Site Loader

Закон Ома для участка и полной замкнутой цепи

В 1826 г. немецкий ученый Георг Ом экспериментально установил прямую пропорциональную зависимость между силой тока I в проводнике и напряжением U на его концах: , гдеG — электрическая проводимость проводника. Величина, обратная проводимости называется электрическим сопротивле­ни­ем проводника R. Таким образом, закон Ома для участка цепи, не содержа­щего источника э.д.с., имеет вид . Учитывая, что в общем случае участок цепи может содержать и э.д.с.,закон Ома следует представить в виде .

Сопротивление проводника зависит от его размеров, формы и материала, из которого он изготовлен. Для однородного линейного проводника

, гдеl — длина, S — площадь поперечного сечения проводника,  — удельное электриче­с­кое сопротивление, зависящее от материала, из которого изготовлен проводник. Единица сопротивления 1 Ом — это сопротивление такого проводника, в котором при напряжении 1В течет ток в 1А.

Если цепь замкнута, то ,, гдеR — общее сопротивление всей цепи, включая сопротивление источника э.д.с. Тогда

закон Ома для замкнутой цепи следует записать , где — алгебраическая сумма всех э.д.с., имеющихся в этой цепи.

Принято называть сопротивление источника тока r — внутренним, а сопротив­ление всей остальной цепи R — внешним. Окончательный вид формулы закона Ома для замкнутой цепи . В системе единиц СИ напряжение и э.д.с. изме­ряются в Вольтах (В), сопротив­ление — в Омах (Ом), удельное электрическое сопротивление — в Ом-метрах (Омм), электрическая проводимость в Сименсах (См).

Рис.2.1. Отрезок проводни­ка.

Закон Ома можно записать и для плотности тока. Рассмотрим участок электрической длиной dl и поперечным сечением dS (рис.2.1). Сила тока на этом участке , сопротивление, падение на­пряжения
, где Е — напряженность электрического поля в проводнике. Под­ставив эти параметры в закон Ома для участка цепи, получим. Отсюдаили, гдеудельная электрическая проводи­мость проводника или удельная электропроводность. В векторном виде имеем
(единицей измерения в системе СИ является сименс на метр (См/м)). Полученное выражение есть закон Ома в дифференциальной форме : плот­ность тока в любой точке внутри проводника прямо пропорциональна напря­женности поля в этой точке.

1.14 Сопротивление проводника. Явление сверхпроводимости.

Способность вещества проводить ток характеризуется его удельной проводи­мостью , либо удельным сопротивлением . Их величина определяется химичес­кой природой проводника и условиями, в частности температурой, при которой он находится. Для большинства металлов  растет с температурой приблизительно по линейному закону:

,— удельное сопротивление при 0С, t — температура по шкале Цельсия,  — темпе­ра­турный коэффициент сопротивления близкий к 1/273 К-1 при не очень низких темпе­ратурах. Так как R, то , где— сопротивление при 0С. Преобра­зовав две последние формулы, можно записать и
, где Т – температура по Кельвину. На основе температурной зависимости сопротивления метал­лов созда­нытермометры сопротивления — термисторы, позволяющие определять температуру с точно­стью до 0.003 К.

При низких температурах нарушается линейность зависимости сопротивления металлов от температуры и при температуре 0 К наблюдается остаточное сопротивление Rост. Величина Rост зави­сит от чистоты материала и наличия в нем механических напряжений. Лишь у иде­ально чистого металла с идеально правильной кристаллической решеткой Rост 0 при Т0 (пунктирная часть кривой).

Кроме этого, в 1911 г. Г.Каммерлинг-Оннес обнару­жил, что при Тк = 4.1К сопротивление ртути скачкообразно уменьшается практически до нуля. Эта температура была названа критической, а наблюдаемое яв­ление — сверхпроводимостью. Впо­следствии этот эффект был обнаружен у целого ряда дру­гих металлов (Ti, Al, Pb, Zn, V и др.) и их спла­вов в интервале температур 0.14-20 К. Вещества в сверхпроводящем состоянии обладают необычными свойствами. Однажды возбужденный в них ток может длительно существовать без источника тока. Переход в сверхпроводящее состояние сопровождается скачкообразным изме­нением теплоемкости, теплопроводности, маг­нитных свойств вещества. Выясни­лось, что внешнее магнитное поле не проникает в толщи­ну сверхпроводника, т.е. магнитная индукция внутри него всегда равна нулю. Явление сверхпроводимости объясняется на основе квантовой теории. К настоящему времени это явление обнаружено также у ряда композиционных веществ (например, соединений металлов и диэлектриков), при этом критическая температура доходит до температуры сжижения азота, что позволяет достаточно экономично использовать явление высокотемпературной сверхпроводимости в инженерной практике. Данное явление позволяет создавать: системы передачи без потерь электрического тока по проводам из таких веществ, системы для накопления электроэнергии, мощные электромагниты, магнитные подвески для различных целей.

1.15 Работа и мощность тока, закон Джоуля-Ленца.

Определим работу, совершаемую постоянным током в проводнике, имеющем сопротивление R и находящемся под напряжением . Так как ток пред­ставляет собой перемещение зарядаq под действием поля, то работу тока можно оп­ределить по формуле . Учитывая формулуи закон Ома, получим

, или, или, гдеt — время протекания тока. Поделив обе части равенства на t, получим выраже­ния для мощности постоянного тока N

, ,. Работа тока в системе единиц СИ измеряется в доулях (Дж), а мощность — в ваттах (Вт). На практике применяются также внесистемные единицы работы тока: ватт-час (Втч) и киловатт-час (кВтч). 1Втч — работа тока мощностью 1Вт в течение одного часа. 1Втч=3.610

3 Дж.

Опыт показывает, что ток всегда вызывает некоторое нагревание проводника. Нагревание обусловлено тем, что кинетическая энергия движущихся по проводнику электронов (т.е. энергия тока) при каждом их столкновении с ионами металличе­ской решетки переходит в теплоту Q. Если ток идет по неподвижному металличе­скому проводнику, то вся работа тока расходуется на его нагревание и, следуя за­кону сох­ранения энергии, можно записать

. Данные соотношения выражаютзакон Джоуля-Ленца. Впервые этот закон был установлен опытным путем Д.Джоулем в 1843 г. и независимо от него Э.Ленцем в 1844 г. Применение теплового действия тока в технике началось с открытия в 1873 г. русским инженером А.Ладыгиным лампы накаливания.

На тепловом действии тока основан целый ряд электрических приборов и ус­та­новок: тепловые электроизмерительные приборы, электропечи, электросварочная аппаратура, бытовые электронагревательные приборы — чайники, кипятильники, утюги. В пищевой промышленности широко применяется метод электроконтактного нагрева, заключающийся в том, что электрический ток, проходя через продукт, об­ла­дающий определенным сопротивлением, вызывает его равномерное нагревание. На­пример, для производства колбасных изделий через дозатор фарш поступает в формы, торцевые стенки которых служат электродами. При такой обработке обес­пе­чивается равномерность нагрева по всему объему продукта, возможность под­держа­ния определенного температурного режима, наивысшая биологическая цен­ность из­делия, наименьшие длительность процесса и расход энергии.

Определим удельную тепловую мощность тока , т.е. количество теплоты, вы­деляющееся в единице объема за единицу времени. Выделим в проводнике элемен­тарный цилиндрический объем dV с поперечным сечением dS и длиной dl параллель­ной направлению тока, и сопротивлением ,. По закону Джоуля-Ленца, за времяdt в этом объеме выделится теплота . Тогдаи, используя закон Ома для плотности токаи соотно­шение, получим. Эти соотношения выражаютзакон Джоуля-Ленца в дифференциальной форме.

1.16. Правило Кирхгофа для разветвленных электрических цепей.

До сих пор нами рассматривались простейшие электрические цепи, состоя­щие из одного замкнутого неразветвленного контура. На всех его участках силы тока оди­наковы. Расчет I, R,  в такой цепи выполняется с помощью законов Ома.

Рис.2.2.Разветвленная электрическая цепь.

Более сложной является разветвленная электри­ческая цепь, состоящая из нескольких замкнутых кон­ту­ров, имеющих общие участки. В каждом контуре мо­жет быть несколько источников тока. Силы тока на от­дельных участках замкнутого контура могут быть раз­личными по величине и направлению (рис.2.2). В 1847 г. Г.Кирхгоф сформулировал два правила, значительно упрощающих расчет разветвленных цепей.

Первое правило Кирхгофа: алгебраическая сумма сил токов в узле равна нулю: .Узел — точка цепи, в которой сходятся не менее трех про­водников. В электрической цепи на рис.2.2 имеются два узла А и В. Ток, входящий в узел, считается положительным, выходящий — отрицательным. Например, для узла А первое правило Кирх­гофа следует записать .

Первое правило выражает закон сохранения электрического заряда, так как ни в одной точке цепи они не могут возникать или исчезать.

Второе правило Кирхгофа относится к любому замкнутому контуру, выде­ленному в разветвленной цепи: алгебраическая сумма произведений токов на со­противления, включая и внутренние, на всех участках замкнутого контура равна алгебраической сумме электродвижущих сил, встречающихся в этом контуре . Контур ‑ это замкнутый участок схемы, по которому можно пройти и вернуться в исходную точку. Второе правило Кирхгофа получается из закона Ома, записанного для всех участков от узла до узла (ветвей) разветвленной схемы. В электрической цепи на рис.2.2 имеются три контура:AMNBA, CABDC, CMNDC. При этом, токи Ii в ветвях контура, совпадающие с произвольно вы­бран­ным направлением обхода контура, считаются положительными, а направлен­ные на­встречу обхода — отрицательными. Э.д.с., проходимые от «+» к «-» считаются поло­жительными и наоборот. В рассматриваемой элек­трической цепи (рис.2.2) выберем обход контуров по часовой стрелке и запишем для них уравнения по II правилу Кирхгофа: для AMNBА ; дляCABDС ; дляCMNDС . В данном примере внутренними сопротивлениями источников тока пренебрегаем. Первое и второе правила Кирхгофа по­зволяют составить систему линейных алгебраичес­ких уравнений, которые связывают пара­метры (I, R, ) и позволяют, зная одни, найти другие.

Рис.2.3. а) Последовательное соеди­нение сопротивлений; б) Параллельное соединение со­противлений.

Простые электрические цепи имеют очень большое практическое применение. В повседневной жизни полезно знать, как под­ключить динамики или проигрыватель к сте­реосистеме, как подсоединить сигнализацию для охраны или автомобильный кас­сетный проигрыватель, как зарядить аккумуляторы или осветить новогоднюю елку.

Большинство электрических цепей содержит комбинацию последовательно или параллельно подключенных резисторов (резистор — это элемент цепи, обла­дающий только сопротивлением). Полное сопротивление участка цепи оп­ределяется отношением падения на­пряжения на нем к величине силы тока . При последовательном соединении (рис.2.3 а) через все резисторы течет один и тот же ток. При параллельном соединении (рис.2.3 б) полный ток равен сумме токов, те­кущих в отдельных резисторах.

При последовательном соединении падение на­пряже­ния на участке АВ равно , т.е. сумме падений напряжения на трех резисторах. Разделим обе части равенства наI и получим , т.е.. Таким образом, полное сопротивление участка цепи, состоящего из последо­ва­тельно соединенных резисторов, равно их алгебраической сумме.

При параллельном соединении (рис..2.3 б) мы имеем . Разделим обе части равенства наU, где U — падение напряжения на участке цепи АВ, причем , и получим. Из этого равенства следует. Величина обратная полному сопротивлению параллельно соединенных резис­торов равна алгебраической сумме величин их обратных сопротивлений.

В электрическую цепь может быть включено регулируемое (изменяющееся с помощью специального движка), сопротивление, которое называется реостатом. По назначению реостаты делятся на пусковые, служащие для ограничения силы тока во время пуска двигателей, и регулирующие — для регулировки силы тока в цепи (по­степенное снижение освещенности в театральных залах), регулировки скорости вращения электродвигателей и т.д. Реостат может быть использован в качестве так называемого датчика пере­мещения. В автоматических регуляторах уровня жидкос­ти в резервуарах применя­ется поплавково-реостатный датчик. Специальный поплавок крепится к движку реостата. Изменение уровня жидкости сдвигает поплавок, изменя­ет сопротивление реостата, и следовательно, силы тока в цепи, величина которого дает информацию об уровне.

Закон Ома для замкнутой цепи

На рисунке 2 показана простейшая замкнутая цепь, состоящая из реального источника э.д.с. Е, имеющего внутреннее сопротивлениеRвти нагрузочного резистора с сопротивлениемR(сопротивление соединительных проводов включено в сопротивлениеRрезистора).

Закон Ома для замкнутой цепиформулируется следующим образом:сила тока (ток, величина тока) прямо пропорциональна электродвижущей силе (э.д.с.) источника и записывается в виде:

(4)

где – коэффициент пропорциональности.

П

(4а)

ерепишем равенство (4) в виде

и введем обозначение U=IR– напряжение на выходных зажимах источника э.д.с. (генератора), которое одновременно является падением напряжения, создаваемым токомIна внешнем сопротивленииRнагрузочного резистора.

П

(5)

одставив это обозначение в правую часть равенства (4а), можно получить следующую зависимость:

,

которая представляет собой аналитическое выражение внешней характеристики источника э.д.с. Эту зависимость можно сокращенно записать в видеU = F(I) при E = const, Rвт = const. Внешней характеристикой принято называть графическую зависимость U = F(I), показанную на рисунке 3.

Сплошной линией показана внешняя характеристика реального источника э.д.с., в котором с ростом тока I увеличивается падение напряжения на внутреннем сопротивлении IRвт, в результате чего с ростом тока выходное напряжение источника U уменьшается. Пунктирной линией на рисунке 3 показана внешняя характеристика идеального источника э.д.с., у которого отсутствует внутреннее сопротивление (Rвт = 0), а, следовательно, и внутреннее падение напряжения (IRвт = 0). В результате равенство (5) принимает вид

(5а)

,

и характеристика представляет собой горизонтальную линию. Такой идеальный источник называют источником (генератором) бесконечной мощности, поскольку он гарантирует постоянство напряжения при сколь угодно больших токах нагрузки.

Закон Ома для участка цепи, содержащего источник э.Д.С. (обобщенный закон Ома)

На рисунках 4а и 4б показаны одинаковые участки, содержащие последовательно включенные резистор R и источник э.д.с. Е, по которым протекает ток I одного и того же направления. Что касается источников, то э.д.с. в схеме на рисунке 4а совпадает с направлением тока, а на рисунке 4б – действует встречно с током.

Рис. 4

К

(6)

ак известно,под напряжением Uна участке цепипонимают разность электрических потенциаловφмежду крайними точками этого участка (аисна рисунке 4). Ток всегда течет от более высокого потенциала к более низкому потенциалу. Поскольку ток в обоих случаях (рис. 4а и 4б) направлен от точкиак точкес, то напряжение

Выразим более высокий потенциал точки ачерез потенциал точкис. При перемещении (рис. 4а) от точкиск точкеb(встречно к направлению э.д.с. Е) потенциал точкиbоказывается ниже потенциала точкисна величину э.д.с. Е, то есть. Применительно к схеме на рисунке 4б потенциал точкиbбудет выше на величину э.д.с. Е, то есть. Поскольку потенциал точкиавыше потенциала точкиbна величину падения напряженияIRна резисторе с сопротивлениемR, то.

Таким образом, для рисунка 4а: , а для рисунка 4б:.

Соответственно напряжение между границами аисучастка:

;

.

Решив равенства (6а) и (6б) относительно тока, получим обобщенный закон Ома (закон Ома для участка цепи, содержащего источник э.д.с.):

;

.

В общем случае

(7)

В частном случае, когда э.д.с. отсутствует (Е = 0) уравнение (7) превращается в закон Ома для участка цепи, не содержащего э.д.с. (1).

Т. Закон Ома — PhysBook

Закон Ома для замкнутой цепи

Замкнутая цепь (рис. 2) состоит из двух частей — внутренней и внешней. Внутренняя часть цепи представляет собой источник тока, обладающий внутренним сопротивлением r; внешняя — различные потребители, соединительные провода, приборы и т.д. Общее сопротивление внешней части обозначается R. Тогда полное сопротивление цепи равно r + R.

Рис. 2

По закону Ома для внешнего участка цепи 1 → 2 имеем:

\(~\varphi_1 — \varphi_2 = IR .\)

Внутренний участок цепи 2 → 1 является неоднородным. Согласно закону Ома, \(~\varphi_2 — \varphi_1 + \varepsilon = Ir\). Сложив эти равенства, получим

\(~\varepsilon = IR + Ir . \qquad (1)\)

Отсюда

\(~I = \frac{\varepsilon}{R + r} . \qquad (2)\)

Последняя формула представляет собой закон Ома для замкнутой цепи постоянного тока. Сила тока в цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи.

Так как для однородного участка цепи разность потенциалов есть напряжение, то \(~\varphi_1 — \varphi_2 = IR = U\) и формулу (1) можно записать:

\(~\varepsilon = U + Ir \Rightarrow U = \varepsilon — Ir .\)

Из этой формулы видно, что напряжение на внешнем участке уменьшается с увеличением силы тока в цепи при ε = const.

Подставим в последнюю формулу силу тока (2), получим

\(~U = \varepsilon \left( 1 — \frac{r}{R + r} \right) .\)

Проанализируем это выражение для некоторых предельных режимов работы цепи.

а) При разомкнутой цепи (R → ∞) U = ε, т.е. напряжение на полюсах источника тока при разомкнутой цепи равно ЭДС источника тока.

На этом основана возможность приблизительного измерения ЭДС источника тока с помощью вольтметра, сопротивление которого много больше внутреннего сопротивления источника тока (\(~R_v \gg r\)). Для этого вольтметр подключают к клеммам источника тока.

б) Если к клеммам источника тока подключить проводник, сопротивление которого \(~R \ll r\), то R + rr, тогда \(~U = \varepsilon \left( 1 — \frac{r}{r} \right) = 0\) , а сила тока \(~I = \frac{\varepsilon}{r}\) — достигает максимального значения.

Подключение к полюсам источника тока проводника с ничтожно малым сопротивлением называется коротким замыканием, а максимальную для данного источника силу тока называют током короткого замыкания:

\(~I_{kz} = \frac{\varepsilon}{r} .\)

У источников с малым значением r (например, у свинцовых аккумуляторов r = 0,1 — 0,01 Ом) сила тока короткого замыкания очень велика. Особенно опасно короткое замыкание в осветительных сетях, питаемых от подстанций (ε > 100 В), Ikz может достигнуть тысячи ампер. Чтобы избежать пожаров, в такие цепи включают предохранители.

Запишем закон Ома для полной цепи в случае последовательного и параллельного соединения источников тока в батарею. При последовательном соединении источников «-» одного источника соединяется с «+» второго, «-» второго с «+» третьего и т.д. (рис. 3, а). Если ε1 = ε2 = ε3 а r1 = r2 = r3 то εb = 3ε1, rb = 3r1. В этом случае закон Ома для полной цепи имеет вид\[~I = \frac{\varepsilon_b}{R + r_b} = \frac{3 \varepsilon_1}{R + 3r_1}\], или для n одинаковых источников \(~I = \frac{n \varepsilon_1}{R + nr_1}\).

Рис. 3

Последовательное соединение применяют в том случае, когда внешнее сопротивление \(~R \gg nr_1\), тогда \(~I = \frac{n \varepsilon_1}{R}\) и батарея может дать силу тока, в n раз большую, чем сила тока от одного источника.

При параллельном соединении источников тока все «+» источников соединены вместе и «-» источников — также вместе (рис. 3, б). В этом случае

\(~\varepsilon_b = \varepsilon_1 ; \ r_b = \frac{r_1}{3}.\)

Откуда \(~I = \frac{\varepsilon_1}{R + \frac{r_1}{3}}\) .

Для n одинаковых источников \(~I = \frac{\varepsilon_1}{R + \frac{r_1}{n}}\) .

Параллельное соединение источников тока применяют тогда, когда нужно получить источник тока с малым внутренним сопротивлением или когда для нормальной работы потребителя электроэнергии в цепи должен протекать ток. больший, чем допустимый ток одного источника.

Параллельное соединение выгодно, когда R невелико по сравнению с r.

Иногда применяют смешанное соединение источников.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 262-264.

Закон Ома для замкнутой цепи

Определение полной замкнутой цепи

Полную замкнутую цепь (рис.1) можно рассматривать как последовательное соединение сопротивления внешней цепи (R) и внутреннего сопротивления источника тока (r). То есть:

Определение полной замкнутой цепи

Рис. 1

Если заменить источник тока таким, что его внутренне сопротивление равно такому же сопротивлению как и у предыдущего, то ток в цепи изменится. То есть ток в цепи зависит и от внутреннего сопротивления источника и от его ЭДС. Количественно все эти величины: ЭДС ($\mathcal E$) источника, его внутренне сопротивление, силу тока в цепи (I), электросопротивление цепи (R) связывает закон Ома.

Связь локального закона Ома с интегральным законом для замкнутой цепи

Допустим, что электрические токи текут в тонких проводах. В этом случае направления токов совпадают с направлением оси провода. Для тонких проводов можно считать, что плотность тока $\overrightarrow{j}=const$ в любой точке поперечного сечения провода. В нашем случае можно записать, что сила тока равна:

где $S$ — площадь поперечного сечения проводника. Пусть мы имеем дело с постоянным током (I=const) вдоль всего проводника. Допустим, что в цепи присутствует источник ЭДС ($\mathcal E$). В данном случае локальная формулировка закона Ома будет иметь вид:

где $\overrightarrow{E}$ напряженность поля кулоновских сил, $\overrightarrow{E_{stor}}$ — напряженность поля сторонних сил, $\sigma $ — удельная проводимость, $\overrightarrow{e}$- единичный вектор, направленный по току. Для тонкого провода можно записать выражение (3), как:

Умножим выражение (4) на элемент длины проводника (dl) и найдем интеграл по участку проводника от точки 1 до точки 2. Так как силу тока мы признали постоянной, то имеем:

Электростатическое поле потенциально, следовательно:

Второй интеграл в выражении (5) не равен нулю только в пределах источника ЭДС. Он не зависит от положения точек 1 и 2. Они должны находиться только вне источника.

Считают, что ЭДС источника больше нуля, если путь 1-2 пересекает источник от отрицательного полюса к положительному.

где $R’$ — электросопротивление, $\rho $ — удельное сопротивление. Таким образом, из выражения (5) получаем:

Мы получили закон Ома в интегральной форме. В том случае, если цепь замкнута, то ${\varphi }_1={\varphi }_2$, следовательно:

где $R’$ — электросопротивление всей цепи, электросопротивление нагрузки и внутреннее сопротивление источника тока. То есть закон Ома для замкнутой цепи запишем как:

где $r$ — электросопротивление источника тока.

Довольно часто приходится решать задачи, в которых напряжение на концах участка цепи не известно, но заданы сопротивления составных частей цепи и ЭДС источника, который питает цепь. Тогда используют закон Ома в виде (11) для расчета силы тока, которая течет в цепи.

Пример 1

Задание: Источник тока имеет внутреннее электросопротивление равное r . Найдите падение потенциала внутри источника ($U_r$) внутри элемента, если ток в цепи равен I. Как вычислить внешнее электросопротивление цепи при заданных условиях?

Решение:

В качестве основы для решения задачи используем закон Ома для замкнутой цепи:

\[I=\frac{\mathcal E}{R+r}\left(1.1\right).\]

Из формулы (1.1) легко получить формулу для расчета внешнего сопротивления:

\[I\left(R+r\right)=\mathcal E\to \mathcal E-Ir=IR\to R=\frac{\mathcal E}{I}-r.\]

Для того чтобы вычислить падение напряжения внутри источника тока, используем закон Ома для участка цепи:

\[{I=\frac{U_r}{r}\to U}_r=Ir\ \left(1.2\right).\]

Ответ: $U_r=Ir,$ $R=\frac{\mathcal E}{I}-r.$

Пример 2

Задание: Источник тока имеет внутреннее сопротивление равное r=1 Ом и ЭДС равную $\mathcal E$=10В. Найдите КПД источника ($\eta $), если ток в цепи равен I=5 А.

Решение:

Коэффициент полезного действия источника тока равен отношению:

\[\eta =\frac{P’}{P}\left(2.1\right),\]

где $P’$ — мощность (полезная мощность), которая выделяется внешним участком цепи, $P$- полная мощность, которая развивается источником. При этом:

\[P’=I^2R\ \left(2.2\right),\ \] \[P=\mathcal E I\ \left(2.3\right).\]

Следовательно, КПД источника можно выразить как:

\[\eta =\frac{I^2R\ }{\mathcal E I}=\frac{IR}{\mathcal E}\left(2.4\right).\]

Следуя закону Ома для замкнутой цепи запишем:

\[I=\frac{\mathcal E}{R+r}\left(2.5\right).\]

Выразим из (2.5) электросопротивление внешней цепи, получим:

\[R=\frac{\mathcal E}{I}-r(2.6).\]

Подставим (2.6) в выражение для КПД (2.4), получим:

\[\eta =\frac{I\left(\frac{\mathcal E}{I}-r\right)}{\mathcal E}=\frac{\mathcal E-Ir}{\mathcal E}.\]

Подставим численные данные, проведем вычисления, получим:

\[\eta =\frac{10-5\cdot 1}{10}\cdot 100\%=50\%\]

Ответ: 50%

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *