды

Все большую популярность среди покупателей в магазинах электротехники завоевывают светодиодные осветительные приборы. И это

Подключение люминесцентной лампы без дросселя и стартера: схемы

Люминесцентные трубчатые лампы долгое время были популярны в освещении помещений любой площади. Они долго работают и не перегорают, а значит их нужно значительно реже обслуживать. Основная проблема — это не перегорание самой лампочки (выгорание спирали и люминофора), а выход из строя пускорегулирующей аппаратуры. В этой статье мы расскажем, как выполнить подключение люминесцентной лампы без дросселя и стартера, а также запитать от низковольтного источника постоянного тока.

Классическая схема включения люминесцентных ламп

Несмотря на технический прогресс и все преимущества электронных пускорегулирующих аппаратов (ЭПРА), и по сей день часто встречается схема включения с дросселем и стартером. Напомним, как она выглядит:

Люминесцентная лампа — это колба, которая конструктивно выполняется как прямая и закрученная трубка, наполненная парами ртути. На её концах расположены электроды, например, спирали или иглы (для изделий с холодным катодом, которые используются в подсветке мониторов). Спирали имеют два вывода, к которым подается питание, а стенки колбы покрыты слоями люминофора.

Принцип работы стандартной схемы подключения люминесцентной трубки с дросселем и стартером довольно прост. В первый момент времени, когда контакты стартера холодны и разомкнуты – между ними возникает тлеющий разряд, он нагревает контакты и они замыкаются, после чего ток течет по такой цепи:

Фаза-дроссель-спираль-стартер-вторая спираль-ноль.

В этот момент под воздействием протекающего тока разогреваются спирали, при этом остывают контакты стартера. В определенный момент времени контакты от нагрева изгибаются и цепь разрывается. После чего, за счет энергии, накопленной в дросселе, происходит всплеск напряжения и в лампе возникает тлеющий разряд.

Такой источник света не может работать напрямую от сети 220В, потому что для ее работы нужно создать условия с «правильным» питанием. Рассмотрим несколько вариантов.

Питание от 220В без дросселя и стартера

Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают. Всё это стоит не дешево, поэтому есть несколько схем для подключения светильника без этих элементов. Одну из них вы видите на рисунке ниже.

Диоды можно выбирать любые с обратным напряжением не менее 1000В и током не меньше чем потребляет светильник (от 0,5 А). Конденсаторы выбирайте с таким же напряжением в 1000В и ёмкостью 1-2 мкФ. Обратите внимание, что в этой схеме включения выводы лампы замкнуты между собой. Это значит, что спирали в процессе зажигания не участвуют и можно использовать схему для розжига ламп, где они перегорели.

Такую схему можно использовать для освещения подсобных помещений и коридоров. В гараже можно применять, если в нём вы не работаете на станках. Светоотдача может быть ниже, чем при классическом подключении, а световой поток будет мерцать, хоть это и не всегда заметно для человеческого глаза. Но такое освещение может вызвать стробоскопический эффект – когда вращающиеся части могут казаться неподвижными. Соответственно это может привести к несчастным случаям.

Примечание: во время экспериментов учтите, что запуск люминесцентных источников света в холодное время года всегда осложнен.

На видео ниже наглядно показано, как запустить люминесцентную лампу, используя диоды и конденсаторы:

Есть еще одна схема подключения люминесцентной лампы без стартера и дросселя. В качестве балласта при этом используется лампочка накаливания.

Лампу накаливания использовать на 40-60 Вт, как показано на фото:

Альтернативой описанным способам является использование платы от энергосберегающих ламп. Фактически это тот же ЭПРА, что используется с трубчатыми аналогами, но в миниатюрном формате.

На видео ниже наглядно показано, как подключить люминесцентную лампу через плату энергосберегающей лампы:

Питание ламп от 12В

Но любители самоделок часто задаются вопросом «Как зажечь люминесцентную лампу от низкого напряжения?», мы нашли один из вариантов ответа на этот вопрос. Для подключения люминесцентной трубки к низковольтному источнику постоянного тока, например, аккумулятору на 12В, нужно собрать повышающий преобразователь. Простейшим вариантом является схема автогенераторного преобразователя на 1 транзисторе. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.

Такую схему можно использовать для подключения люминесцентных ламп к бортовой сети автомобиля. Для её работы также не нужен дроссель и стартер. Более того она будет работать даже если её спирали перегорели. Возможно вам понравится одна из вариаций рассмотренной схемы.

Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам. Это не идеальное решение, а скорее выход из ситуации. Светильник с такой схемой подключения не следует использовать в качестве основного освещения рабочих мест, но допустимо для освещения помещений, где человек не приводит много времени – коридоры, кладовые и прочее.

Наверняка вы не знаете:

Схема включения люминесцентных ламп » Полезные самоделки

Данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем. Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Принципиальная схема сетевого питания ламп дневного света с перегоревшими нитями накала дана на рис. 1, а в таблице приведены сведения об элементах схемы, параметры которых определяет мощность используемой лампы.

Элементы схемы сетевого питания ламп дневного света с перегоревшими нитями накала:

Мощность лампы, Вт С1 и С2, мкФ С3 и С4, пФ VD1…VD4 R1, Ом

30 4 3300 Д226Б 60
40 10 6800 Д226Б 60
80 20 6800 Д205 30
100 20 6800 Д231 30

Диоды VD1 и VD2 с конденсаторами С1 и С2 составляют двухполупериодный выпрямитель с удвоением напряжения, причём ёмкости конденсаторов С1 и С2 определяют значение напряжения, поступающего на электроды лампы HL1 (чем больше ёмкость, тем выше напряжение). В момент включения питания импульс напряжения на вы-ходе этого выпрямителя достигает 600 В.

Диоды VD3 и VD4 в сочетании с конденсаторами С3 и С4 дополнительно повышают напряжение зажигания на электродах лампы HL1 примерно до 900 В. (Кроме того, конденсаторы С3 и С4 гасят радиопомехи, возникающие при ионизационном разряде внутри лампы). Столь высокое напряжение и обеспечивает надёжность зажигания лампы независимо от наличия нитей накала.

После зажигания лампы сопротивление её уменьшается, что приводит к уменьшению напряжения на электродах лампы и обеспечивает нормальную её работу при напряжении около 220 В (рабочее напряжение определяется номиналом резистора R1).


Рис.1. Принципиальная схема питания лампа дневного света с перегоревшими нитями накала.

Устройство сохраняет работоспособность даже при отсутствии диодов VD3 и VD4, а так же конденсаторов С3 и С4, но при этом снижается надёжность зажигания лампы.

В схеме используются следующие радиодетали. Конденсаторы С1 и С2 — бумажные или металлобумажные типа МБГ, КБГ, КБЛП, МБГО или МБГП на напряжение 600 В; конденсаторы С3 и С4 типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком) на рабочее напряжение не меньше 600 В. Резистор R1 проволочный, мощность которого соответствует мощности применяемой лампы. Подойдут резисторы типа ПЭ, ПЭВ, ПЭВР. Диоды Д205 и Д231 для ламп мощностью 80 и 100 Вт устанавливают на радиаторах (для теплоотвода).

Как видите, данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем. Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.

Подробная схема подключения люминесцентной лампы, устройство 

Люминесцентные лампы обычно используют для освещения супермаркетов, учебных аудиторий, промышленных объектов, общественных закрытых помещений и прочего. С появлением более современных видов, которые выпускаются со стандартным цоколем E27, их начали использовать и в домашних условиях.

По истечении времени они набирают всё большей популярности. Но схема включения люминесцентных ламп достаточно сложная и требует особых познаний в этой области. Обычно подключают двумя схемами, о которых мы и поговорим дальше. Но сначала следует разобраться в принципе работы и строении такого светильника.

Принцип работы

Давайте разберём, что такое люминесцентная лампа, и как она работает. Представляет из себя стеклянную трубку, которая начинает работать за счёт разряда, который зажигает газы внутри её оболочки. На обоих концах установлен катод и анод, именно между ними и происходит разряд, который вызывает пусковое загорание.

Пары ртути, которые помещают в стеклянный футляр, при разряде начинаю излучать особый невидимый свет, который активизирует работу люминофора и других дополнительных элементов. Именно они и начинают излучать тот свет, который нам необходим.

Принцип работы лампы

Благодаря разным свойствам люминофора, такой светильник излучать большой спектр разнообразных цветов.

Подключаем, используя электромагнитный балласт

Электромагнитный Пускорегулирующий аппарат, сокращённой аббревиатурой для него является ЭмПРА. Также часто называют дросселем. Мощность такого устройства должна быть равной той мощности, которую потребляют лампы при работе. Довольно старая схема, с помощью которой раньше подключали люминесцентные лампы.

Схема с электромагнитным балластом

Принцип работы такого устройства состоит в следующем. После начала подачи тока, он попадает на стартер, после чего на небольшой период времени биметаллические электроды замыкаются. Благодаря этому, весь ток, который появляется в цепи, замыкается между электродами и ограничивается только сопротивлением дросселя.

Таким образом, он возрастает примерно в три-четыре раза, и электроды начинают практически моментально разогреваться.

Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет. После включения, напряжение в схеме будет равно примерно половине от входящего с сети.

Такого показателя мало для создания повторного импульса, из-за чего лампа начинает стабильно работать.

Какими недостатками она обладает:

  1. Сравнивая со схемой, где применяется электронный балласт, расход электроэнергии выше на десять-пятнадцать процентов.
  2. В зависимости от того, сколько лампа уже проработала времени, период запуска будет увеличиваться и может дойти до трёх-четырёх секунд.
  3. Такая схема подключения люминесцентных ламп со временем способствует появлению гудения. Такой звук будет исходить от пластин дросселя.
  4. В процессе работы светильника будет довольно высокий коэффициент пульсации света. Такое явление негативно сказывается на зрении человека, а при продолжительном нахождение действие таких мерцающих лучей может стать причиной ухудшения зрения.
  5. Неспособны работать при низкой температуре. Таким образом, отпадает возможность использовать такие лампы на улице или в неотапливаемых помещениях.

Подключаем лампу, используя электронный балласт

Главным отличием такой системы от электромагнитной то, что напряжение, которое доходит до самой лампы имеет повышенную частоту начиная от 25 и доходит до 140 кГц. Благодаря повышению частоты тока, значительно уменьшается показатель мерцания, и он находит на таком уровне, который уже не является слишком вредным для человеческого глаза.

Подключение с ЭПРА

Система ЭПРА используется специальный автогенератор в своей схеме, такое дополнение включает трансформатор и выходной каскад на всех транзисторах. Зачастую производители указывают схему прямо на задней части блока светильника. Таким образом, у вас сразу есть наглядный пример, как правильно подключить и установить устройство для работы от сети.

Преимуществами стартерной схемы подключения

  • Стартерная система продлевает период работы светильника.
  • Особый принцип работы также продлевает период службы примерно на десять процентов.
  • Благодаря принципу действия, устройство экономит около двадцати-тридцати процентов потребляемой электроэнергии.
  • Облегчённая установка, так как производитель указывает схему, по которой должна происходить установка взятого вами светильника.
  • Во время работы практически полностью отсутствует мерцание и шум от светильника. Такие явления присутствуют, но они незаметны для человека и никак не влияют на здоровье.

Существуют модели, которые поддерживают установку диммера в качестве регулятора. Установка таких приборов несколько отличается от стандартной установки.

Подведём итог

Мы постарались раскрыть вопрос как подключить люминесцентную лампу, показали схемы, с помощью которых происходит подключение люминесцентных ламп. Разобравшись со схемой электромагнитного и электронного балласта, вы можете решить какую лучше использовать именно в вашем случае. Но так как первая имеет ряд значительных недостатков, то скорей всего выбор ляжет именно на электронный балласт.

Причины неисправностей — решение проблем

Схема электронного дросселя была придумана позже, и разрабатывалась специально для того, чтобы убрать все недостатки электромагнитного аналога, с целью максимального повышения качества освещения с помощью люминесцентных ламп.

Установка таких устройств уже не составляет особого труда, как это было раньше. Производители начали указывать схему, по которой производится установка на тыльной стороне прибора что значительно облегчает работу монтажника.

Антистробоскопическая схема люминесцентного светильника

Люминесцентная лампа (ЛЛ) представляет собой источник света, создаваемый электрическим разрядом в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу. Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).

Устройство и описание ЛЛ

Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.

Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать. Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого — создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер — лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из биметаллической пластины. В исходном состоянии электроды разомкнуты.

Принцип работы ЛЛ

Стартерная схема включения люминесцентных ламп работает следующим образом.

  1. На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.
  2. При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается. После этого проводником становится металл, и разряд прекращается.
  3. Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.
  4. Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.

Схема включения двух ламп люминесцентных, установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.

Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.

Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать.

Бездроссельное включение люминесцентных ламп: схемы

Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).

Как запускается ЛЛ с ЭПРА

Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.

Достоинства электронной схемы запуска:

  • возможность пуска с любой временной задержкой;
  • не нужны массивный электромагнитный дроссель и стартер;
  • отсутствие гудения и моргания ламп;
  • высокая светоотдача;
  • легкость и компактность устройства;
  • больший срок эксплуатации.

Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.

Система ЭПРА преобразует сетевое переменное напряжение 220 В в высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение. При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения люминесцентной лампы может обеспечивать холодный запуск или с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.

Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.

Выпрямление напряжения осуществляется диодным мостом, после чего оно сглаживается параллельно подключенным конденсатором С1. После подключения к сети сразу заряжается конденсатор С4 и пробивается динистор. Запускается полумостовой генератор на трансформаторе TR1 и транзисторах Т1 и Т2. При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С2, С3, L1, подключенного к электродам, и лампа зажигается. В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.

ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.

Преимущества современных ЭПРА следующие:

  • плавное включение;
  • экономичность работы;
  • сохранение электродов;
  • исключение мерцания;
  • работоспособность при низкой температуре;
  • компактность;
  • долговечность.

Недостатками являются более высокая стоимость и сложная схема зажигания.

Применение умножителей напряжения

Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам. Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.

После выпрямления напряжение удваивается, и лампа загорается моментально. Конденсаторы С1, С2 выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах. Конденсаторы С3, С4 устанавливают слюдяные на 1000 В.

ЛЛ не предназначена для питания постоянным током. Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.

Бесстартерная схема включения люминесцентных ламп

Схема со стартером требует долгого разогрева лампы. Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.

Когда производится включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.

Как включить сгоревшую лампу?

Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА. Схема включения перегоревшей люминесцентной лампы незначительно изменяется по сравнению с обычной. Для этого к стартеру последовательно подключают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.

Заключение

Конструкция и схема включения люминесцентной лампы постоянно совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем многообразии выпускаемых типов и знать эффективные способы подключения.

Д ля поддержания и стабилизации процесса разряда последовательно с люминесцентной лампой включается балластное сопротивление в сети переменного тока в виде дросселя или дросселя и конденсатора . Эти устройства называют пускорегулирующими аппаратами (ПРА) .

Напряжение сети, при котором работает люминесцентная лампа в установившемся режиме, недостаточно для ее зажигания. Для образования газового разряда, т. е. пробоя газового пространства, необходимо повысить эмиссию электронов путем их предварительного разогрева или подачи на электроды импульса повышенного напряжения. То и другое обеспечивается с помощью стартера, включенного параллельно лампе.

Схема включения люминесцентной лампы: а — с индуктивным балластом, б — с индуктивно-емкостным балластом.

Рассмотрим как происходит процесс зажигания люминесцентной лампы.

Стартер представляет собой миниатюрную лампочку тлеющего разряда с неоновым наполнением, имеющую два биметаллических электрода, которые в нормальном положении разомкнуты.

При подаче напряжения в стартере возникает разряд и биметаллические электроды, изгибаясь, замыкаются накоротко. После их замыкания ток в цепи стартера и электродов, ограниченный только сопротивлением дросселя, возрастает до двухтрехкратного значения рабочего тока лампы и происходит быстрый разогрев электродов люминесцентной лампы. В это же время биметаллические электроды стартера, остывая, размыкают его цепь.

В момент разрыва цепи стартером в дросселе возникает импульс повышенного напряжения, вследствие которого происходят разряд в газовой среде люминесцентной лампы и ее зажигание. После того как лампа зажглась, напряжение на ней составляет около половины сетевого. Такое напряжение будет и на стартере, однако этого оказывается недостаточно для его повторного замыкания. Поэтому при горящей лампе стартер разомкнут и в работе схемы не участвует.

Одноламповая стартерная схема включения люминесцентной лампы: Л — люминесцентная лампа, Д — дроссель, Ст — стартер, С1 — С3 — конденсаторы.

Конденсатор, включенный параллельно стартеру, и конденсаторы на входе схемы предназначены для снижения уровня радиопомех. Конденсатор, включенный параллельно стартеру, кроме того, способствует увеличению срока службы стартера и влияет на процесс зажигания лампы, способствуя значительному снижению импульса напряжения в стартере (с 8000 -12 000 В до 600 — 1500 В) при одновременном увеличении энергии импульса (за счет увеличения его продолжительности).

Недостатком описанной стартерной схемы является низкий cos фи, не превышающий 0,5. Повышение cos фи достигается либо включением конденсатора на вводе, либо применением индуктивно-емкостной схемы. Однако и в этом случае cos фи 0,9 — 0,92 в результате наличия высших гармонических составляющих в кривой тока, определяемых спецификой газового разряда и пускорегулирующей аппаратурой.

В двухламповых светильниках компенсация реактивной мощности достигается при включении одной лампы с индуктивным, а другой с индуктивно-емкостным балластом. В этом случае cos фи = 0,95. Кроме того, такая схема ПРА позволяет сгладить в значительной степени пульсации светового потока люминесценых ламп.

Схема включения люминесцентных ламп с ПРА с расщепленной фазой

Наибольшее распространение для включения люминесцентных ламп мощностью 40 и 80 Вт получила у нас двухламповая импульсная схема стартерного зажигания с применением балластных компенсированных устройств 2УБК-40/220 и 2УБК-80/220, работающих по схеме «расщепленной фазы». Они представляют собой комплектные электрические аппараты с дросселями, конденсаторами и разрядными сопротивлениями.

Последовательно с одной из ламп включается только дроссель-индуктивное сопротивление, что создает отставание тока по фазе от приложенного напряжения. Последовательно со второй лампой, помимо дросселя, включается конденсатор, емкостное сопротивление которого больше индуктивного сопротивления дросселя примерно в 2 раза, создающий опережение тока, в результате чего суммарный коэффициент мощности комплекта получается порядка 0,9 -0,95.

Кроме того, включение последовательно с дросселем одной из двух ламп специально подобранного конденсатора обеспечивает такой сдвиг фаз между токами первой и второй ламп, при котором глубина колебаний суммарного светового потока двух ламп будет существенно уменьшена.

Для увеличения тока подогрева электродов последовательно с емкостью включается компенсирующая катушка, которая отключается стартером.

Монтажная схема включения двухлампового стартерного аппарата 2УБК: Л — люминесцентная лампа, Ст- стартер, С — конденсатор, r — разрядное сопротивление. Корпус ПРА 2УБК показан пунктиром.

Бесстартерные схемы включения люминесцентных ламп

Недостатки стартерных схем включения (значительный шум, создаваемый ПРА при работе, возгораемость при аварийных режимах и др.), а также низкое качество выпускаемых стартеров привели к настойчивым поискам бесстартерных экономически целесообразных рациональных ПРА с тем, чтобы в первую очередь применить их в установках, где достаточно просты и дешевы.

Для надежной работы бесстартерных схем которых рекомендуется применять лампы с нанесенной на колбы токопроводящей полосой.

Наибольшее распространение получили трансформаторные схемы быстрого пуска люминесцентных ламп в которых в качестве балластного сопротивления используется дроссель, а предварительный подогрев катодов осуществляется накальным трансформатором либо автотрансформатором.

Бесстартерные одноламповая и двухламповая схемы включения люминесцентных ламп: Л — люминесцентная лампа, Д — дроссель, НТ — накальный трансформатор

В настоящее время расчетами установлено, что стартерные схемы для внутреннего освещения более экономичны, и поэтому они имеют преимущественное распространение. В стартерных схемах потери энергии составляют примерно 20 — 25%, в бесстартерных — 35%

В последнее время схемы включения люминесцентных ламп с электромагнитными ПРА постепенно вытесняются схемами с более функциональными и экономичными электронными пускорегулирующими аппаратами (ЭПРА).

При расчете сетей освещения с люминесцентными лампами, то необходимо учитывать, что даже при компенсированных схемах без пускорегулирующих устройств нельзя полностью уничтожить сдвиг фаз. Поэтому необходимо при определении расчетного тока сетей с люминесцентными лампами принимать для схем с компенсацией реактивной мощности косинус фи = 0,9, а при отсутствие конденсаторов в схемах косинус фи = 0,5. Кроме того, необходимо учесть потери мощности в пускорегулирующей аппаратуре.

При выборе сечений проводов четырехпроводных сетей с люминесцентными лампами следует учитывать некоторые особенности таких сетей. Дело в том, что нелинейность вольтамперной характеристики люминесцентных ламп, а также наличие в их цели катушки индуктивности со стальным сердечником и конденсаторов выливают несинусопдалькость кривой тока и вследствие этого появление высших гармоник, существенно изменяющих ток нулевого провода даже при равномерной нагрузке фаз.

Ток в нулевом проводе может достигать значений, близких к току в фазном проводе 85—87% от I ф. Отсюда вытекает необходимость выбирать сечение нулевого провода в четырехпроводных сетях люминесцентного освещения равным сечению фазных проводов, а при прокладке проводов в трубах допустимую токовую нагрузку надо принимать как для четырех проводов в одной трубе.

5. Что из нижеперечисленного не влияет на напряжение зажигания люминесцентной лампы?

♦Наличие дросселя в схеме включения люминесцентной лампы.

6. Что из нижеперечисленного является достоинством рефлекторной лампы по сравнению с другими люминесцентными лампами?

♦Направленность светового потока.

7. Какой фактор не оказывает влияния на уменьшение продолжительности горения люминесцентной лампы?♦Толщина слоя люминофора.

8. Что является, достоинством схем мгновенного зажигания люминесцентной лампы?♦Пожаробезопасность схемы.

9. Что из перечисленного ниже не является достоинством двухламповой антистробоскопической стартерной схемы зажигания люминесцентных ламп? ♦Высокая надежность.

10. Что является, достоинством схем мгновенного зажигания люминесцентной лампы?

11. Какой фактор не оказывает влияния на уменьшение продолжительности горения люминесцентной лампы?

♦Толщина слоя люминофора.

12. Люминесцентные лампы, какого типа применяют, если по условиям работы предъявляются повышенные требования к цветопередаче?

13. Укажите причину покрытия колбы люминесцентной лампы люминофором. ♦Преобразование ультрафиолетового излучения в видимый свет.

14. Какая из приведенных кривых соответствует рабочему участку вольтамперной характеристики люминесцентных ламп? ♦Кривая а.

15. Какая из приведенных на рисунке кривых соответствует зависимости между продолжительностью горения и напряжением, подводимым к люминесцентной лампе? ♦Кривая Н2.

16. Укажите элемент, преимущественно применяемый в схеме включения люминесцентной лампы? ♦с

17. Какой из перечисленных элементов наилучшим образом может заменить стартер в стартерной схеме включения ЛЛ? ♦e

18. Какой из перечисленных ниже элементов необходимо поставить в двухламповую антистробоскопическую схему? ♦b.

19. Какой из перечисленных ниже элементов необходимо поставить в двухламповую антистробоскопическую схему?♦с.

20. Какой из перечисленных элементов используется в схеме, приведенной на рисунке?♦е.

21. Какой из перечисленных ниже элементов необходимо поставить в резонансную схему включения люминесцентной лампы при работе на частоте 50 Гц? ♦с.

1. Какой из перечисленных ниже факторов не учитывается коэффициентом запаса? ♦Точность выполняемых в помещении работ.

2. От какого из перечисленных факторов yе зависит коэффициент использования светового потока?♦Нормированная освещенность.

3. Применение какой, из ниже перечисленных систем освещения недопустимо?

♦Только местное освещение лампами накаливания.

4. Укажите причину, препятствующую применению точечного метода расчета? ♦Наличие светильников рассеянного света.

5. Какой метод используется для расчета аварийного освещения? ♦Точечный метод.

6. Каким образом учитывается освещенность от удаленных источников света при расчете точечным методом?

♦Учитывается путем умножения условной освещенности, определенной по изолюксам, на коэффициент больше 1.

7. Какой из перечисленных факторов не учитывается общими нормами освещения? ♦Отрасль промышленности, к которой относится освещаемое помещение.

8. Какую из перечисленных характеристик необходимо знать при проектировании, чтобы определить наивыгоднейшее расстояние между светильниками общего освещения, с лампами ДРЛ и МГЛ? ♦Расчетная высота подвеса светильника.

9. В каком из перечисленных ниже случаев недопустимо применение ламп ДРЛ?♦При работе с поверхностями, имеющими выраженную цветность.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 266
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 602
  • БГУ 153
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 962
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 119
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1967
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 300
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 409
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 497
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 130
  • ИжГТУ 143
  • КемГППК 171
  • КемГУ 507
  • КГМТУ 269
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2909
  • КрасГАУ 370
  • КрасГМУ 630
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 139
  • КубГУ 107
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 367
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 330
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 636
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 454
  • НИУ МЭИ 641
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 212
  • НУК им. Макарова 542
  • НВ 777
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1992
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 301
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 119
  • РАНХиГС 186
  • РОАТ МИИТ 608
  • РТА 243
  • РГГМУ 118
  • РГПУ им. Герцена 124
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 122
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 130
  • СПбГАСУ 318
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 147
  • СПбГПУ 1598
  • СПбГТИ (ТУ) 292
  • СПбГТУРП 235
  • СПбГУ 582
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 193
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 380
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1655
  • СибГТУ 946
  • СГУПС 1513
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2423
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 324
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 306

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

Анализ причин почернения концов люминесцентных ламп

15 июля 2016 г., Публикуется в статьях: EE Publishers, статьях: Vector.

Информация от Cosine Developments

Чтобы разобраться в причинах почернения концов люминесцентных ламп, полезно немного узнать о самом свете.

Свет — это форма энергии, которая может выделяться атомом. Он состоит из множества маленьких частиц, подобных пакетам, которые обладают энергией и импульсом, но не имеют массы. Эти частицы, называемые фотонами света, являются основными единицами света. Далее в этом поможет базовое понимание конструкции и принципов работы люминесцентных ламп.

Конструкция люминесцентной лампы

Люминесцентная лампа представляет собой разрядную ртутную лампу низкого давления.Обычно он имеет форму длинной стеклянной трубки, покрытой на внутренней поверхности флуоресцентным порошком или люминофором. На каждом конце трубки находится катод лампы. Катод состоит из спирального вольфрамового нагревателя, покрытого специальными оксидами бария и стронция, которые при нагревании испускают электроны. К каждому катоду прикреплены две защитные пластины, которые предотвращают разрушение катушки нагревателя при бомбардировке положительными ионами во время разряда. Стеклянная трубка закрыта с обоих концов и содержит небольшое количество ртути и инертного газа под низким давлением.Газ может быть аргоном, криптоном или их смесью (см. Рис. 1).

Центральным элементом люминесцентной лампы является герметичная стеклянная трубка. Как показано на рис. 1, трубка содержит небольшое количество ртути и инертный газ, обычно аргон, который находится под очень низким давлением. Трубка также содержит порошок люминофора, нанесенный по внутренней стороне стекла (см. Рис. 2).

Как показано на рис. 2, трубка имеет два электрода, по одному на каждом конце, которые подключены к электрической цепи. Электрическая цепь подключена к источнику переменного тока.

Рис. 1: Базовая конфигурация люминесцентной лампы.

Когда вы включаете лампу, ток течет по электрической цепи к электродам. На электродах имеется значительное напряжение, поэтому электроны будут мигрировать через газ от одного конца трубки к другому. Эта энергия превращает часть ртути в трубке из жидкости в газ. Когда электроны и заряженные атомы движутся по трубке, некоторые из них будут сталкиваться с газообразными атомами ртути. Эти столкновения возбуждают атомы, выталкивая электроны на более высокие энергетические уровни.Когда электроны возвращаются к своему первоначальному уровню энергии, они испускают световые фотоны.

Принципы работы

Принцип работы люминесцентной лампы основан на неупругом рассеянии электронов, т.е. термоэлектронной эмиссии.

Термоэмиссия — это истечение электронов в вакуум из нагретого электрического проводника. Это также известно как эффект Эдисона и эффект Ричардсона. В более широком смысле, это высвобождение электронов или ионов из вещества в результате нагрева.

Падающий электрон (испускаемый покрытием на витках проволоки, образующей катодный электрод) сталкивается с атомом газа (например, ртути, аргона или криптона), используемого в качестве излучателя ультрафиолета. Это заставляет электрон в атоме временно подпрыгивать на более высокий энергетический уровень, чтобы поглотить часть или всю кинетическую энергию, доставленную сталкивающимся электроном. Вот почему столкновение называется «неупругим»; часть энергии поглощается.

Это состояние с более высокой энергией нестабильно, и атом излучает ультрафиолетовый фотон, когда электрон атома возвращается на более низкий, более стабильный энергетический уровень.Фотоны, которые испускаются из выбранной газовой смеси, обычно имеют длину волны в ультрафиолетовой части спектра. Человеческий глаз не видит его, поэтому его необходимо преобразовать в видимый свет.

Это делается с помощью флуоресценции. Это флуоресцентное преобразование происходит в люминофорном покрытии на внутренней поверхности люминесцентной лампы, где ультрафиолетовые фотоны поглощаются электронами в атомах люминофора, вызывая аналогичный скачок энергии, а затем снижающийся с испусканием следующего фотона.Фотон, испущенный в результате этого второго взаимодействия, имеет меньшую энергию, чем тот, который его вызвал.

Химические вещества, входящие в состав люминофора, выбираются таким образом, чтобы эти испускаемые фотоны имели длину волны, видимую человеческим глазом. Разница в энергии между поглощенным ультрафиолетовым фотоном и испускаемым фотоном видимого света идет на нагрев покрытия люминофора (см. Рис. 3).

Следует отметить, что во время каждого цикла запуска некоторое количество излучающего материала теряется с каждого катода.Этот материал имеет тенденцию загрязнять газ и люминофорные покрытия лампы и в старых лампах заметен в виде темных полос вокруг каждого катода. Это загрязнение приводит к постепенному снижению мощности лампы (уменьшение светового потока). Когда больше не будет достаточно материала, излучающего электроны, чтобы обеспечить правильный объем свободных электронов во время запуска, лампы больше не будут зажигать.

Обрыв катода лампы также предотвратит зажигание лампы при нормальных условиях.

КПД

Эффективность люминесцентных ламп колеблется от примерно 16 лм / Вт для лампы мощностью 4 Вт с обычным балластом до 95 лм / Вт для лампы мощностью 32 Вт с современным электронным балластом, обычно в среднем от 50 до 67 лм / Вт в целом. .Большинство компактных люминесцентных ламп мощностью 13 Вт и более со встроенными электронными балластами достигают около 60 лм / Вт. Из-за деградации люминофора по мере старения лампы средняя яркость за весь срок службы фактически примерно на 10% меньше.

Пусковая лампа

Атомы ртути в люминесцентной лампе должны быть ионизированы, прежде чем дуга сможет «загореться» внутри лампы. Для небольших ламп для зажигания дуги не требуется большого напряжения, и запуск лампы не представляет проблемы, но для больших ламп требуется значительное напряжение в диапазоне 1000 В.
В некоторых случаях это происходит именно так: люминесцентные лампы с мгновенным запуском просто используют достаточно высокое напряжение, чтобы разрушить столб газа и ртути и тем самым запустить дугу.

В других случаях должна быть предусмотрена отдельная помощь при пуске. Некоторые люминесцентные конструкции (лампы предварительного нагрева) используют комбинацию нити накала / катода на каждом конце лампы в сочетании с механическим или автоматическим переключателем, который первоначально соединяет нити последовательно с балластом и, таким образом, предварительно нагревает нити перед зажиганием дуги.

Самая популярная конструкция люминесцентных ламп — это лампа с быстрым запуском. Эта конструкция работает по тому же основному принципу, что и традиционная лампа стартера, но у нее нет выключателя стартера. Вместо этого балласт лампы постоянно пропускает ток через оба электрода. Этот ток сконфигурирован так, что между двумя электродами существует разница зарядов, что создает напряжение на трубке.

Когда включается люминесцентный свет, нити обеих электродов очень быстро нагреваются (горячий катод), выкипая электроны, которые ионизируют газ в трубке.Как только газ ионизируется, разница напряжений между электродами создает электрическую дугу. Текущие заряженные частицы (красные) возбуждают атомы ртути (серебра), запуская процесс освещения.

Рис. 2: Внутри люминесцентной лампы.

Сравнение горячего катода и холодного катода

Катод — отрицательный электрод люминесцентной лампы. Ток течет через электроны, вылетающие из катода и притягивающиеся к положительному электроду, аноду.

Горячий катод должен быть нагрет для правильной работы и испускания достаточного количества электронов, чтобы быть полезным. Примерами являются ЭЛТ-телевизоры и мониторы, большинство электронных ламп (или клапанов) и вакуумные флуоресцентные дисплеи (например, на видеомагнитофонах). Это, как объяснялось ранее, называется «термоэлектронной эмиссией» — выкипанием электронов с поверхности катода. Обычные люминесцентные лампы представляют собой устройства с горячим катодом, которые частично поддерживаются самим током разряда. У всех есть период разминки (хотя он может быть довольно коротким).

Горячий катод

Тепловое излучение — это основной процесс, используемый в лампах с горячим катодом, которые включают стандартные люминесцентные лампы. Ионы ускоряются к катоду за счет небольшого катодного напряжения (менее 10 В) и получают достаточно энергии, чтобы нагреть небольшую часть очень тонкого проволочного электрода, когда они сталкиваются с ним. Они нагревают его до тех пор, пока он не начнет тускло светиться и электроны «выкипят», высвободившись за счет тепловой энергии. Этот процесс очень эффективен в производстве большого количества электронов и приводит к появлению эффективных ламп.

Холодный катод

Вторичная эмиссия — более жестокий процесс генерации электронов. Для этого требуется падение ускоряющего напряжения от 130 до 150 В. Энергичные ионы просто «сбивают» электроны с поверхности металла. При этом они также сбивают часть металла — процесс, называемый напылением. У больших электродов T12 и T8 достаточно материала, чтобы прослужить до того, как другие эффекты вызовут отказ лампы. Нити накаливания лампы T5 намного более хрупкие и более подвержены повреждениям.

Балласты

Электронные балласты

В более новых конструкциях балласта с быстрым запуском предусмотрены силовые обмотки накала в балласте; они быстро и непрерывно нагревают нити / катоды, используя низковольтный переменный ток. При запуске не возникает индуктивных всплесков напряжения, поэтому лампы обычно необходимо устанавливать рядом с заземленным отражателем, чтобы тлеющий разряд мог распространяться по трубке и инициировать дуговый разряд.

Электронные балласты часто возвращаются к стилю между стилями предварительного нагрева и быстрого пуска: конденсатор (или иногда автоматически отключающая цепь) может замкнуть цепь между двумя нитями накала, обеспечивая предварительный нагрев нити.Когда трубка загорается, напряжение и частота на лампе и конденсаторе обычно падают, поэтому ток конденсатора падает до низкого, но ненулевого значения. Этот конденсатор и катушка индуктивности, которая обеспечивает ограничение тока при нормальной работе, обычно образуют резонансный контур, увеличивая напряжение на лампе, чтобы ее можно было легко запустить.

Некоторые электронные балласты используют запрограммированный пуск. Выходная частота переменного тока начинается выше резонансной частоты выходного контура балласта; и после того, как нити нагреваются, частота быстро уменьшается.Если частота приближается к резонансной частоте балласта, выходное напряжение возрастает настолько, что лампа загорается. Если лампа не загорается, электронная схема прекращает работу балласта.

Балласты аварийного управления

ПРА для аварийного управления предназначены для работы люминесцентной лампы при отключении электросети. Это вообще не обычное явление. В результате разработчик балластов аварийного управления не принимает во внимание тонкости зажигания люминесцентной лампы, чтобы предотвратить повреждение нити накала и т. Д.Стоимость также является важным фактором. В результате большинство пускорегулирующих аппаратов аварийного управления приводят в действие лампу в режиме холодного удара и, как объяснялось ранее, вызывая «сбивание» электронов, что включает в себя сбивание материала с нитей накала. Во-вторых, большинство аварийных ламп работают при гораздо более низком уровне освещенности, примерно 20% от нормального, что приводит к истощению электрода, вызывая почернение концов.

Окончание срока службы

Режим отказа по окончании срока службы люминесцентных ламп различается в зависимости от того, как они используются, и типа их ПРА.В настоящее время существует три основных режима отказа и четвертый, который начинает появляться:

Смесь выбросов

В основе всей работы лампы лежит тот факт, что любой металл непрерывно излучает электроны. Как количество, так и скорость, с которой они испускаются, очень сильно возрастают с температурой, хотя испускание происходит при любых температурах, превышающих абсолютный ноль (-273 ° C). Чтобы понять излучение, мы должны посмотреть, что происходит внутри тела металла. В любом металле есть один или два электрона, которые можно легко отделить от атома, так что внутри твердого металла есть своего рода море электронов, плавающих вокруг независимо от какого-либо конкретного атома.Последние фиксируются внутри кристаллической структуры и совсем не двигаются, хотя и колеблются на месте. Это море электронов является общим для всех металлов и действительно является определяющей характеристикой металла и объясняет многие из их знакомых свойств, таких как электрическая проводимость и тот факт, что они блестят.

Поскольку электроны не прикреплены к какому-либо конкретному атому, они постоянно перемещаются, очень похоже на молекулы в газе. Средняя скорость электронов увеличивается с температурой, но, поскольку они постоянно отскакивают от атомов и друг от друга, не все они имеют одинаковую скорость, а подчиняются закону статистического распределения (см.рис.4).

Эмиссионная смесь обычно состоит из смеси оксидов бария, стронция и кальция, покрытие разбрызгивается при нормальном использовании, что часто в конечном итоге приводит к выходу лампы из строя.

Рис. 3: Включение люминесцентной лампы.

Эмиссионная смесь на нитях / катодах трубки необходима для того, чтобы электроны могли проходить в газ посредством термоэлектронной эмиссии при используемых рабочих напряжениях трубки. Смесь медленно распыляется путем бомбардировки электронами и ионами ртути во время работы, но большее количество распыляется каждый раз, когда трубка запускается с холодными катодами.Лампы, работающие обычно менее трех часов за раз, обычно исчерпывают эмиссионную смесь до того, как выйдут из строя другие части лампы. Распыленная эмиссионная смесь образует темные пятна на концах трубок, которые можно увидеть в старых трубках. Когда вся эмиссионная смесь исчезнет, ​​катод не может пропустить достаточно электронов в газовую заливку, чтобы поддерживать разряд при расчетном рабочем напряжении трубки. В идеале управляющий механизм должен отключать трубку, когда это происходит. Однако некоторые устройства управления будут обеспечивать достаточно повышенное напряжение для продолжения работы лампы в режиме с холодным катодом, что приведет к перегреву конца трубки и быстрому разрушению электродов и их поддерживающих проводов до тех пор, пока они полностью не исчезнут, или стекло не потрескается, разрушив Заполнение газом низкого давления и прекращение выпуска газа.

Балластная электроника

Относится только к компактным люминесцентным лампам со встроенными электрическими балластами. Отказ балластной электроники — это несколько случайный процесс, который следует стандартному профилю отказов для любых электронных устройств. Срок службы встроенных электронных балластов сокращается в условиях высокой влажности. Сначала наблюдается небольшой пик ранних отказов, за которым следует спад и неуклонное увеличение срока службы лампы. Срок службы электроники сильно зависит от рабочей температуры — обычно он уменьшается вдвое на каждые 10 ° C повышения температуры.Приведенный средний срок службы лампы обычно составляет при температуре окружающей среды 25 ° C (это может варьироваться в зависимости от страны). Средний срок службы электроники при этой температуре обычно больше указанной, поэтому при такой температуре немногие лампы выйдут из строя из-за отказа электроники.

В некоторых фитингах температура окружающей среды может быть намного выше этой, и в этом случае отказ электроники может стать преобладающим механизмом отказа. Аналогичным образом, использование компактного цоколя люминесцентных ламп приведет к более горячей электронике и сокращению среднего срока службы (особенно для ламп с более высокой номинальной мощностью).Электронные балласты должны быть спроектированы так, чтобы отключать лампу, когда заканчивается смесь выбросов, как описано выше. В случае интегральных электронных балластов, поскольку они никогда не должны снова работать, это иногда достигается путем преднамеренного сгорания какого-либо компонента для окончательного прекращения работы.

Люминофор

Эффективность люминофора падает во время использования. Приблизительно к 25 000 часов работы это будет, как правило, вдвое меньше яркости новой лампы (хотя некоторые производители заявляют, что период полураспада у своих ламп намного больше).Лампы, в которых отсутствуют отказы системы эмиссии или встроенной балластной электроники, в конечном итоге разовьются в этом режиме отказа. Они все еще работают, но стали тусклыми и неэффективными. Процесс идет медленно и часто становится очевидным только тогда, когда новая лампа работает рядом со старой.

Потеря ртути

Ртуть теряется из-за газового наполнения в течение всего срока службы лампы, так как она медленно поглощается стеклом, люминофором и трубчатыми электродами, где больше не может работать.Исторически это не было проблемой, потому что в трубках содержится избыток ртути. Тем не менее, экологические проблемы в настоящее время приводят к созданию трубок с низким содержанием ртути, в которые гораздо точнее дозируют ртуть, достаточную для обеспечения ожидаемого срока службы лампы. Это означает, что потеря ртути возьмет верх из-за выхода из строя люминофора в некоторых лампах. Симптомы отказа аналогичны, за исключением того, что потеря ртути сначала вызывает увеличенное время разгона (время для достижения полного светового потока) и, наконец, заставляет лампу светиться тускло-розовым светом, когда ртуть заканчивается, а основной газ аргон вступает во владение. первичный разряд.

Рис. 4: Крупный план нити накала ртутной газоразрядной лампы низкого давления с белым покрытием из термоэмиссионной смеси на центральной части катушки.

Заключение

Почернение концов люминесцентных ламп

Почернение концов — обычное явление для большинства обычных люминесцентных ламп по мере их старения. Однако частый или повторный запуск может ускорить процесс. Сами по себе черные области не влияют на работу, за исключением небольшого уменьшения количества доступного света, поскольку люминофор в этой области мертв.Однако они представляют собой потерю металла на электродах (нитях).

Причина — разбрызгивание нитей, чаще всего в холодном состоянии. Итак, чаще всего это происходит, когда:

  • Запуск с неисправным балластом для быстрого пуска, который не нагревает нить (и).
  • Запуск с балластом или стартером с непрерывным циклом.
  • Используется с балластами аварийного управления.

Когда нить накала (катод) холодная (на отрицательной половине цикла переменного тока для этого конца трубки), работа выхода выше, и ионы имеют более высокую скорость при ударе, сбивая атомы металла в процессе.Это значительно уменьшается, когда нить нагревается до нормальной рабочей температуры (хотя даже в этом случае некоторое разбрызгивание неизбежно).

В основе работы люминесцентных ламп лежит тот факт, что любой металл непрерывно излучает электроны. И количество, и скорость, с которой они испускаются, очень сильно возрастают с температурой, хотя на самом деле испускание происходит при любых температурах, превышающих абсолютный ноль (-273 ° C).

Пуск лампы

Способ зажигания лампы и, следовательно, тип ПРА оказывает значительное влияние на почернение концов.

Как описано ранее в этой статье, во время предварительного нагрева нити испускают электроны в газовый столб за счет термоэлектронной эмиссии, создавая тлеющий разряд вокруг нитей. Затем, когда пусковой переключатель размыкается, индуктивный балласт и небольшой конденсатор на пусковом переключателе создают высокое напряжение, которое зажигает дугу. Удар трубки надежен в этих системах, но стартеры накаливания часто переключаются несколько раз, прежде чем оставить лампу зажженной, что вызывает нежелательное мигание во время запуска.Это явление усиливает распад электродов (нитей), что приводит к ускоренному потемнению концов.

После удара по трубке падающий основной разряд сохраняет нить / катод горячим, что позволяет продолжать излучение.

По мере того как лампа стареет, возникает ситуация, когда лампа не зажигает или зажигается, а затем гаснет, поэтому последовательность запуска повторяется.

При использовании автоматических пускателей, таких как стартеры накаливания, неисправная лампа будет бесконечно работать, мигая снова и снова, поскольку стартер многократно запускает изношенную лампу, а затем лампа быстро гаснет, поскольку эмиссии недостаточно для поддержания нагрева катодов, и лампа ток слишком низкий, чтобы держать пускатель тлеющего разомкнутым.Тогда пора заменить лампу.

Свяжитесь со Стирлингом Марэ, Cosine Developments, тел. 031 579-2172, [email protected]

Статьи по теме

  • Портал ресурсов правительства ЮАР по коронавирусу COVID-19
  • Постановлениями министерства предлагается 13813 МВт нового строительства на ГЭС, без Eskom
  • Настало время для южноафриканской национальной ядерной компании Necsa
  • Разбираясь со слоном в комнате, это Эском…
  • Интервью с министром полезных ископаемых и энергетики Гведе Манташе
  • энергии — Не повредит ли многократное включение и выключение лампочки?

    Зависит от типа лампочки!

    Галогенные, лампы накаливания, флуоресцентные и паровые лампы используют вольфрамовые нити, которые нагревают и испускают электроны посредством термоэлектронной эмиссии.В этом смысле они похожи. Однако способы «включения» света различаются.

    Лампы накаливания просто включают один раз и оставляют включенными. Пусковой ток в 12–15 раз превышает пиковый ток, если не ограничен методами, описанными в примечании к применению.

    Люминесцентные лампы работают по схеме «стартер» и «балласт». Нити накала нагреваются более постепенно, , поскольку пускатель (D на схеме ниже) должен переключаться несколько раз, чтобы запустить электроны, протекающие через трубку, а не только один раз, как лампа накаливания.

    Обычно стартер (биметаллический переключатель) периодически нагревается и размыкается, в результате чего магнитное поле, создаваемое балластом (G), разрушается и вызывает индукционный толчок в трубке. Если толчок недостаточно сильный, электронов не хватит для поддержания цепи через трубку, и свет будет мерцать. Свет будет устойчивым только тогда, когда магнитное поле будет сильным, когда он схлопнется. Чтобы увидеть это в анимации, посмотрите «Как работает флуоресцентный свет».

    Так или иначе, идея состоит в том, что вольфрамовый элемент подвергается тепловому удару при каждом включении света. Я предполагаю, что тепловой удар меньше для люминесцентных ламп, чем для ламп накаливания, поскольку люминесцентные лампы не сразу нагреваются до полного открытия дроссельной заслонки, потому что стартер должен несколько раз попытаться запустить свет (обычно в течение нескольких секунд). В любом случае, включает свет каждый раз, когда наносит повреждение нити накала , а приводит к долгосрочному повреждению.

    LED , однако, является единственным типом светоизлучающих устройств из списка, в котором не используется вольфрамовый элемент. Вместо этого он использует PN-переход. Это означает, что светодиоды требуют гораздо меньшего напряжения и тока, что означает низкое энергопотребление по сравнению с лампами с нитью. Таким образом, светодиоды вообще не будут повреждены при переключении, поскольку нет повреждаемой нити накала и мощность, проходящая через лампу, ниже. Фактически, многие приложения переключают их на высоких скоростях с помощью ШИМ, с которым они справляются без проблем.

    Также посмотрите отличное видео MinutePhysics о современных источниках света для краткого объяснения того, как эти источники света работают!

    Start it Up — Как работают люминесцентные лампы

    В классической конструкции люминесцентных ламп, которая по большей части пришла на второй план, для зажигания лампы использовался специальный механизм включения стартера. Вы можете увидеть, как эта система работает, на схеме ниже.

    При первом включении лампы путь наименьшего сопротивления проходит через байпасную цепь и через выключатель стартера .В этой цепи ток проходит через электроды на обоих концах трубки. Эти электроды представляют собой простые нити , как в лампе накаливания. Когда ток проходит через байпасную цепь, электричество нагревает нити. Это отрывает электроны от поверхности металла, отправляя их в газовую трубку, ионизируя газ.

    В то же время электрический ток вызывает интересную последовательность событий в выключателе стартера. Обычный выключатель стартера представляет собой небольшую газоразрядную лампу, содержащую неон или другой газ.Колба имеет два электрода, расположенных рядом друг с другом. Когда электричество первоначально пропускается через байпасную цепь, электрическая дуга (по сути, поток заряженных частиц) прыгает между этими электродами, чтобы установить соединение. Эта дуга зажигает лампочку так же, как большая дуга зажигает люминесцентную лампу.

    Один из электродов представляет собой биметаллическую полосу , которая изгибается при нагревании. Небольшое количество тепла от зажженной лампы сгибает биметаллическую полосу, так что она входит в контакт с другим электродом.Поскольку два электрода соприкасаются друг с другом, току больше не нужно прыгать по дуге. Следовательно, через газ не протекают заряженные частицы, и свет гаснет. Без тепла от света биметаллическая полоса охлаждается, отклоняясь от другого электрода. Это размыкает цепь.

    К тому времени, когда это произойдет, нити уже ионизировали газ в люминесцентной лампе, создав электропроводящую среду. Для возникновения электрической дуги трубке просто требуется скачок напряжения на электродах.Этот толчок обеспечивается балластом лампы , трансформатором особого типа, включенным в цепь.

    Когда ток проходит через байпасную цепь, он создает магнитное поле в части балласта. Это магнитное поле поддерживается протекающим током. При размыкании переключателя стартера ток кратковременно отключается от балласта. Магнитное поле схлопывается, что вызывает внезапный скачок тока — балласт высвобождает накопленную энергию.

    Этот скачок тока помогает создать начальное напряжение, необходимое для образования электрической дуги в газе. Вместо того, чтобы проходить через байпасную цепь и перепрыгивать через зазор в выключателе стартера, электрический ток течет через трубку. Свободные электроны сталкиваются с атомами, выбивая другие электроны, что создает ионы. В результате получается плазма , газ, состоящий в основном из ионов и свободных электронов, все свободно движущихся. Это создает путь для электрического тока.

    Удар летящих электронов сохраняет две нити теплыми, поэтому они продолжают испускать новые электроны в плазму. Пока есть переменный ток и нити не изношены, ток будет продолжать течь через трубку.

    Проблема с такой лампой в том, что она загорается через несколько секунд. В наши дни большинство люминесцентных ламп рассчитаны на то, чтобы загораться почти мгновенно. В следующем разделе мы увидим, как работают эти современные конструкции.

    видов устройств, назначение, схемы и обратная связь

    Лампы дневного света (ЛДС) — первые экономичные устройства, появившиеся после традиционных ламп с нитью накала.Они относятся к газоразрядным устройствам, где обязательно требуется элемент, ограничивающий мощность в электрической цепи.

    Назначение дроссельной заслонки

    Дроссель для люминесцентных ламп регулирует напряжение, подаваемое на электроды лампы. Кроме того, он имеет следующие назначения:

    • защита от скачков напряжения;
    • нагревательные катоды;
    • создание высокого напряжения для запуска лампы;
    • ограничение электрического тока после пуска;
    • стабилизация процесса горения лампы.

    Для экономии дроссельная заслонка подключена к двум лампам.

    Принцип работы электромагнитного балласта (ЭМПРА)

    Первая схема запуска люминесцентной лампы, которая была создана и используется до сих пор, включает элементы:

    • дроссель;
    • стартер;
    • два конденсатора.

    Схема люминесцентная лампа с дросселем подключается к сети 220 В. Все соединенные между собой части называются электромагнитным балластом.

    При подаче питания включается цепочка вольфрамовых спиралей лампы и стартер в режиме тлеющего разряда. Через лампу ток не проходит. Нити постепенно разогреваются. Контакты стартера в исходном состоянии разомкнуты. Один из них биметаллический. Он изгибается при нагревании от тлеющего разряда и замыкает цепь. Ток увеличивается в 2-3 раза и катоды лампы нагреваются.

    Как только контакты стартера замыкаются, разряд в нем прекращается и биметаллическая пластина начинает остывать.В результате подвижный контакт размыкается, и индуктивность дросселя возникает в виде значительного импульса напряжения. Достаточно, чтобы электроны пробились сквозь газовую среду между электродами, и лампа загорится. Через него начинает протекать номинальный ток, который затем уменьшается в 2 раза из-за падения напряжения на дросселе. Стартер постоянно остается в выключенном состоянии (контакты разомкнуты), а ЛДС горит.

    Таким образом, балласт запускает лампу и затем поддерживает ее в активном состоянии.

    Преимущества и недостатки EMPRA

    Электромагнитный дроссель для люминесцентных ламп отличается невысокой ценой, простой конструкцией и высокой надежностью.

    Кроме того, есть недостатки:

    • пульсирующий свет, приводящий к утомлению глаз;
    • до 15% электроэнергии теряется;
    • шум при старте и во время работы;
    • лампа не запускается должным образом при низких температурах;
    • большие габариты и вес;
    • длинная лампа старта.

    Обычно жужжание и мерцание лампы происходит при нестабильной мощности. Балластник производят с разным уровнем шума. Чтобы его уменьшить, можно выбрать подходящую модель.

    Лампы и дроссели выбираются равными друг другу по мощности, иначе срок службы лампы сильно сократится. Обычно они поставляются в комплекте, а балласт заменяется устройством с такими же параметрами.

    Люминесцентные лампы в комплекте с EmPra недорогие и не нуждаются в настройке.

    Балластник характеризуется потреблением реактивной энергии. Для уменьшения потерь параллельно питающей сети подключается конденсатор.

    Электронный балласт

    Все недостатки электромагнитного дросселя необходимо было устранить, и в результате исследований был создан электронный дроссель для люминесцентных ламп (электронных балластов). Схема представляет собой единый блок, который запускает и поддерживает процесс горения, формируя заданную последовательность изменений напряжения.Подключить его можно с помощью инструкции по эксплуатации, прилагаемой к модели.

    Дроссель для люминесцентных ламп электронного типа имеет преимущества:

    • возможность мгновенного пуска или с любой задержкой;
    • отсутствие стартера;
    • не мигает;
    • увеличенная светоотдача;
    • компактность и удобство устройства;
    • оптимальные режимы работы.

    Электронный балласт дороже электромагнитного устройства из-за сложной электронной схемы, которая включает в себя фильтры, коррекцию коэффициента мощности, инвертор и балласт.В некоторых моделях установлена ​​защита от ошибочного запуска лампы без ламп.

    В отзывах пользователей говорится об удобстве использования ЭПРА в энергосберегающих ЛДС, которые встраиваются непосредственно в основание для обычных стандартных картриджей.

    Как запустить люминесцентную лампу с электронным балластом?

    При включении от ЭПРА на электроды подается напряжение, и происходит их нагрев. Затем они получают мощный импульс, который зажигает лампу.Он формируется путем создания колебательного контура, входящего в резонанс перед разрядом. Таким образом катоды хорошо нагреваются, вся ртуть в колбе испаряется, и лампочка зажигается. После возникновения разряда резонанс колебательного контура сразу прекращается и напряжение падает до рабочего.

    Принцип работы балласта аналогичен варианту с электромагнитным дросселем, так как лампа срабатывает от высокого напряжения, которое затем снижается до постоянного значения и поддерживает разряд в лампе.

    Текущая частота достигает 20-60 кГц, за счет чего устраняется мерцание, а КПД становится выше. В отзывах часто предлагается заменить электромагнитные дроссели на электронные. Важно, чтобы они подходили по мощности. Схема может создавать мгновенный запуск или с постепенным увеличением яркости. Холодный запуск удобен, но срок службы светильника намного меньше.

    Люминесцентная лампа без стартера, дроссельной заслонки

    ЛДС можно включить без громоздкой дроссельной заслонки, используя вместо нее простую лампу накаливания аналогичной мощности.В этой схеме стартер тоже не нужен.

    Подключение осуществляется через выпрямитель, в котором напряжение удваивается с помощью конденсаторов и зажигает лампу без нагрева катодов. Последовательно с ЛДС по фазовому проводу включается лампа накаливания, ограничивающая ток. Конденсаторы и диоды выпрямительного моста следует подбирать с запасом по допустимому напряжению. При питании ЛДС через выпрямитель лампочка с одной стороны скоро начнет темнеть.В этом случае необходимо изменить полярность питания.

    Подключение люминесцентной лампы без дроссельной заслонки, где вместо нее используется активная нагрузка, дает слабую яркость.

    Если вместо лампы накаливания установить дроссель, лампа будет светиться значительно сильнее.

    Проверка исправности дроссельной заслонки

    Когда LDS не горит, причина кроется в неисправной проводке, самой лампе, стартере или дроссельной заслонке. Простые причины выявляет тестировщик.Перед проверкой дросселя люминесцентной лампы мультиметром отключите напряжение и разрядите конденсаторы. Затем переключатель прибора устанавливают в режим непрерывности или на минимальный предел измерения сопротивления и определяют:

    • целостность обмотки катушки;
    • электрическое сопротивление обмотки;
    • межвитковая затвор;
    • обрыв обмотки катушки.

    В обзорах предлагается проверить дроссель, подключив его к сети через лампу накаливания.При межвитковом замыкании горит ярко, а исправный — полностью.

    При обнаружении неисправности проще заменить дроссельную заслонку, поскольку ремонт может быть более дорогим.

    Чаще всего выходит из строя стартер в цепи. Для проверки его работоспособности вместо него устанавливается известный товар. Если лампа не загорается, значит, причина в другом.

    Дроссельную заслонку проверяют также исправной лампой, подключив от нее два провода к ее цоколю. Если лампа горит ярко, то дроссельная заслонка исправна.

    Заключение

    Дроссель для люминесцентных ламп дорабатывается в сторону улучшения технических характеристик. Электронные устройства начинают вытеснять электромагнитные. При этом продолжают использоваться старые версии моделей из-за их простоты и невысокой цены. Необходимо разбираться во всем многообразии типов, правильно ими пользоваться и соединять.

    Патент США на схему для предварительного нагрева электродов люминесцентной лампы Патент (Патент № 5,854,538, выданный 29 декабря 1998 г.)

    ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

    1.Область изобретения

    Изобретение относится к схемам, используемым с электронным балластом для предварительного нагрева электродов (катушек) люминесцентных ламп.

    2. Описание предшествующего уровня техники

    В связи с оборудованием с электронным балластом, в котором используется схема вышеупомянутого типа, часто стандартной практикой является предварительный нагрев катушек или электродов люминесцентной лампы. Катушки или электроды включаются до температуры излучения перед фактическим включением лампы.Этот процесс подготавливает лампу к зажиганию и тем самым продлевает срок службы люминесцентной лампы. Очевидно, что эта фаза предварительного нагрева должна быть как можно короче, поскольку люминесцентная лампа должна зажигаться с небольшой задержкой при подаче сетевого напряжения на балластное оборудование. Поскольку для нагрева катушек люминесцентной лампы до температуры излучения необходимо определенное количество энергии, необходимо максимально увеличить ток нагрева.

    Что касается схемотехники, существует много возможностей для выполнения определенных функций в оборудовании электронного балласта с соответствующими схемными затратами.Однако из соображений экономии варианты осуществления, требующие больших затрат на схему, приведут только к ограниченному успеху на рынке.

    В настоящее время наиболее экономичная конструкция известного электронного балластного оборудования с схемотехникой включает в себя цепь нагрузки, которая обычно включает в себя последовательный резонансный контур, имеющий дроссель лампы и конденсатор зажигания. В этой цепи нагрузки электроды или катушки люминесцентной лампы (для простоты ограничиваясь только балластным оборудованием с одной лампой) соединены последовательно.Эта схема нагрузки управляет инвертором, имеющим полумостовую схему, состоящую из двух последовательно соединенных полупроводниковых переключателей, общая точка подключения которых образует выход полумостовой схемы. Инвертор вырабатывает полумостовое напряжение в виде последовательности высокочастотных прямоугольных импульсов. Эта последовательность поступает в цепь нагрузки. По соображениям стоимости переключатели полумостовой схемы обычно выполнены как биполярные силовые транзисторы, при этом инвертор сконструирован так, что два переключателя попеременно активируются с короткой паузой переключения.

    Этот инвертор управляет цепью нагрузки во время зажигания и нормальной работы, и на его частоту можно влиять. Частотные изменения напряжения полумоста требуются для соответствия конкретным функциям лампы в различных рабочих состояниях, таких как предварительный нагрев, зажигание или нормальная работа. Недостатком этой известной схемы является то, что ток в резонансном контуре подключается непосредственно к напряжению на лампе и является предварительно определенным током предварительного нагрева во время фазы предварительного нагрева.Чтобы получить относительно высокий ток предварительного нагрева, который является предварительным условием для быстрого нагрева электродов люминесцентной лампы, требуется соответственно высокое напряжение лампы. Однако во время фазы предварительного нагрева необходимо ограничить напряжение лампы, чтобы исключить преждевременные попытки зажечь люминесцентную лампу. Таким образом, с показанной схемой могут быть достигнуты только периоды предварительного нагрева продолжительностью от 1,5 до 2 секунд.

    Патент США. В US 5049783 раскрыто устройство электронного балласта для параллельного управления несколькими люминесцентными лампами, конструкция которого показывает возможный способ сокращения необходимого периода предварительного нагрева.В этой известной схеме цепь нагрузки отдельной лампы состоит из люминесцентной лампы, конденсатора зажигания и трансформатора с высоким реактивным сопротивлением. Конденсатор зажигания подключается параллельно люминесцентной лампе через первые выводы катушек. Первичная обмотка трансформатора с высоким реактивным сопротивлением подключается через разделительный конденсатор к выходу инвертора, по которому передается напряжение полумоста, а с другой стороны — к опорному потенциалу земли. Вторичная обмотка трансформатора с высоким реактивным сопротивлением, соединенная со вторыми выводами катушек люминесцентной лампы, расположена параллельно этой лампе.Индуктивности рассеяния трансформатора с высоким реактивным сопротивлением вместе с емкостью запального конденсатора образуют последовательный резонансный контур цепи ламповой нагрузки, которая настроена близко к высокочастотной рабочей частоте инвертора. Если предусмотрено несколько цепей ламповой нагрузки, каждая из этих цепей ламп имеет последовательный резонансный контур этого типа, при этом вторичные обмотки трансформаторов с высоким реактивным сопротивлением соединены последовательно таким образом, что образуется цепь постоянного тока, в которой электроды люминесцентных ламп и вторичные обмотки расположены последовательно друг с другом.

    Для достижения высокой мощности нагрева эта цепь постоянного тока подключается к питающему напряжению инвертора (обычно обозначаемому как напряжение промежуточной цепи) через переключатель, который должен быть замкнут во время периода предварительного нагрева, а также к цепи предварительного нагрева. нагревательный резистор. Цепи назначен элемент реле времени. Этот элемент запускается напряжением промежуточной цепи, которое нарастает, когда активируется схема электронного балласта, и удерживает переключатель в замкнутом состоянии в течение заданной продолжительности периода предварительного нагрева.Помимо стоимости трансформатора с высоким реактивным сопротивлением (характеристики такого трансформатора трудно контролировать при массовом производстве), эта известная схема имеет недостаток, заключающийся в том, что она требует гальванической развязки цепей ламповой нагрузки.

    СУЩНОСТЬ ИЗОБРЕТЕНИЯ

    Целью настоящего изобретения является создание схемы для предварительного нагрева катушки люминесцентной лампы, в которой предварительные условия для надежного и быстрого предварительного нагрева катушки люминесцентной лампы достигаются простым и экономичным способом. схемотехника,

    Учитывая давление, которое существует сегодня на производство электронного балластного оборудования, экономическая эффективность предлагаемого решения имеет существенное значение.В решении по изобретению не только относительно невелики затраты на компоненты, но и для этого можно использовать недорогие компоненты. С функциональной точки зрения предлагаемое решение позволяет быстро нагревать катушки подключенной люминесцентной лампы до температуры излучения с помощью высокого тока нагрева, несмотря на фиксированное напряжение лампы, которое является относительно низким во время фазы предварительного нагрева. Таким образом, предлагаемое решение предлагает возможность реализации периодов предварительного нагрева, недостижимых с помощью традиционных решений, в диапазоне менее 0.5 с.

    КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

    Примерный вариант осуществления изобретения более точно описан ниже на основе чертежа.

    РИС. 1 — схематическая диаграмма электронного балластного оборудования, включающего изобретение.

    ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

    Фильтр гармоник 1, подключенный к источнику переменного напряжения un, схематично показан на чертеже. Фильтр 1 является фильтром для подавления помех и служит для ограничения возмущений питающей сети из-за высокочастотных напряжений помех, которые возникают в результате процессов переключения в электронном балластном оборудовании.Выпрямительное устройство 2 подключено к выходу этого фильтра гармоник 1. Выпрямитель 2 содержит схему коррекции синусоиды и преобразует напряжение питания переменного тока un в выпрямленное напряжение. Скорректированное постоянное напряжение, подключенное к опорному потенциалу земли GND, излучается на выходе выпрямительного устройства 2, которое подается на один вывод резервного конденсатора CE, который может быть электролитическим конденсатором. Другой вывод резервного конденсатора CE имеет опорный потенциал земли.Таким образом, стабилизированное напряжение промежуточной цепи UZW, на которое не влияют модуляции напряжения питания переменного тока un, создается для непрерывного питания инвертора 3. Как правило, инвертор 3 включает полумостовую схему из двух силовых транзисторов T1. , T2 предпочтительно имеют биполярную конструкцию, которые расположены между напряжением UZW промежуточной цепи и опорным потенциалом земли GND через их соответствующие контролируемые пути тока, которые соединены последовательно. Два силовых транзистора T1, T2 управляются таким образом, что они попеременно переключаются, так что один является проводящим, а другой — непроводящим.В общей точке соединения токовых цепей этих двух силовых транзисторов T1, T2 создается высокочастотная последовательность импульсов, которая формирует выходной сигнал инвертора 3, эта последовательность импульсов обозначается как напряжение полумоста UHB.

    Это полумостовое напряжение UHB формирует источник напряжения для цепи ламповой нагрузки, подключенной к инвертору 3. Эта цепь нагрузки представляет собой последовательный резонансный контур, расположенный между выходом инвертора 3 и опорным потенциалом земли GND, и включает в себя дроссель лампы ( индуктивность) ЛДР, люминесцентная лампа ФЛ и конденсатор полумоста ЧБ.Кроме того, предусмотрен запальный конденсатор CZ, расположенный параллельно люминесцентной лампе FL. Конденсатор CZ подключен к электродам E1, E2 люминесцентной лампы FL.

    Как описано выше, схема для электронного балластного оборудования для управления по меньшей мере одной люминесцентной лампой известна, поэтому более подробное представление и описание здесь не требуется.

    Инвертор 3 управляет всеми рабочими функциями люминесцентной лампы FL в цепи нагрузки лампы.После активации электронного балластного оборудования посредством подачи напряжения питания переменного тока un, последовательный резонансный контур цепи ламповой нагрузки работает в течение периода предварительного нагрева для включения люминесцентной лампы FL в режиме энергосбережения, с частота, лежащая выше резонансной частоты. Сильный ток течет через электроды E1, E2 люминесцентной лампы FL, чтобы максимально быстро нагреть лампу FL до температуры излучения. Однако напряжение на люминесцентной лампе FL не может быть слишком высоким, чтобы не произошло преждевременного зажигания.Как только электроды E1, E2 люминесцентной лампы FL доведены до температуры излучения в конце периода предварительного нагрева, люминесцентная лампа FL должна загореться как можно быстрее. Для этого требуется напряжение зажигания, которое значительно выше, чем нормальное рабочее напряжение люминесцентной лампы FL. Это высокое напряжение создается за счет уменьшения частоты полумостового напряжения UHB, так что последовательный резонансный контур цепи ламповой нагрузки работает близко к своей резонансной частоте.Как только люминесцентная лампа FL загорается, в цепи нагрузки лампы протекает сильный ток, ограниченный реактивным сопротивлением дроссельной заслонки LDR лампы. Схема управления люминесцентной лампы этого типа также допускает функцию затемнения, при которой люминесцентная лампа FL излучает только заранее определенную часть своего номинального светового потока. Рабочая частота инвертора 3 повышается определенным образом, чтобы увеличить эффективное реактивное сопротивление лампы дроссельной заслонки LDR. Ток через люминесцентную лампу FL ограничен, так что лампа FL излучает только заданную часть своего номинального светового потока.

    На описанных выше этапах работы предварительный нагрев электродов E1, E2 люминесцентной лампы FL представляет особый интерес. В течение этого периода предварительного нагрева напряжение на люминесцентной лампе FL не может превышать определенного значения, чтобы предотвратить преждевременное зажигание катушек, которые еще недостаточно нагреты. Инвертор 3 управляется в течение заданного периода предварительного нагрева для подачи напряжения UHB полумоста, имеющего частоту импульсов, которая лежит выше резонансной частоты последовательного резонансного контура в цепи ламповой нагрузки.На этой высокой частоте лампа дроссельной заслонки LDR имеет токоограничивающий эффект. Обусловленный схемой в цепи ламповой нагрузки, присутствует верхний предел тепловой мощности, которая может подаваться на электроды E1, E2 люминесцентной лампы FL, так что период предварительного нагрева достаточно продлен.

    Чтобы решить эту проблему, в иллюстративном варианте осуществления, показанном на чертеже, цепи ламповой нагрузки назначен внутренний источник напряжения, который подается через напряжение полумоста UHB и который может быть активирован во время периода предварительного нагрева. .Этот источник напряжения включает в себя трансформатор TR, имеющий первичную обмотку PR, которая напрямую подключена к выходу инвертора 3 через разделительный конденсатор СК. Другой вывод первичной обмотки PR установлен на опорный потенциал земли через токопроводящий путь полупроводникового переключателя HS. Переключатель HS представляет собой полевой транзистор. Элемент синхронизации переключения 4 подключен к управляющему входу этого полупроводникового переключателя HS через согласующую сеть. Автономный (несмещенный) диод FD включен параллельно последовательной цепи конденсатора связи СК и первичной обмотки PR трансформатора TR.

    Вторичная сторона трансформатора TR образована двумя вторичными обмотками S1, S2, синхронизированными по направлению их намотки. Направление намотки первичной и вторичной обмоток PR, S1, S2 трансформатора TR условно указано на чертеже. Каждая из вторичных обмоток S1, S2 трансформатора TR напрямую соединена одним выводом с одним из двух электродов E1 или E2 люминесцентной лампы FL. Каждый из двух электродов E1 и E2 также расположен в ветви цепи между концом обмотки и другим выводом, который соединен с конденсатором зажигания CZ, эти ветви, соответственно, также включают выпрямительные диоды DW1 и DW2.

    Функция описанного схемного устройства теперь будет объяснена более подробно. В нормальном случае процесс включения люминесцентной лампы FL запускается приложением напряжения питания un к электронному балластному устройству. Напряжение промежуточной цепи UZW нарастает на резервном конденсаторе CE, и инвертор 3 активируется. В течение заданного периода предварительного нагрева частота напряжения полумоста UHB лежит намного выше резонансной частоты последовательного резонансного контура в цепи нагрузки лампы, так что напряжение на люминесцентной лампе FL значительно ниже, чем напряжение зажигания.С началом периода предварительного нагрева срабатывает элемент 4 синхронизации переключения, чтобы переключить полупроводниковый переключатель HS в проводящее состояние на время предварительного нагрева электродов E1, E2 люминесцентной лампы FL.

    Существуют различные возможности для генерации сигнала запуска для элемента синхронизации переключения 4 во время запуска оборудования электронного балласта. Таким образом, можно использовать повышение напряжения промежуточной цепи UZW, создаваемое на резервном конденсаторе CE, или напряжение полумоста UHB, или другим способом можно обнаружить повышение тока в цепи нагрузки лампы, для Например, это можно измерить как уменьшение напряжения на резисторе, включенном последовательно в цепи нагрузки лампы.Предпочтительно, если элемент 4 синхронизации переключения срабатывает только тогда, когда инвертор 3 накапливает напряжение. В этом случае, схематически показанном на чертеже, учитывается, что инвертор 3 представляет собой некоторое известное электронное балластное оборудование, которое автоматически отключается в состоянии неисправности, при котором подключенную люминесцентную лампу FL трудно или даже невозможно зажечь без необходимости отключения напряжение питания. После замены ламп инвертор 3 снова автоматически запускается в балластном оборудовании без отключения напряжения питания и пытается зажечь замененную люминесцентную лампу.Если триггерный сигнал для элемента синхронизации переключения 4 происходит от переключателя пуска / останова известного типа для инвертора 3 или из соответствующих изменений в цепи ламповой нагрузки в начале процесса включения, эта рабочая функция при этом также однозначно учитывается.

    При активации полупроводникового переключателя HS элементом 4 синхронизации переключения первичная обмотка PR трансформатора TR переключается на проводящую и на нее подается напряжение UHB полумоста.Выходные напряжения трансформатора TR на вторичных обмотках S1 или S2 постоянны и выпрямляются через выпрямительные диоды DW1, DW2 и поступают на один из электродов E1, E2 люминесцентной лампы FL. В начале периода предварительного нагрева эти электроды E1, E2 имеют низкую температуру и низкое сопротивление. Это приводит к высокому току нагрева, в результате чего подводимая тепловая мощность чрезвычайно велика, так как она увеличивается пропорционально квадрату тока нагрева. Электроды E1, E2 люминесцентной лампы FL быстро нагреваются.Таким образом, сопротивление катушки увеличивается, а ток нагрева и мощность нагрева уменьшаются с повышением температуры катушки. Таким образом обеспечивается отсутствие перегрева электродов E1, E2. Это происходит путем выбора коэффициента трансформации трансформатора TR, который определяет выходные напряжения на вторичных обмотках S1, S2, и установки мощности нагрева для достижения соответственно короткого периода предварительного нагрева. Таким образом можно достичь периода предварительного нагрева менее 0,5 с.

    После окончания заданного периода предварительного нагрева полупроводниковый переключатель HS становится непроводящим из-за того, что элемент 4 синхронизации переключения находится в состоянии покоя.На трансформатор TR больше не подается питание на первичной стороне, и нагрев электродов E1, E2 люминесцентной лампы FL прекращается. Через автономный диод FD остаточная энергия, которая может все еще присутствовать в трансформаторе TR, быстро уменьшается. В соответствии с рабочей функцией электронного балластного оборудования, в частности инвертора 3, после окончания периода предварительного нагрева частота напряжения полумоста UHB понижается. Как описано выше, напряжение на люминесцентной лампе FL повышается до тех пор, пока не будет достигнуто напряжение зажигания и лампа FL не загорится.Во время нормальной работы люминесцентной лампы FL дроссельная заслонка LDR ограничивает ток, протекающий через люминесцентную лампу FL, на основе реактивного сопротивления дроссельной заслонки, которое очень велико на этой рабочей частоте.

    Из предыдущей функциональной спецификации становится очевидным, почему используются выпрямительные диоды DW1, DW2, поскольку они не кажутся абсолютно необходимыми для описанной функции нагрева. Эти выпрямительные диоды DW1, DW2 служат для ограничения высоких напряжений на патронах люминесцентной лампы FL, предотвращая, таким образом, нежелательное нарастание цепи лампы.Диоды DW1, DW2 также обеспечивают безопасность работы при замене ламп при наличии напряжения.

    В вышеописанном примерном варианте осуществления изобретения только одна цепь тока лампы подключена к оборудованию электронного балласта. Расширение указанной схемы расположения на несколько цепей тока лампы возможно без каких-либо затруднений и без существенного изменения чего-либо в указанной схеме расположения. Для ЭПРА для нескольких ламп количество вторичных обмоток трансформатора необходимо умножить на количество нагреваемых электродов двух или трех люминесцентных ламп.При принципиально идентичной конструкции схемы для ЭПРА для нескольких ламп увеличивается только количество вторичных обмоток трансформатора, а также количество выпрямительных диодов, которые необходимо разместить в цепи нагрева. Поскольку оборудование с электронным балластом для нескольких ламп хорошо известно, не требуется отдельного схематического графического представления для описания такого примерного варианта осуществления изобретения, имеющего более одной люминесцентной лампы, работающей от оборудования с электронным балластом.

    Световод: люминесцентные балласты

    Световод

    Для работы всех газоразрядных ламп, в том числе люминесцентных, требуется балласт. Балласт обеспечивает высокое начальное напряжение для инициирования разряда, а затем быстро ограничивает ток лампы для безопасного поддержания разряда. Производители ламп указывают электрические входные характеристики лампы (ток лампы, пусковое напряжение, пик-фактор тока и т. Д.), Необходимые для достижения номинального срока службы лампы и характеристик выходного светового потока.Аналогичным образом Американский национальный институт стандартов (ANSI) публикует рекомендуемые характеристики входной мощности для всех ламп типа ANSI. Балласты предназначены для оптимальной работы ламп уникального типа; однако некоторые пускорегулирующие устройства могут адекватно работать с несколькими типами ламп. В этих случаях оптимальные характеристики лампы обычно не достигаются при всех условиях. Менее чем оптимальные условия могут повлиять на пусковые характеристики лампы, светоотдачу и срок службы.

    Тип цепи и режим работы

    Люминесцентные балласты производятся для трех основных типов люминесцентных ламп: предварительного нагрева, быстрого запуска и мгновенного запуска.

    Операция предварительного нагрева Электроды лампы нагреваются до начала разряда. «Выключатель стартера» замыкается, позволяя току течь через каждый электрод. Выключатель стартера быстро охлаждается, размыкая выключатель и вызывая напряжение питания на дуговой трубке, вызывая разряд. Во время работы на электроды не подается вспомогательное питание.

    Операция быстрого запуска Электроды лампы нагреваются до и во время работы.Балластные трансформаторы имеют две специальные вторичные обмотки для подачи на электроды надлежащего низкого напряжения.

    Операция с мгновенным запуском Электроды лампы не нагреваются перед работой. Балласты для ламп мгновенного пуска предназначены для обеспечения относительно высокого пускового напряжения (по сравнению с лампами предварительного нагрева и быстрого пуска) для инициирования разряда на ненагретых электродах.

    Быстрый запуск — самый популярный режим работы для 4-футовых 40-ваттных ламп и 8-футовых ламп высокой мощности.Преимущества быстрого запуска включают плавный запуск, длительный срок службы и возможность регулирования яркости. Лампы мощностью менее 30 Вт обычно работают в режиме предварительного нагрева. Лампы, работающие в этом режиме, более эффективны, чем режим быстрого запуска, поскольку для постоянного нагрева электродов не требуется отдельная мощность. Однако эти лампы имеют тенденцию мерцать при запуске и имеют более короткий срок службы. Восьмифутовые «тонкие» лампы работают в режиме мгновенного пуска. Мгновенный запуск более эффективен, чем быстрый запуск, но, как и в режиме предварительного нагрева, срок службы лампы короче.Лампа F32T8 высотой 4 фута 32 Вт — это лампа для быстрого пуска, обычно работающая в режиме мгновенного пуска с электронными высокочастотными балластами. В этом режиме работы эффективность лампы повышается с некоторым сокращением срока службы лампы.

    Энергоэффективность

    Люминесцентные лампы достаточно эффективны при преобразовании входной мощности в свет. Тем не менее, большая часть энергии, подаваемой в систему балласта люминесцентных ламп, производит ненужную тепловую энергию.

    Есть три основных средства повышения эффективности системы балластных люминесцентных ламп:

    • Уменьшить балластные потери
    • Включите лампу (лампы) на высокой частоте
    • Снижение потерь на электроды лампы


    В новых, более энергоэффективных балластах, как магнитных, так и электронных, используется один или несколько из этих методов для повышения эффективности системы балласта лампы, измеряемой в люменах на ватт.Потери в магнитных балластах были уменьшены за счет замены алюминиевых проводов на медные и за счет использования магнитных компонентов более высокого качества. Потери балласта также могут быть уменьшены за счет использования одного балласта для управления тремя или четырьмя лампами вместо одной или двух. Тщательная схемотехника увеличивает эффективность электронных балластов. Кроме того, электронные балласты, которые преобразуют частоту источника питания 60 Гц в высокую частоту, работают с люминесцентными лампами более эффективно, чем это возможно при 60 Гц. Наконец, в схемах быстрого запуска некоторые магнитные балласты повышают эффективность за счет отключения питания электродов лампы после запуска.

    Балластный фактор

    Одним из наиболее важных параметров балласта для проектировщика / инженера по свету является коэффициент балласта. Балластный коэффициент необходим для определения светоотдачи конкретной балластной системы лампы. Фактор балласта — это мера фактического светового потока для конкретной системы балласта лампы по сравнению с номинальным световым потоком, измеренным с эталонным балластом в условиях испытаний ANSI (на открытом воздухе при 25 ° C [77 ° F]). Для балласта ANSI для стандартных 40-ваттных ламп F40T12 требуется балластный коэффициент равный 0.95; такой же балласт имеет балластный коэффициент 0,87 для 34-ваттных энергосберегающих ламп Ф40Т12. Однако многие балласты доступны как с высоким (в соответствии со спецификациями ANSI), так и с низким балластным коэффициентом (от 70 до 75%). Важно отметить, что значение балластного фактора является характеристикой не просто балласта, а балластной системы лампы. Балласты, которые могут работать с несколькими типами ламп (например, балластный блок F40 мощностью 40 Вт может работать с лампами F40T12 мощностью 40 Вт, F40T12 на 34 Вт или F40T10 мощностью 40 Вт), как правило, будут иметь разный балластный коэффициент для каждой комбинации ( е.g., 95%, <95% и> 95% соответственно).

    Балластный фактор не является показателем энергоэффективности. Хотя более низкий балластный коэффициент уменьшает световой поток лампы, она также потребляет пропорционально меньшую входную мощность. Таким образом, тщательный выбор системы балласта лампы с определенным балластным коэффициентом позволяет дизайнерам лучше минимизировать потребление энергии, «настраивая» уровни освещения в помещении. Например, в новом строительстве, как правило, лучше всего использовать высокий балластный коэффициент, поскольку для удовлетворения требований к уровню освещенности потребуется меньше светильников.При модернизации или в областях с менее важными визуальными задачами, таких как проходы и коридоры, балласты с более низким балластным фактором могут быть более подходящими.

    Чтобы избежать резкого сокращения срока службы лампы, балласты с низким балластным коэффициентом (<70%) должны работать с лампами только в режиме быстрого запуска. Это особенно актуально для 32-ваттных ламп F32T8, работающих на высокой частоте.

    Найти балластный коэффициент для комбинаций лампы и балласта может быть непросто, так как немногие производители балластов предоставляют эту информацию в своих каталогах.Однако, если входная мощность для конкретной системы балласта лампы известна (обычно ее можно найти в каталогах), можно оценить балластный коэффициент.

    Мерцание

    Электромагнитные балласты предназначены для согласования входного напряжения 60 Гц с электрическими требованиями ламп. Магнитный балласт изменяет напряжение, но не частоту. Таким образом, напряжение лампы пересекает ноль 120 раз в секунду, что приводит к колебаниям светоотдачи 120 Гц. Это приводит к мерцанию около 30% для стандартных галофосфорных ламп, работающих при 60 Гц.Мерцание обычно незаметно, но есть свидетельства того, что мерцание такой силы может вызывать побочные эффекты, такие как напряжение глаз и головная боль.

    Большинство электронных балластов, с другой стороны, работают на высоких частотах, что снижает мерцание лампы до практически незаметного уровня. Процент мерцания конкретного балласта обычно указывается производителем. Для данного балласта процент мерцания будет функцией типа лампы и состава люминофора.

    Слышимый шум

    Одной из характеристик электромагнитных балластов с железным сердечником, работающих на частоте 60 Гц, является создание слышимого шума.Шум может увеличиваться при высоких температурах, и он усиливается некоторыми конструкциями светильников. В лучших балластах используются высококачественные материалы и обработка для снижения шума. Уровень шума оценивается A, B, C или D в порядке убывания предпочтения. Балласт с рейтингом «А» будет тихо гудеть; балласт с рейтингом «D» будет издавать громкое жужжание. Количество балластов, их уровень шума и характер окружающего шума в комнате определяют, будет ли система создавать звуковые помехи.

    Практически все энергоэффективные магнитные балласты для ламп F40T12 и F32T8 имеют рейтинг «А», за некоторыми исключениями, такими как низкотемпературные балласты.Тем не менее, шум магнитных балластов может быть заметен в особенно тихой среде, например в библиотеке. С другой стороны, хорошо спроектированные электронные балласты высокой частоты не должны издавать заметного гудения. Все электронные балласты имеют рейтинг «А» по ​​звуку.

    Затемнение

    В отличие от ламп накаливания, люминесцентные лампы не могут быть должным образом затемнены с помощью простого настенного устройства, такого как те, которые используются для ламп накаливания. Чтобы люминесцентная лампа могла регулировать яркость во всем диапазоне без сокращения срока службы лампы, необходимо поддерживать напряжение нагревателя ее электрода, в то время как ток дуги лампы снижается.Таким образом, лампы, работающие в режиме быстрого запуска, являются единственными люминесцентными лампами, подходящими для широкого диапазона диммирования. Мощность, необходимая для поддержания постоянного напряжения на электродах во всех условиях диммирования, означает, что диммирующие балласты будут менее эффективными при работе ламп на пониженных уровнях.

    Диммирующие балласты доступны как в магнитной, так и в электронной версиях, но использование электронных диммирующих балластов дает явные преимущества. Для регулирования яркости ламп магнитным пускорегулирующим устройствам требуется ПРА, содержащее дорогостоящие коммутационные устройства большой мощности, которые регулируют входную мощность, подаваемую на пускорегулирующие устройства.Это экономически целесообразно только при управлении большим количеством балластов в одной ответвленной цепи. Кроме того, светильники должны управляться в больших зонах, которые определяются схемой системы распределения электроэнергии. Поскольку система распределения фиксируется на ранних этапах процесса проектирования, системы управления, использующие балласты с магнитным регулированием яркости, негибкие и неспособны приспосабливаться к изменениям в схемах использования.

    Диммирование ламп с электронным балластом, с другой стороны, осуществляется внутри самого балласта.Электронные балласты изменяют выходную мощность ламп с помощью сигнала низкого напряжения в выходной цепи. Переключающие устройства большой мощности для кондиционирования входной мощности не требуются. Это позволяет управлять одним или несколькими балластами независимо от системы распределения электроэнергии. В системах электронного балласта с регулируемой яркостью можно использовать низковольтную сеть управления для группирования балластов в зоны управления произвольного размера. Эта сеть управления может быть добавлена ​​во время ремонта здания или даже, в некоторых случаях, во время модернизации освещения.Низковольтную проводку не нужно прокладывать в кабелепроводе, что помогает снизить затраты на установку. Кроме того, менее затратно изменить размер и протяженность зон освещения путем перенастройки низковольтной проводки при изменении схемы использования. Низковольтная проводка также совместима с фотоэлементами, датчиками присутствия и входами системы управления энергопотреблением (EMS).

    Диапазон диммирования балластов сильно различается. С большинством электронных диммирующих балластов уровни освещенности могут варьироваться от полной мощности до минимум примерно 10% от полной мощности.Однако также доступны электронные балласты с регулировкой яркости с полным диапазоном, которые управляют лампами с световым потоком до 1% от полного светового потока. Балласты с магнитным диммированием также предлагают множество вариантов диммирования, включая диммирование во всем диапазоне.

    Адаптировано из Advanced Lighting Guidelines: 1993 (второе издание), первоначально опубликованного Комиссией по энергетике Калифорнии.

    Дополнительные световоды

    Полное руководство по балластам для люминесцентных ламп

    Люминесцентная лампа использует электричество, чтобы ртуть испускала ультрафиолетовый (УФ) свет.Когда этот ультрафиолетовый свет (который невидим невооруженным глазом) взаимодействует с покрытием из порошка люминофора внутри трубки, он светится и излучает свет, который мы видим и используем в наших домах.

    Но всякий раз, когда мы используем электричество, мы должны контролировать его, иначе мы рискуем разрушить устройство и даже подвергнуть себя опасности. Чтобы регулировать ток, протекающий через люминесцентные лампы, мы используем так называемый балласт.

    Что такое балласт в люминесцентном свете?

    Балласт (иногда называемый пускорегулирующим аппаратом) — это небольшое устройство, подключенное к электрической цепи светильника, которое ограничивает количество электрического тока, проходящего через него.

    Поскольку напряжение в электросети вашего дома выше, чем требуется для работы фонаря, балласт дает свету небольшое повышение напряжения для включения, а затем достаточное количество питания для безопасной работы.

    Зачем нужны балласты?

    Процесс, происходящий внутри флуоресцентного света, включает в себя молекулы газообразной ртути, нагретые электричеством и делающие их более проводящими. Без балласта, чтобы контролировать это, свет будет пропускать слишком большой ток, и он перегорит и, возможно, даже загорится.

    Как работает балласт люминесцентного света?

    В люминесцентных лампах используется электронный или магнитный балласт. В настоящее время магнитные балласты — это довольно устаревшая технология, от которой производители отказываются, и поэтому они обычно используются только в старых типах фонарей.

    Магнитные балласты

    Они основаны на принципах электромагнетизма: когда электрический ток проходит по проводу, он естественным образом создает вокруг себя магнитную силу.

    Магнитный балласт (также называемый дросселем) содержит катушку из медной проволоки. Магнитное поле, создаваемое проволокой, улавливает большую часть тока, поэтому флуоресцентный свет проникает только в нужном количестве. Это количество может колебаться в зависимости от толщины и длины медного провода. Если вы иногда слышите легкое жужжание или видите, как оно мерцает, причиной этого является изменение тока.

    Менее совершенная по конструкции, чем электронные модели, некоторые магнитные балласты не могут работать без стартера.Этот небольшой цилиндрический компонент находится за осветительной арматурой и заполнен газом, который при нагревании позволяет свету включиться. Это называется методом предварительного нагрева.

    Метод предварительного нагрева
    1. Включен выключатель света. Внутри обоих концов светильника находятся металлические электроды с прикрепленными нитями. Ток входит в нити, но на данный момент слишком слаб, чтобы зажечь свет, хотя его достаточно, чтобы нагреть газ (неон или аргон) внутри стартера.
    2. Нагретый газ заставляет компоненты внутри стартера пропускать полный ток в нити.Это быстро нагревает газообразную ртуть внутри светильника.
    3. По мере того, как стартер остывает, он блокирует путь тока к нитям нити и заставляет его искать другой путь. Если газообразная ртуть нагревается в достаточной степени, она проводит ток, генерирует свет и затем продолжает гореть. Если он недостаточно горячий, электричество вернется через стартер и снова запустит процесс. Это то, что вызывает мерцание некоторых старых люминесцентных ламп.
    4. Теперь поступает больше электричества, балласт начинает выполнять свою работу по его регулированию.

    Поскольку для завершения этого процесса может потребоваться несколько секунд, вы можете увидеть задержку между моментом, когда вы щелкнете переключателем, и тем, когда флуоресцентный свет начнет светиться.

    Метод быстрого запуска

    Если в вашем осветительном приборе есть две или более люминесцентных лампы, скорее всего, он будет использовать другой метод, известный как быстрый запуск. Этот метод используется в старых пробирках T12 и некоторых T8 и работает без стартера.

    1. В отличие от предварительного нагрева, когда нити получают ток через стартер только для нагрева газообразной ртути, при быстром запуске балласт поддерживает небольшое количество тока, непрерывно протекающего через нити.
    2. Это вызывает ионизацию газообразной ртути, то есть заряд, позволяющий ей проводить электричество.
    3. Поскольку это всего лишь слабый ток, сначала свет будет тускло светиться. Но по мере того, как балласт продолжает проталкивать ток через нити, газ становится все горячее и заряженным, и в результате свет становится ярче. Если ваш фонарь загорается сразу, но для полного его яркости требуется несколько секунд, значит, у него есть пусковой балласт для быстрого запуска.

    Одним из преимуществ метода быстрого пуска является то, что, обеспечивая низкий постоянный ток, а не сильный скачок, он продлевает срок службы люминесцентного света.Однако он потребляет больше энергии.

    Электронные балласты

    Используя более сложные схемы и компоненты, балласты могут управлять током, протекающим через люминесцентные лампы, с большей точностью. По сравнению со своими магнитными аналогами они меньше, легче, эффективнее и — благодаря подаче питания на гораздо более высокой частоте — с меньшей вероятностью будут вызывать мерцание или жужжание.

    Некоторые старые электронные балласты используют метод быстрого запуска, описанный выше, в то время как новые и более совершенные модели используют то, что известно как мгновенный запуск и запрограммированный запуск.

    Метод мгновенного запуска

    Эти балласты были разработаны таким образом, чтобы свет можно было включать и работать с максимальной яркостью при первом нажатии переключателя. Вместо предварительного нагрева электродов в балласте используется повышенное высокое напряжение (около 600 вольт) для нагрева и зажигания нитей, а затем ртутного газа. Хотя это делает их энергоэффективными, это также сокращает их жизнь, поскольку скачок напряжения каждый раз, когда они включаются, со временем повреждает их. По этой причине они обычно используются в помещениях, где свет остается включенным на длительное время, например, в офисах, магазинах и на складах.

    Метод запрограммированного запуска

    Эти балласты, разработанные для областей, в которых освещение постоянно включается и выключается, предварительно нагревают электроды контролируемым током перед подачей более высокого напряжения для включения света. Часто это функция освещения, которая активируется датчиками обнаружения движения (например, в туалетах на рабочих местах или в общественных местах) и позволяет люминесцентному свету работать в течение длительного времени.

    Признаки выхода из строя магнитного балласта

    Когда ломаются магнитные балласты, в этом часто винят лампочку.Обратите внимание на знаки, указывающие на то, что это ваш балласт:

    • Отложенный старт
    • Жужжание
    • Мерцание
    • Низкая мощность
    • Несогласованные уровни освещения

    Вы можете узнать, связана ли проблема с балластом, стартером или лампой, с помощью нашего руководства — Простые решения для медленного запуска, мерцания или неисправных люминесцентных ламп.

    Проверка балласта мультиметром / вольт-омметром

    Чтобы убедиться, что проблема связана с балластом, вам нужно проверить его с помощью мультиметра.Мультиметр предназначен для измерения электрического тока, напряжения и сопротивления. Они недорогие, и их можно найти в большинстве магазинов электроники.

    Эти инструкции предназначены только для ознакомления — убедитесь, что вы ссылаетесь на электрические схемы производителя. Если вам не хватает инструкции по эксплуатации, большинство крупных производителей разместят опи на своих сайтах.

    Для проверки вашего балласта:

    Вам понадобится

    Как к

    1. Отключить питание светильника
    2. Снять кожух света
    3. Снимите лампочки
    4. Снимите балласт с приспособления
    5. Если балласт выглядит сгоревшим, его однозначно нужно заменить
    6. Установите мультиметр на значение сопротивления
    7. Вставьте первый щуп мультиметра в провод, соединяющий красные провода вместе
    8. Коснитесь вторым щупом зеленого и желтого проводов
    • Если мультиметр не двигается, значит, балласт мертв
    • Если мультиметр все еще работает, стрелка мультиметра должна переместиться вправо

    Если проблема не в балласте, возможно, вам потребуется заменить люминесцентную лампу.Вы можете узнать, как это сделать безопасно, из Руководства по безопасной замене и переработке люминесцентных трубок.

    Могу ли я сам заменить балласт?

    Да, если у вас есть немного технических ноу-хау, хотя, если вы не уверены, лучше всего попросить электрика сделать это за вас, так как это может быть сложная работа. Более дешевые балласты, вероятно, потребуют большего количества переустановок, чем фитинг с фирменным балластом. Стоит потратить немного больше, чтобы сэкономить деньги и силы в будущем.

    Фирменные балласты могут служить долго, поэтому, если вы их замените, вам, вероятно, не придется менять его снова в течение 10 или более лет.

    Замена магнитных балластов на электронные

    Процесс замены магнитных балластов на электронные балласты довольно прост и понятен. Это направление, в котором движется индустрия освещения, так почему бы не поменять их раньше, чем позже, чтобы оптимизировать свое пространство с помощью лучшего и более тихого освещения?

    Вам понадобится:

    • Электронный балласт
    • Кусачки
    • Проволочные гайки

    Как к

    1. Отключить питание прибора
    2. Откройте приспособление и снимите лампу и корпус балласта
    3. Используя кусачки, перережьте оба провода питания (коричневый) и нейтральный (синий), входящие в приспособление
    4. Закройте провода проволочными гайками.
    5. Используйте кусачки, чтобы отрезать провода, подключенные к розеткам.
    6. Снимите магнитный балласт
    7. Вкрутите электронный балласт в крепление, там же, где был магнитный
    8. Используйте гайки для соединения проводов розетки.
    9. Подключите силовой и нейтральный провода к соответствующим проводам балласта
    10. Закрепите провода проволочными гайками.
    11. Установить лампу и корпус балласта назад
    12. Снова включите питание.

    При замене балласта существует риск поражения электрическим током, поэтому, если вы не уверены, попросите электрика сделать эту работу за вас.

    Нужен ли моей люминесцентной лампе как пускатель, так и балласт?

    Отдельные стартеры встречаются только в более старых механизмах управления, поэтому, если приспособлению меньше 15 лет, у него, вероятно, не будет стартера. В более новых лампах процесс, обеспечиваемый стартером, встроен, что делает функцию отдельного стартера избыточной. Если в светильнике есть стартер, это будет очевидно.Вы должны найти маленький серый цилиндр, подключенный к осветительной арматуре.

    В чем разница между пусковым переключателем и высокочастотным механизмом управления?

    Высокая частота

    Высокочастотный пускорегулирующий аппарат — это современный одиночный балласт, который выполняет функции всех различных компонентов в стандартной пусковой цепи переключателя. Лампы, работающие с высокочастотным балластом, не мерцают, а вместо этого загораются мгновенно из-за того, что частота намного выше.

    Переключить пуск

    Switch start — это устройство управления, которое используется в промышленности в течение многих лет.Обычно они считаются устаревшими технологиями, и их создают все меньше производителей. Для запуска выключателя требуется дроссель балласта с проволочной обмоткой. Для запуска переключателя можно заменять различные части, а не весь блок, что можно рассматривать как преимущество.

    .

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *