Site Loader

Содержание

Закон Джоуля-Ленца | 8 класс

Содержание

    При прохождении тока по проводнику, можно наблюдать его различные действия: тепловое, химическое, магнитное или световое. Тепловое действие тока проявляется в том, что среда, в которой он протекает, нагревается. Оно может проявляться как в твердых телах, так в жидкостях и газах.

    На данном уроке мы более подробно рассмотрим именно тепловое действие тока, разберем физику происходящих процессов и познакомимся с законом Джоуля-Ленца. Этот закон позволит нам узнать, какие проводники нагреваются больше других и от чего зависит количество энергии, которое идет на нагрев.

    Нагревание проводника при прохождении по нему электрического тока

    Как можно объяснить нагревание проводника электрическим током?

    При прохождении электрического тока по проводнику его температура увеличивается — он нагревается. Что при этом происходит внутри проводника?

    Под действием электрического поля в металлическом проводнике возникает электрический ток. Свободные электроны начинают упорядоченно двигаться. При этом сохраняется и хаотичность их движения. 

    При таком движении они (свободные электроны) взаимодействуют с ионами, находящимися в узлах кристаллической решетки проводника. В ходе этого взаимодействия свободные электроны передают ионам свою кинетическую энергию. Например, это происходит при соударении с ними.

    Так, энергия электрического поля переходит во внутреннюю энергию проводника. Его температура увеличивается.

    При протекании электрического тока по проводнику его внутренняя энергия увеличивается.

    В растворах солей, кислот, щелочей свободными заряженными частицами являются ионы. Они также будут взаимодействовать с атомами вещества.

    {"questions":[{"content":"Увеличение температуры проводника, через который проходит электрический ток, говорит на о том, что[[choice-1]]","widgets":{"choice-1":{"type":"choice","options":["его внутренняя энергия увеличивается","его внутренняя энергия уменьшается","его электрическая энергия уменьшается","проводник является металлическим"],"explanations":["","","В процессе прохождения тока по проводнику происходит превращение энергии электрического поля во внутреннюю энергию проводника.  Сам проводник не обладает никакой электрической энергией.","Нагревание свойственно не только металлическим проводникам."],"answer":[0]}}}]}

    От чего зависит количество теплоты, выделяемое проводником с током?

    Электрический ток проходит по проводнику. Он нагревается. При этом он контактирует с окружающей средой, а не находится в вакууме. По этой причине проводник начинает выделять некоторое количество теплоты $Q$. То есть проводник взаимодействует с окружающей средой посредством теплопередачи.

    Заглянув внутрь проводника и объяснив его нагревание, мы можем предположить, что количество теплоты зависит как минимум от двух величин: от сопротивления и от силы тока.

    Давайте разберемся, почему мы выбрали именно эти величины.

    1. Сопротивление
      Чем больше сопротивление проводника, тем больше он препятствует прохождению электрического тока. Значит, тем сильнее ионы в металле взаимодействуют со свободными электронами и тем больше энергии они получают. Значит, при прохождении тока по проводнику с большим сопротивлением должно выделяться большое количество теплоты. Мы предполагаем, что сопротивление проводника прямо пропорционально выделяемому количеству теплоты.
    2. Сила тока
      Сила тока рассчитывается по формуле: $I = \frac{q}{t}$. Получается, что чем больше сила тока, тем большее количество свободных частиц проходит через поперечное сечение проводника в единицу времени. Значит, происходит и больше столкновений с ионами и атомами проводника. Следовательно, тем больше количество теплоты, которое выделится при прохождении электрического тока по проводнику.
    {"questions":[{"content":"Нагретый током проводник при взаимодействии с окружающей средой[[choice-8]]","widgets":{"choice-8":{"type":"choice","options":["выделяет некоторое количество теплоты","получает некоторое количество теплоты","никак не участвует в теплообмене"],"explanations":["","Обратите внимание, что нагрев проводника происходит за счет увеличения его внутренней энергии, а не за счет сообщения ему какого-то количества тепла. ",""],"answer":[0]}}}]}

    Зависимость количества теплоты, выделяющегося в проводнике, от его сопротивления

    Давайте опытным путем подтвердим наше первое предположение. Соберем электрическую цепь, состоящую из двух нагревателей и источника тока. Все элементы соединим последовательно.

    Нагреватели у нас имеют одинаковые размеры, но сделаны из разных материалов. Соответственно, они имеют различные сопротивления $R_1$ и $R_2$. При этом $R_1 > R_2$.

    Опустим нагреватели в калориметры (приборы для измерения количества теплоты) с одинаковым количеством воды. Начальная температура воды в обоих сосудах тоже одинакова.

    Замкнем цепь. Теперь через нагреватели течет электрический ток (рисунок 1). Сила тока в них одинакова, потому что они соединены последовательно.

    Рисунок 1. Зависимость количества теплоты, выделяющегося в проводнике, от его сопротивления

    Мы увидим, что вода нагреется быстрее в первом калориметре. Это значит, что она получила большее количество теплоты. Именно в этом калориметре у нас и находится нагреватель с большим сопротивлением $R_1$. Наше предположение подтвердилось.

    Чем больше сопротивление проводника, тем большее количество теплоты выделяется при прохождении по нему электрического тока.

    {"questions":[{"content":"Сопротивление первого проводника составляет $2 \\space Ом$, второго — $4 \\space Ом$. Проводники идентичны друг другу по размеру. Какой из них нагреется сильнее при прохождении по нему электрического тока?[[choice-17]]","widgets":{"choice-17":{"type":"choice","options":["второй","первый","проводники нагреются одинаково"],"explanations":["Чем больше температура проводника, тем большее количество теплоты он выделяет. Это выделяемое количество тепла зависит от сопротивления проводника: оно тем больше, чем больше сопротивление.","",""],"answer":[0]}}}]}

    Зависимость количества теплоты, выделяющегося в проводнике, от силы тока в нем

    Теперь проверим наше второе предположение. Соберем электрическую цепь, состоящую из лампы накаливания, реостата, амперметра и источника тока.

    Передвигая ползунок реостата, будем постепенно увеличивать силу тока в цепи. Мы увидим, что будет увеличиваться и яркость лампочки (рисунок 2).

    Рисунок 2. Зависимость количества теплоты, выделяющегося в проводнике, от силы тока в нем

    Получается, что при увеличении силы тока, у нас увеличивается количество теплоты, которые выделяет нить накаливания лампы. Предположение №2 подтверждено.

    Чем больше сила тока в проводнике, тем большее количество теплоты выделяется при прохождении по нему электрического тока.

    {"questions":[{"content":"Сила тока в проводнике и количество теплоты, которое он выделяет,[[choice-12]]","widgets":{"choice-12":{"type":"choice","options":["прямо пропорциональны друг другу","обратно пропорциональны друг другу","не зависят друг от друга"],"explanations":["Чем больше сила тока, тем больше тепла будет выделяться.","",""],"answer":[0]}}}]}

    Закон Джоуля-Ленца

    Подобные опыты в одно время, но независимо друг от друга проводили двое ученых. 2R (T_2 — T_1)$»],»answer»:[0]}}}]}

    Закон сохранения энергии при нагревании проводника током

    По закону сохранения энергии мы знаем, что энергия не приходит из ниоткуда и не уходит в никуда.

    Откуда у нас появилась какая-то дополнительная энергия в проводнике, которая пошла на его нагревание? Это энергия электрического поля, созданного источником тока. Если же поле имеет какую-то энергию, то оно может совершить какую-то работу, что и происходит на практике. При этом наш проводник нагревается — получает какое-то количество теплоты (энергии). Получается, что происходит превращение электрической энергии во внутреннюю энергию тела.

    Если ток производит только тепловое действие, то выделенное в проводнике количество теплоты будет равно работе электрического тока, совершенной за это время:
    $Q = A$.

    {"questions":[{"content":"Какое превращение энергии происходит во время нагревания проводника проходящим по нему электрическим током?[[choice-24]]","widgets":{"choice-24":{"type":"choice","options":["Электрическая энергия переходит во внутреннюю","электрическая энергия переходит в механическую","внутренняя энергия переходит в электрическую"],"answer":[0]}}}]}

    Математический вывод закона Джоуля-Ленца

    Нагревание при прохождении электрического тока происходит в неподвижных металлических проводниках. 2 \cdot 20 \space Ом \cdot 1800 \space с = 900 \space 000 \space Дж = 900 \space кДж$.

    Ответ: $Q = 900 \space кДж$.

    Упражнение №2

    С какой целью провода в местах соединения не просто скручивают, а еще и спаивают? Ответ обоснуйте.

    Скручивая один проводник с другим, мы получаем утолщенное и уплотненное место их соединения. Сопротивление на таком участке будет больше, чем у самих проводов. А чем больше сопротивление проводника, тем больше тепла будет выделяться при прохождении по нему электрического тока. Такой участок будет сильно нагреваться.

    Спайка же позволяет сделать место соединения проводов более однородным. Это практически не изменяет сопротивления. Таким образом, мы избегаем нагревания проводов в месте их соединения друг с другом.

    Упражнение №3

    Спираль нагревательного прибора — рефлектора — при помощи шнура и вилки соединяется с розеткой. Шнур состоит из проводов, подводящих ток к спирали, покрытых изоляцией. 2Rt$.

    Спираль раскаляется, а провода — нет. Это означает, что на спирали выделяется намного больше количества теплоты $Q$, чем в проводах. Если сила тока одинакова, значит причина этому — сопротивление $R$.

    Поэтому мы делаем вывод, что спираль раскаляется, так как обладает намного большим сопротивлением, чем провода. Такое устройство обуславливается материалами, из которых сделаны спираль и провода. Удельное сопротивление спирали точно больше удельного сопротивления проводов ($R = \frac{\rho l}{S})$. Также провода тоньше спирали. Их площадь поперечного сечения намного меньше площади поперечного сечения спирали нагревательного прибора. Поэтому в проводах выделяется меньшее количество теплоты, чем в спирали.

    Что будет с напряжением в такой цепи? Запишем закон Джоуля-Ленца в таком виде: $Q = UIt$. Сказано, что все элементы в этой цепи соединены последовательно. Значит сила тока $I$ во всех ее участках будет одинакова.

    Получается, что напряжение на спирали будет больше, чем напряжение на концах проводов. 2}{м}$.

    Самым большим сопротивлением будет обладать нихромовая проволока. Она нагреется больше остальных.

    Теперь проведем опыт.
    Соберем электрическую цепь из трех проволок и источника тока. Все элементы соединим последовательно.

    Через какое-то время вы сможете увидеть подтверждение нашим теоретическим выводам. Нихромовая проволока нагреется до белого каления, никелиновая — начнет краснеть (рисунок 4). Медная проволока визуально останется такой же. 

    Рисунок 4. Зависимость температуры проволоки от сопротивления

    Обратите внимание, что визуально оценить эффект нагревания в таком случае проще, чем пробовать при малых температурах определить на ощупь, какая проволока нагрелась больше или пытаться использовать термометр.

    Задачи на применение закона Джоуля-Ленца с решением

    Закон Джоуля-Ленца описывает тепловое действие электрического тока и находит широкое применение в электротехнике. В сегодняшней статье разберем несколько задач на закон Джоуля-Ленца.

    Лень решать задачи? Зайдите на наш телеграм-канал: там найдется много интересного для всех учащихся. А если вы решили обратиться к нам за помощью, не упустите выгоду и обязательно прочекайте приятные скидки и акции на нашем втором канале.

    Закон Джоуля-Ленца: задачи с решением

    Для решения любой физической задачи существует алгоритм: сначала записываются все известные данные, затем определяются величины, которые нужно найти. Подробнее о решении физических задач читайте в нашей памятке для студентов. Также советуем держать под рукой формулы, это существенно облегчит процесс решения.

    Кстати, если вы интересуетесь задачами на закон Джоуля-Ленца, вам также может быть полезно ознакомиться с задачами на мощность тока.

    Задача на закон Джоуля-Ленца №1

    Условие

    Какое количество теплоты выделяет за 5 минут нагреватель электрочайника, если его сопротивление равно 30 Ом, а сила тока в цепи 1,5 А?

    Решение

    Это простейшая задача на закон Джоуля-Ленца для участка цепи. Запишем сам закон:

    Q=I2Rt

    Подставив значения из условия в формулу, найдем:

    Q=1,52·30·300=20250 Дж

    Ответ: 20,25 кДж.

    Задача на закон Джоуля-Ленца №2

    Условие

    Какое количество теплоты выделит за 40 минут спираль электроплитки, если сила тока в цепи 3 А, а напряжение 220 В?

    Решение

    Эта также простейшая задача на закон Джоуля-Ленца, но, в отличие от первой задачи, при ее решении используется другая формулировка закона. Сначала запишем закон Джоуля-Ленца:

    Q=I2Rt

    Теперь перепишем его с учетом закона Ома:

    I=URR=UIQ=I2UIt=IUt

    Осталось подставить значения и вычислить:

    Q=3·220·2400=1,584 МДж

    Ответ: 1,584 МДж.

    Задача на закон Джоуля-Ленца №3

    Условие

    Сколько минут ток шел по проводнику сопротивлением 25 Ом, если при силе тока 1 А проводник вылелил 6 кДж теплоты.

    Решение

    Запишем закон Джоуля-Ленца и выразим время:

    Q=I2Rtt=QI2R

    Найдем:

    t=600012·25=240 c=4 мин

    Ответ: 4 минуты.

    При расчетах не забывайте переводить все величины из условия в систему СИ.

    Задача на закон Джоуля-Ленца №4

    Условие

    Электрическая плитка при силе тока 4 А за 20 минут потребляет 1000 кДж энергии. Рассчитайте сопротивление плитки.

    Решение

    Выразим сопротивление из закона Джоуля-Ленца:

    Q=I2RtR=QI2t

    Подставим значения и вычислим:

    R=1000·10316·1200=52 Ом

    Ответ: 52 Ом.

    Задача на закон Джоуля-Ленца №5

    Условие

    По проводнику с сопротивлением 6 Ом пропускали постоянный ток в течение 9 c. Какое количество теплоты выделилось в проводнике за это время, если через его сечение прошел заряд 3 Кл?

    Решение

    Заряд можно определить, зная время и силу тока. А зная заряд и врямя, за которое он прошел по проводнику, найдем силу тока:

    I=qt

    Запишем закон Джоуля-Ленца для количества теплоты:

    Q=I2RtQ=q2t2Rt=q2Rt

    Подставим значения и вычислим:

    Q=32·69=6 Дж

    Ответ: 6 Дж.

    Вопросы на закон Джоуля-Ленца

    Вопрос 1. Как звучит закон Джоуля-Ленца?

    Ответ. Закон Джоуля-Ленца гласит:

    Количество теплоты, выделившейся в проводнике при прохождении по нему электрического тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока.

    Q=I2Rt

    Вопрос 2. Почему проводник с током нагревается?

    Ответ. При прохождении тока по проводнику положительные ионы в узлах кристаллических решеток проводника за счет энергии тока начинают сильнее колебаться. Это сопровождается увеличением внутренней энергии проводника, т.е. его нагреванием. При этом энергия тока выделяется в виде теплоты, которую называют джоулевым теплом.

    Вопрос 3. Как был открыт закон Джоуля-Ленца?

    Ответ.  По спирали, помещенной в калориметр с водой, пропускали электрический ток. Через некоторое время вода нагревалась.

    По температуре воды можно было вычислить количество выделившейся теплоты. Эмпирическим путем было доказано, что при прохождении тока по проводнику, обладающему определенным сопротивлением, в течение времени током совершается работа, проявляющаяся в виде выделившейся теплоты.

    Английский физик Джеймс Джоуль и русский физик Эмилий Ленц изучали зависимость количества выделяемой теплоты от силы тока одновременно. Они пришли к одному и тому же выводу независимо друг от друга.

    Вопрос 4. Как еще можно записать закон Джоуля-Ленца?

    Ответ. Воспользовавшись законом Ома для участа цепи, закон Джоуля-Ленца можно переписать следующим образом:

    Q=UIt=U2Rt

    Вопрос 5. Каково практическое применение закона Джоуля-Ленца?

    Ответ. Закон Джоуля-Ленца находит широкое применение на практике:

    1. На нем основан принцип действия многих нагревательных приборов (чайник, электроплитка, фен, утюг, паяльник и т. д).
    2. На принципе закона Джоуля-Ленца основана контактная сварка, где создание неразъемного сварного соединения достигается путем нагрева металла за счет проходящего через него электрического тока и пластической деформации свариваемых деталей путем сжатия. Электродуговая сварка также использует закон Джоуля-Ленца.
    3. Расчеты на основе закона Джоуля-Ленца позволяют стабилизировать и минимизировать тепловые потери в линиях электропередач.

    Нужна помощь в решении задач и выполнении других заданий по учебе? Обращайтесь в профессиональный сервис для учащихся в любое время.

    Закон джоуля ленца для постоянного тока

    Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

    Свойства электрического тока

    Когда электрический ток проходит через металлический проводник, его электроны постоянно сталкиваются с различными посторонними частицами. Это могут быть обычные нейтральные молекулы или молекулы, потерявшие электроны. Электрон в процессе движения может отщепить от нейтральной молекулы еще один электрон. В результате, его кинетическая энергия теряется, а вместо молекулы происходит образование положительного иона. В других случаях электрон, наоборот, соединиться с положительным ионом и образовать нейтральную молекулу.

    В процессе столкновений электронов и молекул происходит расход энергии, в дальнейшем превращающейся в тепло. Затраты определенного количества энергии связаны со всеми движениями, во время которых приходится преодолевать сопротивление. В это время происходит превращение работы, затраченной на преодоление сопротивления трения, в тепловую энергию.

    Сопротивление в электрических проводниках обладает теми же качествами, как и у обычного сопротивления. Для того чтобы провести ток через проводник, источником тока затрачивается определенное количество энергии, превращающейся в тепло. Данное превращение как раз и отражает закон Джоуля – Ленца, известного также, как закон теплового действия тока.

    Закон джоуля Ленца формула и определение

    Согласно закону джоуля Ленца, электрический ток, проходящий по проводнику, сопровождается количеством теплоты, прямо пропорциональным квадрату тока и сопротивлению, а также времени течения этого тока по проводнику.

    В виде формулы закон Джоуля-Ленца выражается следующим образом: Q = I 2 Rt, в которой Q отображает количество выделенной теплоты, I – силу тока, R – сопротивление проводника, t – период времени. Величина «к» представляет собой тепловой эквивалент работы и применяется в тех случаях, когда количество теплоты измеряется в калориях, сила тока – в амперах, сопротивление – в Омах, а время – в секундах. Численное значение величины к составляет 0,24, что соответствует току в 1 ампер, который при сопротивлении проводника в 1 Ом, выделяет в течение 1 секунды количество теплоты, равное 0,24 ккал. Поэтому для расчетов количества выделенной теплоты в калориях применяется формула Q = 0,24I 2 Rt.

    При использовании системы единиц СИ измерение количества теплоты производится в джоулях, поэтому величина «к», применительно к закону Джоуля-Ленца, будет равна 1, а формула будет выглядеть: Q = I 2 Rt. В соответствии с законом Ома I = U/R. Если это значение силы тока подставить в основную формулу, она приобретет следующий вид: Q = (U 2 /R)t.

    Основная формула Q = I 2 Rt очень удобна для использования при расчетах количества теплоты, которое выделяется в случае последовательного соединения. Сила тока во всех проводниках будет одинаковая. При последовательном соединении сразу нескольких проводников, каждый из них выделит столько теплоты, которое будет пропорционально сопротивлению проводника. Если последовательно соединить три одинаковые проволочки из меди, железа и никелина, то максимальное количество теплоты будет выделено последней. Это связано с наибольшим удельным сопротивлением никелина и более сильным нагревом этой проволочки.

    При параллельном соединении этих же проводников, значение электрического тока в каждом из них будет различным, а напряжение на концах – одинаковым. В этом случае для расчетов больше подойдет формула Q = (U 2 /R)t. Количество теплоты, выделяемое проводником, будет обратно пропорционально его проводимости. Таким образом, закон Джоуля – Ленца широко используется для расчетов установок электрического освещения, различных отопительных и нагревательных приборов, а также других устройств, связанных с преобразованием электрической энергии в тепловую.

    Закон Джоуля-Ленца. Работа и мощность электрического тока

    В случае, когда проводник неподвижен и химических превращений в нем не происходит, то работа тока целиком расходуется на нагревание проводника. Количество теплоты, выделяющееся в проводнике за конечный промежуток времени при прохождении постоянного тока I, рассчитывается по формуле

    . (2.7)

    Формула (2. 7) выражает закон Джоуля-Ленца для участка цепи постоянного тока: количество теплоты, выделяемое постоянным электрическим током на участке цепи, равно произведению квадрата силы тока на время его прохождения и электрическое сопротивление этого участка цепи.

    Так как IR = U, то формулу (2.7) можно переписать в виде

    . (2.8)

    Если сила тока изменяется со временем, то количество теплоты, выделяющееся за время t, вычисляется по формуле

    . (2.9)

    Закон Джоуля-Ленца в дифференциальной форме (для данной точки проводника с током) имеет вид

    , (2.10)

    где ω − плотность тепловой мощности; σ − удельная электропроводность; Е− напряженность электрического поля в данной точке проводника; Е * − напряженность поля сторонних сил.

    Примеры решения задач

    Задача 1. За время τ = 20 с при равномерно возраставшей силе тока от нуля до Io в проводнике сопротивлением R = 5 Ом выделилось количество теплоты Q = 4 кДж. Найти Io.

    Io – ?Решение: Так как ток равномерно возрастает, то зависимость силы тока от времени имеет вид . (1)
    τ = 20 с R = 5 Ом Q = 4 кДж

    По закону Джоуля-Ленца за время dt в проводнике выделится количество тепла

    .

    Полное количество тепла за время от до τ

    .

    ; .

    Задача 2. При включении электромотора в сеть с напряжением U = 220 В он потребляет ток I = 5 А. Определить мощность, потребляемую мотором, и его КПД, если сопротивление обмотки мотора R = 6 Ом.

    Pп – ? η – ?Решение: Полная мощность, потребляемая мотором: , Р = 1100 Вт.
    U = 220 В
    I = 5 А R = 6 Ом

    Мощность, выделяющаяся в виде тепла:

    .

    Полезная мощность (механическая)

    .

    ;

    .

    Задача 3. Источник тока с ЭДС замкнут на реостат. При силе тока I1 = 0,2 А и I2 = 2,4 А на реостате выделяется одинаковая мощность. Найти:

    1) при какой силе тока на реостате выделяется максимальная мощность?

    2) чему равна сила тока короткого замыкания?

    I – ? Iкз – ?Решение: При силе тока I1 на реостате выделяется мощность , при силе тока
    I2
    ,
    I1 = 0,2 А
    I2 = 2,4 А P1 = P2

    где R1 и R2 – сопротивления реостата в каждом случае. По условию P1 = P2, поэтому

    . (1)

    По закону Ома для полной цепи

    , (2)

    . (3)

    ; ,

    подставив их в (1), получаем:

    .

    Отсюда находим отношение :

    ;

    .

    Максимальная мощность выделяется при условии R = r, при этом ток

    .

    (4)

    Ток короткого замыкания

    . (5)

    ; .

    Задача 4. При изменении внешнего сопротивления с R1 = 6 Ом до R2= 21 Ом. КПД схемы увеличился вдвое. Чему равно внутреннее сопротивление источника тока r ?

    r − ?Решение: При сопротивлении R1 КПД источника тока , а при сопротивлении R2
    R1 = 6 Ом R2 = 21 Ом η2 = 2η1

    .

    Так как по условию задачи η2=2η1, то

    .

    Отсюда выражаем r:

    ;

    .

    Ответ: r = 14 Ом.

    Задача 5. Две батареи с ЭДС ε1= 20 В и ε2= 30 В и внутренними сопротивлениями r1= 4 Ом и r2 = 60 Ом соединены параллельно и подключены к нагрузке R = 100 Ом. Найти: 1) мощность, которая выделяется в нагрузке; 2) параметры ε и r генератора, которым можно заменить батареи без изменения тока в нагрузке; 3) КПД этого генератора.

    P – ? ε, r – ? η – ?Решение: Рис. 52
    ε1 = 20 В ε2 = 30 В r1 = 4 Ом r2 = 60 Ом R = 100 Ом

    Используя правила Кирхгофа, найдем токи I1, I2, I в узле A:

    . (1)

    Для контура a с обходом против часовой стрелки

    . (2)

    Для контура b с обходом против часовой стрелки

    . (3)

    Решим систему линейных уравнений (1) – (3) относительно I1, I2, I.

    . (4)

    . (5)

    Умножая уравнение (2) на R, а уравнение (5) на r1, и складывая их, получаем:

    . (6)

    Подставляя (6) в выражение (2), находим I1:

    .

    . (7)

    Подставляя выражения (6) и (7) в (4), находим I:

    . (8)

    В нагрузке выделяется мощность:

    ;

    .

    Находим параметры генератора. Если данные в задаче батареи заменить на одну с ЭДС ε и внутренним сопротивлением r, то через сопротивление R потек бы ток

    . (9)

    Преобразуем выражение (8), поделив числитель и знаменатель дроби на (r1+r2), получим

    . (10)

    Для того чтобы эти выражения были одинаковыми, необходимо выполнение условий:

    ;

    ;

    .

    КПД этого генератора в данной схеме

    ;

    Не нашли то, что искали? Воспользуйтесь поиском:

    Лучшие изречения:

    Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8852 – | 7556 – или читать все.

    91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

    Отключите adBlock!
    и обновите страницу (F5)

    очень нужно

    При протекании по проводнику электрический ток оказывает на него тепловое действие, во время которого выделяется определенное значение количества теплоты. Для его расчета применяется закон Джоуля-Ленца, который получил широкое применение при проектировании и изготовлении всех устройств, работающих от электричества.

    Общие сведения

    В 1941 году английским физиком Джеймсом Джоулем и, независимо от него, в 1942 году русским ученым Эмилием Ленцем было открыто уравнение Джоуля-Ленца. Оно позволяет рассчитать по формуле количество теплоты в электрической цепи, выделяемое при прохождении электротока через проводник. Значение количества теплоты, выделяемое проводником при протекании тока через него, зависит от напряжения, времени, силы тока и сопротивления проводника. Открытие позволило точно рассчитывать схемы различных устройств при их проектировании.

    Прежде чем сформулировать закон Джоуля-Ленца, следует рассмотреть и понять физический смысл основных и производных величин, от которых зависит, какое количество теплоты выделяет проводник при прохождении через него электротока.

    Разность потенциалов

    Научно доказано, что каждое вещество состоит из атомов, которые также состоят из элементарных или субатомных частиц. К ним относятся следующие: электроны, протоны и нейтроны. Атом в исходном состоянии имеет нейтральный заряд, поскольку количество протонов и электронов равны и, следовательно, справедливо равенство положительного и отрицательного зарядов, и они компенсируют друг друга.

    Однако возникают случаи «захвата» атомом электрона другого атома. Если атом захватывает электрон, то он называется отрицательным ионом, а при потере преобразовывается в положительный. В результате потери или притяжения субатомной отрицательно заряженной частицы образуется электромагнитное поле, составляющая которого зависит от заряда иона.

    Разность между положительной и отрицательной составляющими является напряжением, единицей измерения которого является вольт (обозначение: В или V). Чем больше разница, тем больше напряжение. В некоторых источниках его еще называют разностью потенциалов, величину которой можно измерять при помощи вольтметра или рассчитать, используя формулы. При соединении потенциалов с противоположными знаками образуется электрический ток, который представляет упорядоченное движение заряженных частиц, под действием силы электромагнитного поля имеет векторное направление. (-3) A, 1 кА = 1000 А и т. д. Электрический ток бывает следующих видов:

    Переменный ток подчиняется определенному закону, который характеризует изменение амплитуды и направления протекания. Основной характеристикой является частота, согласно которой происходит разделение на синусоидальный и несинусоидальный токи. Графиком синусоидального типа тока является синусоида, формула которой зависит от максимальной амплитуды Imax и угловой частоты w. Она имеет следующий вид: i = Imax * sin (w * t).

    Для расчета значения угловой частоты необходимо значение частоты тока в сети (f), которое подставляется в формулу: w = 6,2832 * f. Постоянный ток не изменяет направление своего движения по проводнику, однако его значение может меняться.

    Электрическое сопротивление

    Вещества по проводимости электричества можно классифицировать на проводники, полупроводники и диэлектрики. К первому типу относятся все вещества, которые хорошо проводят ток. Эта особенность обуславливается наличием свободных носителей заряда, информацию о которых можно получить из электронной конфигурации элементов периодической системы Д. И. Менделеева.

    К проводникам относят следующие вещества: металлы, электролиты и ионизированный газ. В металлах электроны являются носителями заряда. В жидкостях (электролитах) носителями заряда являются анионы и катионы: первые обладают положительным зарядом, а вторые — отрицательным. При электролизе анионы притягиваются электродом, который является отрицательно заряженным (катодом), а на катионы действует положительный заряд анода. Функцию носителей заряда в газах выполняют отрицательно заряженные электроны и ионы.

    При повышении температуры проводника происходит взаимодействие атомов между собой, в результате которого разрушается кристаллическая решетка и появляются свободные носители заряда. При протекании тока происходит взаимодействие с узлами решетки и с электронами проводника, при котором движение упорядоченных заряженных частиц замедляется и выделяется тепловая энергия, а затем снова скорость их движения возвращается в исходное состояние, благодаря воздействию электромагнитного поля. Это физическое свойство называется электрическим сопротивлением проводника, при нагревании которого его величина возрастает.

    Полупроводники — вещества, проводящие ток только при определенных условиях. Функцию носителей заряда выполняют электроны и дырки. При каком-либо воздействии внешней энергии (например, тепловой) происходит уменьшение силы притяжения между ядром и электронами, при котором некоторые из них «вырываются» и становятся свободным, а на их месте образуются дырки.

    Происходит образование электромагнитного поля положительной составляющей и к ней притягивается соседняя субатомная частица с отрицательным зарядом. Этот процесс повторяется и приводит к движению дырок. Сопротивление вещества (проводника или полупроводника) зависит от следующих факторов:

    1. Температурных показателей.
    2. Типа вещества.
    3. Длины.
    4. Площади сечения.
    5. Значения силы тока и напряжения.
    6. Вида тока.

    Диэлектрики — группа веществ, которые не могут проводить ток, поскольку в них отсутствуют какие-либо носители электрического заряда. Сопротивление или электропроводимость обозначается буквой R и является взаимодействием заряженных частиц, движущихся упорядочено, с узлами кристаллической решетки. Единицей его измерения является Ом.

    Характеристика мощности

    Мощностью электротока (P) называют количество работы, которое им совершается за единицу времени. Для постоянного и переменного токов мощность вычисляется по разным соотношениям. В цепи постоянного тока значения его силы (I) и напряжения (U) равны мгновенным значениям. Формула мощности записывается в следующем виде: P = U * I. Для цепи, в которой соблюдается закон Ома, формула принимает следующий вид: P = sqr (I) * R = sqr (U) / R.

    Для полной цепи формула включает значение электродвижущей силы (e): P = I * e. Если нужно учитывать значение внутреннего сопротивления источника питания (Rвн), то формулу нужно править при условии поглощения (использование в цепи электродвигателя или при зарядке аккумулятора) следующим образом: P = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).

    При наличии в цепи генератора или гальванического элемента (условие отдачи электроэнергии), формула принимает следующий вид: P = I * (e + (I * Rвн)). Однако эту формулу нельзя применять для расчета мощности переменного тока, поскольку он изменяется с течением времени. В цепях переменного тока существует понятие активной, реактивной и полной мощностей:

    1. Активная определяется с учетом среднеквадратичных значений U и I, а также углом сдвига фаз (a): Pа = I * U * cos (a).
    2. Реактивная (Qр): Qp = U * I * sin (a).
    3. Полная (S): S = sqrt (sqr (Pа) + sqr (Qp)).

    Значение Qp>0 при наличии в цепи индуктивной нагрузки, а при емкостной — Qp Запись закона Джоуля-Ленца

    Формулировка уравнения Джоуля-Ленца следующая: количество теплоты Q, которое выделилось за единицу времени t на участке цепи, прямо пропорционально произведению сопротивления R на квадрат силы тока I, протекающей через этот участок. Формула закона Джоуля-Ленца имеет вид: Q = a * sqr (I) * R * t. Литера «а» является температурным коэффициентом, который равен 1 при условии, что количество теплоты получается в джоулях. Если принять его равным 0,24, то результат будет измеряться в калориях. Поскольку а = 1, то формула Ленца будет выражаться кратко в таком виде: Q = sqr (I) * R * t.

    При перегреве проводника может возникнуть короткое замыкание, которое приводит к выходу аппаратуры из строя. Оно может также быть причиной пожара. Для избежания таких ситуаций в электротехнике применяются плавкие предохранители, которые позволяют прекратить подачу электричества на устройство.

    Закон позволяет найти необходимые параметры электрического тока, чтобы избежать перегрева и пожара. Основные соотношения для расчета составляющих величин закона в цепях постоянного тока следующие:

    1. Закон Ома для участка и полной цепи: I = U / R и i = e / (R + Rвн).
    2. Q = U * I * t.
    3. Q = e * i * t.
    4. Q = (t * sqr (U)) / R.
    5. Q = (t * sqr (e)) / (R + Rвн).
    6. Q = P * t.

    Различие математической записи закона в цепях с переменным и постоянным токами обусловлено их свойствами и параметрами, а также появлением нагрузок активной и реактивной составляющей. Кроме того, ток переменной составляющей постоянно изменяется во времени. Основные соотношения:

    1. Закон Ома: i = U / Z, где Z — полное сопротивление цепи. Оно включает в себя активную, индуктивную и емкостную нагрузки.
    2. Q = S * t = t * [sqrt (sqr (Pа) + sqr (Qp))].
    3. Q = U * i * t, где U и i — действующие значения напряжения и тока, которые измеряются при помощи вольтметра и амперметра соответственно. Формулу в таком виде можно применять для примерного расчета Q, причем в цепях, состоящих только из активной нагрузки.
    4. Запись закона с учетом в электрической цепи активной и реактивной нагрузок: Q = sqr (i) * Z * t.

    Примеров применения уравнения Джоуля-Ленца достаточно много, одним из которых является обыкновенная лампа накаливания с вольфрамовой нитью. Свечение происходит из-за высокого напряжения и материала, из которого изготовлена нить накаливания. Электродуговая сварка работает тоже по этому закону, поскольку ток проходит через электрод и оказывает на него тепловое действие, при котором образуется сварочная дуга. Благодаря закону, можно правильно рассчитать и сделать вывод о применении радиокомпонента в какой-либо схеме.

    Таким образом, уравнение Джоуля-Ленца играет важную роль в электротехнике, поскольку позволяет произвести точные расчеты радиокомпонентов схемы, исключая перегрев деталей и пожар.

    2}{R}{t}$ , то увеличение сопротивления означает уменьшение выделяемого тепла. Но разве тепло в цепи не возникает из-за наличия резисторов? Кроме того, в качестве нагревательных элементов используются металлы с высоким сопротивлением, такие как нихром? Почему уравнение утверждает, что выделяемое тепло обратно пропорционально сопротивлению

    • термодинамика
    • электрические цепи
    • электрическое сопротивление
    • законы физики

    $\endgroup$ 92}{R}}$.

    По мере нагревания нити накала ток, протекающий через нить накала, уменьшается из-за увеличения сопротивления нити накала, и поэтому рассеиваемая мощность уменьшается.
    Этот больший ток, протекающий через нить накаливания, является причиной того, что лампочки накаливания часто перегорают сразу после включения.

    Дополнение в ответ на комментарий

    Учитывая, что $V=IR$, тогда при постоянном напряжении, если сопротивление $R$ увеличивается в $k$ раз, ток уменьшается в $k$ раз. 92R}{к}$.
    Это означает, что рассеиваемая электрическая мощность уменьшилась в $k$ раз, когда сопротивление увеличилось в $k$ раз.

    $\endgroup$

    2

    $\begingroup$

    Да, есть две отдельные проблемы, требующие отслеживания сопротивления. Во-первых, какой ток будет протекать по цепи при заданном напряжении. Это зависит от сопротивления, так что чем ниже сопротивление, тем выше ток, и именно здесь в игру вступает нелогичное поведение, когда вы смотрите на выделяемое тепло. Но второй вопрос заключается в том, где выделяется это тепло, если вы уже знаете ток, и это совершенно интуитивная часть — тепло исходит от самого высокого вклада в сопротивление. Таким образом, причина, по которой вы получаете много тепла от меньшего резистора, заключается только в том, что сопротивление в остальной части цепи очень низкое — это уже не так, если вы помещаете что-то, что имеет еще меньшее сопротивление, чем то, что уже есть в остальной части цепи. имеет.

    $\endgroup$

    4

    $\begingroup$

    Ты просто путаешься в уравнениях. Чтобы установить отношение пропорциональности между физической величиной и некоторыми другими величинами, необходимо убедиться, что все величины независимы.

    В вашем уравнении напряжение и сопротивление не являются независимыми величинами, а напряжение является функцией сопротивления и тока, протекающего через него. 2Rt}$, что говорит нам о том, что теплота прямо пропорциональна сопротивлению.

    Источником вашей путаницы было то, что вы использовали напряжение, которое зависит от тока и сопротивления (определяя отношение между теплом и сопротивлением с величиной, включающей сопротивление), чтобы определить отношение пропорциональности между теплом и сопротивлением.

    $\endgroup$

    6

    $\begingroup$

    Рассмотрим аналогию с потоком жидкости. Когда в трубе течет, скажем, из-за трения, энергия движения рассеивается в тепло. Следовательно, для рассеивания тепла необходимы две вещи: поток и сопротивление потоку. При отсутствии любого из них не происходит рассеивания тепла. То же самое относится и к току в цепи. 92}{R}t$ вы можете видеть только сопротивление, но не ток. Оказывается, при постоянном приложенном напряжении, если вы увеличиваете сопротивление, ток уменьшается более чем пропорционально (см. 2Rt$

    $\endgroup$

    Зарегистрируйтесь или войдите в систему

    Зарегистрируйтесь с помощью Google

    Зарегистрироваться через Facebook

    Зарегистрируйтесь, используя электронную почту и пароль

    Опубликовать как гость

    Электронная почта

    Требуется, но никогда не отображается

    Опубликовать как гость

    Электронная почта

    Требуется, но не отображается

    Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

    .

    Что такое теплопроводность?

    Мэтт Уильямс, Universe Today

    Диаграмма, показывающая передачу тепловой энергии посредством проводимости. 1 кредит

    Тепло — интересная форма энергии. Он не только поддерживает жизнь, делает нас комфортными и помогает нам готовить пищу, но понимание его свойств является ключом ко многим областям научных исследований. Например, знание того, как передается тепло и в какой степени различные материалы могут обмениваться тепловой энергией, определяет все: от строительства обогревателей и понимания сезонных изменений до отправки кораблей в космос.

    Тепло может передаваться только тремя способами: теплопроводностью, конвекцией и излучением. Из них проводимость, пожалуй, наиболее распространена и регулярно встречается в природе. Короче говоря, это передача тепла через физический контакт. Это происходит, когда вы прижимаете руку к оконному стеклу, когда кладете кастрюлю с водой на активный элемент и когда кладете утюг в огонь.

    Этот перенос происходит на молекулярном уровне — от одного тела к другому — когда тепловая энергия поглощается поверхностью и заставляет молекулы этой поверхности двигаться быстрее. При этом они сталкиваются со своими соседями и передают им энергию, и этот процесс продолжается до тех пор, пока добавляется тепло.

    Процесс теплопроводности зависит от четырех основных факторов: градиента температуры, поперечного сечения вовлеченных материалов, длины их пути и свойств этих материалов.

    Градиент температуры — это физическая величина, описывающая, в каком направлении и с какой скоростью изменяется температура в определенном месте. Температура всегда течет от самого горячего к самому холодному источнику, потому что холод есть не что иное, как отсутствие тепловой энергии. Этот перенос между телами продолжается до тех пор, пока не исчезнет разница температур и не наступит состояние, известное как тепловое равновесие.

    Поперечное сечение и длина пути также являются важными факторами. Чем больше размер материала, участвующего в переносе, тем больше тепла необходимо для его нагрева. Кроме того, чем больше площадь поверхности, которая подвергается воздействию открытого воздуха, тем выше вероятность потери тепла. Таким образом, более короткие объекты с меньшим поперечным сечением являются лучшим средством минимизации потерь тепловой энергии.

    Теплопроводность происходит через любой материал, представленный здесь прямоугольным стержнем. Скорость, с которой он переносится, частично зависит от толщины материала (показатель A). 1 кредит

    Последнее, но не менее важное, это физические свойства используемых материалов. По сути, когда дело доходит до теплопроводности, не все вещества одинаковы. Металлы и камень считаются хорошими проводниками, поскольку они могут быстро передавать тепло, тогда как такие материалы, как дерево, бумага, воздух и ткань, плохо проводят тепло.

    Эти проводящие свойства оцениваются на основе «коэффициента», который измеряется по отношению к серебру. В этом отношении серебро имеет коэффициент теплопроводности 100, тогда как другие материалы имеют более низкий рейтинг. К ним относятся медь (92), железо (11), вода (0,12) и древесина (0,03). На противоположном конце спектра находится идеальный вакуум, который не способен проводить тепло и поэтому оценивается как нулевой.

    Материалы, плохо проводящие тепло, называются изоляторами. Воздух, коэффициент проводимости которого равен 0,006, является исключительным изолятором, поскольку его можно удерживать в замкнутом пространстве. Вот почему искусственные изоляторы используют воздушные отсеки, такие как окна с двойным остеклением, которые используются для сокращения счетов за отопление. По сути, они действуют как буферы против потери тепла.

    Перо, мех и натуральные волокна являются примерами натуральных изоляторов. Это материалы, которые позволяют птицам, млекопитающим и людям оставаться в тепле. Морские выдры, например, живут в океанских водах, которые часто бывают очень холодными, и их роскошный густой мех согревает их. Другие морские млекопитающие, такие как морские львы, киты и пингвины, полагаются на толстые слои жира (он же ворвань) — очень плохой проводник — для предотвращения потери тепла через кожу.

    Та же логика применяется к изоляции домов, зданий и даже космических кораблей. В этих случаях методы включают либо захваченные воздушные карманы между стенами, стекловолокно (которое улавливает воздух внутри себя), либо пену высокой плотности. Космические корабли представляют собой особый случай и используют изоляцию в виде пены, армированного углеродного композитного материала и плитки из кварцевого волокна. Все они являются плохими проводниками тепла и, следовательно, предотвращают потерю тепла в космосе, а также предотвращают попадание экстремальных температур, вызванных входом в атмосферу, в кабину экипажа.

    Проводимость, как показано при нагревании металлического стержня пламенем. Кредит: Высшее образование Томсона

    Законы, регулирующие теплопроводность, очень похожи на закон Ома, регулирующий электропроводность. В этом случае хорошим проводником является материал, который позволяет электрическому току (то есть электронам) проходить через него без особых проблем. Электрический изолятор, напротив, представляет собой любой материал, внутренние электрические заряды которого не текут свободно, и поэтому очень трудно проводить электрический ток под влиянием электрического поля.

    В большинстве случаев материалы, плохо проводящие тепло, также являются плохими проводниками электричества. Например, медь хорошо проводит тепло и электричество, поэтому медные провода так широко используются в производстве электроники. Золото и серебро еще лучше, а там, где цена не имеет значения, эти материалы также используются при изготовлении электрических цепей.

    И когда кто-то хочет «заземлить» заряд (т.е. нейтрализовать его), они посылают его через физическую связь на Землю, где заряд теряется. Это характерно для электрических цепей, где открытым металлом является фактор, гарантирующий, что люди, которые случайно вступят в контакт, не будут поражены электрическим током.

    Это вид носовой части космического корабля «Дискавери», построенного из термостойких углеродных композитов. Кредит: НАСА

    Изолирующие материалы, такие как резина на подошвах обуви, используются для защиты людей, работающих с чувствительными материалами или вблизи источников электричества, от электрических разрядов. Другие изоляционные материалы, такие как стекло, полимеры или фарфор, обычно используются в линиях электропередач и высоковольтных передатчиках, чтобы поддерживать подачу энергии в цепи (и ничего больше!)

    Короче говоря, проводимость сводится к передаче тепла или передаче электрического заряда. И то, и другое происходит в результате способности вещества позволять молекулам передавать через себя энергию.


    Узнать больше

    Разработан теплопроводный пластик


    Источник: Universe Today

    Цитата : Что такое теплопроводность? (2014, 9 декабря) получено 16 октября 2022 г. с https://phys.org/news/2014-12-what-is-heat-conduction.html

    Этот документ защищен авторским правом. Помимо любой добросовестной сделки с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в ознакомительных целях.

    Учебное пособие по физике

    На предыдущих страницах этого урока мы узнали, что тепло — это форма передачи энергии из места с высокой температурой в место с низкой температурой. Три основных метода передачи тепла — теплопроводность, конвекция и излучение — подробно обсуждались на предыдущей странице. Теперь мы исследуем тему скорости теплопередачи. Эта тема имеет большое значение из-за частой необходимости либо увеличивать, либо уменьшать скорость, с которой тепло перемещается между двумя точками. Например, те из нас, кто живет в более холодном зимнем климате, постоянно ищут способы согреть свои дома, не тратя слишком много денег. Тепло уходит из дома с более высокой температурой на улицу с более низкой температурой через стены, потолки, окна и двери. Мы прилагаем усилия, чтобы уменьшить эту потерю тепла, улучшая изоляцию стен и чердаков, заделывая окна и двери и покупая высокоэффективные окна и двери. В качестве другого примера рассмотрим производство электроэнергии. Бытовая электроэнергия чаще всего производится с использованием ископаемого топлива или ядерного топлива . Способ включает выделение тепла в реакторе. Тепло передается воде, и вода переносит тепло к паровой турбине (или другому типу электрогенератора), где производится электричество . Задача состоит в том, чтобы эффективно передать тепло воде и паровой турбине с минимальными потерями. Следует обратить внимание на увеличение скоростей теплообмена в реакторе и турбине и уменьшение скоростей теплообмена в трубах между реактором и турбиной.

    Итак, какие переменные влияют на скорость теплопередачи? Как можно регулировать скорость теплопередачи? Эти вопросы будут обсуждаться на этой странице Урока 1. Наше обсуждение будет ограничено переменными, влияющими на скорость теплопередачи посредством теплопроводности . После обсуждения переменных, влияющих на скорость теплопередачи, мы рассмотрим математическое уравнение, выражающее зависимость скорости от этих переменных.

     

    Разница температур

    При теплопроводности тепло передается от места с высокой температурой к месту с низкой температурой. Передача тепла будет продолжаться до тех пор, пока существует разница температур между двумя точками. Как только в двух точках достигается одинаковая температура, устанавливается тепловое равновесие, и теплопередача прекращается. Ранее в этом уроке мы обсуждали передачу тепла в ситуации, когда металлическая банка с водой высокой температуры была помещена в чашку из пенопласта с водой низкой температуры. Если две пробы воды снабжены датчиками температуры, регистрирующими изменения температуры во времени, то получаются следующие графики.

    На приведенных выше графиках наклон линии представляет собой скорость изменения температуры каждой отдельной пробы воды. Температура меняется из-за теплопередачи от горячей воды к холодной. Горячая вода теряет энергию, поэтому ее наклон отрицателен. Холодная вода набирает энергию, поэтому ее наклон положительный. Скорость изменения температуры пропорциональна скорости передачи тепла. Температура образца изменяется быстрее, если тепло передается с высокой скоростью, и медленнее, если тепло передается с низкой скоростью. Когда два образца достигают теплового равновесия, теплопередача прекращается и наклон равен нулю. Таким образом, мы можем рассматривать уклоны как меру скорости теплопередачи. С течением времени скорость теплопередачи уменьшается. Первоначально тепло передается с высокой скоростью, что отражается в более крутых склонах. И с течением времени наклоны линий становятся менее крутыми и более пологими.

    Какая переменная способствует этому уменьшению скорости теплопередачи с течением времени? Ответ: разница температур двух емкостей с водой. Первоначально, когда скорость теплопередачи высока, горячая вода имеет температуру 70°C, а холодная вода имеет температуру 5°C. Два контейнера имеют разницу температур в 65°C. По мере того, как горячая вода начинает остывать, а холодная вода начинает нагреваться, разница в их температурах уменьшается и скорость теплообмена уменьшается. По мере приближения к тепловому равновесию их температуры приближаются к одному и тому же значению. При приближении разности температур к нулю скорость теплообмена приближается к нулю. В заключение, на скорость кондуктивной теплопередачи между двумя точками влияет разница температур между двумя точками.

     

    Материал

    Первая переменная, которую мы определили как влияющую на скорость кондуктивной теплопередачи, — это разница температур между двумя точками. Второй важной переменной являются материалы, участвующие в передаче. В предыдущем обсуждаемом сценарии металлическая банка с водой высокой температуры была помещена в чашку из пенопласта с водой низкой температуры. Тепло передавалось от воды через металл к воде. Важными материалами были вода, металл и вода. Что произойдет, если передать теплоту от горячей воды через стекло к холодной воде? Что произойдет, если теплота будет передаваться от горячей воды через пенопласт к холодной воде? Ответ: скорость теплообмена была бы другой. Замена внутренней металлической банки стеклянной банкой или чашкой из пенопласта изменит скорость теплопередачи. Скорость теплопередачи зависит от материала, через который передается тепло.

    Влияние материала на скорость теплопередачи часто выражается числом, известным как теплопроводность. Значения теплопроводности представляют собой числовые значения, которые определяются экспериментальным путем. Чем выше это значение для конкретного материала, тем быстрее тепло будет передаваться через этот материал. Материалы с относительно высокой теплопроводностью называют теплопроводниками. Материалы с относительно низкими значениями теплопроводности называются теплоизоляторами. В таблице ниже приведены значения теплопроводности (k) для различных материалов в единицах Вт/м/°C.

    Материал

     

    к

     

    Материал

    к

    Алюминий(и)

     

    237

     

    Песок(и)

    0,06

    Латунь(и)

     

    110

     

    Целлюлоза (ы)

    0,039

    Медь(и)

     

    398

     

    Стекловата(и)

    0,040

    Золото (а)

    315

     

    Вата (вата)

    0,029

    Чугун(ы)

     

    55

     

    Овечья шерсть(и)

    0,038

    Лид(ы)

     

    35,2

     

    Целлюлоза (ы)

    0,039

    Серебро (ы)

     

    427

     

    Пенополистирол (ы)

    0,03

    Цинк

     

    113

     

    Древесина (и)

    0,13

    Полиэтилен (HDPE) (s)

     

    0,5

     

    Ацетон (л)

    0,16

    Поливинилхлорид (ПВХ)

     

    0,19

     

    Вода (л)

    0,58

    Плотный кирпич (и)

     

    1,6

     

    Воздух (г)

    0,024

    Бетон (низкой плотности) (s)

     

    0,2

     

    Аргон (г)

    0,016

    Бетон (высокой плотности) (s)

     

    1,5

     

    Гелий (г)

    0,142

    Лед (ы)

     

    2,18

     

    Кислород (г)

    0,024

    Фарфор(ы)

     

    1,05

     

    Азот (г)

    0,024

    Источник: http://www. roymech.co.uk/Related/Thermos/Thermos_HeatTransfer.html

    Как видно из таблицы, теплопроводность обычно передается со значительно большей скоростью через твердые тела (вещества) в сравнение с жидкостями (l) и газами (g). Теплопередача происходит с наивысшей скоростью для металлов (первые восемь элементов в левой колонке), потому что механизм проводимости включает подвижные электроны (как обсуждалось на предыдущей странице). Некоторые твердые вещества в правой колонке имеют очень низкие значения теплопроводности и считаются изоляторами. Структура этих твердых тел характеризуется карманами захваченного воздуха, перемежающимися между волокнами твердого тела. Поскольку воздух является отличным изолятором, воздушные карманы, расположенные между этими твердыми волокнами, придают этим твердым телам низкие значения теплопроводности. Одним из таких твердых изоляторов является пенополистирол, материал, используемый в изделиях из пенополистирола. Такие изделия из пенополистирола изготавливаются путем вдувания инертного газа под высоким давлением в полистирол перед впрыскиванием в форму. Газ заставляет полистирол расширяться, оставляя заполненные воздухом карманы, которые способствуют изолирующей способности готового продукта. Пенополистирол используется в кулерах, изоляторах для банок, термосах и даже пенопластовых плитах для домашней изоляции. Еще одним твердым изолятором является целлюлоза. Целлюлозный утеплитель используется для утепления чердаков и стен в домах. Он изолирует дома от потерь тепла, а также от проникновения звука. Его часто задувает на чердаки как сыпучий целлюлозный утеплитель . Он также применяется в виде стекловолоконных плит (длинные листы изоляции на бумажной основе) для заполнения пространства между стойками 2×4 наружных (а иногда и внутренних) стен домов.

    Площадь

    Другой переменной, влияющей на скорость кондуктивной теплопередачи, является площадь, через которую передается тепло. Например, передача тепла через окна домов зависит от размера окна. Через большое окно из дома будет теряться больше тепла, чем через меньшее окно того же состава и толщины. Через большую крышу дом будет терять больше тепла, чем через меньшую крышу с такими же изоляционными характеристиками. Каждая отдельная частица на поверхности объекта участвует в процессе теплопроводности. Объект с большей площадью имеет больше поверхностных частиц, работающих для проведения тепла. Таким образом, скорость теплопередачи прямо пропорциональна площади поверхности, через которую проходит тепло.

    Толщина или расстояние

    Последней переменной, влияющей на скорость кондуктивной теплопередачи, является расстояние, на которое должно передаваться тепло. Тепло, выходящее через чашку из пенопласта, будет выходить быстрее через чашку с тонкими стенками, чем через чашку с толстыми стенками. Скорость теплопередачи обратно пропорциональна толщине чашки. Аналогичное утверждение можно сделать и для тепла, проводимого через слой целлюлозной изоляции в стене дома. Чем толще изоляция, тем ниже скорость теплопередачи. Те из нас, кто живет в более холодном зимнем климате, хорошо знают этот принцип. Нам говорят одеваться слоями перед выходом на улицу. Это увеличивает толщину материалов, через которые передается тепло, а также задерживает воздушные карманы (с высокой изоляционной способностью) между отдельными слоями.

     

    Математическое уравнение

    Итак, мы узнали о четырех переменных, влияющих на скорость теплопередачи между двумя точками. Переменными являются разница температур между двумя точками, материал, присутствующий между двумя точками, площадь, через которую будет передаваться тепло, и расстояние, на которое оно должно быть передано. Как это часто бывает в физике, математическая связь между этими переменными и скоростью теплопередачи может быть выражена в виде уравнения. Рассмотрим передачу тепла через стеклянное окно изнутри дома с температурой Т 1 снаружи дома с температурой T 2 . Окно имеет площадь поверхности А и толщину d. Значение теплопроводности оконного стекла равно k. Уравнение, связывающее скорость теплопередачи с этими переменными, имеет вид ватт. Это уравнение применимо к любой ситуации, когда тепло передается в одном и том же направлении через плоский прямоугольник 9.0171 стена . Оно применимо к проводимости через окна, плоские стены, наклонные крыши (без кривизны) и т. д. Немного другое уравнение применимо к проводимости через изогнутые стены, такие как стенки банок, чашек, стаканов и труб. Мы не будем обсуждать это уравнение здесь.

    Пример задачи

    Чтобы проиллюстрировать использование приведенного выше уравнения, рассчитаем скорость теплопередачи в холодный день через прямоугольное окно шириной 1,2 м и высотой 1,8 м, толщиной 6,2 мм, значение теплопроводности 0,27 Вт/м/°C. Температура внутри дома 21°С, снаружи дома -4°С.

    Чтобы решить эту задачу, нам нужно знать площадь поверхности окна. Будучи прямоугольником, мы можем вычислить площадь как ширина • высота.

    Площадь = (1,2 м)•(1,8 м) = 2,16 м 2 .

    Также необходимо обратить внимание на единицу толщины (d). Дается в единицах см; нам нужно будет преобразовать единицы в метры, чтобы единицы соответствовали единицам k и A.

    d = 6,2 мм = 0,0062 м

    Теперь мы готовы рассчитать скорость теплопередачи путем подстановки известных значений в приведенное выше уравнение.

    Скорость = (0,27 Вт/м/°C)•(2,16 м 2 )•(21°C — -4°C)/(0,0062 м)
    Норма = 2400 Вт (округлено от 2352 Вт)

    Полезно отметить, что значение теплопроводности окна дома намного ниже, чем значение теплопроводности самого стекла. Теплопроводность стекла составляет около 0,96 Вт/м/°С. Стеклянные окна изготавливаются в виде двойных и тройных окон со слоем инертного газа низкого давления между стеклами. Кроме того, на окна наносят покрытия для повышения эффективности. В результате получается ряд веществ, через которые должно последовательно проходить тепло, чтобы быть переданным из дома (или в него). Подобно последовательно соединенным электрическим резисторам, ряд теплоизоляционных материалов оказывает аддитивное влияние на общее сопротивление, оказываемое тепловому потоку. Суммарный эффект различных слоев материалов в окне приводит к тому, что общая проводимость намного меньше, чем у одного стекла без покрытия.

     

    Урок 1 этой главы по теплофизике был посвящен значению температуры и тепла. Особое внимание уделялось разработке модели частиц материалов, способной объяснить макроскопические наблюдения. Были предприняты усилия для разработки прочного концептуального понимания темы в отсутствие математических формул. Это прочное концептуальное понимание сослужит вам хорошую службу по мере приближения к Уроку 2. Глава станет немного более математической, поскольку мы будем исследовать вопрос: как можно измерить количество тепла, выделяемого или получаемого системой? Урок 2 будет относиться к науке калориметрии.

     

    Проверьте свое понимание

    1. Предскажите влияние следующих изменений на скорость, с которой тепло передается через прямоугольный объект, заполнив пропуски.

    а. Если площадь, через которую передается теплота, увеличить в 2 раза, то скорость теплопередачи ________________ (увеличилась, уменьшилась) в _________ раз (число).

    б. Если толщину материала, через который передается тепло, увеличить в 2 раза, то скорость теплопередачи составит ________________ в _________ раз.

    в. Если толщину материала, через который передается тепло, уменьшить в 3 раза, то скорость теплопередачи будет ________________ в _________ раз.

    д. Если теплопроводность материала, через который передается теплота, увеличить в 5 раз, то скорость теплопередачи будет ________________ в _________ раз.

    эл. Если теплопроводность материала, через который передается тепло, уменьшить в 10 раз, то скорость теплопередачи будет ________________ в _________ раз.

    ф. Если разность температур на противоположных сторонах материала, через который передается теплота, увеличить в 2 раза, то скорость теплопередачи будет ________________ в _________ раз.

    2. Используйте информацию на этой странице, чтобы объяснить, почему слой ворвани толщиной 2-4 дюйма помогает согревать белых медведей в холодную арктическую погоду.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *