Site Loader

Содержание

Зарядное устройство из блока питания компьютера с регулировкой тока

Многие люди, приобретая новую компьютерную технику, выкидывают на помойку свой старый системный блок. Это довольно недальновидно, ведь в нем могут находиться еще работоспособные комплектующие, которые можно использовать для других целей. В частности, речь идет о блоке питания компьютера, из которого можно сделать зарядное устройство для АКБ автомобиля.

Стоит отметить, что затраты на изготовление своими руками минимальны, что позволяет существенно сэкономить свои денежные средства.

Зарядка из БП компьютера

Блок питания компьютера представляет собой импульсный преобразователь напряжения, соответственно +5, +12, -12, -5 В. Путем определенных манипуляций, можно из такого БП сделать своими руками вполне рабочее зарядное устройство для своего автомобиля. Вообще, зарядки бывают двух типов:

Зарядные устройства со множеством опций (пуск двигателя, тренировка, подзарядка и т.

д.).

Устройство для подзарядки АКБ — подобные зарядки нужны для автомобилей, у которых небольшой километраж между пробегами.

Нас интересует именно второй тип зарядных устройств, потому что большинство транспортных средств эксплуатируются короткими пробегами, т.е. автомобиль завели, проехали определенное расстояние, а затем заглушили. Подобная эксплуатация приводит к тому, что у аккумуляторной батареи автомобиля довольно быстро заканчивается заряд, что особенно характерно для зимнего времени. Поэтому и оказываются востребованными подобные стационарные агрегаты, с помощью которых можно очень оперативно зарядить АКБ, вернув его в рабочее состояние. Сама зарядка осуществляется при помощи тока порядка 5 Ампер, а напряжение на клеммах колеблется от 14 до 14,3 В. Мощность зарядки, которая рассчитывается путем умножения значений напряжения и тока, может быть обеспечена из блока питания компьютера, ведь средняя мощность его составляет порядка 300-350 Вт.

Переделка компьютерного БП в зарядное устройство

Процесс переделки

Прежде чем приступать к перечню определенных переделок БМ компьютера, нужно иметь в виду, что в его первичных цепях находится довольно
опасное напряжение, которое может нанести вред
здоровью человека.

Поэтому, нужно внимательным образом отнестись к элементарным нормам техники безопасности в работе с данным устройством.

Итак, можно приступать к работе. Берем имеющийся у вас блок питания необходимой мощности (в нашем случае мы рассматривает модель PSC200, мощность которого составляет 200 Вт). Опишем поэтапно весь алгоритм действий:

  • Сначала нужно снять крышку с блока питания компьютера, открутив несколько болтов. Далее нужно найти сердечник импульсного трансформатора.
  • Далее нужно измерить этот сердечник, а полученное значение умножить на два. Данное значение индивидуально, на примере рассматриваемого устройства получилось значение 0,94 см
    2
    . На практике известно, что 1 см2 сердечника способен рассеять порядка 100 Вт мощности, т.е. наш блок вполне подходит (из расчета — 14 В * 5 А = 60 Вт необходимо для зарядки АКБ).
  • В блоках питания используется довольно стандартная микросхема TL494, характерная для многих моделей.

Нам нужны только элементы цепи +12 В. Поэтому все остальное нужно просто выпаять. Для удобства приведены две схемы — на одном общий вид микросхемы, а на втором красным цветом выделены цепи, которые необходимо выпаять:

Иными словами, нас не интересуют цепи -5, +5, -12 В, а также схема сигнала запуска (Power Good) и переключатель напряжения 110/220 В. Чтобы было еще нагляднее, выделим интересующий нас кусок:

R43 и R44 являются резисторами опорного типа. Величину R43 можно корректировать, что позволяет добиться изменения величины выходного напряжения на цепи +12 В. Данный резистор нужно заменить на постоянный резистор R431 и переменный R432. Выходное напряжение можно корректировать в пределах 10-14,3 В, можно корректировать силу тока, проходящего через аккумуляторную батарею.

Дополнительно предлагаем посмотреть переделку ATX блока питания в зарядное устройство

Также был заменен конденсатор, находящийся на выходе выпрямителя цепи +12 В. На его место был установлен конденсатор с более высоким показателем напряжения (в нашем случае использовался C9).

Резистор, находящийся рядом с вентилятором обдува, необходимо заменить на аналогичный, но обладающий чуть большим сопротивлением.

Сам вентилятор нужно расположить таким образом, чтобы воздух от него поступал внутрь БП, а не наружу, как это было ранее. Для этого, разворачиваем его на 180 градусов.

Также необходимо удалить дорожки, которые соединяют отверстия крепления платы к шасси и цепи массы.

Стоит отметить, что получившееся зарядное устройство из блока питания нужно включать в сеть переменного тока через обыкновенную лампу накаливания мощностью от 40 до 100 Вт.

Это нужно делать на этапе сборки и проверки работоспособности, потом необходимость в этом отпадает. Нужно это для того, чтобы в нашем БП ничего не перегорело от скачков напряжения.

Осуществляя подбор номиналов R431 и R432, необходимо отслеживать напряжение в цепи Uпит — оно не должно превышать 35 В. Оптимальными показателями, в нашем случае, будет выходное напряжение в 14,3 В при незначительном сопротивлении резистора R432.

Еще один вариант переделки

Некоторые нюансы

Проверив в работе наше зарядное устройство из блока питания, сделанное своими руками, можно немного дополнить его некоторыми полезными мелочами.

Чтобы видеть уровень зарядки наглядно, можно установить в данное зарядное устройство индикаторы стрелочного типа, либо цифровые. В нашем случае, были использованы два приборчика со стрелками от старых магнитофонов. Первый будет показывать уровень зарядного тока, а второй — показатель напряжения на клеммах аккумуляторной батареи.

В принципе, на этом процесс сборки завершен. Некоторые умельцы дополняют его прочими украшениями (светодиодные индикаторы, дополнительный корпус с ручками и т.д.), но это совсем необязательно, ведь главная цель данного устройства — заряжать АКБ автомобиля, с чем он успешно и справляется.

Целесообразность изготовления своими руками зарядки из блока питания компьютера вряд ли можно подвергнуть сомнению, ведь денежные затраты, в данном случае, практически отсутствуют.

Единственный нюанс заключается в том, что самостоятельная сборка из БП доступна далеко не каждому, ведь надо неплохо разбираться в электронике, чтобы грамотно и последовательно выполнить всю сборку.

ЗАРЯДНОЕ ИЗ БЛОКА ПИТАНИЯ КОМПЬЮТЕРА


    Схема простой переделки блока питания ATX, для возможности использовать его как зарядное устройство автоаккумулятора. После переделки получится мощный блок питания с регулировкой напряжения в пределах 0–22 В и тока 0–10 А. Нам понадобится обычный компьютерный БП ATX сделанный на микросхеме TL494. Для пуска никуда не подключенного БП типа АТХ необходимо на секунду закоротить зеленый и черный провода.

   Выпаиваем из него всю выпрямительную часть и всё, что соединено с ножками 1, 2 и 3 микросхемы TL494. Кроме того, нужно отсоединить от схемы ножки 15 и 16 – это второй усилитель ошибки, который мы используем для канала стабилизации тока. Также нужно выпаять цепь питания, соединяющую выходную обмотку силового трансформатора от + питания TL494 , она будет питаться только от маленького «дежурного» преобразователя, чтобы не зависеть от выходного напряжения БП (у него есть выходы 5 В и 12 В). Дежурку лучше немного перенастроить подобрав делитель напряжения в обратной связи и получив напряжения 20 В для питания ШИМ и 9 В для питания измерительно-регулировочной схемы. Приводим принципиальную схему доработки:

   Выпрямительные диоды соединяем с 12-вольтовыми отводами вторичной обмотки силового трансформатора. Лучше поставить диоды помощнее, чем те, которые обычно стоят в 12-вольтовой цепи. Дроссель L1 делаем из кольца от фильтра групповой стабилизации. Они разные по типоразмеру в некоторых БП поэтому намотка может отличатся. У меня получилось12 витков проводом диаметра 2 мм. Дроссель L2 берём из цепи 12 Вольт. На микросхеме ОУ LM358 (LM2904, или любой другой сдвоенный низковольтный операционник, который может работать в однополярном включении и при входных напряжениях почти от 0 В) собран измерительный усилитель выходного напряжения и тока, который будет давать сигналы управления на ШИМ TL494. Резисторы VR1 и VR2 задают опорные напряжения. Переменный резистор VR1 регулирует выходное напряжение, VR2 – ток. Токоизмерительный резистор R7 на 0.05 ом. Питание для ОУ берём с выхода «дежурных» 9В БП компьютера. Нагрузка подключается к OUT+ и OUT-. В качестве вольтметра и амперметра можно использовать стрелочные приборы. Если регулировка тока в какой-то момент не нужна, то VR2 просто выкручиваем на максимум. Работа стабилизатора в БП будет так: если, например, установлено 12 В 1 А, то если ток нагрузки меньше 1 А – стабилизируется напряжение, если больше – то ток. В принципе, можно перемотать и выходной силовой трансформатор, выкинутся лишние обмотки и можно уложить более мощную. При этом также рекомендую и выходные транзисторы поставить на больший ток.

   На выходе нагрузочный резистор где-то на 250 ом 2 Вт параллельно C5. Он нужен чтобы блок питания без нагрузки не оставался. Ток через него не учитывается, он до измерительного резистора R7 (шунта) включён. Теоретически можно получить до 25 вольт при токе в 10 А. Заряжать устройством можно как обычные 12 В аккумуляторы от автомобиля, так и небольшие свинцовые, что стоят в ИБП.


Поделитесь полезными схемами

АВТОМОБИЛЬНЫЙ ИОНИЗАТОР

    Ионизатор -приспособление, которое предназначено для очистки и повышения качества окружающего нас воздуха. Если у вас есть дети, то ионизатор — необходим вам и вашей семье, поскольку организм детей особо чувствителен к микробам, которые могут поступить в организм из воздуха.


САМОДЕЛЬНАЯ ПУШКА ГАУССА
   При указанных номиналах схема развивает совсем недурную мощность в 50 ватт! емкость 1000 микрофарад способна заряжать всего за одну секунду. Мощность преобразователя вполне позволяет питать маломощные паяльники, лампы накаливания и т.п

ИНДИКАТОР ЗАГРУЗКИ ПРОЦЕССОРА

   Электрическая схема светодиодного индикатора загрузки процессора персонального компьютера. Используется контроллер AtMega88.


ПАЯЛЬНИК ИЗ РЕЗИСТОРА

   Как сделать паяльник для маленьких деталей на основе резистора. Как известно, пайку миниатюрных радиодеталей удобнее осуществлять малогабаритным, — размером с авторучку, паяльником. Он должен быть низковольтным и гальванически изолирован от сети. 


КАК СДЕЛАТЬ МАШИНКУ ДЛЯ ТАТУИРОВОК

   Делаем машинку для татуировки своими руками. Само понятие наколки было сформулировано еще в 20- x годов 20 века. На сей день люди накаливают на своем теле все что угодно и платят за ниx большие деньги, но не многие знают, что сама татуировка родилась в зонаx еще 100 лет назад. И сегодня мы будем рассматривать устройство которое позволит делать татуировки профессиональным образом.


Зарядное устройство из компьютерного БП ATX с защитой от переполюсовки и КЗ.

  1. Домой
  2. Статьи
  3. Другие темы
  4. Зарядное устройство из компьютерного БП ATX с защитой от переполюсовки и КЗ.

Пожалуй каждый автолюбитель рано или поздно сталкивается с необходимостью подзарядить аккумулятор своего «коня». Я много раз находил информацию, что из компьютерного блока питания можно сделать хорошую зарядку для аккумуляторов, но всегда отбрасывал эту информацию так как на переделку просто не было достаточно свободного времени и у меня была простейшая зарядка внутри которой был трансформатор, диод и амперметр 🙂 Заряжать аккумуляторы при необходимости я мог, но вот качество этой зарядки оставляло желать лучшего.

И вот, когда появилось свободное время, я начал процесс изготовления (переделки) блока питания компьютера в зарядное устройство для автомобильных свинцово-кислотных аккумуляторных батарей 62 А.Ч. Потратив несколько часов на поиски в интернете был найден ненужный, ещё рабочий блок питания (Codegen 250W) и инструкция со схемой по переделке. Сразу скажу, что суммарно процесс переделки у меня занял около двух-трёх недель, так как взятая изначально схема дорабатывалась, просчитывалась, переделывалась и настраивалась. При этом за две-три недели перечитал кучу инструкций, статей, схем по принципам работы блоков питания, работе ШИМ контроллеров, назначению ДГС и ещё тонны полезнейшей информации для общего развития. Многие элементы схемы пришлось рассчитывать самому дабы получить именно то, что мне было необходимо.

За основу была взята схема описанная в статье «Компьютерный блок питания — зарядное устройство». Согласно инструкции для переделки подойдет практически любой компьютерный блок питания, имеющий в своей основе генератор на микросхеме  TL494 (ее аналоги —  КА7500 и отечественная КР1114ЕУ4).

Начальная схема переделки выглядела так:

Нажмите для увеличения изображения

Блок питания решено было взять Codegen 250W 250X1, вот такой:

Нажмите для увеличения изображения

Внутри он выглядел вот так, схема построена на необходимом мне ШИМ контроллере  KA7500B:

Нажмите для увеличения изображения

Была найдена принципиальная схема блока питания Codegen 250W 250X1:

Нажмите для увеличения изображения

Огромное количество схем к компьютерным блокам питания АТХ/АТ и блокам питания к ноутбукам можно найти в моём сборнике схем к компьютерным блокам питания. В сборнике есть и данная схема.

Для начала выпаиваем с платы БП всё лишнее и заменяем некоторые детали: схемы защиты и контроля напряжений выпаиваем, конденсаторы ставим с большим напряжением, линию +3.3v выпаиваем полностью, линию -5v тоже выпаиваем. Оставляем схему управления оборотами вентилятора и для неё линию -12v на которой заменяем конденсатор на аналогичный с большим напряжением.

Для чего необходимо менять конденсаторы на аналогичные с большим напряжением? Отвечаю. Мы будем поднимать напряжение на линии +12v до +14.4v (а в процессе настройки и более), а вместе с линией +12v вырастут напряжения и на линиях +5v (примерно до +6v) и -12v (примерно до -14,4v). Стоит ещё учесть, что мы оставим стабилизацию только по линии +12v и в моменты большой нагрузки, когда ток будет около 5-6 ампер, то напряжения на остальных линиях могут ещё возрасти. Так что лучше поставить конденсаторы с более высоким запасом по напряжению на все линии.

На принципиальной схеме изменения показаны красным цветом:

Нажмите для увеличения изображения

Так как мне необходим максимальный ток зарядки в 5-6 ампер, то резистор R11 я установлю не 0,2 Ом, а 0,1 Ом. Но если установить его один, то он будет сильно греться, поэтому я установил параллельно три резистора 0,3 Ом 5 Ватт, общее сопротивление получилось 0,1 Ом и они практически не нагреваются даже при токах в 10 ампер.

Резистор R9 отвечает за уровень напряжения на линии +12v. Делитель напряжения R9/R3 делает напряжение на ноге 1 микросхемы равным 2.5 вольт. ШИМ контроллер будут стремиться выдать на выходе линии +12v такое напряжение, чтобы на ноге 1 было 2.5 вольта и оно сравнялось с опорным напряжением на ноге 2 (тоже 2.5 вольта), которое получается на делителе R1/R2.

Взяв калькулятор я посчитал, что для 12 вольт на выходе зарядного устройства, R9 должен быть 11,4 КОм, а для 14,4 вольт — 14,28 КОм. В результате я решил установить один постоянный резистор на 10 КОм (обозначен как R9) и один переменный на 10КОм (обозначен как R9+), тем самым я смогу точно подстроить нужное напряжение на выходе. Изначально я установил R9+ на 1,4 КОм чтобы получить 12 вольт на выходе. Вдальнейшем я подстройкой резистора увеличу напряжение до необходимого уровня, но это уже будет на этапе тестирования готового изделия.

Для защиты от переполюсовки я изначально отказался от использования реле. Хотелось всё сделать без реле, чтобы срабатывание и сброс защиты происходил автоматически. За основу была взята схема описанная в статье «Защита от переполюсовки зарядного устройства». Защита построена на полевом транзисторе  IRFZ44N (можно использовать аналоги на напряжение от 30 вольт и ток от 40 ампер, например  40N03P или лучше  40N06).

Внимание! Ни в коем случае не устанавливайте в схему полевые транзисторы на напряжение менее 30 вольт! Дело в том, что при подключении аккумулятора обратной полярностью, на полевике будет сумма напряжений от зарядки (14.4v) и от самого аккумулятора (от 12 до 15 вольт), что в сумме будет 14.4 + 12(максимум 15) = около 28-30 вольт. Так что рекомендую устанавливать полевик более чем на 30 вольт.

Нажмите для увеличения изображения

В качестве шунта решено было использовать встроенный шунт в китайский LED измеритель напряжения и тока, 100V 10A. Вот такой:

Нажмите для увеличения изображения

Такой индикатор-измеритель можно купить в китайском интернет магазине всего за пару долларов, оплата с банковской карты, доставка посылки через обычную почту за 3-4 недели. Я заказал себе сразу несколько, чтобы они у меня были в запасе, такие индикаторы будут полезны не только в зарядке.

Изучив схему подключения этого измерителя приходим к выводу, что должен подойти и в качестве шунта и в качестве измерителя напряжения и тока. Смотрим схему подключения:

Нажмите для увеличения изображения

А вот и принципиальная схема измерителя:

Нажмите для увеличения изображения

Как можно видеть, подключить его в нашу схему защиты не составит труда. Питание берём из нашей же линии, внутри измерителя стоит собственный стабилизатор на 3 вольта для работы измерителя. Кстати, опытным путём я определил (уже на рабочем устройстве), что сопротивление шунта RX в этом измерителе где-то 0,04 Ома. А суммарное сопротивление шунта и транзисторного перехода полевика — 0,04+0,017=0,057 Ом. Этого будет немного многовато, и защита может срабатывать при меньшем токе, чем в исходной схеме. Ну ничего, немного доработаем схему увеличив порог тока, необходимого для срабатывания защиты.

Нажмите для увеличения изображения

Поясню мои доработки. Добавлен конденсатор 0,33 микрофарада для отключения защиты по току в начальный момент скачка тока, например при подключении ламп накаливания. Без этого конденсатора при подключении лампочки на 40 Ватт срабатывала защита, хотя ток при работе лампы был менее 4 ампер. Лампы в момент подключения потребляют огромные токи! Конденсатор подобрал опытным путём так, чтобы защита не срабатывала при подключении одной лампы, но срабатывала при подключении двух ламп по 40 ватт.

Резистор R16 добавил для того, чтобы понизить порог срабатывания защиты по току. Без этого резистора схема тоже работает, но порог определяется только значением падения напряжения на Rш и переходе транзистора VT2. При увеличении тока через эти сопротивления, на базе транзистора VT3 повышается напряжение, и когда оно станет 0,5-0,7 вольт — транзистор VT3 откроется и закроет полевой транзистор (минусовая цепь разорвётся).

Добавлены индикаторы на светодиодах:

  • VD1 «зелёный» — индикатор наличия напряжения на выходных клеммах
  • VD3 «синий» — индикатор срабатывания защиты
  • VD5 «красный» — индикатор обратного подключения аккумулятора (переполюсовки)

Все детали, что не разместились на плате старого блока питания, я изобразил на окончательной схеме:

Нажмите для увеличения изображения

Ну и наконец фото уже собранного зарядного устройства:

Всем спасибо за интерес к статье. Жду критику в комментариях и советы по доработке устройства!

Автор: Попов Вадим Сергеевич

Теги этой статьи

Близкие по теме статьи:

Авторы издания ExtremeTech провели расследование и выяснили, что две модели блоков питания Gigabyte мощностью 750 и 850 Вт демонстрируют запредельный процент брака. На это ссылаются и другие источники….

Читать полностью

Спустя совсем немного времени после того, как Google подтвердила скорый релиз флагманских смартфонов Pixel 6 и Pixel 6 Pro, появилась информация о сроках появления в продаже моделей «младшей»…

Читать полностью

В антивирусе Norton 360 появилась новая функция Norton Crypto, которая станет доступна пользователям с 4 июня 2021 года. Новая функция антивирусной программы позволит пользователям добывать Ethereum используя…

Читать полностью

Зарядное из компьютерного блока питания.

Добавил: STR2013,Дата: 11 Апр 2015

Автомобильное зарядное устройство или регулируемый лабораторный блок питания с напряжением на выходе 4 — 25 В и током до 12А можно сделать из не нужного компьютерного АТ или АТХ блока питания.

Несколько вариантов схем рассмотрим ниже:

Параметры

От компьютерного блока питания мощностью 200W, реально получить 10 — 12А.

Схема АТ блока питания на TL494

Несколько схем АТX блока питания на TL494

 

Переделка

Основная переделка заключается в следующем , все лишние провода выходящие с БП на разъемы отпаиваем, оставляем только 4 штуки желтых +12в и 4 штуки черных корпус, cкручиваем их в жгуты . Находим на плате микросхему с номером 494 , перед номером могут быть разные буквы DBL 494 , TL 494 , а так же аналоги MB3759, KA7500 и другие с похожей схемой включения. Ищем резистор идущий от 1-ой ножки этой микросхемы к +5 В (это где был жгут красных проводов) и удаляем его.

Для регулируемого (4В – 25В) блока питания R1 должен быть 1к . Так же для блока питания желательно увеличить емкость электролита на выходе 12В (для зарядного устройства этот электролит лучше исключить), желтым пучком (+12 В) сделать несколько витков на ферритовом кольце (2000НМ, диаметром 25 мм не критично).

Так же следует иметь ввиду , что на 12 вольтовом выпрямителе стоит диодная сборка (либо 2 встречно включенных диода), рассчитанная на ток до 3 А , ее следует поменять на ту , которая стоит на 5 вольтовом выпрямителе , она расчитана до 10 А , 40 V , лучше поставить диодную сборку BYV42E-200 (сборка диодов Шотки Iпр = 30 А, V = 200 В), либо 2 встречно включенных мощных диода КД2999 или им подобным в таблице ниже.

Если БП АТХ для запуска необходимо соединить вывод soft-on с общим проводом (на разъём уходит зеленым проводом).Вентилятор нужно развернуть на 180 гр., что бы дул внутрь блока ,если вы используете как блок питания, запитать вентилятор лучше с 12-ой ножки микросхемы через резистор 100 Ом.

Корпус желательно сделать из диэлектрика не забывая про вентиляционные отверстия их должно быть достаточно. Родной металлический корпус , используете на свой страх и риск.

Бывает при включении БП при большом токе может срабатывать защита , хотя у меня при 9А не срабатывает , если кто с этим столкнется следует сделать задержку нагрузки при включении на пару секунд.

Ещё один интересный вариант переделки компьютерного блока питания.

В этой схеме регулировка осуществляется напряжения (от 1 до 30 В.) и тока (от 0,1 до 10А).

Для самодельного блока хорошо подойдут индикаторы напряжения и тока. Вы их можете купить на сайте «Мастерок».



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:
  • Что такое web-камера? Устройство. Подключение.
  • Что такое web-камера?

    Web-камера — это цифровое устройство, которое состоит из видеокамеры (ПЗС-матрицы), процессора компрессии и встроенного web-сервера. Web-камера предназначена для организации видеонаблюдения и передачи видеоизображения по сети LAN/WAN/Internet. Для работы web-камеры в сети не требуется специальных устройств и персонального компьютера. Подробнее…

  • Самодельное устройство для отпугивания птиц
  • Птица на черешне

    Поедание ранней черешни, очень сладкой и крупной нашими пернатыми друзьями, удручает наших садоводов-любителей. Чего они только не делают чтобы спасти ранний урожай этой прекрасной ягоды, изготавливают чучела, газовые пушки, трещотки, сетки и многое другое, о чём свидетельствуют многочисленные публикации их опыта в интернете.

    Я также, по просьбе моего товарища Сизова В.Н., предпринял попытку внести свой скромный вклад в великую борьбу с пернатыми воришками нашего урожая!

    Подробнее…

  • Стабилизатор 400В на L6560.
  • Подробнее…


Популярность: 195 649 просм.

Зарядное устройство из БП от компьютера

Началось всё с того, что подарили мне блок питания АТХ от компьютера. Так он пролежал пару лет в заначке, пока не возникла необходимость соорудить компактное зарядное устройство для аккумуляторов.
Блок выполнен на известной для серии блоков питания микросхеме TL494, что дает возможность его без проблем переделать в зарядное устройство. Не буду вдаваться в подробности работы блока питания, алгоритм переделки следующий:

1. Очищаем блок питания от пыли. Можно пылесосом, можно продуть компрессором, у кого что под рукой.
2. Проверяем его работоспособность. Для этого в широком разъеме, который идет к материнской плате компьютера необходимо найти зеленый провод и перемкнуть его на минус (черный провод), после включить блок питания в сеть и проверить выходные напряжения. Если напряжения(+5В, +12В) в норме переходим к пункту 3.

3. Отключаем блок питания от сети, достаем печатную плату.
4. Выпаиваем лишние провода, на плате припаиваем перемычку зеленого провода и минуса.
5. Находим на ней микросхему TL494, может быть аналог KA7500.


TL494
Отпаиваем все элементы от выводов микросхемы №1, 4, 13, 14, 15, 16. На выводах 2 и 3 должны остаться резистор и конденсатор, все остальное тоже выпаиваем. Часто 15-14 ножки микросхемы находятся вместе на одной дорожке, их надо разрезать. Можно ножом перерезать лишние дорожки, это лучше избавит от ошибок монтажа.

6. Далее собираем схему.

Схема доработки…

Резистор R12 можно выполнить куском толстого медного провода, но лучше взять набор 10 Вт резисторов, соединенных параллельно или шунт от мультиметра. Если будете ставить амперметр, то можно припаятся к шунту. Тут следует отметить, что провод от 16 ножки должен быть на минусе нагрузки блока питания, а не на общей массе блока питания! От этого зависит правильность работы токовой защиты.

7. После монтажа, последовательно к блоку по сети питания подключаем лампочку накаливания, 40-75 Вт 220В. Это необходимо чтоб не сжечь выходные транзисторы при ошибке монтажа. И включаем блок в сеть. При первом включении лампочка должна мигнуть и погаснуть, вентилятор должен работать. Если все нормально, переходим к пункту 8.

8. Переменным резистором R10 выставляем выходное напряжение 14,6 В. Далее подключаем на выход автомобильную лампочку 12 В, 55 Вт и выставляем ток, так чтоб блок не отключался при подключении нагрузки до 5 А, и отключался при нагрузке более 5 А. Значение тока может быть разным, в зависимости от габаритов импульсного трансформатора, выходных транзисторов и т.д…В среднем для ЗУ пойдет и 5 А.

9. Припаиваем клеммы и идём тестить к аккумулятору. По мере заряда аккумулятора ток заряда должен уменьшатся, а напряжение быть более менее стабильным. Окончание заряда будет когда ток уменьшится до нуля.

Вот вкратце описал простую переделку блока питания в зарядное устройство…
Удачи всем на дороге!

Автор; Антон               Сумы, Украина

продвинутое зарядное устройство из говна и палок: uncle_sem — LiveJournal

немного ранее я рассказывал о внезапном появлении в моих цепких лапах н-ного количества комповых блоков питания. сегодня расскажу что можно сделать полезного.


первое что приходит в голову — это, конечно же, зарядное устройство для автомобильных АКБ. оно получится лёгким, надежным, ну и продвинутым — в зависимости от фантазии разработчика.

в любом случае, вначале нам нужно избавиться от всего лишнего:

сейчас нужно подумать что же нам в принципе хочется от зарядного? мне лично хотелось бы чтобы была регулировка напряжения от примерно 5 и до примерно 16 вольт, ну и ручное ограничение тока максимально близко к нулю ампер и до так это 20.

в данном случае, понятно, что придется искать компромиссы. то есть из-за диапазона регулировки тока — сложно будет добиться высокой точности. да она и не нужна, честно говоря.

с напряжением — тоже вопрос. типично для зарядных такого типа на выходе ставят защиту на реле. типа подал внешнее напряжение (подключил акум) — оно сработало, «защелкнулось» и подключило к выходу собственно напряжение с БП. всё вроде просто и красиво. но. не получится использовать весь диапазон напряжений. реле на 12В не сработает от 5-6, так что о зарядке 6В акумов придется забыть. точнее, не забыть, но пользоваться придется с танцами с бубном. подключили к 12В акуму, то бишь — «запустили» зарядное, выставили выход 6-7В, и дальше уже к акуму. если для реле хватит для удержания этих 6В. надо будет подумать о 5В реле — их можно от дежурки питать, но у меня их в наличии нету.

само собой — вольтметр и амперметр. это самое простое — только дырку вырезать 😉 .

естественно, мне хотелось бы получить и некоторые продвинутые функции. в частности, индикацию переплюсовки (это просто) ну и испульсный режим. на нем остановлюсь по-подробнее. есть мнение, что для свинцовых акумов полезна зарядка в режиме «заряд-разряд». то есть скажем 15с зарядка током 0.1 емкости, потом 5с разрядка током 0.01 емкости. практика показала, что это позволяет несколько «продлить агонию» у подыхающего акума. понятно, что такие работы делать для клиентов — стрёмно в плане «ответственности». еще гарантию потребуют, знаю я их. а вот для знакомых, за наливай — почему нет? результаты вполне ощутимые — проверено на примере безвременно усопшего старого советского зарядного с таким режимом, плюс я потом собирал «щелкалку» — внешний блочок между зарядным и акумом.

так, ну с требованиями определились, можно приступать. вначале нужно довести наш БП до работоспособного вида с минимальным функционалом — регулировкой выходного напряжения и тока. для этого переделываем обвязку tl494 примерно так:

(это всё на основе схемы итальянца, вот статья, вот картинка)

4 ногу засаживаем на землю через 2.5к — это включение микрухи.

на 2 ногу приходит «родной» делитель — его не трогаем. на 1 ногу цепляем свою регулировочную цепочку — 2.2к об землю, и 10к переменник последовательно с 1.5к — к плюсу БП. плюс этот у нас берется с выпрямителя 12Ви выходных дросселей и конденсаторов. он же подается на выход всей схемы — это и есть наш силовой плюс. при таких номиналах я получил диапазон выходных напряжений примерно от 4.5В до 16В — чего и добивался.

с напряжением разобрались, теперь ток. тут чуть сдожнее. выпаиваем из вольтамперметра шунт. или можно взять прибор с внешним шунтом. один конец шунта подключаем к нашей земле, а вот второй — будет силовым выходом БП. и он же — подключается тонким проводом к 16 ноге микрухи. на шунте падает напряжение, зависящее от тока. нам нужно узнать какое напряжение получится при максимально задуманном токе и в соответствии с этим рассчитать делитель, подающий напряжение на 15 ногу. у меня получилось 330к при переменнике 10к. на этом шунте падает очень мало.

разъем от вольтамперметра подключаем «как обычно» — то есть красный к плюсу, черный и синий к шунту.

далее рисуем схему «наворотов»:

тут у нас схема защиты, импульсная эта щелкалка с раздельной регулировкой длительности паузы и испульса, клеммы для подключения нагрузочного резистора — а чо, тоже в корпус впихну! — ну и входы-выходы для светодиодов индикации, тумблера включения импульсного режима, ну и пара диодов для питания вольтамперметра. он может питаться в широком диапазоне напряжений, вот и питаю его через диоды от 5В дежурки (вентилятор — тоже оттуда же) и 12В с выхода зарядного. для чего это нужно? чтобы можно было померять АКБ не включая зарядное. подключил к акуму, сработало реле защиты (а если не сработало — загорелся или замигал, как у меня, светодиод переплюсовки), подключило схему/подало питание на вольтамперметр, он показал напряжение акума. должно быть удобно.

дальше «рисуем сову» — пилим/сверлим, паяем провода, крепим нагрузочные резисторы к корпусу, травим/паяем «главную» плату…

я немного пролетел с размерами отверстий под выключатели и вольтамперметр — пришлось извращаться чтобы не болтались 😉

результатом я доволен не полностью. по-первых смущает схема защиты — не нравится мне что реле на 12В. 6В акумы в пролёте — это плохо. оно вроде бы и не нужно особо, но хотелось бы уж всё закрыть… во-вторых — пришлось органы управления размещать на боковой стенке. сразу это решение показалось интересным, сейчас я так уже не думаю… думаю, эксплуатация покажет что еще изменить, ну и доработаем по ходу дела — а там если что и плату новую можно сделать.

Как сделать зарядное устройство для 12В свинцово-кислотных аккумуляторов из компьютерного БП ATX.

Как сделать зарядное устройство для 12В свинцово-кислотных аккумуляторов из компьютерного БП ATX.

 

Скопилось у меня много компьютерных БП, отремонтированных в качестве тренировки этого процесса, но для современных компьютеров уже слабоватых. Что с ними делать?

Решил несколько переделать в ЗУ для зарядки 12В автомобильных аккумуляторов.

 

 

Итак: начали.

Первым мне подвернулся под руку Linkworld LPT2-20. У этого зверька оказался ШИМ на м/с Linkworld LPG-899. Посмотрел даташит, схему БП и понял – элементарно!

Что оказалось просто шикарно – она питается от 5VSB, т.е наши переделки никак не повлияют на режим её работы. Ноги 1,2,3 используются для контроля выходных напряжений 3,3В, 5В и 12В соответственно в пределах допустимых отклонений. 4-я нога тоже является входом защиты и используется для защиты от отклонений -5В, -12В. Нам все эти защиты не просто не нужны, а даже мешают. Поэтому их надо отключить.

 

По пунктам:

 

  1. Перерезать дорожку идущую от канала 5В к 2-й ноге м/с и её обвязке и соединить её с +5VSB.

  2. выпаять всю обвязку 1-й и 3-й ноги м/с.
  3. выпаять детали через которые 4-я нога была связана с -5В и -12В, остальные трогать НЕ НАДО.
  4. выпаять детали делителя на 16-й ноге (все резисторы которые к ней подходят)
  5. Если будете оставлять канал 5В (зачем может пригодиться скажу далее), замените нагрузочный резистор на выходе этого канала с 10Ом на 15Ом аналогичного размера (мощности). Ибо после переделки там будет уже 6В и ему станет слишком жарко J
  6. Теперь можно демонтировать все детали каналов 3,3В -5В и -12В, а также и 5В если вы его решите не оставлять.
  7. Также выпаять все провода выходящие из БП кроме 3-х черных и 3-х желтых.

 

Стадия разрушения на этом окончена, пора переходить к созиданию.

 

  1. Согласно схеме на Рис.1 смонтировать делитель для 1-й и 3-й ноги м/с из резисторов R1, R3 и R2. Я это сделал в свободных дырках оставшихся от удаленных деталей. Теперь защита будет «довольна» и не будет нам мешать. Вот так это выглядело на этом этапе:

  2. Замкнуть 9-ю ногу м/с на землю или сделать это через выключатель если сетевого нет или вам его недостаточно. Это действие обеспечивает запуск БП (а теперь, без 5 минут, зарядного), PS-ON — так сказать.

  3. Далее (на схеме не обозначено), но очень рекомендую нагрузить канал 12В хотя бы на 0,5А. Чем угодно – лампочкой, резисторами или и тем и другим одновременно. Это нужно для адекватной работы БП на холостом ходу (хотя слабенькие БП, типа этого, могут обойтись штатным нагрузочным резистором).
  4. Теперь восстанавливаем делитель на 16-й ноге (R4, R6 и R12 по схеме).
  5. Включаем БП (лучше через лампочку на 60-100Вт вместо предохранителя) и меряем напряжение в бывшем 12В канале. Если необходимо подбираем резистор R12 до получения 14,35-14,4В (ну или ещё большего если вам покажется мало, хотя я считаю именно это значение наиболее правильным). Кроме того, можно установить регулятор. Делается это так: сначала подбором R6 добиваемся 13,5-14В на выходе, затем последовательно с ним ставим переменный резистор на 10кОм. Он обеспечит вам регулировку выходного напряжения от 13,5-14 до 14,9-15,4В. Этого диапазона должно хватить для аккумулятора в любом состоянии.

 

По большому счету ЗУ у нас уже готово, но в нем нет ограничения зарядного тока (хотя защита от КЗ работает). Для того чтобы ЗУ не давало на аккумулятор столько «сколько влезет» – добавляем цепь на VT1, R5, C1, R8, R9, R10. Как она работает? Очень просто. Пока падение напряжения на R8 подаваемое на базу VT1 через делитель R9, R10 не превышает порог открывания транзистора – он закрыт и не влияет на работу устройства. А вот когда он начинает открываться, то к делителю на R4, R6, R12 добавляется ветка из R5 и транзистора VT1, меняя тем самым его параметры. Это приводит к падению напряжения на выходе устройства и, как следствие, к падению зарядного тока. При указанных номиналах, ограничение начинает работать примерно с 5А, плавно понижая выходное напряжение с ростом тока нагрузки. Настоятельно рекомендую эту цепь не выбрасывать из схемы, иначе, при сильно разряженном аккумуляторе ток может быть настолько большим, что сработает штатная защита, или вылетят силовые транзисторы, или шоттки. И зарядить свой аккумулятор вы не сможете, хотя сообразительные автолюбители догадаются на первом этапе включить автомобильную лампу между ЗУ и аккумулятором чтобы ограничить зарядный ток.

VT2, R11, R7 и HL1 занимается «интуитивной» индикацией тока заряда. Чем ярче горит HL1 – тем больше ток. Можно не собирать, если нет желания. Транзистор VT2 – должен быть обязательно германиевый, потому что падение напряжения на переходе Б-Э у него значительно меньше, чем у кремниевого. А значит, и открываться он будет раньше чем VT1.

Цепь из F1 и VD1, VD2 обеспечивает простейшую защиту от переполюсовки. Очень рекомендую сделать её или собрать другую на реле или чём-нибудь ещё. Вариантов в сети можно найти много.

А теперь о том, зачем нужно оставить канал 5В. Для вентилятора 14,4В многовато, особенно с учетом того что при такой нагрузке БП не греется вообще, ну кроме сборки выпрямителя, она немного греется. Поэтому, мы подключаем его к бывшему каналу 5В (сейчас там — около 6В), и он тихо и нешумно выполняет свою работу. Естественно, с питанием вентилятора есть варианты: стабилизатор, резистор и т.п. В дальнейшем некоторые из них мы увидим.

Всю схему я свободно смонтировал на освобожденном от ненужных деталей месте, не делая никаких плат, с минимумом дополнительных соединений. Выглядело это всё после сборки так:

 

В итоге, что мы имеем?

 

Получилось ЗУ с ограничением максимального зарядного тока (достигается уменьшением подаваемого на аккумулятор напряжения при превышении порога в 5А) и стабилизированным максимальным напряжением на уровне 14,4В, что соответствует напряжению в бортовой сети автомобиля. Поэтому, его можно смело использовать, не отключая аккумулятор от бортовой электроники. Это зарядное устройство можно смело оставлять без присмотра на ночь, батарея никогда не перегреется. К тому же оно почти бесшумное и очень лёгкое.

Если вам максимального тока в 5-7А маловато (ваш аккумулятор бывает часто сильно разряжен), можно легко увеличить его до 7-10А, заменив резистор R8 на 0,1Ом 5Вт. Во втором БП с более мощной сборкой по 12В именно так я и сделал:

 

 

Следующим подопытным у нас будет БП Sparkman SM-250W реализованный на широко известном и горячо любимом ШИМ TL494 (КА7500).

Переделка такого БП ещё проще, чем на LPG-899, так как в ШИМ TL494 нет никаких встроенных защит по напряжениям каналов, зато есть второй компаратор ошибки, который зачастую свободен (как и в данном случае). Схема оказалась практически один к одному со схемой PowerMaster. Её я и взял за основу:

 

План действий:

  1. Выпаиваем всё, что обведено или зачеркнуто на схеме Рис.3 розовым, и все провода. Должно получиться примерно так:

  2. Резистор R42 (по схеме, у вас может оказаться другим номером, так что будьте внимательны) заменяем на 10-11кОм. Включаем БП (желательно через лампу на 60-100Вт, на всякий случай) и меряем напряжение на выходе. Обратите внимание: БП должен запуститься сам, замыкать 4-ю ногу ШИМ на землю НЕ НАДО. Если вы это сделаете, то отключите защиту по току и при КЗ на выходе сможете наблюдать вылет силовых транзисторов и других элементов блока питания. Если напряжение не 14,35-14,45В, то подбором резисторов R44, R45 добиваетесь чтоб оно было в указанном диапазоне. Если этого недостаточно можно не сильно изменить и R42.

    В принципе на этом можете и закончить. Нет? Ааа…, вам нужно ограничение максимального зарядного тока как в варианте 1? Тогда продолжим.

    Изображен только фрагмен изменений в обвязке ШИМ. Это не значит что всё остальное вокруг него надо выпаять.
  3. В ШИМ TL494 имеется два встроенных усилителя ошибки, в данной схеме один из них не использовался, его мы и задействуем для ограничения максимального зарядного тока. Отключаем 15-ю ногу ШИМ от 13-й и 14-й, а16-ю ногу от земли. Можете дорожки перерезать, можете просто их отдельно выпаять, как вам нравится короче. Затем монтируем цепь из R5, C1, R7, R8, R9, R6 по схеме на Рис.4. При указанных номиналах БП больше 5А давать отказывается. При достижении порога, как и в первом случае, начинает падать выходное напряжение. Правда, есть и отличия, в данном варианте падение будет гораздо более резким. Фактически больше заданного тока, он не даст ни при каких обстоятельствах, напряжение упадет хоть до 0 (ну или почти). В то время, как в первом варианте, при достижении заданного порога напряжение снижается более плавно и не станет менее 2,5-3В даже если управляющий транзистор КТ361 откроется совсем. Но, вернемся к данной схеме. В режиме ограничения максимального тока возможно появление сверчков, убиваются подбором R5 и С1. Роль шунта (резистор R6 на схеме) на 0,005Ом у меня выполнял кусок медной проволоки длиной 2,5см, из телефонного кабеля. Изменение порога ограничения максимального тока достигается изменением номинала резистора R9 или R6. И предвосхищая вопрос: «зачем нужен R7?». Отвечу: «Не помню» J, очевидно что при разработке различных вариантов во время проектирования он был нужен в каком то из них. Но потом схема изменилась и теперь он, судя по всему, не играет никакой роли и вместо него можно ставить перемычку. Вот результат работы, испытание заряда реального аккумулятора от UPS, 12В 7А/ч.  

       Напряжение 14,4В ток 0,44А. Пусть вас цифры тока не удивляют, он разряжен был не сильно.
  4. Вентилятор, как и в предыдущем случае, к бывшему каналу 5В. На провода крокодилы, землю платы заизолировать от корпуса. Защита от переполюсовки — аналогична. От КЗ щупов прекрасно защищает оставшаяся нетронутой штатная защита. Проверено неоднократно.

 

Это был, пожалуй, самый экономичный вариант. Выпаянных деталей у вас останется гораздо больше чем затраченных J. Особенно если учесть что сборка SBL1040CT была извлечена из канала 5В, а туда были впаяны диоды, в свою очередь добытые, с канала -5В. Все затраты состояли из крокодилов, светодиода и предохранителя. Ну, можно ещё ножки приделать для красоты и удобства.

Вот плата в полном сборе:

Если вас пугают манипуляции с 15 и 16-й ногами ШИМ, подбор шунта с сопротивлением в 0,005Ом, устранение возможных сверчков, можно переделать БП на TL494 и несколько другим способом.

 

Итак: наша следующая «жертва» — БП Sparkman SM-300W. Схема абсолютно аналогична варианту 2, но имеет на борту более мощную выпрямительную сборку по 12В каналу, более солидные радиаторы. Значит — с него мы возьмем больше, например 10А.

Этот вариант однозначен для тех схем, где ноги 15 и 16 ШИМ уже задействованы и вы не хотите разбираться – зачем и как это можно переделать. И вполне пригоден для остальных случаев.

Повторим в точности пункты 1 и 2 из второго варианта.

Канал 5В, в данном случае, я демонтировал полностью.

Далее собираем схему по Рис.5.

Чтобы не пугать вентилятор напряжением в 14,4В — собран узел на VT2, R9, VD3, HL1. Он не позволяет превышать напряжение на вентиляторе более чем 12-13В. Ток через VT2 небольшой, нагрев транзистора тоже, можно обойтись без радиатора.

С принципом действия защиты от переполюсовки и схемы ограничителя зарядного тока и вы уже знакомы, но вот место его подключения здесь — иное.

Управляющий сигнал с VT1 через R4 заведен на 4-ю ногу KA7500B (аналог TL494). На схеме не отображено, но там должен был остаться от оригинальной схемы резистор в 10кОм с 4-й ноги на землю, его трогать не надо.

Действует это ограничение так. При небольших токах нагрузки транзистор VT1 закрыт и на работу схемы никак не влияет. На 4-й ноге напряжение отсутствует, так как она посажена на землю через резистор. А вот когда ток нагрузки растет, падение напряжения на R6 и R7 соответственно тоже растет, транзистор VT1 начинает открываться и совместно с R4 и резистором на землю они образуют делитель напряжения. Напряжение на 4-й ноге возрастает, а так как потенциал на этой ноге, согласно описанию TL494, непосредственно влияет на максимальное время открытия силовых транзисторов, то ток в нагрузке уже не растет. При указанных номиналах порог ограничения составил 9,5-10А. Основное отличие от ограничения в варианте 1, несмотря на внешнюю похожесть, резкая характеристика ограничения, т.е. при достижении порога срабатывания, напряжение на выходе спадает быстро.

Вот этот вариант в готовом виде:

 

Кстати, эти зарядки можно использовать и в качестве источника питания для автомагнитолы, переноски на 12В и других автомобильных устройств. Напряжение стабилизировано, максимальный ток ограничен, спалить что-нибудь будет не так то просто.

 

Вот готовая продукция:

 

Переделка БП под зарядное по такой методике – дело одного вечера, но для себя любимого времени не жалко?

 

Тогда позвольте представить:

 

За основу взято БП Linkworld LW2-300W на ШИМ WT7514L (аналог уже знакомой нам по первому варианту LPG-899).

Ну что ж: демонтаж ненужных нам элементов осуществляем согласно варианту 1, с той лишь разницей, что канал 5В тоже демонтируем – он нам не пригодится.

Здесь схема будет более сложной, вариант с монтажом без изготовления печатной платы в данном случае – не вариант. Хотя и полностью от него мы отказываться не будем. Вот приготовленная частично плата управления и сама жертва эксперимента ещё не отремонтированная:

А вот она уже после ремонта и демонтажа лишних элементов, а на втором фото с новыми элементами и на третьем её обратная сторона с уже проклеенными прокладками изоляции платы от корпуса.

То, что обведено на схеме рис.6 зеленой линией – собрано на отдельной плате, остальное было собрано на освободившемся от лишних деталей месте.

 

Для начала попробую рассказать: чем это зарядное отличается от предыдущих устройств, а уж потом расскажу какие детали, за что отвечают.

  • Включение зарядного происходит только при подключении к нему источника ЭДС (в данном случае аккумулятора), вилка при этом должна быть включена в сеть заблаговременно J.
  • Если по каким-либо причинам напряжение на выходе превысит 17В или окажется менее 9В – ЗУ отключается.
  • Максимальный ток заряда регулируется переменным резистором от 4 до 12А, что соответствует рекомендуемым токам заряда аккумуляторов от 35А/ч до 110А/ч.
  • Напряжение заряда регулируется автоматически 14,6/13,9В, либо 15,2/13,9В в зависимости от выбранного пользователем режима.
  • Напряжение питания вентилятора регулируется автоматически в зависимости от тока заряда в диапазоне 6-12В.
  • При КЗ или переполюсовке срабатывает электронный самовосстанавливающийся предохранитель на 24А, схема которого, с незначительными изменениями, была заимствована из разработки почетного кота победителя конкурса 2010г Simurga. Скорость в микросекундах не мерил (нечем), но штатная защита БП дернуться не успевает – он гораздо быстрее, т.е. БП продолжает работать как ни в чём не бывало, только вспыхивает красный светодиод срабатывания предохранителя. Искр, при замыкании щупов практически не видно, даже при переполюсовке. Так что очень рекомендую, на мой взгляд эта защита лучшая, по крайней мере из тех что я видел (хотя и немного капризная на ложные срабатывания в частности, возможно придётся посидеть с подбором номиналов резисторов).

Теперь, кто за что отвечает:

  • R1, C1, VD1 – источник опорного напряжения для компараторов 1, 2 и 3.
  • R3, VT1 – цепь автозапуска БП при подключении аккумулятора.
  • R2, R4, R5, R6, R7 – делитель опорных уровней для компараторов.
  • R10, R9, R15 – цепь делителя защиты от перенапряжения на выходе о которой я упоминал.
  • VT2 и VT4 с окружающими элементами – электронный предохранитель и токовый датчик.
  • Компаратор OP4 и VT3 с резисторами обвязки – регулятор оборотов вентилятора, информация о токе в нагрузке, как видите, поступает от токового датчика R25, R26.
  • И наконец, самое важное — компараторы с 1-го по 3-й обеспечивают автоматическое управление процессом заряда. Если аккумулятор достаточно сильно разряжен и хорошо «кушает» ток, ЗУ ведет заряд в режиме ограничения максимального тока установленного резистором R2 и равном 0,1С (за это отвечает компаратор ОР1). При этом, по мере заряда аккумулятора, напряжение на выходе зарядного будет расти и при достижении порога 14,6 (15,2), ток начнет уменьшаться. Вступает в работу компаратор ОР2. Когда ток заряда упадет до 0,02-0,03С (где С емкость аккумулятора а А/ч), ЗУ перейдет на режим дозаряда напряжением 13,9В. Компаратор OP3 используется исключительно для индикации, и никакого влияния на работу схемы регулировки не оказывает. Резистор R2 не просто меняет порог максимального тока заряда, но и меняет все уровни контроля режима заряда. На самом деле, с его помощью выбирается емкость заряжаемого аккумулятора от 35А/ч до 110А/ч, а ограничение тока это «побочный» эффект. Минимальное время заряда будет при правильном его положении, для 55А/ч примерно посередине. Вы спросите: «почему?», да потому что если, к примеру, при зарядке 55А/ч аккумулятора поставить регулятор в положение 110А/ч – это вызовет слишком ранний переход к стадии дозаряда пониженным напряжением. При токе 2-3А, вместо 1-1,5А, как задумывалось разработчиком, т.е. мной. А при выставлении 35А/ч будет мал начальный ток заряда, всего 3,5А вместо положенных 5,5-6А. Так что если вы не планируете постоянно ходить смотреть и крутить ручку регулировки, то выставляйте как положено, так будет не только правильнее, но и быстрее.
  • Выключатель SA1 в замкнутом состоянии переводит ЗУ в режим «Турбо/Зима». Напряжение второй стадии заряда повышается до 15,2В, третья остается без существенных изменений. Рекомендуется для заряда при минусовых температурах аккумулятора, плохом его состоянии или при недостатке времени для стандартной процедуры заряда, частое использование летом при исправном аккумуляторе не рекомендуется, потому что может отрицательно сказаться на сроке его службы.
  • Светодиоды, помогают ориентироваться, на какой стадии находится процесс заряда. HL1 – загорается при достижении максимально допустимого тока заряда. HL2 – основной режим заряда. HL3 – переход в режим дозаряда. HL4 – показывает что заряд фактически окончен и аккумулятор потребляет менее 0,01С (на старых или не очень качественных аккумуляторах до этого момента может и не дойти, поэтому ждать очень долго не стоит). Фактически аккумулятор уже хорошо заряжен после зажигания HL3. HL5 – загорается при срабатывании электронного предохранителя. Чтобы вернуть предохранитель в исходное состояние, достаточно кратковременно отключить нагрузку на щупах.

Что касается наладки. Не подключая плату управления или не запаивая в неё резистор R16 подбором R17 добиться напряжения 14,55-14,65В на выходе. Затем подобрать R16 таким, чтобы в режиме дозаряда (без нагрузки) напряжение падало до 13,8-13,9В.

Вот фото устройства в собранном виде без корпуса и в корпусе:

Вот собственно и всё. Зарядка была испытана на разных аккумуляторах, адекватно заряжает и автомобильный, и от UPS (хотя все мои зарядки заряжают любые на 12В нормально, потому что напряжение стабилизировано J). Но это побыстрее и ничего не боится, ни КЗ, ни переполюсовки. Правда, в отличие от предыдущих, в качестве БП использовать не получится (очень оно стремится управлять процессом и не хочет включаться при отсутствии напряжения на входе). Зато, его можно использовать в качестве зарядного для аккумуляторов резервного питания, вообще не отключая никогда. Заряжать будет в зависимости от степени разряда автоматически, а из-за малого напряжения в режиме дозаряда существенного вреда аккумулятору не принесет даже при постоянном включении. При работе, когда аккумулятор уже почти заряжен, возможен переход зарядного в импульсный режим заряда. Т.е. ток зарядки колеблется от 0 до 2А с интервалом от 1 до 6 секунд. Сначала, хотел было устранить это явление, но, почитав литературу – понял, что это даже хорошо. Электролит лучше перемешивается, и даже иногда способствует восстановлению потерянной емкости. Поэтому решил оставить так как есть.

 

 

Ну вот, попалось что-то новенькое. На этот раз LPK2-30 с ШИМ на SG6105. Такого «зверя» мне для переделки раньше мне ещё не попадалось. Но я вспомнил многочисленные вопросы на форуме и жалобы пользователей на проблемы по переделке блоков на этой м/с. И принял решение, хоть зарядка мне больше и не нужна, нужно победить эту м/с из спортивного интереса и на радость людям. А заодно и опробовать на практике, возникшую в моей голове идею оригинального способа индикации режима заряда.

Вот он, собственной персоной:

Начал, как обычно, с изучения описания. Обнаружил, что она похожа на LPG-899, но есть и некоторые отличия. Наличие 2-х встроенных TL431 на борту, вещь конечно интересная, но…  для нас — несущественная. А вот отличия в цепи контроля напряжения 12В, и появление входа для контроля отрицательных напряжений, несколько усложняет нашу задачу, но в разумных пределах.

В результате раздумий и непродолжительных плясок с бубном (куда уж без них) возник вот такой проект:

 

Вот фото этого блока уже переделанного на один канал 14,4В, пока без платы индикации и управления. На втором его обратная сторона:

 

А это внутренности блока в сборе и внешний вид:

 

Обратите внимание, что основная плата была развернута на 180 градусов, от своего первоначального расположения, для того чтобы радиаторы не мешали монтажу элементов передней панели.

В целом это немного упрощённый вариант 4. Разница заключается в следующем:

  • В качестве источника для формирования «обманных» напряжений на входах контроля было взято 15В с питания транзисторов раскачки. Оно в комплекте с R2-R4 делает всё необходимое. И R26 для входа контроля отрицательных напряжений.
  • Источником опорного напряжения для уровней компаратора было взято напряжение дежурки, оно же питание SG6105. Ибо, большая точность, в данном случае, нам не нужна.
  • Регулировка оборотов вентилятора тоже была упрощена.

А вот индикация была немного модернизирована (для разнообразия и оригинальности). Решил сделать по принципу мобильного телефона: банка наполняющаяся содержимым. Для этого я взял двухсегментный светодиодный индикатор с общим анодом (схеме верить не надо – не нашёл в библиотеке подходящего элемента, а рисовать было лень L), и подключил как показано на схеме. Получилось немного не так как задумывал, вместо того чтобы средние полоски «g» при режиме ограничения тока заряда гасли, вышло, что они — мерцают. В остальном — всё нормально.

Индикация выглядит так:

 

На первом фото режим заряда стабильным напряжением 14,7В, на втором – блок в режиме ограничения тока. Когда ток станет достаточно низким, у индикатора загорятся верхние сегменты, и напряжение на выходе зарядного упадёт до 13,9В. Это можно увидеть на фото приведённом немного выше.

Так как напряжение на последней стадии всего 13,9В можно спокойно дозаряжать аккумулятор сколь угодно долго, вреда ему это не принесёт, потому что генератор автомобиля обычно даёт большее напряжение.

Естественно, в этом варианте можно использовать и плату управления из варианта 4. Обвязку GS6105 только нужно сделать так, как здесь.

Да, чуть не забыл. Резистор R30 устанавливать именно так — совсем не обязательно. Просто, у меня никак не выходило подобрать номинал впараллель к R5 или R22 чтобы получить на выходе нужное напряжение. Вот и вывернулся таким… нетрадиционным образом. Можно просто подобрать номиналы R5 или R22, как я делал в других вариантах.

 

Как видите, при правильном подходе, почти любой БП АТХ можно переделать в то, что вам нужно. Если будут новые модели БП и нужда в зарядках, то возможно будет и продолжение.

Кота от всего сердца поздравляю с юбиелеем! В его честь, кроме статьи, ещё был заведён новый жилец — очаровательная серая киска Маркиза.

 

Что такое блок питания?

Обновлено: 07.10.2019, Computer Hope

Сокращенно PS или P / S , блок питания или PSU (блок питания ) — это аппаратный компонент компьютера, который питает все остальные компоненты. Блок питания преобразует 110–115 или 220–230 вольт переменного тока (переменного тока) в устойчивый низковольтный постоянный ток (постоянный ток), который может использоваться компьютером и рассчитанный по количеству генерируемых ватт.На изображении показан блок питания Antec True 330 мощностью 330 Вт.

Осторожность

Никогда не открывайте корпус блока питания. Он содержит конденсаторы, способные удерживать сильный электрический заряд, даже если компьютер выключен и отключен от сети на длительное время.

Кончик

Вы можете защитить свой блок питания и компьютер от скачков и падений напряжения, купив ИБП (источник бесперебойного питания). Если вы не можете позволить себе ИБП, убедитесь, что компьютер хотя бы подключен к сетевому фильтру.

Где в компьютере находится блок питания?

Блок питания расположен на задней панели компьютера, обычно вверху. Однако во многих более поздних корпусах для компьютеров в корпусе Tower источник питания расположен в задней части корпуса. В корпусе настольного компьютера (моноблок) блок питания расположен сзади слева или сзади справа.

Детали на задней панели блока питания

Ниже приведен список деталей, которые вы можете найти на задней панели блока питания.

  • Разъем кабеля питания к компьютеру.
  • Вентилятор, выходящий за пределы блока питания.
  • Красный переключатель для изменения напряжения питания.
  • Кулисный переключатель для включения и выключения питания.

На передней панели блока питания, которая не видна, если компьютер не открыт, вы найдете несколько кабелей. Эти кабели подключаются к материнской плате компьютера и другим внутренним компонентам. Блок питания подключается к материнской плате с помощью разъема в стиле ATX и может иметь один или несколько из следующих кабелей для подключения питания к другим устройствам.

Детали, обнаруженные внутри блока питания

Ниже приведен список деталей внутри блока питания.

  • Выпрямитель, преобразующий переменный ток в постоянный.
  • Фильтр, сглаживающий постоянный ток, исходящий от выпрямителя.
  • Трансформатор, который регулирует входящее напряжение, повышая или понижая его.
  • Регулятор напряжения, который управляет выходным напряжением постоянного тока, позволяя подавать нужное количество энергии, вольт или ватт, на компьютерное оборудование.

Порядок работы этих внутренних компонентов источника питания следующий.

  1. Трансформатор
  2. Выпрямитель
  3. Фильтр
  4. Регулятор напряжения

Какие элементы питаются от БП компьютера?

Все, что находится в корпусе компьютера, питается от источника питания. Например, материнская плата, ОЗУ, ЦП, жесткий диск, дисководы и большинство видеокарт (если они есть в компьютере) потребляют энергию от источника питания.Любые другие внешние устройства и периферийные устройства, такие как компьютерный монитор и принтер, имеют источник питания или потребляют питание по кабелю для передачи данных, как некоторые устройства USB.

Вентилятор всегда работает от источника питания?

Когда компьютер включен, вентилятор (ы) в блоке питания всегда должен работать. Если вентилятор не работает (вращается), либо компьютер не работает, либо вентилятор неисправен, и блок питания следует заменить.

Примечание

Некоторые блоки питания имеют регулируемые элементы управления, которые могут увеличивать или уменьшать скорость вентилятора в зависимости от его температуры.Однако он всегда должен крутиться.

Адаптер переменного тока, Аббревиатуры компьютеров, Термины по оборудованию, Питание, Шнур питания, Выключатель питания, Термины по питанию, Резервный источник питания, SMPS

Руководство по выбору блоков питания для компьютеров: типы, характеристики, применение

Компьютерные блоки питания разработаны специально для питания компьютеров и их периферийных устройств. Они преобразуют переменный ток (AC) в низковольтную регулируемую мощность постоянного тока (DC), необходимую для работы компонентов компьютера.Самая важная особенность этих источников питания — их эффективность. Важно, чтобы входная мощность источников питания не тратилась на тепловыделение.

Эксплуатация

Поскольку эффективность очень важна, в большинстве современных компьютеров (включая ноутбуки и мобильные устройства) используются импульсные блоки питания (SMPS). В этих источниках питания используется переключающий элемент или регулятор (обычно силовой транзистор) для генерации желаемого напряжения. Импульсные источники питания содержат электронные компоненты, которые постоянно включаются и выключаются с очень высокой частотой.Это переключающее действие подключает и отключает устройства накопления энергии (катушки индуктивности или конденсаторы) от входного напряжения источника или выходной нагрузки и от них. Конструкция SMPS приводит к меньшему объему источника питания, поскольку размер силовых трансформаторов, катушек индуктивности и конденсаторов обратно пропорционален частоте коммутации. Работа в режиме переключения также снижает потребление энергии, потому что, когда переключатель находится в положении ВЫКЛ, его ток почти равен нулю. Когда переключатель включен, его напряжение очень мало. Следовательно, в любом из условий потребление энергии почти равно нулю.Импульсный источник питания более эффективен, чем линейный источник питания, потому что в линейном источнике питания избыточная мощность теряется (в виде тепла), тогда как в SMPS вся мощность используется для преобразования входной мощности в выходную мощность. Переключающие элементы, обычно катушки индуктивности, конденсаторы или транзисторы, работающие в режиме отсечки или насыщения, не имеют рассеивающего сопротивления, поэтому не происходит потери мощности.

Типы

Самая важная отличительная черта компьютерных блоков питания — это форм-фактор; это определяет размер, форму и часто другие характеристики устройства.Форм-фактор должен соответствовать типу материнской платы, на которой будет установлен блок питания. Существует множество стилей и корпусов компьютерных материнских плат, и, как правило, каждый из них имеет соответствующий форм-фактор блока питания, который следует выбирать для соответствия.

  • ATX — компьютерный блок питания, разработанный специально для материнской платы ATX. Это материнская плата, разработанная Intel для преодоления ограничений материнской платы AT, указанной IBM. Есть несколько модальностей этой материнской платы.Стандартный размер материнской платы ATX составляет 305 мм на 204 мм.
    • Flex ATX — Блок питания, предназначенный для разновидностей ATX, размером 229 мм на 191 мм.
    • Micro ATX — Блок питания, предназначенный для различных типов ATX, размером 244 мм на 1244 мм.
    • Mini ATX — Блок питания, разработанный для различных ATX, с форм-фактором 150 мм на 150 мм.
  • AT — Блок питания для оригинальной материнской платы AT, разработанной IBM, размером 350 мм на 305 мм.
  • LPX — Блок питания предназначен для материнской платы LPX размером 330 мм на 229 мм.
  • NLX — Блок питания, разработанный для материнской платы NLX размером 254 мм на 228 мм.
  • SFX — Блок питания для материнской платы SFX. «Обычный» блок питания SFX имеет номинальную ширину 100 мм, глубину 125 мм и высоту 63,5 мм; его выходная мощность составляет 90 Вт, что достаточно для работы небольших систем с меньшими требованиями и меньшим количеством периферийных устройств.

Подключения

Форм-фактор относится к подключению компьютерных блоков питания. Различные разъемы определяют, к каким устройствам можно подключать блоки питания и обеспечивать их питание. Важно выбрать источник питания, который имеет правильные соединения, необходимые для системы.

  • Разъем материнской платы — подключает блок питания к конкретной материнской плате. Материнские платы ATX подключаются с помощью 20- или 24-контактных разъемов.

  • Разъем ЦП — используется для подключения блоков питания к материнским платам с процессорами (ЦП) бортового компьютера. Это либо 4 («P4»), либо 8-контактные разъемы.

  • Molex connector — разъем IDE, который подключается к жестким дискам и приводам компакт-дисков. Большинство компьютерных блоков питания имеют по крайней мере один из этих разъемов.

Совет по дизайну : Когда требуются дополнительные соединители Molex, можно приобрести Y-разветвитель, чтобы увеличить количество доступных соединений.

  • Разъем для гибких дисков — 4-контактный разъем, используемый для подачи питания на дисководы гибких дисков, устройства чтения карт и другие подобные устройства.

  • Разъем AUX — 6-контактный разъем, необходимый для подключения некоторых компьютерных материнских плат.

  • Разъем SATA — разъемы для устройств, использующих интерфейсы последовательного подключения с использованием передовых технологий (SATA), например жестких дисков.

  • Разъем PCI Express — используется для подключения к видеокартам PCI Express, которые получают питание непосредственно от источника питания, а не от материнской платы.

Разные типы разъемов. Кредит изображения: Компьютеры P-Link

Дополнительную информацию о разъемах можно найти в разделе GlobalSpec, посвященном разъемам питания для приборов и компьютеров.

Технические характеристики

Важные характеристики блоков питания напрямую связаны с их типами и областями применения. Однако следующие важные характеристики относятся ко всем источникам питания:

  • Входное напряжение — это величина и тип напряжения (в вольтах, В), приложенного к источнику питания.Это может быть переменное или постоянное напряжение.
  • Выходной ток — это ток (в амперах, А), связанный с выходным напряжением, обычно указываемый как диапазон или как минимальные и максимальные значения. Если источник питания выдает более одного напряжения (многоканальный источник питания), для каждого выходного напряжения должен быть указан соответствующий ток.
  • Выходная мощность — мощность (в ваттах, Вт), передаваемая нагрузке. Номинальная мощность блока питания должна соответствовать требованиям к питанию системы, так как устройство меньшего размера вызовет сбой питания и перезагрузку компьютера.Допустимо использовать источники питания с выходной мощностью, превышающей требования приложения, так как большинство из них предназначены для уменьшения мощности, требуемой от них. В этой таблице приведены рекомендации по мощности блока питания в зависимости от размера компьютерной системы:

Размер процессора

Количество жестких дисков

Количество компакт-дисков

Рекомендуемая мощность (Вт)

<1.0 ГГц

1

2

300

1,0 — 1,5 ГГц

2

2

350

1,5 — 2,0 ГГц

1

2

400

> 2,0 ГГц

2

2

430

> 2.0 ГГц

> 2

> 2

530+

Таблица Кредит: ATXPowersupplies.com

  • Регламент указывает на стабильность выходного напряжения. При выборе источника питания можно указать два типа регулирования:
    • Линейное регулирование — это максимальная установившаяся величина, на которую изменяется выходное напряжение в результате заданного изменения входного линейного напряжения.Регулировка линии выражается как процентное изменение выходного напряжения, вызванное изменениями величины линейного (входного) напряжения.
    • Регулировка нагрузки — это максимальное установившееся значение, при котором выходное напряжение изменяется в результате заданного изменения нагрузки. Обычно регулирование нагрузки выражается как процентное изменение выходного напряжения, вызванное увеличением нагрузки с половинной до полной.
  • Рабочая температура — это допустимый диапазон температур, при котором источник питания может безопасно работать.

Характеристики

Особенности блоков питания компьютеров могут быть важны для определенных компьютерных систем или приложений. Некоторые из этих функций включают:

  • Вентилятор охлаждения
  • Радиатор охлаждения
  • Сверхток
  • Перенапряжение
  • Коррекция коэффициента мощности
  • Выключатель дистанционного включения / выключения
  • Защита от короткого замыкания

Стандарты и соответствие

Для многих приложений важно, чтобы блоки питания соответствовали определенным организационным или национальным стандартам, например, перечисленным ниже:

Чтобы получить более подробный обзор выбора источника питания, посетите Руководство по выбору источников питания на GlobalSpec.

Список литературы

Блоки питания

ATX — Выбор правильного блока питания для вашего компьютера

Кредит изображения:

SFCable.com | ВИПА Ауотмашн, Инк | Энергия Евразии


Программируемые блоки питания | Настольные блоки питания

Программируемые блоки питания

Кто использует программируемые блоки питания?

Программируемые блоки питания имеют множество применений, но чаще всего они используются для автоматического тестирования оборудования, сертификации, интеллектуальной отладки, моделирования и калибровки.Чаще всего ими пользуются инженеры-электрики и техники из-за своего рода занятий, но, если честно, любой может научиться использовать программируемый источник питания.

Что делает программируемый блок питания?

Различные программируемые источники питания могут иметь разные компоненты, но базовые элементы включают в себя процессор, программирование напряжения и тока, схему обратного считывания напряжения и тока и токовый шунт. Другие общие (но необязательные) функции включают встроенную компенсацию перенапряжения, компенсацию перегрузки по току, защиту от короткого замыкания и регулировку температуры.

Эти функции безопасности включают компараторы, которые непрерывно контролируют выходное напряжение или выходной ток и сравнивают показания с эталонным значением. Как только показание превысит эталонное значение программы, они отправят сигналы на кремниевый выпрямитель (SCR), чтобы отключить источник нагрузки.

Выбор программируемого источника питания: обзор

Ниже приведен список информации, охватывающий любые вопросы, которые могут возникнуть при выборе лучших программируемых источников питания:

Количество выходов

Вам определенно нужно более одного выхода, особенно если вы планируете запускать несколько приложений.Вы можете подключить несколько нагрузок к одному источнику питания, но вам придется делать это по одной. Как вы, наверное, догадались, на это уходит много времени.

Однако не забудьте также приобрести блок с несколькими изолированными выходами. Изолированные выходы могут работать отдельно или параллельно, что дает вам большую гибкость и свободу действий во время моделирования.

Функция включения / выключения выхода

Эта функция, хотя и является необязательной, также настоятельно рекомендуется. Это позволяет вам включать или выключать выход без необходимости полностью отключать питание нагрузки.Это означает, что вы можете легко настраивать различные тесты, не беспокоясь о том, как ваши настройки повлияют на нагрузку.

Постоянный ток и постоянное напряжение

Стандартный источник питания уже способен выдавать постоянное напряжение, поскольку он уже специально разработан для потребления тока при испытании, практически не влияя на стабильность напряжения. Следовательно, вы определенно захотите использовать программируемый источник питания в основном для приложений, требующих постоянного тока.

Однако в некоторых случаях лучше всего использовать программируемый источник питания в режиме постоянного напряжения. Чаще всего это касается функциональности, т. Е. Если вам нужно подать последовательность ступенчатых напряжений, и воспроизводимости, т. Е. Когда вам нужно воссоздать или смоделировать другой источник напряжения.

Чтобы дать вам лучшее представление, вот несколько распространенных приложений с постоянным напряжением по сравнению с лучшими приложениями с постоянным током.

Постоянное напряжение:

  • Формирование конденсатора
  • Испытание преобразователя постоянного тока в постоянный
  • Испытание автомобильных компонентов

Постоянный ток:

  • Высокоточный электролиз
  • Генерация электромагнитного поля
  • Тепловые испытания полупроводников

Гибкость управления

Чем проще вам настроить источник питания, тем больше времени вы сможете выделить на фактические испытания.Поэтому лучше всего приобретать программируемые блоки питания с интуитивно понятными функциями, которые позволяют быстро и легко настроить и переключить. Приобретите устройство, которое имеет отдельные элементы управления напряжением и током, и постарайтесь убедиться, что управление напряжением является многооборотным.

В качестве альтернативы можно приобрести устройство с отдельным регулятором точной настройки для большей точности.

Другие необязательные, но полезные функции включают в себя блокировку напряжения и тока, где вы можете заблокировать настройки напряжения и тока на определенных значениях, чтобы предотвратить любые случайные изменения или сдвиги.Это особенно удобно для интеллектуальной отладки.

Вы также можете изучить единицы измерения, позволяющие указать диапазон регулирования выходного напряжения. Устанавливая минимальные и максимальные допустимые значения проекта, вы получаете более точный контроль над симуляцией. Это также защищает ваши системы и цепи от потенциального перенапряжения или перегрузки по току.

Cooling Technology

Регулирование температуры играет важную роль в обеспечении безопасности программируемых источников питания.Перегретые системы могут негативно повлиять на внутренние компоненты агрегата. Вот почему мы настоятельно рекомендуем приобрести агрегат со встроенной достаточно мощной системой охлаждения.

Существует четыре различных метода охлаждения программируемых источников питания: (1) кондуктивное охлаждение, (2) принудительное воздушное охлаждение, (3) конвекционное охлаждение и (4) водяное охлаждение.

  • Кондуктивное охлаждение — зависит от прямого контакта и использует холодную или охлаждающую пластину. Программируемый блок питания устанавливается на холодную пластину.Затем тепло (или тепловая энергия) передается от блока к более холодной платформе.
  • Принудительное воздушное охлаждение — этот тип системы охлаждения встроен непосредственно в программируемый блок питания. Он использует вентиляторы для направления потока воздуха на перегреваемые компоненты. Хотя этот тип охлаждения эффективен, некоторые потребители обычно не ценят его из-за шума и вибрации, которые он производит.
  • Конвекционное охлаждение — этот тип системы охлаждения также встроен непосредственно в агрегат.Тепло передается через естественный поток воздуха или жидкости вокруг самого устройства. При этом используются условия окружающей среды или окружающей среды, а не дополнительные детали или компоненты.
  • Водяное охлаждение — обычно подходит для систем с номинальной мощностью более 10 кВт, системы водяного охлаждения компактны и управляемы. Это похоже на конвекционное охлаждение в том смысле, что естественный поток используется для охлаждения программируемого источника питания. Многие ценят водяное охлаждение, потому что оно более эффективно, чем принудительное и конвекционное воздушное охлаждение.Единственный недостаток — это немного дороже.

Функции управления ПК

Параметры управления ПК могут не иметь большого значения для настольных источников питания, но их определенно хорошо иметь под рукой для программируемых источников питания. Возможность удаленного управления позволяет автоматизировать повторяющиеся тесты, что, в свою очередь, значительно повышает производительность.

Примеры программируемых источников питания

Если вы думаете о выборе программируемого источника питания для себя, но не знаете, с чего начать, мы можем порекомендовать несколько невероятно эффективных и удобных в использовании моделей.

# 1 ITECH IT6933A 150V 5A

Этот программируемый источник питания представляет собой модель широкого диапазона постоянного тока со встроенным стандартным интерфейсом RS232, USB и GPIB. Он поддерживает протокол SCPI и обеспечивает полное управление промышленным ПЛК, что определенно идеально для создания интеллектуальных испытательных платформ. Он также отлично подходит для внешних измерений и точных испытаний благодаря низким пульсациям, низкому уровню шума, встроенному цифровому вольтметру и клеммам удаленной компенсации. Благодаря его интуитивно понятным возможностям вы можете легко применить ITECH IT6933A к большинству любых модулей питания постоянного и постоянного тока.

Примечательные особенности включают VFD-дисплей, регулируемое цифровое значение шага с помощью курсора, функцию дистанционного контроля и интеллектуальное управление вентилятором.

# 2 Программируемый источник питания CSI3645A

CSI3645A имеет три полностью рабочих режима: постоянный ток, постоянное напряжение и постоянная мощность. Это делает его чрезвычайно универсальным выбором, который хорошо работает в большинстве сценариев. Он оснащен ЖК-дисплеем с подсветкой и поворотным переключателем кода для быстрого программирования.Вы можете просматривать напряжение, ток и мощность на самом ЖК-экране или на экране компьютера, используя дополнительный интерфейсный модуль RS232 устройства. Он также имеет приличную память, способную хранить до 10 индивидуальных настроек для немедленного вызова.

Другие примечательные особенности этого устройства включают регулируемые и постоянные выходы напряжения и тока, функцию памяти отключения питания и определяемые пользователем настройки максимального тока. В целом, надежный блок питания, подходящий для научных исследований, лабораторных работ и точного моделирования.

# 3 Array 3662A 35 В постоянного тока 14,5 А

Высокопроизводительный блок питания (блок питания) с 0-35 В постоянного тока (один выход) и 0-14,5 А, Array 3662A представляет собой надежный программируемый источник питания. подходит для требовательных приложений с высокой интенсивностью. Органы управления представлены в виде клавиатуры на передней панели и поворотных регуляторов, но также возможно управление через последовательный порт ПК. Запрограммированный на прием команд SCPI, это устройство может похвастаться многофункциональным меню и плавно регулируемыми выходным напряжением и током.Он поставляется со встроенными вольтметром, амперметром и ваттметром для всестороннего мониторинга и отслеживания.

Достаточно сказать, что Array 3662A — отличная модель. Высокое разрешение, надежная защита ввода / вывода и двухстрочный ЖК-дисплей в сочетании с впечатляющим аппаратным обеспечением и внутренними системами делают его пригодным для производства, тестирования и электротехники.

Почему лучший источник питания означает лучший компьютерный опыт?

Итак, как лучший блок питания соотносится с лучшими вычислительными возможностями? Подумайте вот о чем: если ваш блок питания плохо справляется с регулированием напряжения и фильтрацией пульсаций, что именно?

Блок питания компьютера по существу преобразует переменный ток в постоянный.Старые или более простые компьютерные блоки питания преобразуют переменный ток в несколько напряжений постоянного тока (+12 В, + 5 В, + 3,3 В) одновременно. Новые, более совершенные блоки питания преобразуют переменный ток в +12 В постоянного тока, в то время как меньшие блоки питания постоянного тока в корпусе блока питания преобразуют +12 В в менее используемые + 3,3 В и + 5 В. Последний более эффективен, потому что менее используемые напряжения не преобразуются, если они не требуются, а преобразование постоянного тока в постоянное само по себе более эффективно, чем преобразование переменного тока в постоянный, поскольку для этого требуется меньше и меньше компонентов.

После преобразования напряжения оно фильтруется с помощью катушек индуктивности и конденсаторов.


На вторичной стороне этого HX1050 мы видим очень большую катушку индуктивности и несколько конденсаторов разного размера.

Итак, теперь у нас есть две важные вещи, на которые следует обратить внимание при рассмотрении выхода этого источника питания: насколько хорошо регулируется выходное напряжение и имеет ли эта выходная мощность минимальные пульсации?

Я просто использовал два слова, которые вы часто слышите, когда говорят о компьютерных блоках питания: регулирование и пульсация.

Компьютерные блоки питания используют «переключающую» технологию для преобразования переменного тока в постоянный. И пока выпрямитель включается и выключается, он вырабатывает постоянный ток, который пульсирует в ритме с любой частотой переменного тока на входе (например, 60 Гц — это ваша типичная частота переменного тока в Северной Америке), независимо от частоты, на которой переключается выпрямитель. Это называется шумом. Сначала напряжение проходит через индуктор или дроссель. Это сглаживает форму волны и снижает частоту шума. Тогда у вас есть конденсаторы.Конденсаторы накапливают электрические заряды и могут выводить электрический заряд без шума. Если напряжение, поступающее на конденсатор, повышается или понижается с частотой переключения, заряд конденсатора повышается или понижается. Это изменение заряда конденсатора происходит намного медленнее, чем частота коммутируемой мощности, которая заряжает конденсатор. Хотя это то, как он фильтрует шум, это также создает пульсации (небольшие пики и спады в выходном напряжении постоянного тока). В этом случае могут помочь более крупные конденсаторы или конденсаторы, соединенные последовательно, потому что чем медленнее изменяется между самым низким и самым высоким напряжением, тем более стабильно уменьшается выходное напряжение и пульсации.Но инженерам, разрабатывающим эти блоки питания, следует соблюдать осторожность. Если вы используете слишком много конденсаторов, слишком большой конденсатор или даже слишком большой индуктор, вы снижаете эффективность вашего источника питания. Каждая часть цепи, через которую проходит питание, имеет некоторую потерю мощности, и конденсаторы рассеивают этот отфильтрованный шум в виде тепла, и это тепло теряется в мощности!


Это снимок экрана осциллографа, измеряющего пульсации в источнике питания, который плохо справляется с фильтрацией.


Когда блок питания лучше справляется с фильтрацией пульсаций, на осциллографе это будет выглядеть так.

Регулирование — это то, насколько хорошо источник питания реагирует на изменения нагрузки. Допустим, блок питания выдает +12 В постоянного тока с нагрузкой 2 А. Допустим, нагрузка увеличивается до 5А, 10А .. или даже 15А. Так же, как я объяснил в отношении регуляторов напряжения процессора, в игру вступает закон Ома. По мере увеличения тока сопротивление увеличивается. По мере увеличения сопротивления напряжение падает.Качественный источник питания должен компенсировать это. Обычно мониторинг осуществляется внутри «управляющей ИС». ИС супервизора может сообщить контроллеру ШИМ (широтно-импульсной модуляции), что выпрямитель должен переключаться на другой частоте для соответствующей регулировки выходного напряжения. Иногда «сенсорный провод» определяет падение напряжения на нагрузке и передает его обратно на ИС. Это дает IC некоторую фору в том, чтобы сообщить контроллеру PWM о необходимости компенсации. «Цифровые блоки питания», такие как блоки питания Corsair серии AXi, используют цифровой сигнальный процессор для отслеживания напряжений и прямого указания выпрямителю переключаться на разных частотах.Поскольку контроль и управление полностью цифровое, компенсация выполняется намного быстрее (подробнее о том, как работают цифровые блоки питания, можно найти здесь).

Итак, как лучший блок питания соотносится с лучшими вычислительными возможностями? Подумайте вот о чем: если ваш блок питания плохо справляется с регулированием напряжения и фильтрацией пульсаций, что именно?

Хотя блоки питания компьютеров выдают несколько напряжений постоянного тока (+12 В, + 3,3 В и + 5 В), это не все напряжения, необходимые компьютеру для работы.

Возьмем, к примеру, ЦП.ЦПУ использовали для работы с напряжением, полученным непосредственно от источника питания. Изначально + 5VDC. Со временем это напряжение было снижено до +3,3 В постоянного тока. Стремясь сделать процессоры более энергоэффективными, напряжение продолжало падать, и регуляторы напряжения на материнской плате должны были брать от источника питания + 3,3 В постоянного тока или +5 В постоянного тока и снижать эти напряжения до еще более низких напряжений. Естественно, можно было бы подумать, что преобразование одного напряжения в другое было бы более эффективным, если бы напряжения до и после были ближе друг к другу.Но по мере того, как процессоры становились быстрее, им требовалось больше энергии, но при более низких напряжениях. Сами процессоры были более эффективными, но не процесс преобразования этой мощности. Для большей мощности (ватт) при более низких напряжениях требуется больший ток. Более высокий ток без увеличения толщины провода и толщины следа увеличивает сопротивление. Затем сопротивление снижает напряжение и создает тепло, что является контрпродуктивным по той причине, по которой изначально были снижены напряжения ядра процессора! Решением стал стандарт ATX12V. К блоку питания был добавлен 4-контактный разъем питания, который обеспечивает питание +12 В постоянного тока, который затем был модернизирован до 8-контактного разъема питания, который мог подавать еще больший ток.С увеличением напряжения на VRM (модулях стабилизации напряжения) ЦП требуется меньший ток для подачи питания на материнскую плату. Конечно, с этой большей дельтой напряжений (между +12 В постоянного тока и напряжением ядра процессора) требуется более надежное регулирование напряжения на материнской плате.


В этой материнской плате используются радиаторы для пассивного охлаждения компонентов цепи стабилизации напряжения.

С новым процессором Haswell от Intel мы начнем видеть регулирование напряжения на самом процессоре.Это уменьшит ток питания на выводах, которые перемещают питание от дорожек материнской платы к ядру ЦП, и, следовательно, уменьшит количество выводов, необходимое для подачи этого питания. Это также позволит ЦП динамически масштабировать напряжение ЦП более эффективно, чем когда-либо прежде. Стабилизаторы напряжения в Haswell, безусловно, не сутулиться, когда дело доходит до эффективного преобразования напряжений, но это все еще не полностью заменяет функцию материнской платы по преобразованию и фильтрации +12 В от источника питания в более низкое напряжение, поскольку у Haswell есть входное напряжение. из 2.4 В постоянного тока.

То же самое и с вашими видеокартами. На самом деле графические процессоры — это просто небольшие процессоры. Черт возьми, в некоторых случаях, когда графические процессоры работают с частотой до 1 ГГц, они мощнее некоторых процессоров! Разъемы питания PCIe, выходящие из блока питания, подают +12 В на видеокарту, где регуляторы напряжения понижают напряжение до необходимого для графического процессора.


Два разъема питания PCIe подают напряжение +12 В на блок питания этой видеокарты, но графический процессор не использует +12 В. Сначала он должен преобразовать его в более низкое напряжение.

В спецификации ATX говорится, что источник питания может выдавать напряжение со стабилизацией и колебаниями в пределах определенного допуска. Пульсация может достигать 1% и при этом оставаться в пределах спецификации. Это означает, что пульсация на +12 В может достигать ± 120 мВ. Регулировка напряжения может достигать ± 5%. Это означает, что напряжение +12 В постоянного тока может достигать + 12,6 В или всего + 11,4 В, и это все еще находится в пределах спецификации ATX. Точно так же регулятор напряжения вашей материнской платы или видеокарты будет иметь аналогичный допуск по входному напряжению.Другими словами, если у вас есть VRM, который предназначен для преобразования +12 ВSC в + 2,4 В постоянного тока, этот VRM должен иметь возможность принимать напряжения до + 12,6 В постоянного тока или до + 11,4 В постоянного тока и при этом эффективно производить + 2,4 В постоянного тока. VRM имеет дополнительный допуск по скорости нарастания напряжения. Скорость нарастания напряжения — это, по сути, скорость, с которой напряжения меняются от одного к другому. Если напряжение упадет с +12 В постоянного тока до +11,99 В постоянного тока в течение микросекунды, ваша скорость нарастания составит 10 мВ / мкс. Чтобы поддерживать эти допуски, ваша материнская плата, видеокарты и другие компоненты также имеют некоторые индуктивности и конденсаторы для фильтрации напряжений между источником питания и VRM.

Итак, если все в пределах спецификации, нет проблем, не так ли?

Ну не так уж и много. Видите ли, поскольку эти компоненты регулируют напряжение, и чем больше им приходится для этого работать, тем они нагреваются. Это тепло не только тратится впустую, но и сокращает срок службы компонентов. И хотя полевые МОП-транзисторы регулятора напряжения часто пассивно охлаждаются радиаторами (по крайней мере, они есть на материнских платах высокого класса), конденсаторы — нет. И если полевые МОП-транзисторы не охлаждаются пассивно или их меньше (что может быть VRM с «меньшим количеством фаз»), то им придется больше работать, чтобы регулировать напряжение, и они будут работать еще сильнее.Нагрев плохо влияет на компоненты компьютера, поэтому любой способ решения проблемы является плюсом. Еще одна проблема с правильным регулированием напряжения и фильтрацией заключается в том, что они занимают место на печатной плате. Как я уже сказал в отношении источника питания: если вы хотите, чтобы пульсации были меньше, вам нужно иметь конденсаторы большего размера или больше. То же самое и со схемами стабилизации напряжения на материнских платах и ​​видеокартах. То же самое и с полевыми МОП-транзисторами. У вас может быть больше фаз для более чистой энергии, но если полевые МОП-транзисторы не способны передавать больший ток, дополнительные фазы не принесут вам никакой пользы.Но полевые МОП-транзисторы большей мощности, большее количество фаз, больше и больше конденсаторов — все это требует места. У нас не всегда достаточно места на материнской плате или видеокарте, чтобы отказаться от почти идеального регулирования напряжения на плате.

И еще есть эффекты пульсации при разгоне. Хотя ваши VRM могут хорошо регулировать напряжение, они не смогут избавиться от каждого бита пульсации, которая передается прямо на ваш процессор или графический процессор. Те из вас, кто занимается разгоном, знают, что вам обычно приходится увеличивать напряжение ядра процессора или графического процессора.Это связано с тем, что по мере того, как транзисторы в блоке обработки работают, регуляторы не могут включаться и выключаться с более высокой скоростью, необходимой для поддержания транзистора под напряжением при требуемом напряжении. Повышение напряжения фактически дает ЦП больше, чем ему нужно, но позволяет регуляторам давать ЦП то, что ему нужно, быстрее, чем когда это нужно. К несчастью, побочным продуктом этого является тепло (все снова начинает нагреваться, не так ли?). Если у вас есть какие-либо пульсации в этом напряжении Vcore, это помешает VRM подавать именно то напряжение, которое необходимо, когда транзисторы процессора работают с любой тактовой частотой, на которой вы пытаетесь их эксплуатировать.Решение этой проблемы состоит в том, чтобы использовать процессор с еще более высоким напряжением Vcore, чем действительно необходимо. Обратной стороной этого является … подождите … более высокая температура процессора.

Итак, подведем итог: лучший блок питания на самом деле продлит срок службы материнской платы и видеокарты, лучший разгон и даже более длительный срок службы вашего процессора и графического процессора. Это беспроигрышная ситуация!

Распутывание проводов: знакомство с блоком питания

Итак, вы проверили все, от материнской платы до дисковода для гибких дисков.Проблемы все еще возникают? Вы пробовали тестировать блок питания? В этом ежедневном исследовании Фэйт Вемпен вы узнаете, что искать.


Из всех компонентов ПК большинство технических специалистов меньше всего разбираются в блоке питания. Это прискорбно, потому что блоки питания не такие уж и сложные, и они часто становятся причиной загадочных проблем, которые трудно устранить. В этом Daily Drill Down я объясню некоторые основы источников питания, включая то, как они работают, какие типы доступны и как проверить правильность работы одного из них.

Принцип работы источника питания
Источник питания принимает настенный ток (120 В, 60 Гц переменного тока) и преобразует его в постоянное напряжение соответствующего уровня для различных компонентов ПК. В зависимости от компонента это может быть +3,3 В, + 5 В или +12 В. Вообще говоря, материнская плата и любые печатные платы используют + 3,3 В или + 5 В (новые материнские платы и процессоры имеют тенденцию к + 3,3 В, а старые — обычно + 5 В), а вентиляторы и дисководы используют +12 В.

Многие блоки питания также генерируют -5 В и -12 В, но эти отрицательные напряжения редко используются в современных системах, а некоторые из новых источников питания даже не обеспечивают поддержку -5 В.Поддержка -5V является частью стандарта ISA, но новые системы, производимые сегодня, обычно предназначены только для PCI, поэтому они не требуют этой поддержки.

Что делают провода
Вы когда-нибудь задумывались, почему на вилке от источника питания к материнской плате так много контактов и проводов разного цвета? Он предназначен для подачи сигналов питания разных напряжений на материнскую плату, которая затем передает их подключенным устройствам. Сама материнская плата использует только + 5В. На шину ISA подаются другие напряжения: -5 В на выводе B5, -12 В на выводе B7 и +12 В на выводе B9.Интегрированные последовательные порты в старых системах используют +12 В; в то время как в более новых системах они используют + 3,3 В или + 5 В. Все остальные разъемы, выходящие из источника питания, называемые разъемами Molex, предназначены для приводов и обеспечивают питание +12 В (желтый) и + 5 В (красный), а также два провода заземления (черный).

Типы блоков питания
Блоки питания продаются с двумя основными характеристиками: форм-фактором и мощностью. Мощность — это вольт, умноженный на амперы. Например, вы можете увидеть 250-ваттный блок питания в стиле ATX или 200-ваттный блок питания в стиле LPX.

Стиль LPX является потомком блоков питания типа Baby-AT, AT / Tower и AT / Desk и используется в основном с материнскими платами типа Baby-AT. Стиль ATX используется с материнскими платами в стиле ATX, Micro-ATX и NLX. Выбирая источник питания, вы должны убедиться, что он не только соответствует типу материнской платы (чтобы разъемы подходили), но и подходит ли он внутри корпуса, который вы используете. Источники питания в стиле LPX имеют два шестиконтактных разъема для подключения к материнской плате, а блоки питания в стиле ATX имеют один 20-контактный разъем.См. Таблица A и Таблица B для разбивки того, что делает каждый вывод.

Таблица A
ШТЫРЬ ЦЕЛЬ
P8-1 Power_Good (+ 5В)
P8-2 + 5В
P8-3 + 12В
P8-4 -12В
P8-5 Земля
P8-6 Земля
P9-1 Земля
P9-2 Земля
P9-3 -5В
P9-4 + 5В
P9-5 + 5В
P9-6 + 5В

Для блока питания типа LPX (компьютеры AT) есть два разъема: P8 и P9.У каждого из них по шесть контактов, и вы подключаете их к материнской плате так, чтобы черные провода были вместе.


Для блока питания типа ATX имеется один 20-контактный разъем, два ряда по десять проводов. Перечисленные здесь цвета являются частью стандарта ATX, но не обязательны, поэтому некоторые системы сторонних производителей могут отличаться.
Таблица B
ШТЫРЬ ЦЕЛЬ
Контакт 1 (оранжевый) +3.3В
Контакт 2 (оранжевый) + 3,3 В
Контакт 3 (черный) Земля
Контакт 4 (красный) + 5В
Контакт 5 (черный) Земля
Контакт 6 (красный) + 5В
Контакт 7 (черный) Земля
Контакт 8 (серый) Power_Good
Контакт 9 (фиолетовый) + 5VSB (в режиме ожидания)
Контакт 10 (желтый) + 12В
Контакт 11 (оранжевый или коричневый) +3.3В
Контакт 12 (синий) -12В
Контакт 13 (черный) Земля
Контакт 14 (зеленый) PS_On
Контакт 15 (черный) Земля
Контакт 16 (черный) Земля
Контакт 17 (черный) Земля
Пин 18 (белый) -5В
Контакт 19 (красный) + 5В
Контакт 20 (красный) + 5В

Обратите внимание, что в разъеме типа ATX все провода одного цвета имеют одинаковые напряжения или функции.Например, все красные провода — +5 В, а все черные провода — заземление.


Производители блоков питания предоставят вам спецификации по запросу для своих блоков питания, но типичный блок питания LPX на 250 Вт может выйти из строя следующим образом:
  • + 5 В — максимум 25 ампер (125 Вт)
  • + 12 В — Максимум 10 А (120 Вт)
  • -5 В — Максимум 0,5 А (2,5 Вт)
  • -12 В — Максимум 0,5 А (2,5 Вт)

Для 235-ваттного ATX вы можете увидеть примерно так:
  • + 5V — Максимум 22 А (110 Вт)
  • +3.3 В — максимум 14 ампер (46,2 Вт)
  • + 5 В и + 3,3 В вместе — максимум 125 Вт
  • + 12 В — максимум 8,0 ампер (96 Вт)
  • + -5 В — максимум 0,5 ампер (2,5 Вт)
  • -12 В — максимум 1 ампер (12 Вт)

Примечание
Обратите внимание, что для указанных выше характеристик комбинация + 5 В и + 3,3 В не может превышать 125 Вт. Это обеспечивает максимальную гибкость энергопотребления при сохранении ограничения в 235 Вт.

Не всегда легко получить данные о потребляемой мощности для различных компонентов в вашей системе, но вы можете использовать следующие приблизительные числа для консервативных расчетов.Эти числа представляют максимум для каждого компонента; реальная сумма розыгрыша, вероятно, будет меньше.
  • Материнская плата — 5 ампер +5 В или + 3,3 В и 0,7 ампер + 12 В.
  • Печатные платы
  • ISA — 2 ампера + 5 В и 0,175 В для +12 В.
  • Печатные платы PCI — 5 ампер +5 В, 0,5 ампер +12 В и 7,6 ампер + 3,3 В
  • Приводы компакт-дисков — 1 ампер + 5 В и 1 ампер +12 В
  • 3 œ ”дисководы для гибких дисков –0,5 А при +5 В и 1 А при +12 В
  • 5 Œ ”дисководы для гибких дисков — 1 А при + 5 В и 2 А при +12 В

Примечание
Когда привод раскручивается, ему требуется примерно вдвое больше обычной мощности +12 В, поэтому при расчете необходимого тока +12 В удвойте измерение.

Мощность блока питания означает максимальную мощность, на которую он способен. Чрезвычайно мощный источник питания в слабо нагруженной системе — пустая трата времени, потому что система потребляет только то, что ей нужно в виде ампер. Однако это не означает, что источник питания
высокого качества
является бесполезным. Высококачественные источники питания могут обеспечить более чистое и надежное питание системы и помочь уменьшить провалы и скачки тока в стене.

Есть много других показателей производительности источника питания, но это обычно не коммерческие характеристики.Если вы станете настоящим энтузиастом аппаратного обеспечения, вы также можете сравнить характеристики различных источников питания для таких функций, как MTBF, входной диапазон, пиковый пусковой ток, время задержки, переходная характеристика, защита от перенапряжения, максимальное и минимальное значение. ток нагрузки и так далее.

Что происходит при запуске компьютера?
Когда вы включаете ПК, блок питания запускается и ждет, пока не пройдут скачки или провалы при запуске и выходная мощность не стабилизируется. Затем он отправляет + 5 В через контакт 8 (на разъеме ATX) или контакт 1 на разъеме P8 (на блоке питания в стиле AT).Это называется сигналом Power_Good. Материнская плата ищет этот сигнал, и если она обнаруживает, что через вывод Power_Good проходит от + 3,0 В до + 6,0 В, она знает, что можно включить и начать использовать остальную мощность, поступающую через другие контакты. разъем питания к материнской плате.

Если материнская плата получает питание от других контактов, но правильное напряжение не поступает через вывод Power_Good, она ждет, непрерывно сбрасывая себя, пока не получит правильное напряжение на Power_Good.Эта система помогает предотвратить электрическое повреждение чувствительных компонентов из-за неисправного источника питания. Первоначальные разработчики ПК думали, что это очень консервативная система, которая гарантирует отсутствие проблем с питанием, но я объясню позже в этой статье, проблемы могут возникнуть в любом случае.

Источники питания в ПК — импульсные (в отличие от линейных). Из-за этого они не работают без нагрузки, то есть без какого-либо устройства, получающего от них энергию. Если вы включите блок питания, который ни к чему не подключен, он либо вообще не будет работать (в лучшем случае), если в него встроена схема защиты, либо он поджарится в течение нескольких секунд (в худшем случае), если он работает. нет.Поэтому при тестировании блоков питания к ним всегда должно быть что-то подключено, даже если это старая вышедшая из строя материнская плата и устаревший накопитель. Сколько вам нужно для подключения? Это зависит от возраста блока питания. В современных системах большинство материнских плат сами потребляют необходимый ток; но в старых системах или с более мощными блоками питания может также потребоваться подключение хотя бы одного диска.

Признаки неисправного источника питания
Неисправный источник питания может вызвать всевозможные проблемы, которые, по всей видимости, не связаны напрямую, что ведет менее опытного специалиста в безумную погоню за ошибками памяти, процессора, материнской платы и жесткого диска.Часто кажется, что проблема прыгает вокруг, например, проблема с памятью, которая каждый раз сообщает о другом адресе памяти как неисправный, или самопроизвольная перезагрузка через случайное количество времени. Существует три причины, по которым источник питания может вызвать проблему:

  1. Физический сбой —При отказе источника питания источник питания не вырабатывает номинальную мощность или выдает неправильное напряжение на некоторых проводах. Обычно ПК вообще не запускается, если такое условие существует.(См. Следующий раздел, чтобы определить, правильно ли работает блок питания.) Замена неисправного блока питания — лучшее решение, поскольку ремонт блоков питания может быть опасен для неопытных специалистов и редко бывает рентабельным.
  2. Перегрузка —При перегрузке источника питания не хватает мощности для поддержки всех подключенных к нему устройств. В системе с перегрузкой источника питания проблемы часто возникают при запуске, когда все диски раскручиваются, или при доступе к диску.(См. Предыдущий раздел, чтобы рассчитать, сколько мощности вам нужно в системе. Затем при необходимости замените блок питания на модель с более высокой мощностью.)
  3. Перегрев — Это происходит, когда вентилятор блока питания (или вентилятор охлаждения процессора) не выполняет свою работу надлежащим образом или когда поток воздуха в корпусе системы затруднен. Большинство компьютерных корпусов предназначены для подачи свежего воздуха через корпус через основные тепловыделяющие компоненты. Воздух, проходящий через ограниченное пространство, очень важен.Если снять крышку корпуса или оставить крышки пустых слотов закрытыми, воздух не будет течь должным образом, что может привести к перегреву. Если система запускается нормально, но через несколько минут работы у нее возникают проблемы, почти всегда проблема заключается в недостаточном охлаждении. Убедитесь, что на пути воздушного потока нет препятствий, что радиатор процессора или охлаждающий вентилятор находится на своем месте и работает, а вентилятор блока питания работает тихо и правильно.

Проверка источника питания
Для проверки источника питания вам понадобится цифровой мультиметр.Аналоговый тип со считыванием игольчатого типа может повредить компьютерные схемы. Мультиметр имеет два щупа: красный и черный. Прикоснитесь черным щупом к корпусу компьютера для заземления, а затем используйте красный щуп для проверки.

При тестировании блока питания необходимо проверить его на месте; показания, полученные при отключении от нагрузки, не будут точными. Разумеется, вы не можете отсоединять разъемы во время работы компьютера, поэтому для измерения необходимо использовать метод, называемый обратным зондированием.При обратном зондировании вы вставляете красный зонд в заднюю часть разъема и касаетесь провода внутри пластиковой заглушки.

Из диаграмм, приведенных ранее в этой статье, вы знаете, что различные провода источника питания должны проверять при напряжении. Первый провод, который нужно проверить, — это Power_Good; если оно находится в диапазоне от + 3В до +6В, вероятно, блок питания выполняет свою работу.

Замена блока питания
Заменить блок питания довольно просто. Просто открутите четыре винта, которые удерживают его в корпусе, и выдвиньте его; затем закрепите новый на месте.В блоке питания LPX (в стиле AT) выключатель питания прикреплен к блоку питания, поэтому вы должны отсоединить его от передней части корпуса, чтобы удалить старый блок питания, а затем закрепить выключатель нового блока питания на его месте. В блоке питания типа ATX нет подключенного блока питания; вместо этого провод идет от переключателя включения / выключения корпуса к контактам на материнской плате, и когда вы нажимаете кнопку питания, эти контакты замыкаются, давая команду материнской плате запустить компьютер. В блоке питания ATX питание материнской платы всегда включено, пока компьютер подключен.

Заключение
В этом ежедневном исследовании я попытался раскрыть некоторые тайны источников питания, объясняя по проводам, что происходит, и предоставляя некоторые стартовые точки для устранения проблем с питанием. В следующий раз, когда у вас возникнет непонятная проблема с оборудованием, не забудьте проверить источник питания!

Терминология по БП | Питание и охлаждение ПК

ДИАПАЗОН РАБОТЫ:

Минимальные и максимальные пределы входного напряжения, в пределах которых источник питания будет работать в соответствии со спецификациями.Рекомендуется использовать источник питания с широким диапазоном входного сигнала, когда напряжение в сети подвержено резким скачкам и перепадам напряжения.


ЭФФЕКТИВНОСТЬ:

Отношение выходной мощности к входной, выраженное в процентах.


EMI:

Электромагнитные помехи — это шум, возникающий при переключении источника питания. Кондуктивные электромагнитные помехи — часть, отраженная обратно в линию электропередачи, обычно контролируется сетевым фильтром.Излучаемые электромагнитные помехи, та часть, которая излучается в свободное пространство, подавляются заключением схемы в металлический корпус. FCC регулирует уровни кондуктивного и излучаемого излучения.


PFC:

Коэффициент мощности — это отношение реальной мощности (ватт) к полной мощности (вольт x ампер или ВА). Стандартный источник питания имеет коэффициент мощности 0,70–0,75, а источник питания с активной коррекцией коэффициента мощности (PFC) имеет коэффициент мощности 0,95–0,99. Блок питания с коррекцией коэффициента мощности лучше способен преобразовывать ток в мощность.Это приводит к более низкому пиковому току и более низкому гармоническому току, уменьшая нагрузку на проводку, автоматические выключатели и трансформаторы.


ВЫХОДНОЙ ТОК:

Максимальный ток, который может непрерывно потребляться от выхода источника питания. Материнские платы ПК и карты расширения потребляют ток 5 В. Приводные двигатели потребляют ток 12 В.


РЕГУЛИРОВАНИЕ НАГРУЗКИ:

Изменение выходного напряжения из-за того, что выходная нагрузка изменяется от минимума до максимума, при этом все остальные факторы остаются постоянными.Выражается в процентах от номинального выходного напряжения. Источник питания с жесткой регулировкой нагрузки обеспечивает оптимальное напряжение независимо от конфигурации системы.


РЕГУЛИРОВАНИЕ ЛИНИИ:

Изменение выходного напряжения из-за изменения входного напряжения при сохранении всех остальных факторов постоянными. Выражается в процентах от номинального выходного напряжения. Источник питания с жесткой регулировкой линии обеспечивает оптимальное напряжение во всем рабочем диапазоне.


ПЕРЕХОДНЫЙ ОТВЕТ:

Время, необходимое для того, чтобы выходное напряжение вернулось в пределы диапазона регулирования после изменения нагрузки на 50%.Блок питания с быстрым переходным откликом снизит риск ошибок чтения / записи во время доступа.


RIPPLE:

Величина переменного напряжения, накладываемого на выход постоянного тока, указывается в размах напряжения или выражается в процентах от номинального выходного напряжения. Блок питания с чистым выходом постоянного тока необходим для компьютеров с высокоскоростными процессорами и микросхемами памяти.


ВРЕМЯ ЗАДЕРЖКИ:

Период времени после потери входной мощности, в течение которого выходная мощность источника питания остается в указанных пределах.Адекватное время удержания позволяет компьютеру работать в течение времени переключения, требуемого ИБП.


МОЩНОСТЬ ХОРОШИЙ СИГНАЛ:

Схема задержки, используемая для инициализации компьютера и подачи логического сигнала при низком линейном напряжении.


ЗАЩИТА ОТ ПЕРЕНАПРЯЖЕНИЯ:

Цепь, отключающая источник питания, если выходное напряжение превышает указанный предел.


ЗАЩИТА ОТ ПЕРЕГРУЗКИ ПО ТОКУ:

Схема, защищающая блок питания и компьютер от чрезмерного тока, включая ток короткого замыкания.


УТВЕРЖДЕНИЕ АГЕНТСТВА:

UL, CSA и TUV — это агентства по безопасности, которые проверяют такие спецификации, как расстояние между компонентами, инсоляция HI-pot, токи утечки, воспламеняемость печатной платы и температурный рейтинг.


РАБОЧАЯ ТЕМПЕРАТУРА:

Диапазон температур окружающей среды, в котором источник питания может безопасно работать.


РЕЙТИНГ ВЕНТИЛЯТОРА:

Расход воздуха в кубических футах в минуту.Увеличение воздушного потока на 100% снизит рабочие температуры системы на 50% по сравнению с окружающей средой. С каждым снижением температуры на 10 ° C (18 ° F) срок службы системы удваивается. (Уравнение Аррениуса)


ШУМ:

Акустический шум в дБ (А) на расстоянии 1 метра. Логарифмическая шкала. Каждое уменьшение на 3 дБ означает уменьшение шума на 50%. Проблемы включают шаг и скорость лопастей вентилятора, размер ступицы, глубину Вентури, качество подшипников и расположение компонентов источника питания.


Среднее время безотказной работы:

Среднее время наработки на отказ. Измерение относительной надежности источника питания, основанное на фактических рабочих данных или рассчитанное в соответствии с MIL-HDBK-217.


Компьютерные блоки питания — iFixit

Блокам питания

не хватает гламура, поэтому почти все воспринимают их как должное. Это большая ошибка, потому что блок питания выполняет две важные функции: он обеспечивает регулируемое питание для каждого компонента системы и охлаждает компьютер.Многие люди, жалующиеся на частые сбои Windows, по понятным причинам винят Microsoft. Но, не извиняясь перед Microsoft, правда в том, что многие такие сбои вызваны некачественными или перегруженными источниками питания.

Если вам нужна надежная и безаварийная система, используйте высококачественный источник питания. Фактически, мы обнаружили, что использование высококачественного источника питания позволяет даже незначительным материнским платам, процессорам и памяти работать с разумной стабильностью, тогда как использование дешевого источника питания делает нестабильными даже первоклассные компоненты.

Печальная правда в том, что купить компьютер с первоклассным блоком питания практически невозможно. Производители компьютеров буквально считают гроши. Хорошие блоки питания не приносят маркетинговых очков, поэтому немногие производители готовы тратить от 30 до 75 долларов дополнительно на лучший блок питания. Для своих линий премиум-класса производители первого уровня обычно используют так называемые блоки питания среднего уровня. Для массового рынка, потребительского класса, даже известные производители могут пойти на компромисс с блоком питания, чтобы соответствовать цене, используя то, что мы считаем предельными блоками питания как с точки зрения производительности, так и с точки зрения качества конструкции.

В следующих разделах подробно описано, что вам нужно, чтобы понять, как выбрать хороший источник питания на замену.

Наиболее важной характеристикой источника питания является его форм-фактор , который определяет его физические размеры, расположение монтажных отверстий, типы физических разъемов и их расположение выводов и т. Д. Все современные форм-факторы блоков питания заимствованы из оригинального форм-фактора ATX , опубликованного Intel в 1995 году.

При замене блока питания важно использовать блок правильного форм-фактора, чтобы убедиться, что блок питания не только физически соответствует корпусу, но и обеспечивает правильные типы разъемов питания для материнской платы и периферийных устройств.В современных и новейших системах обычно используются три форм-фактора блоков питания:

Блоки питания ATX12V являются самыми большими физически, доступными в самых высоких номинальных мощностях и, безусловно, самыми распространенными. В полноразмерных настольных системах используются блоки питания ATX12V, как и в большинстве систем mini-, mid- и full-tower. Рисунок 16-1. показывает блок питания Antec TruePower 2.0, который является типичным устройством ATX12V.

Рисунок 16-1: Блок питания Antec TruePower 2.0 ATX12V (изображение любезно предоставлено Antec)

SFX12V (s-for-small) блоки питания выглядят как уменьшенные блоки питания ATX12V и используются в основном в системах microATX и FlexATX малого форм-фактора.Источники питания SFX12V имеют меньшую мощность, чем блоки питания ATX12V, обычно от 130 Вт до 270 Вт для SFX12V по сравнению с 600 Вт или более для ATX12V и обычно используются в системах начального уровня. Системы, которые были построены с блоками питания SFX12V, могут принять замену ATX12V, если блок ATX12V физически подходит для корпуса.

Блоки питания TFX12V (t-for-thin) физически удлинены (по сравнению с кубической формой блоков ATX12V и SFX12V), но имеют мощность, аналогичную блокам SFX12V.Источники питания TFX12V используются в некоторых системах малого форм-фактора (SFF) с общим объемом системы от 9 до 15 литров. Из-за их необычной физической формы вы можете заменить блок питания TFX12V только другим блоком TFX12V.

Хотя это менее вероятно, вы можете встретить источник питания EPS12V (используется почти исключительно в серверах), источник питания CFX12V (используется в системах microBTX) или источник питания LFX12V (используется в системах picoBTX). . Подробные спецификации для всех этих форм-факторов можно загрузить с http: // www.formfactors.org.

МОДИФИКАТОР 12 В

В 2000 году, чтобы удовлетворить требованиям своих новых процессоров Pentium 4 + 12В, Intel добавила новый разъем питания + 12В в спецификацию ATX и переименовала спецификацию в ATX12V. С тех пор каждый раз, когда Intel обновляла спецификацию блока питания или создавала новую, ей требовался этот разъем +12 В и использовался модификатор 12 В в названии спецификации. В старых системах используются блоки питания не-12V ATX ​​или SFX.Вы можете заменить блок питания ATX блоком ATX12V или блок питания SFX блоком SFX12V (или, возможно, ATX12V).

Изменения от старых версий спецификации ATX к более новым версиям и от ATX к более мелким вариантам, таким как SFX и TFX, были эволюционными, с учетом обратной совместимости. Все аспекты различных форм-факторов, включая физические размеры, расположение монтажных отверстий и кабельные разъемы, строго стандартизированы, что означает, что вы можете выбирать среди множества стандартных блоков питания для ремонта или модернизации большинства систем, даже более старых моделей.

ВСЕ ПОДХОДЯЩИЕ СОКЫ

При замене блока питания важно найти блок, который подходит для вашего случая. Если ваш старый блок питания имеет маркировку ATX 1.X или 2.X или ATX12V 1.X или 2.X, вы можете установить любой текущий блок питания ATX12V. Если он имеет маркировку SFX или SFX12V, вы можете установить любой текущий блок питания SFX12V или, если в корпусе достаточно свободного пространства, блок ATX12V. Если старый блок питания имеет маркировку TFX12V, подойдет только другой блок TFX12V.Если ваш старый блок питания не имеет маркировки с указанием спецификации и соответствия версии, поищите на веб-сайте производителя номер модели вашего текущего блока питания. Если все остальное не помогает, измерьте свой текущий блок питания и сравните его размеры с размерами блоков, которые вы собираетесь купить.

Вот еще несколько важных характеристик блоков питания:

Номинальная мощность, которую может выдать блок питания. Номинальная мощность — это составная цифра, определяемая путем умножения значений силы тока, доступной для каждого из нескольких напряжений, подаваемых блоком питания ПК.Номинальная мощность в основном полезна для общего сравнения источников питания. Что действительно важно, так это индивидуальная сила тока, доступная при разных напряжениях, которые значительно различаются между номинально аналогичными источниками питания.

ВОПРОСЫ ТЕМПЕРАТУРЫ

Номинальные значения мощности не имеют смысла, если они не указывают температуру, при которой проводился расчет. С повышением температуры выходная мощность источника питания уменьшается. Например, мощность ПК и охлаждение составляет 40 ° C, что является реальной температурой для рабочего источника питания.Большинство источников питания рассчитаны всего на 25 C. Эта разница может показаться незначительной, но источник питания, рассчитанный на 450 Вт при 25 C, может выдавать только 300 Вт при 40 C. Регулирование напряжения также может пострадать при повышении температуры, что означает, что источник питания, который номинально соответствует спецификациям регулирования напряжения при 25 ° C, может выходить за рамки технических требований при нормальной работе при 40 ° C или около того.

Отношение выходной мощности к входной, выраженное в процентах. Например, блок питания, который выдает мощность 350 Вт, но требует входной мощности 500 Вт, имеет КПД 70%.Как правило, хороший источник питания имеет КПД от 70% до 80%, хотя КПД зависит от того, насколько сильно он загружен. Расчет эффективности затруднен, поскольку блоки питания ПК — это импульсные блоки питания , а не линейные блоки питания . Самый простой способ подумать об этом — представить себе импульсный источник питания, потребляющий большой ток в течение части времени, в течение которого он работает, и не ток в остальное время. Процент времени, в течение которого он потребляет ток, называется коэффициентом мощности , который обычно составляет 70% для стандартного блока питания ПК.Другими словами, блок питания ПК мощностью 350 Вт фактически требует входной мощности 500 Вт в 70% случаев и 0 Вт в 30% случаев.

Сочетание коэффициента мощности с эффективностью дает некоторые интересные цифры. Блок питания выдает 350 Вт, но коэффициент мощности 70% означает, что ему требуется 500 Вт в 70% случаев. Однако эффективность 70% означает, что вместо того, чтобы фактически потреблять 500 Вт, он должен потреблять больше в соотношении 500 Вт / 0,7 или около 714 Вт. Если вы посмотрите на табличку с техническими характеристиками блока питания на 350 Вт, вы можете обнаружить, что это соответствует номинальной мощности 350 Вт, что составляет 350 Вт / 110 В или около 3.18 ампер, он должен фактически потреблять до 714 Вт / 110 В или около 6,5 ампер. Другие факторы могут увеличить эту фактическую максимальную силу тока, поэтому часто встречаются блоки питания мощностью 300 или 350 Вт, которые на самом деле потребляют максимум 8 или 10 ампер. Это отклонение имеет значение для планирования как для электрических цепей, так и для ИБП, размеры которых должны соответствовать фактическому потреблению тока, а не номинальной выходной мощности.

Высокая эффективность желательна по двум причинам. Во-первых, это снижает ваши счета за электроэнергию.Например, если ваша система фактически потребляет 200 Вт, блок питания с эффективностью 67% потребляет 300 Вт (200 / 0,67) для обеспечения этих 200 Вт, тратя впустую 33% электроэнергии, за которую вы платите. Блок питания с эффективностью 80% потребляет всего 250 Вт (200 / 0,80), чтобы обеспечить те же 200 Вт для вашей системы. Во-вторых, потраченная впустую энергия преобразуется в тепло внутри вашей системы. Благодаря источнику питания с КПД 67% ваша система должна избавиться от 100 Вт избыточного тепла по сравнению с половиной от этого показателя при использовании источника питания с КПД 80%.

Коэффициент мощности

Коэффициент мощности определяется делением истинной мощности (Вт) на полную мощность (Вольт x Ампер или ВА).Стандартные блоки питания имеют коэффициент мощности в диапазоне от 0,70 до 0,80, а лучшие блоки приближаются к 0,99. В некоторых новых источниках питания используется пассивная или активная коррекция коэффициента мощности (PFC) , которая может увеличить коэффициент мощности до диапазона от 0,95 до 0,99, уменьшая пиковый ток и ток гармоник. В отличие от стандартных источников питания, которые попеременно потребляют большой ток и его отсутствие, источники питания с коррекцией коэффициента мощности постоянно потребляют умеренный ток. Поскольку электрическая проводка, автоматические выключатели, трансформаторы и ИБП должны быть рассчитаны на максимальное потребление тока, а не на среднее потребление тока, использование источника питания PFC снижает нагрузку на электрическую систему, к которой подключается источник питания PFC.

Одно из главных различий между источниками питания премиум-класса и менее дорогими моделями заключается в том, насколько хорошо они регулируются. В идеале источник питания принимает питание переменного тока, которое может быть шумным или выходящим за рамки технических характеристик, и превращает эту мощность переменного тока в плавную, стабильную мощность постоянного тока без артефактов. На самом деле, ни один блок питания не соответствует идеалу, но хорошие блоки питания намного ближе, чем дешевые. Процессоры, память и другие компоненты системы рассчитаны на работу с чистым стабильным напряжением постоянного тока.Любое отклонение от этого может снизить стабильность системы и сократить срок службы компонентов. Вот ключевые вопросы регулирования:

Идеальный источник питания принимает входной синусоидальный сигнал переменного тока и обеспечивает полностью плоский выход постоянного тока. Реальные источники питания фактически обеспечивают выход постоянного тока с наложенной на него небольшой составляющей переменного тока. Эта составляющая переменного тока называется пульсацией и может быть выражена как размах напряжения (p-p) в милливольтах (мВ) или в процентах от номинального выходного напряжения.У высококачественного источника питания пульсации могут составлять 1%, что может быть выражено как 1%, или как фактическое изменение напряжения p-p для каждого выходного напряжения. Например, при +12 В пульсации 1% соответствуют + 0,12 В, обычно выражаемым как 120 мВ. Источник питания среднего уровня может ограничивать пульсации до 1% на некоторых выходных напряжениях, но подниматься до 2% или 3% на других. У дешевых блоков питания пульсация может составлять 10% и более, что делает запуск ПК бесполезным.

Нагрузка на блок питания ПК может значительно меняться во время рутинных операций; например, когда включается лазер записывающего устройства DVD или оптический привод раскручивается и замедляется. Регулировка нагрузки выражает способность источника питания обеспечивать номинальную выходную мощность при каждом напряжении при изменении нагрузки от максимального до минимального, выраженное как изменение напряжения во время изменения нагрузки, либо в процентах, либо в разностях размахов напряжения. Источник питания с жесткой регулировкой нагрузки обеспечивает напряжение, близкое к номинальному, на всех выходах независимо от нагрузки (конечно, в пределах своего диапазона). Первоклассный источник питания регулирует напряжения на шинах критического напряжения +3.3 В, + 5 В и + 12 В с точностью до 1%, с регулировкой 5% на менее важных шинах 5 В и 12 В. Отличный источник питания может регулировать напряжение на всех критических шинах с точностью до 3%. Источник питания среднего уровня может регулировать напряжение на всех критических шинах с точностью до 5%. Дешевые блоки питания могут отличаться на 10% и более на любой рейке, что недопустимо.

Идеальный источник питания должен обеспечивать номинальное выходное напряжение при любом входном переменном напряжении в пределах своего диапазона. В реальных источниках питания выходное напряжение постоянного тока может незначительно изменяться при изменении входного переменного напряжения.Так же, как регулирование нагрузки описывает эффект внутренней нагрузки, линейное регулирование можно рассматривать как описывающее эффекты внешней нагрузки; например, внезапный провал подаваемого сетевого напряжения переменного тока при включении двигателя лифта. Регулировка линии измеряется путем удержания всех других переменных постоянными и измерения выходных напряжений постоянного тока, когда входное напряжение переменного тока изменяется в пределах входного диапазона. Источник питания с жесткой регулировкой линии обеспечивает выходное напряжение в пределах спецификации, так как входное напряжение изменяется от максимального до минимально допустимого.Линейное регулирование выражается так же, как регулирование нагрузки, и допустимые проценты такие же.

Вентилятор блока питания является одним из основных источников шума в большинстве ПК. Если ваша цель — снизить уровень шума вашей системы, важно выбрать подходящий источник питания. Источники питания с пониженным уровнем шума Модели , такие как Antec TruePower 2.0 и SmartPower 2.0, Enermax NoiseTaker, Nexus NX, PC Power & Cooling Silencer, Seasonic SS и Zalman ZM, предназначены для минимизации шума вентилятора и могут быть основой системы, которая почти не слышна в тихой комнате. Бесшумные блоки питания , такие как Antec Phantom 350 и Silverstone ST30NF, вообще не имеют вентиляторов и почти полностью бесшумны (электрические компоненты могут немного гудеть). С практической точки зрения использование безвентиляторного источника питания редко дает много преимуществ. Они довольно дороги по сравнению с источниками питания с пониженным уровнем шума, а блоки с пониженным уровнем шума достаточно тихие, поэтому любой шум, который они производят, компенсируется шумом от вентиляторов корпуса, кулера ЦП, шума вращения жесткого диска и т. Д.

Полет с рельсов

Регулирование нагрузки на шине +12 В стало гораздо более важным, когда Intel поставила Pentium 4. В прошлом +12 В использовалось в основном для работы приводных двигателей. С Pentium 4 Intel начала использовать 12V VRM для обеспечения более высоких токов, которые требуются процессорам Pentium 4. Последние процессоры AMD также используют 12 В VRM для питания процессора. Блоки питания, совместимые с ATX12V, разработаны с учетом этого требования. Старые и / или недорогие блоки питания ATX, хотя они могут быть рассчитаны на достаточную силу тока на шине +12 В для поддержки современного процессора, могут не иметь надлежащих правил для правильной работы.

За последние несколько лет в источниках питания произошли некоторые существенные изменения, все из которых прямо или косвенно явились результатом повышенного энергопотребления и изменений напряжений, используемых современными процессорами и другими компонентами системы. При замене блока питания в старой системе важно понимать различия между старым блоком питания и существующими блоками, поэтому давайте кратко рассмотрим эволюцию блоков питания семейства ATX на протяжении многих лет.

В течение 25 лет каждый блок питания ПК снабжен стандартными разъемами питания Molex (жесткий диск) и Berg (дисковод для гибких дисков), которые используются для питания приводов и аналогичных периферийных устройств. Источники питания различаются типами разъемов, которые они используют для питания самой материнской платы. Первоначальная спецификация ATX определяла 20-контактный основной разъем питания ATX , показанный на рис. 16-2 . Этот разъем использовался всеми блоками питания ATX и ранними блоками питания ATX12V.

Рисунок 16-2: 20-контактный основной разъем питания ATX / ATX12V

20-контактный основной разъем питания ATX был разработан в то время, когда процессоры и память использовали + 3,3 В и + 5 В, поэтому для этого разъема определены многочисленные линии + 3,3 В и + 5 В. Контакты в корпусе разъема рассчитаны на ток не более 6 ампер. Это означает, что три линии + 3,3 В могут нести 59,4 Вт (3,3 В x 6 А x 3 линии), четыре линии + 5 В могут передавать 120 Вт, а одна линия + 12 В может передавать 72 Вт, что в сумме составляет около 250 Вт.

Этой установки было достаточно для ранних систем ATX, но поскольку процессоры и память стали более энергоемкими, разработчики систем вскоре поняли, что 20-контактный разъем обеспечивает недостаточный ток для более новых систем. Их первая модификация заключалась в добавлении вспомогательного разъема питания ATX , показанного на рис. 16-3 . Этот разъем, определенный в спецификациях ATX 2.02 и 2.03 и в ATX12V 1.X, но исключенный из более поздних версий спецификации ATX12V, использует контакты, рассчитанные на 5 ампер.Таким образом, его две линии + 3,3 В добавляют 33 Вт к пропускной способности + 3,3 В, а одна линия + 5 В добавляет 25 Вт к пропускной способности + 5 В, что в целом добавляет 58 Вт.

Рисунок 16-3: 6-контактный разъем вспомогательного питания ATX / ATX12V

Intel отказалась от разъема вспомогательного питания из более поздних версий спецификации ATX12V, поскольку он был излишним для процессоров Pentium 4. Pentium 4 использовал питание +12 В, а не + 3,3 В и + 5 В, которые использовались более ранними процессорами и другими компонентами, поэтому больше не было необходимости в дополнительных +3.3В и + 5В. Большинство производителей блоков питания прекратили предоставление разъема вспомогательного питания вскоре после поставки Pentium 4 в начале 2000 года. Если вашей материнской плате требуется разъем вспомогательного питания, это является достаточным доказательством того, что эта система слишком старая, чтобы ее можно было экономически модернизировать.

Хотя подключенное вспомогательное питание обеспечивало дополнительный ток + 3,3 В и + 5 В, оно никак не увеличивало ток +12 В, доступный для материнской платы, и это оказалось критически важным. Материнские платы используют VRM (модули регулятора напряжения) для преобразования относительно высоких напряжений, подаваемых блоком питания, в низкие напряжения, необходимые процессору.Более ранние материнские платы использовали VRM + 3,3 В или + 5 В, но повышенное энергопотребление Pentium 4 вынудило перейти на VRM + 12 В. Это создало серьезную проблему. Основной 20-контактный разъем питания может обеспечить мощность не более 72 Вт при напряжении +12 В, что намного меньше, чем требуется для питания процессора Pentium 4. Дополнительный разъем питания не добавил +12 В, поэтому потребовался еще один дополнительный разъем.

Intel обновила спецификацию ATX, включив новый 4-контактный разъем 12 В, названный + 12V Power Connector (или, случайно, разъем P4 , хотя последние процессоры AMD также используют этот разъем).В то же время они переименовали спецификацию ATX в спецификацию ATX12V, чтобы отразить добавление разъема +12 В. Разъем + 12В, показанный на , рис. 16-4, , имеет два контакта + 12В, каждый рассчитан на ток 8 ампер, что в сумме дает 192 Вт мощности + 12В, и два контакта заземления. Блок питания ATX12V с мощностью 72 Вт от +12 В, обеспечиваемой 20-контактным основным разъемом питания, может обеспечить до 264 Вт от +12 В, что более чем достаточно даже для самых быстрых процессоров.

Рисунок 16-4: 4-контактный разъем питания + 12В

Разъем питания +12 В предназначен для подачи питания на процессор и подключается к разъему на материнской плате рядом с разъемом процессора, чтобы минимизировать потери мощности между разъемом питания и процессором.Поскольку теперь процессор питался от разъема +12 В, Intel удалила вспомогательный разъем питания, когда выпустила спецификацию ATX12V 2.0 в 2000 году. С того времени все новые блоки питания поставлялись с разъемом +12 В, а некоторые до сих пор продолжают для подключения вспомогательного силового разъема.

Эти изменения с течением времени означают, что блок питания в более старой системе может иметь одну из следующих четырех конфигураций (от самой старой до новейшей):

  • 20-контактный только основной разъем питания
  • 20-контактный основной разъем питания и 6-контактный вспомогательный разъем питания
  • 20-контактный основной разъем питания, 6-контактный вспомогательный разъем питания и 4-контактный разъем +12 В
  • 20 -контактный основной разъем питания и 4-контактный разъем +12 В

Если материнская плата не требует 6-контактного вспомогательного разъема, вы можете использовать любой текущий блок питания ATX12V для замены любой из этих конфигураций.

Это подводит нас к нынешней спецификации ATX12V 2.X, которая внесла больше изменений в стандартные разъемы питания. Введение видеостандарта PCI Express в 2004 году снова подняло старую проблему: ток +12 В, доступный на 20-контактном основном разъеме питания, ограничен до 6 ампер (или 72 Вт в сумме). Разъем +12 В может обеспечить достаточный ток +12 В, но он предназначен для процессора. Быстрая видеокарта PCI Express может легко потреблять более 72 Вт тока +12 В, поэтому нужно что-то делать.

Intel могла бы представить еще один дополнительный разъем питания, но вместо этого она решила на этот раз укусить пулю и заменить устаревший 20-контактный основной разъем питания новым основным разъемом питания, который может подавать больше тока +12 В на материнскую плату. Результатом стал новый 24-контактный разъем основного питания ATX12V 2.0 , показанный на рис. 16-5 .

Рисунок 16-5: 24-контактный основной разъем питания ATX12V 2.0

24-контактный основной разъем питания добавляет четыре провода к 20-контактному основному разъему питания, один провод заземления (COM) и один дополнительный провод для +3.3В, + 5В и + 12В. Как и в случае 20-контактного разъема, контакты внутри корпуса 24-контактного разъема рассчитаны на ток не более 6 ампер. Это означает, что четыре линии + 3,3 В могут нести 79,2 Вт (3,3 В x 6 А x 4 линии), пять линий + 5 В могут нести 150 Вт, а две линии + 12 В могут нести 144 Вт, что в сумме составляет около 373 Вт. С мощностью 192 Вт от +12 В, обеспечиваемой разъемом питания + 12 В, современный блок питания ATX12V 2.0 может обеспечить в общей сложности около 565 Вт.

Казалось бы, 565 Вт хватит для любой системы.Увы, неправда. Проблема, как обычно, в том, какие напряжения и где доступны. 24-контактный основной разъем питания ATX12V 2.0 выделяет одну из своих линий +12 В для видеосигнала PCI Express, что на момент выпуска спецификации считалось достаточным. Но самые быстрые современные видеокарты PCI Express могут потреблять намного больше, чем может обеспечить выделенная линия +12 В 72 Вт. Например, у нас есть видеоадаптер NVIDIA 6800 Ultra с пиковым потреблением +12 В, равным 110 Вт.

Очевидно, были необходимы какие-то средства обеспечения дополнительной энергии.Некоторые сильноточные видеокарты AGP решают эту проблему, включая разъем жесткого диска Molex, к которому можно подключить стандартный кабель питания для периферийных устройств. Видеокарты PCI Express используют более элегантное решение. 6-контактный разъем питания PCI Express для графической подсистемы , показанный на рис. 16-6 , был разработан PCISIG (http://www.pcisig.org), организацией, отвечающей за поддержание стандарта PCI Express, специально для обеспечения дополнительных Ток +12 В, необходимый для быстрых видеокарт PC Express.Хотя он еще не является официальной частью спецификации ATX12V, этот разъем хорошо стандартизирован и присутствует в большинстве современных источников питания. Мы ожидаем, что он будет включен в следующее обновление спецификации ATX12V.

Рисунок 16-6: 6-контактный разъем питания графического адаптера PCI Express

В разъеме питания графического адаптера PCI Express используется штекер, аналогичный разъему питания +12 В, с контактами, также рассчитанными на ток 8 А. С тремя линиями +12 В на 8 ампер каждая, разъем питания графического адаптера PCI Express может обеспечить до 288 Вт (12 x 8 x 3) тока +12 В, которого должно хватить даже для самых быстрых графических карт будущего.Поскольку некоторые материнские платы PCI Express могут поддерживать двойные видеокарты PCI Express, некоторые блоки питания теперь включают два графических разъема PCI Express, что увеличивает общую мощность +12 В, доступную для видеокарт, до 576 Вт. В дополнение к 565 Вт, доступным на 24-контактном основном разъеме питания и разъеме + 12 В, это означает, что можно построить источник питания ATX12V 2.0 с общей мощностью 1141 Вт. (Самый большой из известных нам — это блок мощностью 1000 Вт, доступный от PC Power & Cooling.)

Со всеми изменениями, произошедшими с годами, разъемы питания устройств остались без внимания.Источники питания, выпущенные в 2000 году, включали те же разъемы питания Molex (жесткий диск) и Berg (дисковод для гибких дисков), что и блоки питания 1981 года. Ситуация изменилась с появлением Serial ATA, в котором используется другой разъем питания. 15-контактный разъем питания SATA , показанный на Рис. 16-7 , включает шесть контактов заземления и по три контакта для + 3,3 В, + 5 В и + 12 В. В этом случае большое количество выводов, находящихся под напряжением, не предназначено для поддержки более высокого тока, жесткий диск SATA потребляет небольшой ток, и каждый диск имеет свой собственный разъем питания, но для поддержки включения перед разрывом и прерывания перед включением. соединения, необходимые для горячего подключения или подключения / отключения привода без отключения питания.

Рисунок 16-7: Разъем питания Serial ATA ATX12V 2.0

Несмотря на все эти изменения на протяжении многих лет, спецификация ATX значительно улучшила обратную совместимость новых блоков питания со старыми материнскими платами. Это означает, что, за очень немногими исключениями, вы можете подключить новый блок питания к старой материнской плате или наоборот.

ОСТЕРЕГАЙТЕСЬ СТАРЫХ СИСТЕМ DELL

В конце 1990-х годов в течение нескольких лет Dell использовала стандартные разъемы на своих материнских платах и ​​блоках питания, но с нестандартными контактами.Подключение стандартного блока питания ATX к одной из этих нестандартных материнских плат Dell (или наоборот) может привести к повреждению материнской платы и / или блока питания. К счастью, эти системы настолько устарели, что их уже нельзя модернизировать с экономической точки зрения. Тем не менее, если вы обнаружите, что заменяете блок питания или материнскую плату в более старой системе Dell, будьте абсолютно уверены, что это не одно из нестандартных устройств Dell. Для этого проверьте номер модели системы на веб-сайте PC Power & Cooling (http: // www.pcpowerandcooling.com). PC Power & Cooling продает запасные блоки питания для этих нестандартных систем Dell, но, учитывая, что самая молодая такая система сейчас довольно старая, можно только догадываться, как долго PC Power & Cooling будет продолжать продавать эти нестандартные блоки питания.

Даже изменение основного разъема питания с 20 на 24 контакта не представляет проблемы, потому что новый разъем сохраняет те же соединения контактов и шпонку для контактов с 1 по 20, а просто добавляет контакты с 21 по 24 на конец более старого 20- расположение контактов.Как показано на рис. 16-8 , старый 20-контактный разъем питания идеально подходит для 24-контактного разъема основного питания. Фактически, разъем главного разъема питания на всех 24-контактных материнских платах, которые мы видели, разработан специально для подключения 20-контактного кабеля. Обратите внимание на выступ во всю длину на гнезде материнской платы на рис. 16-8 , который предназначен для фиксации 20-контактного кабеля на месте.

Рисунок 16-8: 20-контактный основной разъем питания ATX, подключенный к 24-контактной материнской плате

Разумеется, на 20-контактном кабеле лишних +3 нет.Провода 3 В, + 5 В и + 12 В, имеющиеся на 24-контактном кабеле, могут вызвать потенциальную проблему. Если материнской плате для работы требуется дополнительный ток, доступный на 24-контактном кабеле, она не сможет работать с 20-проводным кабелем. В качестве обходного пути большинство 24-контактных материнских плат имеют стандартный разъем Molex (жесткий диск) где-то на материнской плате. Если вы используете эту материнскую плату с 20-жильным кабелем питания, вы также должны подключить кабель Molex от источника питания к материнской плате. Этот кабель Molex обеспечивает дополнительные + 5 В и + 12 В (но не +3.3 В), необходимое материнской плате для работы. (Большинство материнских плат не имеют требований к напряжению + 3,3 В выше, чем может удовлетворить 20-жильный кабель; те, которые имеют, могут использовать дополнительный VRM для преобразования некоторых дополнительных +12 В, подаваемых через разъем Molex, в + 3,3 В.)

Поскольку 24-контактный основной разъем питания ATX является расширенным набором 20-контактной версии, также можно использовать 24-контактный блок питания с 20-контактной материнской платой. Для этого вставьте 24-контактный кабель в 20-контактный разъем так, чтобы четыре неиспользуемых контакта свисали с края.Кабель и гнездо материнской платы имеют ключ для предотвращения неправильной установки кабеля. Одна из возможных проблем проиллюстрирована на рисунке , рис. 16-9, . На некоторых материнских платах конденсаторы, разъемы или другие компоненты помещаются так близко к разъему основного питания ATX, что недостаточно свободного места для дополнительных четырех контактов 24-контактного кабеля питания. На рис. 16-9 , например, эти дополнительные контакты вторгаются во вторичный разъем ATA.

Рисунок 16-9: 24-контактный основной разъем питания ATX, подключенный к 20-контактной материнской плате

К счастью, есть простой способ решения этой проблемы.Различные компании производят переходные кабели с 24 на 20 контактов, подобные показанному на Рисунок 16-10 . 24-контактный кабель от источника питания подключается к одному концу кабеля (левый конец на этом рисунке), а другой конец представляет собой стандартный 20-контактный разъем, который подключается непосредственно к 20-контактному разъему на материнской плате.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *