Site Loader

Содержание

Электронвольт

Публикации по материалам Д. Джанколи. «Физика в двух томах» 1984 г. Том 2.

Электронвольт (электрон-вольт, электроновольт) — единица измерения электрической энергии, используемая в атомной и молекулярной физике.

Как мы увидим, джоуль оказывается слишком крупной единицей для измерения энергии электронов, атомов, молекул как в атомной и ядерной физике, так и в химии и молекулярной биологии. Здесь удобнее пользоваться единицей электрон-вольт (эВ). Один электрон-вольт равен энергии, которую приобретает электрон, проходя разность потенциалов 1 В (вольт). Заряд электрона равен 1,6*10-19 Кл, и, поскольку изменение потенциальной энергии равно qV,

1 эВ = (1,6*10-19 Кл)(1,0 В) =1,6*10-19 Дж.

Электрон, ускоренный разностью потенциалов 1000 В, теряет потенциальную энергию 1000 эВ и приобретает кинетическую энергию 1000 эВ (или 1 кэВ). Если той же разностью потенциалов ускорить частицу с вдвое большим зарядом (2е = 3,2*10

-19 Кл), ее энергия изменится на 2000 эВ.

Электрон-вольт — удобная единица для измерения энергии молекул и элементарных частиц, но он не принадлежит к системе СИ. Поэтому при расчетах следует переводить электрон-вольты в джоули, пользуясь приведенным выше коэффициентом.

Электрический потенциал уединенного точечного заряда

Электрический потенциал на расстоянии r от уединенного точечного заряда Q можно получить непосредственно из формулы (24.4).

Электрическое поле точечного заряда имеет напряженность

и направлено вдоль радиуса от заряда (или к заряду, если Q а на расстоянии

rа от Q до точки b на расстоянии rb от Q. Тогда вектор dl параллелен Е и dl = dr.
Таким образом,

Как уже говорилось, физический смысл имеет лишь разность потенциалов. Поэтому мы вправе присвоить потенциалу в какой-либо точке произвольное значение. Принято считать потенциал равным нулю на бесконечности (например, Vb = 0 при rb = оо), и тогда электрический потенциал на расстоянии r от уединенного точечного заряда равен

Это электрический потенциал относительно бесконечности; он иногда называется «абсолютным потенциалом» уединенного точечного заряда. Обратим внимание на то, что потенциал

V убывает как первая степень расстояния от заряда, в то время как напряженность электрического поля убывает как квадрат расстояния.
Потенциал велик вблизи положительного заряда и убывает до нуля на очень большом расстоянии. Вблизи отрицательного заряда потенциал меньше нуля (отрицателен) и с увеличением расстояния возрастает до нуля.

Чтобы определить напряженность электрического поля системы зарядов, необходимо просуммировать напряженности полей, создаваемых каждым зарядом в отдельности. Поскольку напряженность поля-вектор, такое суммирование нередко вырастает в проблему. Найти же электрический потенциал нескольких точечных зарядов гораздо проще: потенциал-скалярная величина и при сложении потенциалов не требуется учитывать направление. В этом большое преимущество электрического потенциала. Суммирование можно легко выполнить для любого числа точечных зарядов.

Продолжение следует. Коротко о следующей публикации:

Потенциал электрического диполя .
Два равных по величине и противоположных по знаку точечных заряда, находящиеся на расстоянии друг от друга, называются электрическим диполем.
Электрический потенциал, создаваемый диполем в произвольной точке представляет собой сумму потенциалов, создаваемых каждым из зарядов

Альтернативные статьи:
Электрический ток, Закон Ома. Формулы.


Замечания и предложения принимаются и приветствуются!

Падение напряжения на проводах — расстояние от трансформатора до ламп или ленты

Нас часто спрашивают, можно ли светодиодные лампы на 12 вольт такой-то мощности в таком-то количестве отдалить от трансформатора на такое-то расстояние?

Общая рекомендация — это расстояние не должно превышать 5 метров. Это известный факт.

Но что делать, если требуется больше 5 метров? Часто из-за конструктивных ограничений невозможно уложиться в такое короткое расстояние.

Потери на проводах — суть проблемы

В некоторых ситуациях можно превратить число 5 в гораздо большее значение. Для этого нужно оценить падение напряжения на проводах.

Именно оно является причиной ограничений — сам провод имеет внутреннее сопротивление и поэтому «съедает» часть напряжения источника тока. И когда провод слишком длинный, может случиться так, что лампам останется такая малая часть исходного напряжения, что они не загорятся.

Вторая часть проблемы — провод не просто «съедает» часть напряжения, а превращает его в тепло. Помимо того, что это просто бестолковое расходование электричества, так оно ещё и несёт в себе пожарную проблему — провод может нагреться слишком сильно.

Чтобы быть уверенным, что требуемые, например, 15 метров между трансформатором и лампой не принесут неприятностей, нужно оценить, сколько именно вольт потеряется на этих 15 метрах.

Рассчитать падение напряжения на проводе очень просто. Все необходимые для этого данные у Вас, как правило, есть: длина провода, суммарная мощность подключаемых ламп (ленты), напряжение питания и площадь поперечного сечения проводника. Нужно лишь дополнительно узнать удельное электрическое сопротивление материала, из которого изготовлен провод.

Формула для расчёта падения напряжения на проводах

Достаточно легко выводится простая общая формула для расчёта падения напряжения, применимая в любой ситуации.

Нам понадобится только закон Ома R = V ∕ I и формула связи электрической мощности, напряжения и силы тока W = V · I.

Также для оценки сопротивления провода нужно знать значение удельного электрического сопротивления [википедея] материала проводника.

Проведя простые выкладки, получим вот такую формулу, дающую оценку значения падения напряжения на проводах:

Оценка падения напряжения на проводах

Падение напряжения зависит от типа материала провода, сечения провода, его длины, мощности потребителей и напряжения источника питания. В этой формуле обозначено:

  • W — мощность в ваттах потребителей тока на конце провода;
  • V — напряжение источника тока в вольтах, как правило, 12 вольт или 24 вольта;
  • L — длина провода в метрах, т.е. удалённость потребителей от трансформатора;
  • S — площадь сечения провода в мм²;
  • ρ — значение удельного электрического сопротивление в Ом·мм²/м, для меди это примерно 0.018 Ом·мм²/м

Формула проста, но применима только в случае, если ожидаемое падение напряжения невелико, не более нескольких процентов, т.е. когда расстояние между трансформатором и потребителем не превышает 10 метров, а мощность менее 10-20 ватт.

В иных случаях следует воспользоваться более точной формулой:

Точное значение падения напряжения на проводах

Теперь, вычислив значение падение напряжения на проводах, мы можем оценить, какая мощность будет теряться — просто расходоваться на нагрев проводов. Нужно полученное значение падения напряжения умножить на мощность потребителей тока W и поделить на напряжение трансформатора V:

Оценка падения мощности на проводах

Если эта мощность получится слишком большой, то, очевидно, нужно увеличить толщину провода. Иначе можно получить различные неприятности вплоть до пожара.

Выводы

Как легко видеть из формул, чем толще провод, тем падение напряжения меньше.

При этом падение напряжения обратно пропорционально площади сечения проводника.

Двукратное увеличение площади сечения проводника примерно двукратно уменьшает падение напряжения на проводах

Также возможным решением проблемы может быть увеличение значения напряжения источника тока. Если, конечно, потребители тока это позволяют.

Падение напряжения на проводе линейно падает с увеличением напряжения источника тока.

Двукратное увеличение питающего напряжения примерно в два раза снижает падение напряжения

Например, наши низковольтные лампы Е27 на 12-24 вольт одинаково светят и от 12 и от 24 вольт. И в этом случае имеет смысл перейти на трансформатор на 24 вольта.

Также становится понятно, что для мощных потребителей (порядка 100 ватт) понадобятся очень толстые провода.

Пример

Оценим падение напряжения на медном проводе сечением 1.5 мм² и длиной 20 м при 24 вольтах и мощности подключенной ленты 50 ватт.

Подставив в первую формулу эти значения, мы получим, что на проводах «потеряется» примерно 1 вольт и около 2 ватт. В принципе, это не много, но если есть возможность увеличить толщину провода, лучше это сделать.

Можно, конечно, увеличить напряжение источника тока, заложив падение напряжение, но это совсем не лучший выход. Например, если мощность светильников на конце провода 180 ватт, то падение напряжения на проводе составит уже 3.5 вольта, а мощности — 25 ватт. Светильникам останется только 20 вольт, и драйверы некоторых светильников от недостатка напряжения могут войти в нештатный режим работы и начать перегреваться, потребляя гораздо больше заявленной мощности (хотя светодиоды при этом будут выдавать ту же яркость), что только увеличит падения напряжения на проводе. В этой ситуации останется только гадать, что случится раньше — возгорание проводов или выход из строя светильников.

А для трансформаторов на 12 вольт падение напряжения и расход мощности будут ещё в два раза больше.

Единственное правильное решение — увеличить толщину проводника. Как уже было сказано, увеличиваем сечение провода в два раза — примерно в два раза уменьшаем потери на проводах.

У Вас есть вопрос? Спросите консультанта.

Позвоните нам.
Или кликните здесь и задайте свой вопрос — подробный ответ Вы получите очень быстро.
Мы всегда стараемся помочь.Каталог продукции

Как рассчитать время работы, мощность ИБП. Формулы расчета

Онлайн калькуляторы расчета параметров работы ИБП оперируют установленными значениями КПД инвертора и других коэффициентов – мощности нагрузки, глубины разряда, доступной емкости. Заложенные в программу данные могут не совпадать с реальными, в этом случае только результат самостоятельного расчета по формуле будет точным.

Расчет времени работы ИБП

Если требуется приблизительно оценить автономность бесперебойника в работе с конкретной нагрузкой при заданной емкости АКБ, можно воспользоваться упрощенной формулой:

T=C*U/P,

где T – время (ч), C – суммарная емкость АКБ (Ач) (55 Ач, 75 Ач, 100 Ач и т.п.), U – суммарное напряжение АКБ (В) (12 В, 24 В или 48 В), P – полная мощность нагрузки (Вт) (100 Вт, 200 Вт, 1000 Вт и т.п.).

Пример: ИБП с нагрузкой 150 Вт (типичная для газового котла) и АКБ — 100 Ач, 12 В ориентировочно проработает следующее время в режиме резерв:

Т=(100 Ач*12 В)/150 Вт = 8 ч.

Более точная формула  расчета времени резервной работы ИБП, учитывает КПД и глубину разряда АКБ, выглядит так:

T=C*(U/P*КПД)*0,7.

КПД инвертора – паспортная величина. Ее значение в онлайн калькуляторах зачастую устанавливается 0.8, тогда как бесперебойники «Сибконтакт» демонстрируют 0.9.

Расчет мощности ИБП

Если мощность ИБП меньше суммарной нагрузки, тогда прибор сразу же отключится после запуска. Перед покупкой бесперебойника подсчитайте потребление всех устройств, которые будут от него запитаны. Найдите данные на корпусе или в техпаспорте изделий, затем сложите.

Для индуктивной нагрузки (аппараты с электродвигателями, люминесцентные лампы) обычно указывают полную мощность в вольт амперах (ВА). Если фигурируют ватты, надо рассчитать необходимую мощность ИБП с учетом реактивной составляющей:

P=Pa/cos φ.

Здесь Pа – активная мощность (Вт), cos φ – коэффициент мощности (если неизвестен, примите равным 0.7).

Также учитывайте, что в технике с электродвигателями пусковые токи до пяти раз больше, чем в рабочем режиме: бытовой холодильник, например, потребляет в момент включения компрессора около киловатта. Приятная новость: подобным устройствам требуется синусоидальный ток, и все ИБП «Сибконтакт» выдают на выходе именно такую форму переменного напряжения.

Расчет емкости батарей ИБП

После определения времени работы и мощности нагрузки проводится расчет необходимой емкости аккумуляторов ИБП по формуле:

С=(P*t)/U*Kр.

P – мощность, t – время, U – напряжение, Kр – коэффициент разряда (0.6-0.8).

Помните, что емкость АКБ суммируется только при параллельном соединении. При последовательном подключении складывается вольтаж батарей, а емкость остается равной номинальному значению одного источника питания.

Все вышеприведенные формулы, в упрощенном виде, встроены в наш онлайн «КАЛЬКУЛЯТОР» (виджет). Меняя параметры, можно легко определить, например, время работы ИБП от аккумулятора или  наоборот — емкость аккумулятора, для необходимого времени работы ИБП в режиме резерв.

Теперь пора перейти в интернет-магазин «Сибконтакт», где в наличии бесперебойники мощностью от 300 Вт, в том числе модели со сквозной нейтралью для газовых котлов.

Для серьезных задач подойдет  UPS ИБП МИ3024 Offline номиналом 3,3 кВт, выдерживающий двойную нагрузку в течение пяти секунд.

Перейти в каталог ИБП

Перейти в каталог АКБ

Как измерить мощность солнечной батареи? © Солнечные.RU

Что нужно для того, чтобы измерить мощность солнечной батареи и не купить, например, батарею мощностью 70 Ватт с маркировкой 100 Ватт? Всего лишь самый дешёвый тестер (мультиметр) и ясная солнечная погода.

 

Способ №1 (самый простой).

Расположите солнечную батарею так, чтобы на ВСЮ её поверхность падал прямой солнечный свет ПЕРПЕНДИКУЛЯРНО поверхности. Необходимо проводить измерения при ясной погоде в середине дня весной-летом, когда Солнце находится максимально высоко над горизонтом (угол Солнца должен быть более 42 градусов над горизонтом).

Измерьте вольтметром напряжение холостого хода (Voc), подключив щупы вольтметра к разъемам солнечной панели.

 

Измерьте амперметром ток короткого замыкания (Isc), подключив щупы амперметра к разъемам панели.

 

Посчитайте мощность по следующей эмпирической формуле: P = Voc * Isc * 0.78, где коэффициент 0,78 — это примерное усреднённое отношение паспортной мощности панели к произведению паспортных Voc и Isc.

Чтобы определить мощность солнечной батареи, у которой в паспорте указано 100 Вт, мы провели измерения напряжения и тока, которые видны на фото выше: Voc = 22.08 Вольт и Isc = 6.37 Ампера. Подставив эти значения в формулу, можно узнать, что её мощность составляет 22.08 * 6.37 * 0.78 = 109.7 Вт.

Конечно, это не точный способ измерения и он даёт погрешность около 10%, но если при таком измерении Вы насчитаете только 70-80 Вт, то стоит задуматься, сколько же Вы реально заплатите за каждый Ватт мощности…

На протяжении многих лет мы неоднократно измеряли ток короткого замыкания солнечных батарей и заметили, что весной-летом при ясном небе в Москве ток обычно лежит в пределах от 95 до 105% от номинала. Самые низкие показания тока (около 70-80% от номинала) наблюдаются зимой и связано это с очень низким углом Солнца над горизонтом и большими потерями солнечной энергии в атмосфере.

Все фото измерений сделаны в Москве, в августе при температуре около 18 градусов в очень ясную погоду, в связи с чем мощность панели превышает свой номинал.

 

Способ №2 (более сложный).

Это более точный способ, дающий погрешность около 5%, но и более сложный, поскольку понадобится MPPT-контроллер с дисплеем и немного разряженный аккумулятор.

Как и в первом способе, нужно расположить солнечную панель так, чтобы на ВСЮ её поверхность падал прямой солнечный свет ПЕРПЕНДИКУЛЯРНО поверхности. Необходимо проводить измерения при ясной погоде в середине дня весной-летом, когда Солнце находится максимально высоко над горизонтом (угол Солнца должен быть более 42 градусов над горизонтом).

Кроме того, нужно подключить MPPT-контроллер к аккумулятору, а затем панель к MPPT-контроллеру.

На дисплее контроллера отображается напряжение солнечной панели (Vmp) и ток (Imp) в точке максимальной мощности.

 

Посчитайте мощность по следующей формуле: P = Vmp * Imp

Как видно на фото, для той же панели мощностью 100 Вт, Vmp = 18 Вольт, Imp = 6.0 Ампер. Следовательно её мощность составляет 18 * 6 = 108 Вт.

Отметим, что показания контроллера могут иметь погрешность и для большей точности лучше ориентироваться не на них, а на показания мультиметра, которым можно измерить ток и напряжение солнечной панели, подключенной к контроллеру.

Если контроллер показывает только ток и напряжение аккумулятора, то для вычисления мощности панели нужно учесть КПД контроллера, который составляет около 95%. В этом случае расчет реальной мощности солнечной панели следует выполнять по формуле: P = Vakb * Iakb / 0.95 , где Vakb — напряжение АКБ, Iakb — ток заряда АКБ.

 

Способ №3 (самый точный).

Абсолютно точный способ — сдать панель в сертифицированную лабораторию, где проведут измерение мощности на специальном оборудовании. Такая лаборатория есть, например, в Зеленограде у компании «Телеком-СТВ».

 

Если при покупке Вам не повезло с погодой, то Вы можете провести измерения дома и если мощность не будет соответствовать заявленной, то можно сдать панель в магазин в течение 14 дней с момента покупки согласно закону о защите прав потребителей.

 

Результатами своих измерений мощности по этой методике Вы можете поделиться на нашем форуме.

 

Смотрите также:

 

Параллельное и последовательное подключение ТЭНов

Как правильно подключать нагреватели: параллельно или последовательно?

Итак, следует ли подключать нагреватели параллельно или последовательно? Этот вопрос возникает, когда к источнику питания необходимо подключить более одного нагревателя. Любое количество нагревателей может быть подключено параллельно, но обычно только два нагревателя подключаются последовательно. Надежное последовательное подключение более двух нагревателей является сложной задачей. Если нагреватели соединены последовательно, отказ одного нагревателя останавливает работу всех ТЭНов в цепочке. При параллельном подключении нагревателей отказ одного ТЭНа обычно не влияет на другие нагреватели.

Чаще всего при подключении используется два ТЭНа. В этом случае, если нагреватели соединены последовательно, напряжение каждого ТЭНа  должно быть равно половине общего доступного напряжения. Например, два нагревателя на 240 вольт, подключенные последовательно к источнику питания на 480 вольт. Также мощность каждого нагревателя должна быть одинаковой. (Если мощность и напряжение каждого нагревателя не равны, нагреватели не будут делить общее напряжение поровну.) Если два нагревателя подключены параллельно, напряжение каждого нагревателя должно быть таким же, как напряжение питания.

Давайте рассмотрим немного расчетов по подключению ТЭНов.

Общие формулы

Мощность (Ватт)

Напряжение (Вольт) 

Сила тока (Ампер)

Сопротивление (Ом)

 

Рассмотрим последовательное или параллельное подключение нескольких одинаковых нагревательных элементов с различными схемами соединения. Для произведения расчетов нам понадобятся такие характеристики:

R = полное сопротивление
P = общая мощность
U и I соответственно напряжение и сила тока

Параллельное соединение

Количество нагревательных элементов может быть  2, 3 или любое другое число (x). Тогда  общее сопротивление равно:
R = r / 2   либо    R = r / 3   либо   R = r / x, где r —  сопротивление одного нагревателя

Мощность общую вычислим по формуле:

P = 2*p  либо    P = 3*.p  либо    P = x*p, где р – мощность одного ТЭНа

Например:
2 параллельно подключенных нагревательных элемента на 1000 Вт 230 В, работающие от 230 В, генерируют 2000 Вт при 230 В с R = 26,45 Ом
3 параллельно подключенных нагревательных элемента на 1000 Вт 230 В, работающие от 230 В, генерируют 3000 Вт при 230 В с R = 17,63 Ом и
т. д.

Последовательное  подключение ТЭНов


Аналогично предыдущему случаю возьмем 2, 3 или х одинаковых ТЭНов, каждый из которых имеет сопротивление r  и мощность р. Для последовательного подключения значения сопротивления складываются, в итоге вычислений имеем:

R = 2*r  либо    R = 3*r  либо    R = x*r
P = p / 2  либо    P = p / 3

Например:
2 последовательно подключенных нагревательных элемента мощностью 1000 Вт 230 В, работающих от 230 В, генерируют 500 Вт при 230 В с R = 105,87 Ом (мощность, создаваемая нагревательными элементами, в 4 раза меньше)
3 последовательно подключенных нагревательных элемента мощностью 1000 Вт 230 В, работающих с 230 В генерируют 333 Вт при 230 В с сопротивлением R = 158,7 Ом (мощность, создаваемая нагревательными элементами, в 9 раз меньше) и
т. д.

Трехфазное подключение нагревателей

Соединение треугольником


Номинальное напряжение каждого нагревательного элемента идентично напряжению между фазами при соединении треугольником.

Соединение звездой


Номинальное напряжение нагревательных элементов равно напряжению между фазами трехфазной проводки, деленному на корень из 3 или 1,732


Пример подключения:
3 нагревательных элемента мощностью 1000 Вт 230 В, подключенные к трехфазной сети 400 В, генерируют 3000 Вт.
3 нагревательных элемента мощностью 1000 Вт 400 В, подключенные к трехфазному источнику питания 400 В, генерируют 1000 Вт.

Подробнее про трехфазное подключение ТЭНов читайте в нашей статье — треугольник или звезда для подключения нагревателей

Выводы

При параллельном подключении ТЭНов напряжение на каждом нагревателе будет одинаковое, общая мощность равна сумме мощностей отдельных нагревателей и выход одного ТЭНа из строя не нарушит работы остальных.

При последовательном подключении нагревателей общее сопротивление будет складываться из значений сопротивления каждого отдельного ТЭНа, напряжение на каждый отдельный нагреватель будет рассчитываться по формуле Uобщ/количество нагревателей (для одинаковых ТЭНов), соответственно общая мощность уменьшается во столько раз, сколько ТЭНов в системе.

 

Одна из причин однозначного выбора заключается в том, что некоторые нагреватели не могут надежно работать при одном напряжении. Это связано с физическими размерами нагревателя, а также с параметрами мощности и напряжения. В основном нужно подбирать ТЭНы с оптимальным размером греющей спирали, чтобы не было необходимости в последовательном подключении нескольких нагревателей. Помните, что параллельно все нагреватели имеют одинаковое напряжение, но последовательно каждый нагреватель имеет одинаковый ток. По сути, вы можете подключить ТЭНы последовательно только тогда, когда у вас есть два нагревателя одинаковой мощности и напряжения, при этом их суммарная мощность будет меньше. В большинстве случаев ТЭНы подключаются параллельно.

Если у Вас остались вопросы, обращайтесь к нам по телефону или по электронной почте. Наши специалисты помогут вам с выбором нагревательных элементов и проконсультируют по вопросам их подключения. Мы производим промышленные нагреватели, ик излучатели а также комплектующие материалы к системам нагрева.

Как перевести кВА в кВт | Как перевести кВт в кВА

Мощность задана в кВА, а на сайте ugm-arenda.com сортировка электростанций (генераторов) в кВт. Как перевести кВА в кВт и подобрать нужный дизель генератор?

Характеристики генераторов (электростанций) содержат обе единицы измерения мощности ― и кВт и кВа для удобства подбора техники в аренду нашими клиентами.

Приближенный перевод кВа в кВт

кВт ― полезная мощность, а кВА ― полная мощность.

кВА ― 20% = кВт или 1кВА = 0,8 кВт.

Следует от кВа отнять 20% и получится кВт с малой погрешностью, которую можно не учитывать.

Например, дана мощность 200 кВА перевести в кВт, необходимо 200 кВА х 0,8 = 160 кВт или 200 кВА ― 20% = 160 кВт.

Приближенный перевод кВт в кВА

1 кВт = 1.25 кВА или кВт =  кВА / 0,8

Например, на генераторе указана мощность 80 кВт, а вам требуется перевести данные показаний в кВА, следует 80кВт / 0,8=100кВА

Точный перевод формула перевода кВА в кВт

P=S * Сosf, где

P-активная мощность (кВт), S-полная мощность (кВА), Сos f- коэффициент мощности.

Точный перевод формула перевода кВт в кВА

S=P/ Сos f, где

S-полная мощность (кВА),

P-активная мощность (кВт),

Сos f- коэффициент мощности

Пояснения к формулам перевода кВА в кВт / кВт в кВА

Мощность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. В Международной системе единиц (СИ) единицей измерения мощности является ватт, равный одному джоулю в секунду.

Мощность бывает полная, реактивная и активная.

                S – полная мощность измеряется в кВА (килоВольтАмперах)

                A – активная мощность измеряется в кВт (килоВаттах)

                P – реактивная мощность измеряется в кВар (килоВарах)

Cos «фи» ― это коэффициент мощности, который представляет собой отношение активной мощности к полной мощности, совокупный показатель, говорящий о присутствии в электросети линейных и нелинейных искажений, появляющиеся при подключении нагрузки.

Максимально возможное значение ― единица. 0,9/0,95 ― хороший показатель, 0,8 ― средний (например, электродвигатели), 0,7 ― низкий, 0,6 ― плохой показатель.

S —  это геометрическая сумма активной и реактивной мощности, находимая из соотношения: S=P/cos(ф) или S=Q/sin(ф). кВА характеризует полную электрическую мощность.

P — это геометрическая разность полной и реактивной мощности, находимая из соотношения: P=S*cos(ф). кВт характеризует активную потребляемую электрическую мощность.

Киловатт (кВт) — единица измерения мощности, кратная производной единице измерения мощности в системе СИ ватту.

Ватт определяется как мощность, при которой за одну секунду совершается работа или расходуется энергия в один джоуль.

Ватт можно определить также как скорость выполнения работы, при которой поддерживается постоянная скорость тела один метр в секунду, если при этом необходимо преодолевать силу в один ньютон, действующую в направлении, противоположном направлению движения тела. В электромагнетизме один ватт определяется как скорость выполнения работы или преобразования электрической энергии, если ток в один ампер проходит через участок электрической цепи с разностью потенциалов один вольт.

 

Киловольт-ампер (кВА, кВ·А) — единица измерения полной мощности, кратная вольт-амперу — единице измерения полной электрической мощности в системе СИ и равная произведению действующих значений напряжения и тока.

Вольт-амперы используются только в тех случаях, когда необходимо оценить мощность в цепях переменного тока, в которых вольт-амперы и ватты имеют разное значение. В цепях постоянного тока мощность, выраженная в вольт-амперах, равна активной мощности в ваттах. В этом конвертере выполняется преобразование для цепей постоянного тока.

Для некоторых устройств, в частности, для блоков бесперебойного питания (UPS), максимальная мощность указывается как в ваттах, так и в вольт-амперах.

Все о зарядке электромобилей — Moscow Tesla Club

Для дома и офиса

Более 90% владельцев Tesla в России заряжают электромобили дома. Это удобно, поскольку не нужно тратить время на поездку на зарядную станцию. Вернувшись домой, достаточно оставить Tesla подключенной к электросети до утра. Полной зарядки аккумулятора обычно хватает на 2-3 дня. Заряжать электромобиль в домашних условиях можно от обычной евророзетки, однако в этом случае процесс очень долгий.

Другой вариант — трехфазная розетка, которую можно установить в загородном доме или в офисе. Процесс зарядки от трехфазной розетки значительно быстрее.

Рекомендуем приобрести одну из зарядных станций, представленных ниже. Каждая из них небольшого размера и проста в эксплуатации.

Мощность — 22 кВт

Сила тока — 32 А

Частота — 50 Гц

3-фазный переменный ток

Мощность — 22 кВт

Сила тока — 0-50 А

Постоянный ток

Мощность — 22 кВт

3-фазный переменный ток

Для быстрой зарядки и публичного использования

Существует несколько способов зарядить Tesla в общественных местах. Вы можете воспользоваться:
  • Трехфазной розеткой на любой автомойке, в отеле или подземном паркинге.
  • Зарядной станцией стандарта Mennekes Type 2.
  • Зарядной станцией CHAdeMO.
  • Supercharger (единственная станция этого типа в Москве расположена на территории гольф-клуба «Сколково»). Устройство позволяет полностью зарядить электромобиль за 75 минут.
Moscow Tesla Club продает и устанавливает зарядные станции не только для дома, но и общественных мест. Также мы оказываем консультации по оформлению необходимых разрешений в муниципальных органах власти. С моделями зарядных станций для общественного использования можно ознакомиться ниже.

Установленная общественная зарядка будет добавлена на карту PlugShare.

Мощность — 22 кВт

Сила тока — 0-50 А

Постоянный ток

Мощность — 50 кВт

Зарядка постоянным или переменным током

Мощность — 150 кВт

Постоянный ток

Вольт в Ватт, Ватт в Ампер, Калькулятор преобразования из Вольт в Ампер

Наш онлайн-калькулятор / средство преобразования может преобразовывать ватты в амперы, из вольт в ватты и из вольт в амперы. Калькулятор работает, заполняя любое из двух из трех полей (вольт амперы ватты) для вычисления значения третьего поля. Этот инструмент может преобразовать любое значение, если вы вводите два других значения.


Пример преобразования

Пример 1: Для преобразования вольт в амперы для блока питания 24 В VA50 введите 24 В и 50 Вт.Щелкните Рассчитать.

Пример 2: Чтобы преобразовать ватты в амперы для блока питания 12 В постоянного тока 500 мА, введите 12 В и 0,5 А. Щелкните Рассчитать.


Часто задаваемые вопросы (FAQ)

  1. Как перевести из вольт в ватты?
    Формула для преобразования напряжения в ватты: ватт = ампер x вольт.
  2. Как перевести ватты в амперы?
    Формула для преобразования ватт в амперы при фиксированном напряжении: ампер = ватт / вольт.
  3. Как вы переводите из вольт в амперы?
    Формула для преобразования вольт в амперы при фиксированной мощности: ампер = ватт / вольт.
  4. Как вы переводите амперы в ватты?
    Формула для преобразования ампер в ватты при фиксированном напряжении: ватты = амперы x вольт.

Преобразование ватт в амперы (подробный пример)

Вот один пример того, как этот калькулятор обычно используется установщиками систем безопасности в качестве калькулятора усилителя. Установщику необходимо рассчитать расстояние, на которое можно проложить кабель питания от видеорегистратора для видеонаблюдения до камеры видеонаблюдения, камеры видеонаблюдения HD и даже одной из новейших камер видеонаблюдения UHD 4K.Сначала им нужно рассчитать, сколько ампер выдает источник питания 24 В переменного тока. Обычно блоки питания 24 В переменного тока имеют номинальные значения ВА (амперы напряжения), а не амперы. Например, источник питания 24VAC50 — это 24 вольт, 50 вольт-ампер (ватты также известны как вольт-амперы). В приведенном выше калькуляторе установщик введет значение 24 в поле вольт и значение 50 в поле ватт.


Определения электрических терминов

Вот некоторые полезные электрические термины, относящиеся к расчету из вольт в ватты, из ваттов в амперы и из вольт в амперы.

  • Вольт — единица измерения электрической силы или давления, которая заставляет электрический ток течь в цепи. Один вольт — это величина давления, необходимая для протекания тока в один ампер против одного ома сопротивления. Концепция аналогична напору воды.
  • Ватт — единица измерения прилагаемой электрической мощности в цепи. Ватты также известны как вольт-амперы и представляют собой электрическую единицу измерения, обычно используемую в цепях переменного тока.Ватты рассчитываются путем умножения силы тока (измеренного в амперах) на электрическое давление (измеренное в вольтах).
  • Ампер (Ампер) — единица измерения силы тока в электрической цепи. Один ампер — это сила тока, когда один вольт электрического давления прикладывается к одному ому сопротивления. Амперы используются для измерения расхода электроэнергии аналогично тому, как GPM (галлонов в минуту) используются для измерения объема протекающей воды.
  • Ом — прибор для измерения сопротивления потоку в электрическом токе.Электрические проводники (например, проволока) оказывают сопротивление потоку тока. Это похоже на то, как трубка или шланг оказывает сопротивление потоку воды. Один Ом — это величина сопротивления, которая ограничивает ток до одного ампера в цепи с одним вольт электрическим давлением.
  • Закон Ома — Закон Ома гласит, что когда электрический ток течет по проводнику (например, кабелю), сила тока (амперы) равна движущей его электродвижущей силе (вольт), деленной на сопротивление проводника.

Онлайн-инструменты и калькуляторы

Пожалуйста, посетите нашу страницу Калькуляторы, конвертеры и инструменты для дополнительных онлайн-приложений.


Об этом инструменте

Этот онлайн-калькулятор был создан Майком Халдасом для профессионалов камер видеонаблюдения. CCTV Camera Pros — прямой поставщик оборудования для видеонаблюдения для дома, бизнеса и правительства. Если у вас есть какие-либо вопросы об этом инструменте или о чем-либо, связанном с системами камер видеонаблюдения, свяжитесь с Майком по адресу mike @ cctvcamerapros.нетто

вольт ампер. (VA) в Amp. (Амперы)

С помощью этого калькулятора вы можете преобразовать из вольт-ампер. (VA) в Amp. (Амперы) автоматически, легко, быстро и без всякой электроэнергии.

Мы также показываем, как преобразовать ВА в Ампер в 1 шаг, формулу, которая используется для преобразования, и диаграмму с основными преобразованиями из ВА в Ампер.

Формула расчета ВА в Ампер для генератора и трансформатора:
  • I AC = Ампер.
  • В L-L = Линия-Линия Вольт.
  • В L-N = Вольт фаза-нейтраль.
  • ВА = вольт-ампер.

Как преобразовать VA в Amp. всего за 1 шаг:

Шаг 1:

Разделите ВА между напряжением, указанным в формуле. Например, трехфазный вентилятор (3P) имеет мощность 1500 ВА при напряжении 208 В L-L , тогда вы должны разделить 1500 ВА между напряжением 208 В и корнем из трех, что приведет к: 4.16Амп. (1500 ВА / (208 В x √3) = 4,16 А).

Определение Ампер и S (ВА):

ВА: Вольт-ампер, обычно называемый ВА, обычно используется в качестве единицы мощности для определения электрической емкости автоматических выключателей, источников бесперебойного питания. и проводки.

ВА больше, чем ватт, потому что нагрузки являются индуктивными, например, электродвигатели, разрядные лампы, реакторы, и для поддержания напряжения в магнитном поле требуется больше тока, чем для превращения в тепло (Вт).

Индуктивные устройства или такие нагрузки. трансформаторы и двигатели с коэффициентом мощности менее 1,0 обычно имеют номинальные значения в ВА.

Ампер: Ампер — это термин, часто используемый электриками, и означает электрический ток, измеряемый в амперах или амперах. Ампер — это единица измерения электрического тока в системе СИ или количество электрического заряда, протекающего через проводник в заданное время. Один ампер — это заряд одного кулона — примерно 6,241 X 1018 электронов — в секунду, проходящий через заданную точку.

ВА в Ампер таблица преобразования:
ВА Фаза Вольт Ампер.
1ВА 3 фазы 208В 0,0027Амп.
2ВА 3 фазы 208В 0,0055Амп.
3ВА 3 фазы 208В 0,0083Амп.
4ВА 3 фазы 208В 0,011Амп.
5ВА 3 фазы 208В 0,013Амп.
6ВА 3 фазы 208В 0,016Амп.
7ВА 3 фазы 208В 0,019Амп.
8ВА 3 фазы 208В 0,022Амп.
9ВА 3 фазы 208В 0,024Амп.
10ВА 3 фазы 220В 0,026Амп.
20ВА 3 фазы 220В 0,052Амп.
30ВА 3 фазы 220В 0,078Амп.
40ВА 3 фазы 220В 0,104Амп.
50ВА 3 фазы 220В 0,131Амп.
60ВА 3 фазы 220В 0,157Амп.
70ВА 3 фазы 220В 0,183Амп.
80ВА 3 фазы 220В 0,209Амп.
90ВА 3 фазы 220В 0,236Амп.
100ВА 3 фазы 440В 0,13121Амп.
200ВА 3 фазы 440В 0,262Амп.
300ВА 3 фазы 440В 0,393Амп.
400 ВА 3 фазы 440 Вольт 0,524Амп.
500 ВА 3 фазы 440 Вольт 0,656Амп.
600ВА 3 фазы 440В 0,787Амп.
700 ВА 3 фазы 440 Вольт 0,918 Ампер.
800 ВА 3 фазы 440 Вольт 1049Амп.
900 ВА 3 фазы 440 Вольт 1,18 Амп.
1000 ВА 3 фазы 460 Вольт 1,255 Амп.
2000 ВА 3 фазы 460 Вольт 2,51 Ампер.
3000 ВА 3 фазы 460В 3,76Амп.
4000 ВА 3 фазы 460 Вольт 5,02А
5000 ВА 3 фазы 460В 6275Амп.
6000 ВА 3 фазы 460 Вольт 7,53Амп.
7000ВА 3 фазы 460В 8,785Амп.
8000ВА 3 фазы 460В 10,04Амп.
9000 ВА 3 фазы 480 Вольт 10,82Амп.
10000 ВА 3 фазы 480В 12,028Амп.
20000ВА 3 фазы 480В 24,056Амп.
30000ВА 3 фазы 480В 36,08Амп.
40000 ВА 3 фазы 480 Вольт 48,11 Ампер.
50000 ВА 3 фазы 480 Вольт 60,14 ампер.
60000ВА 3 фазы 480В 72,168Амп.
70000ВА 3 фазы 480В 84,196Амп.
80000ВА 3 фазы 480В 96,22Амп.

ВА

3 фазы 480В108,25Амп.

Оцените этот калькулятор ВА в Амперы: [kkstarratings]

Электрическое напряжение — Веб-формулы

Электрическое напряжение также называется электрическим потенциалом и определяется как разность электрических потенциалов между двумя электрическими полюсами батареи во время протекания электрический ток.

Рассмотрим на примере аккумуляторной батареи; Аккумулятор состоит из двух электрических полюсов — положительного и отрицательного электрического полюса.Химический процесс, происходящий в батарее, приводит к химической или неэлектрической силе. Благодаря химической силе положительные заряды движутся к положительным полюсам, а отрицательные заряды движутся к отрицательному полюсу и накапливаются там. В процессе накопления зарядов на соответствующих полюсах возникает разность электрических потенциалов между двумя полюсами, которая постепенно увеличивается. Как только разность электрических потенциалов достигает максимума и больше не происходит накопления зарядов на соответствующих полюсах, в это время разность электрических потенциалов и химическая сила становятся равными.Разность электрических потенциалов в этой точке называется ЭДС — электродвижущая сила батареи.

ЭДС единица измерения: джоуль / кулон = вольт. Название дано в памяти ученого Вольта.

Предположим, мы присоединяем аккумулятор с помощью проводящего провода, после чего создается электрическое поле. Из-за электрического поля положительные заряды текут навстречу отрицательной силе и образуют электрический ток. Следовательно, разность потенциалов между двумя электрическими полюсами меняется при протекании электрического тока.Эта разность электрических потенциалов между двумя полюсами батареи во время протекания тока называется напряжением на клеммах, или электрическим напряжением, или электрическим потенциалом.

Отношение между напряжением и ЭДС определяется как
V = E — I

× r
Где у нас
V = Напряжение
E = электродвижущая сила
I = ток
r = внутреннее сопротивление

Прибор, используемый для измерения электрического потенциала или электрического напряжения между любыми двумя точками, называется вольтметром и подключается параллельно двум рассматриваемым точкам.

Примеры расчетов

Пример-1: Внутреннее сопротивление батареи 12 В составляет 0,17 Ом, когда ток, протекающий от батареи, составляет 0,1 x 10 4 мА; рассчитать напряжение на клеммах аккумулятора.

Причина:

Здесь имеем:
E = 12 В
r = 0,17 Ом
I = 0,1

Пример-2: Почему положительные заряды не переместились с положительного полюса на отрицательный полюс батареи до соединения с проводящим проводом?

a) Положительные заряды противоположны внутреннему сопротивлению батареи
б) Положительные заряды сталкиваются с противодействием неэлектрической силы
в) Энергия положительных зарядов становится равной нулю, как только она достигает положительного заряда
d) Ни один из вышеперечисленных

Причина: Положительные заряды сталкиваются с противодействием неэлектрической силы перед соединением батареи с проводящим проводом.

Пример-3: Прибор для измерения электрического напряжения ……………

Причина: прибор, используемый для измерения электрического напряжения, — вольтметр.

Основные электрические формулы | Flodraulic Group

Вольт (E):

Вольт = квадратный корень из (Вт x Ом)

Вольт = ватт / ампер

Вольт = амперы x Ом

Ом (R) :

Ом = вольт / ампер

Ом = вольт² / Вт

Ом = Вт / ампер²

Ватт (Вт) :

Вт = вольт² / Ом

Ватт = амперы² x Ом

Ватт = вольт x ампер

Ампер (I) :

Ампер = вольт / Ом

Ампер = ватт / вольт

А = квадратный корень из (Вт / Ом)

Формулы двигателей переменного тока :

E = напряжение / I = амперы / Вт = ватты / PF = коэффициент мощности / Eff = эффективность / HP = мощность

Однофазный :

Ток (амперы) I = л.с. x 746 (где известно hp)
E x Eff x PF
Ток (амперы) I = кВт x 1000 (где известна кВт)
E x PF
Ток (амперы) I = КВА x 1000 (где известен Ква)
E
Мощность (л.с.) (л.с.) = I x E x Eff x PF
746
Киловатт (кВт) (кВт) = I x E x PF
1000
Киловольт-ампер (КВА) кВА = I x E
1000

Трехфазный :

Ток (амперы) I = л.с. x 746 (где известно hp)
1.73 x E x Eff x PF
Ток (амперы) I = кВт x 1000 (где известна кВт)
1,73 x E x PF
Ток (амперы) I = КВА x 1000 (где известен Ква)
1.73 x E
Мощность (л.с.) л.с. = 1,73 x I x E x Eff x PF (где известно hp)
746
Киловатт (кВт) WK = 1.73 x I x E x PF (где известно hp)
1000
Киловольт-ампер (КВА) кВА = 1,73 x I x E (где известно hp)
1000

Формулы КПД и коэффициента мощности переменного тока:

Однофазный КПД: 746 x HP
E x I x PF
Коэффициент мощности для однофазной сети: Потребляемая мощность
В x A
Трехфазный КПД: 746 x HP
E x I x PF x 1.732
Трехфазный коэффициент мощности: Потребляемая мощность
E x I x 1,732

Электрические правила большого пальца:

Скорость синхронизации Прибл. Момент
об / мин фунт-фут на л.с.
3600 1.4
1800 3
1200 4,5
900 5,8

Номинальный Приблизительный ток в амперах / л. С.
Напряжение Однофазный Трехфазный
115 10
230 5 2.5
460 1,25
575 1

Примечание : Эта информация предоставляется в качестве справочного ресурса и не предназначена для использования вместо квалифицированной инженерной помощи. Несмотря на то, что были предприняты все усилия для обеспечения точности этой информации, могут возникать ошибки. Таким образом, ни Flodraulic, ни любая из ее дочерних компаний, ни ее сотрудники не несут никакой ответственности за ущерб, травмы или неправильное применение в результате использования этого справочного руководства.

Преобразователь

Вт в Вольт (Вт в В): Калькулятор + Таблица преобразований

Если нам известна сила тока (А), мы можем легко преобразовать ватты в вольты. Для преобразования W в V мы можем использовать формулу для электроэнергии:

P (Вт) = I (A) * V (В)

Чтобы рассчитать вольт из ватт, нам нужно изменить эту формулу, выразив напряжение следующим образом:

Вольт = Ватт / Ампер

Чтобы преобразовать ватты в вольты, нам нужно знать, сколько ампер имеет электрическая цепь.

Вы можете свободно использовать этот удобный калькулятор ватт в вольт, вставив буквы W и A. Далее вы найдете таблицу преобразования с рассчитанными вольтами в ваттах при определенных амперах:

Калькулятор

Ватт в Вольт

Ватт в Вольт Таблица преобразования

Полезно знать, сколько вольт в ватте.

Короче говоря, 1 ватт равен 1 ампера (при 1 В). Исходя из этого, мы можем рассчитать такую ​​таблицу преобразования:

Ватт (Вт) Ампер (A) Вольт (В)
Сколько вольт в 1 ватте? 1 ампер 1 вольт
Сколько вольт в 1 ватте? 2 ампера 2 вольта
Сколько вольт в 1 ватте? 3 ампера 3 вольта
Сколько вольт в 1 ватте? 4 ампера 4 вольта
Сколько вольт в 1 ватте? 5 ампер 5 вольт
Сколько вольт в 2 ваттах? 1 ампер 2 вольта
Сколько вольт в 10 ваттах? 1 ампер 10 вольт
Сколько вольт в 20 ваттах? 1 ампер 20 вольт
Сколько вольт в 50 ваттах? 1 ампер 50 вольт
Сколько вольт в 100 ваттах? 1 ампер 100 вольт
Сколько вольт в 200 ваттах? 1 ампер 200 вольт
Сколько вольт в 500 ваттах? 1 ампер 500 вольт
Сколько вольт в 1000 ватт? 1 ампер 1000 вольт
Сколько вольт в 2000 ваттах? 1 ампер 2000 вольт
Сколько вольт в 3000 Вт? 1 ампер 3000 вольт
Сколько вольт в 4000 Вт? 1 ампер 4000 вольт
Сколько вольт в 5000 Вт? 1 ампер 5000 вольт

Если вы имеете в виду какое-либо конкретное преобразование ватт в вольт, вы можете использовать комментарии ниже, и мы постараемся вам помочь.Пожалуйста, укажите силу тока (A).

Преобразование электрических единиц

На этой информационной странице представлены формулы и документация для преобразования определенных электрических величин в другие электрические величины. Приведенные ниже формулы известны и повсеместно используются в производстве генераторов, но вы можете использовать их для компьютеров, сетей, телекоммуникационного и энергетического оборудования

9015 9015 ОБ / МИН (n) 9015 9015 916 POT КОЭФФИЦИЕНТ МОЩНОСТИ (PF)

кВ кВт

кВ киловатт

917 = эффективность в десятичном формате
ЗНАЧЕНИЕ 1-ФАЗА 3-ФАЗА
Вт (Вт) IXEX PF IXEX 1.73 X PF
КИЛОВАТТ (кВт)
АМПЕР (I)
КИЛОВОЛЬТ-АМПЕР (кВА)
ЧАСТОТА (Герц или f)
ОБ / МИН (n)
МОЩНОСТЬ (л.с.)
I X E X 1.73 X PF
746 X EFF
AMPERES (при известной кВт)
AMPERES (при известном kVA) 05 916 916 916 916 916 = ток в амперах
E = напряжение в вольтах
Вт = Вт
кВт = кажущаяся мощность в киловольт-амперах
л.с. = выходная мощность в лошадиных силах
об / мин (н) = скорость двигателя в оборотах в минуту (об / мин8)
нс = синхронная скорость в оборотах в минуту (об / мин)
Полюса ротора (P) = число r полюсов
Гц (f) = частота в циклах в секунду (CPS)
T = крутящий момент в фунт-футах
EFF
PF = Коэффициент мощности в десятичном формате
л.с. = лошадиных сил

Для получения подробного объяснения каждой формулы щелкните по ссылкам ниже, чтобы перейти вправо к нему.

для определения ватт
для определения вольт-ампер
для определения киловольт-ампер
для определения киловатт
для преобразования между кВт и кВА
для определения кБТЕ от электрических значений


Справочная информация

Часто бывает необходимо преобразовать значения напряжения, силы тока и электрических «паспортных данных» с компьютеров, сетевого и телекоммуникационного оборудования в информацию о кВт, кВА и BTU, которую можно использовать для расчета общей мощности и нагрузок HVAC для ИТ-помещений.Ниже описывается, как взять основные электрические значения и преобразовать их в другие типы электрических величин.

  • ПРИМЕЧАНИЕ № 1 :
    Информационные таблички на большинстве единиц оборудования обычно отображают электрические параметры. Эти значения могут быть выражены в вольтах, амперах, киловольт-амперах, ваттах или в некоторой комбинации вышеперечисленного.

  • ПРИМЕЧАНИЕ № 2 :
    Если вы используете данные паспортной таблички оборудования для разработки профиля мощности для использования при выборе генератора, общие значения мощности будут превышать фактическую выходную мощность оборудования.Причина: значение, указанное на паспортной табличке, предназначено для обеспечения безопасной работы оборудования. При разработке данных на паспортной табличке производители учитывают «коэффициент запаса прочности». На некоторых шильдиках отображается информация, которая выше, чем когда-либо понадобится оборудованию — часто на 20% выше. В результате ваш профиль в целом «переоценивает» требования к мощности оборудования. В общем, это неплохо, просто нужно знать об этом.

  • ПРИМЕЧАНИЕ № 3 :
    Мы рекомендуем: Разработайте профиль мощности, используя информацию с паспортной таблички и формулы, приведенные ниже, и используйте полученную документацию в качестве основы.Почему? Потому что это лучшая доступная информация без проведения обширных электрических испытаний каждого элемента оборудования. Если вам необходимо снизить оценку, убедитесь, что у вас есть веская причина. В ближайшие годы вам понадобится каждый ватт, который вы можете получить. Лучше быть «негабаритным», чем «малоразмерным».


Формулы

Чтобы найти ватты

1. Когда известны вольты и амперы

МОЩНОСТЬ (ВАТТ) = ВОЛЬТЫ x АМПЕР

  • У нас есть прибор с именем 2.5 ампер. Учитывая нормальный источник питания 120 В, 60 Гц и показания в амперах от оборудования, сделайте следующий расчет:

МОЩНОСТЬ (ВАТТ) = 120 * 2,5 ОТВЕТ: 300 Вт

Чтобы найти вольт-амперы (ВА)

1. То же, что и выше. ВОЛЬТ-АМПЕР (ВА) = ВОЛЬТ x АМПЕР ANS: 300 ВА

Чтобы найти киловольт-ампер (кВА)

1. ОДНА ФАЗА

КИЛОВОЛЬТ-АМПЕР 90 (кВА) AMPERES
1000

Используя предыдущий пример: 120 * 2.5 = 300 ВА 300 ВА / 1000 = 0,300 кВА

2. ДВУХФАЗНЫЙ

КИЛОВОЛЬТ-АМПЕР (кВА) = Вольт x АМПЕР x 2
1000

2 220 x 4,7 x 2 = 2068 2068/1000 = 2,068 кВА

3. ТРЕХФАЗНЫЙ

  • Дано: У нас есть большой прибор с данными на паспортной табличке розетки на 50 А 208 В переменного тока.Для этого расчета мы будем использовать 21 ампер. Не рассчитывайте стоимость вилки или розетки. Используйте значение, указанное на паспортной табличке.

КИЛОВОЛЬТ-АМПЕР (кВА) = ВОЛЬТ x АМПЕР x 1,73
1000

208 x 20,5 x 1,73 = 7,376,72 7,376,72 / 1000 = 7,377 кВА

Найти

  • иловаттс

    Киловаттс

    немного сложнее, потому что формула включает значение для «коэффициента мощности ».Коэффициент мощности — это нечеткое, но требуемое значение, которое отличается для каждого электрического устройства. Это связано с эффективностью использования электроэнергии, подаваемой в систему. Этот коэффициент может широко варьироваться от 60% до 95% и никогда не указывается на паспортной табличке оборудования и, кроме того, не часто предоставляется вместе с информацией о продукте. Для этих расчетов мы используем коэффициент мощности 0,85. Большинство генераторов имеют коэффициент мощности 0,80. Каким бы ни был номер, он вносит небольшую неточность в числа.Это нормально, и это очень приближает нас к работе, которую вам нужно выполнить.

  • 1. ОДНА ФАЗА

    Дано: У нас есть устройство среднего размера, которое потребляет 6,0 А.

    КИЛОВОЛЬТ-АМПЕР (кВА) = ВОЛЬТ x АМПЕР x КОЭФФИЦИЕНТ МОЩНОСТИ
    1000

    120 * 6,0 = 720 ВА 720 ВА * 0,85 = 612 612/1000 = 0,612 кВт

    2. ДВУХФАЗНЫЙ

    КИЛОВОЛЬТ-АМПЕР (кВА) = ВОЛЬТ x АМПЕР x КОЭФФИЦИЕНТ МОЩНОСТИ x 2
    1000

    220 x 4.7 x 2 = 2068 2068 x 0,85 = 1757,8 1757,8 / 1000 = 1,76 кВт

    3. ТРЕХФАЗНЫЙ

    • Дано: У нас есть очень большой прибор, для которого требуется розетка на 50 А и 208 В переменного тока . Для этого расчета мы будем использовать 21 ампер. Не рассчитывайте стоимость вилки или розетки. Используйте значение, указанное на паспортной табличке.

    КИЛОВОЛЬТ-АМПЕР (кВА) = ВОЛЬТ x АМПЕР x КОЭФФИЦИЕНТ МОЩНОСТИ x 1,73
    1000

    208×20.5×1,73 = 7 376,72 7 376,72 * 0,85 = 6 720,21 6,720,21 / 1000 = 6,27 кВт

    Для преобразования между кВт и кВА

    • Единственная разница между кВт и кВА — это коэффициент мощности. Еще раз, коэффициент мощности, если он не известен, является приблизительным. Для целей наших расчетов мы используем коэффициент мощности 0,80, который используется большинством генераторов. Значение кВА всегда выше, чем значение для кВт.

    кВт До кВА кВт /.80 = ОДИНАКОВОЕ ЗНАЧЕНИЕ, ВЫРАЖЕННОЕ В кВА
    кВА На кВт кВА * .80 = ТАКОЕ ЗНАЧЕНИЕ, ВЫРАЖЕННОЕ В КВТ

    Определение БТЕ по электрическим значениям

    • Известные и заданные: 1 кВт = 3413 БТЕ (или 3,413 кБТЕ) )

    • Вышеупомянутое является общеизвестным значением для преобразования электрических величин в БТЕ. Многие производители указывают значения кВт, кВА и БТЕ в своих технических характеристиках оборудования. Часто деление значения БТЕ на 3413 не равно их опубликованному значению в кВт.Так много всего известно и дано. Если информация предоставлена ​​производителем, используйте ее. Если это не так, используйте приведенную выше формулу.

    ВОЗВРАЩЕНИЕ В ТОП

    Майк Холт Расчет падения напряжения

    Часть ПЕРВАЯ

    Целью Национального электротехнического кодекса является практическая защита людей и имущества от опасностей, связанных с использованием электричества. NEC обычно не считает падение напряжения проблемой безопасности.В результате NEC содержит шесть рекомендаций (примечания к мелкому шрифту), которые проводники цепи должны быть достаточно большими по размеру, чтобы может быть обеспечена эффективность работы оборудования. Кроме того, NEC имеет пять правил, по которым проводники должны иметь размер, соответствующий напряжению. падение проводов цепи.

    Примечания мелким шрифтом в NEC предназначены только для информационных целей и не подлежит исполнению инспекционным органом [90-5 (c)].Однако раздел 110-3 (b) требует, чтобы оборудование было установлено в соответствии с оборудованием. инструкции. Поэтому электрооборудование необходимо устанавливать так, чтобы он работает в пределах своего номинального напряжения, указанного производителем. Рисунок 1.

    Комментарий автора: Рисунки не размещаются в Интернете.

    Из-за падения напряжения в проводниках цепи рабочее напряжение у электрооборудования будет меньше выходного напряжения силовой поставка.Индуктивные нагрузки (например, двигатели, балласты и т. Д.), Работающие при напряжение ниже номинального может привести к перегреву, что приведет к сокращению времени работы оборудования. срок службы и повышенная стоимость, а также неудобства для заказчика. Пониженное напряжение для чувствительного электронного оборудования, такого как компьютеры, лазерные принтеры, копировальные машины и т. д. могут вызвать блокировку оборудования или внезапное отключение питания. вниз, что приведет к потере данных, увеличению стоимости и возможному отказу оборудования. Резистивные нагрузки (нагреватели, лампы накаливания), работающие при пониженном напряжении. просто не обеспечит ожидаемую номинальную выходную мощность, рисунок 1.

    Комментарий автора: Падение напряжения на проводниках может вызвать накаливание. освещение мигать, когда другие приборы, оргтехника или отопление и системы охлаждения включаются. Хотя некоторых это может раздражать, это не опасно и не нарушает NEC.

    РЕКОМЕНДАЦИИ NEC

    Национальный электротехнический кодекс содержит шесть примечаний, напечатанных мелким шрифтом, для предупреждения Укажите пользователю, что оборудование может повысить эффективность работы, если учитывается падение напряжения на проводнике.

    1. Ответвительные цепи. Настоящая FPN рекомендует, чтобы проводники ответвлений иметь размер, предотвращающий максимальное падение напряжения до 3%. Максимальное общее напряжение падение для комбинации ответвления и фидера не должно превышать 5%. [210-19 (а) ФПН № 4], рис. 2.

    2. Фидеры. В данной FPN рекомендуется выбирать размеры фидеров. для предотвращения максимального падения напряжения на 3%. Максимальное общее падение напряжения для комбинации ответвления и фидера не должно превышать 5%.[215-2 (d) ФПН № 2], рис. 2.

    Пример: Какое минимальное рабочее напряжение, рекомендованное NEC для Нагрузка 120 В, подключенная к источнику 120/240 В, рисунок 3 (8-11).

    (а) 120 вольт (b) 115 вольт (c) 114 вольт (г) 116 вольт

    Ответ: (c) 114 В Максимальное рекомендуемое падение напряжения на проводе как для фидера, так и для ответвленной цепи составляет 5 процентов от источника напряжения; 120 вольт x 5% = 6 вольт.Рабочее напряжение на нагрузке определяется путем вычитания падения напряжения на проводнике из источника напряжения, 120 вольт — падение 6 вольт = 114 вольт.

    3. Услуги — Интересно, что нет рекомендуемого падения напряжения. для сервисных проводников, но эта FPN напоминает пользователю Кодекса о необходимости учитывать падение напряжения на служебных проводниках [230-31 (c) FPN].

    Комментарий автора: Падение напряжения на проводах с длительным сроком службы может вызвать лампы накаливания в здании мигают при включении бытовой техники, отопления или включаются системы охлаждения.Для получения информации о том, как решить или уменьшить мерцание ламп накаливания, перейдите по адресу: www.mikeholt.com/Newsletters.

    4. Максимально допустимая нагрузка проводника — Эта FPN определяет тот факт, что перечисленные в таблице 310-16, не учитывают падение напряжения [310-15 ФПН №1].

    5. Фазовые преобразователи — Фазовые преобразователи имеют свои собственные рекомендации. падение напряжения от источника питания к фазовому преобразователю должно не превышает 3% [455-6 (a) FPN].

    6. Парковки для транспортных средств для отдыха — для транспортных средств для отдыха есть рекомендации. чтобы максимальное падение напряжения на проводниках параллельной цепи не превышало 3% и комбинация ответвления и фидера не более 5% [210-19 (а) ФПН № 4 и 551-73 (г) ФПН].

    ТРЕБОВАНИЯ NEC

    Национальный электротехнический кодекс также содержит пять правил, требующих проводники должны быть увеличены в размере, чтобы компенсировать падение напряжения.

    Заземляющие проводники — это правило гласит, что если проводники цепи увеличены в размерах для компенсации падения напряжения, заземление оборудования проводники также должны быть увеличены в размерах [250-122 (b)].

    Комментарий автора: Если, однако, провода цепи не увеличить по размеру, чтобы учесть падение напряжения, то заземляющий провод оборудования не требуется, чтобы он был больше, чем указано в Таблице 250-122.

    Кино / Телестудия — Проводник ответвления для Системы 60/120 вольт, используемые для снижения шума при производстве аудио / видео или другая подобная чувствительная электроника для киностудий и телестудий не должно превышать 1.5%, а суммарное падение напряжения фидера и проводники параллельной цепи не должны превышать 2,5% [530-71 (d)]. Кроме того, FPN № 1 в соответствии с разделом 530-72 (b) напоминает пользователю Кодекса об увеличении размера заземляющего проводника в соответствии с Разделом 250-122 (b).

    Пожарные насосы — Рабочее напряжение на выводах пожарного насоса. Контроллер не должен быть менее 15% от номинального напряжения контроллера. при запуске двигателя (ток заторможенного ротора).Кроме того, действующие напряжение на выводах электродвигателя пожарного насоса не должно быть меньше 5% от номинального напряжения двигателя, когда двигатель работает на 115 процентов от номинального тока полной нагрузки [695-7].

    Комментарий автора: в следующем месяце в этой статье я приведу примеры и графики, демонстрирующие применение правил NEC по падению напряжения.

    ОПРЕДЕЛЕНИЕ ПЕРЕПАДА НАПРЯЖЕНИЯ В ЦЕПИ

    Когда проводники цепи уже установлены, напряжение падение на проводниках может быть определено одним из двух методов: Ом закон или формула ВД.

    Метод закона Ома — только однофазный

    Падение напряжения на проводниках цепи можно определить умножением ток цепи по общему сопротивлению проводов цепи: VD = I x R. «I» равно нагрузке в амперах, а «R» равно сопротивлению проводника, указанному в главе 9, таблица. 8 для цепи постоянного тока или в главе 9, таблице 9 для переменного тока. токовые цепи.Метод закона Ома нельзя использовать для трехфазного схемы.

    120 вольт Пример: каково падение напряжения на двух проводниках № 12, которые подайте нагрузку 16 ампер, 120 вольт, которая находится в 100 футах от источника питания питания (200 футов провода), рис. 4.

    (а) 3,2 вольт (б) 6,4 вольт (c) 9,6 вольт (г) 12,8 В

    Ответ: (б) 6,4 вольт

    Падение напряжения = I x R

    «I» равно 16 ампер

    «R» равно 0.4 Ом (Глава 9, Таблица 9: (2 Ом / 1000 футов) x 200 футов

    Падение напряжения = 16 ампер x 0,4 Ом

    Падение напряжения = 6,4 В, (6,4 В / 120 В = падение на 5,3%)

    Рабочее напряжение = 120 В — 6,4 В

    Рабочее напряжение = 113,6 В

    Комментарий автора: Падение напряжения на 5,3% для указанной выше параллельной цепи. превышает рекомендации NEC на 3%, но не нарушает NEC, если нагрузка 16 А не рассчитана ниже 113.6 вольт [110-3 (б)].

    , однофазный, 240 вольт Пример: какое рабочее напряжение у 44 ампер, 240 вольт, однофазная нагрузка, расположенная в 160 футах от щитка, если он соединен проводниками № 6, рисунок 5?

    (а) 233,1 вольт (б) 230,8 вольт (c) 228,4 вольт (г) 233,4 В

    Ответ: (а) 233,1 вольт

    Падение напряжения = I x R

    «I» равно 44 амперам

    «R» равно 0.157 Ом (Глава 9, Таблица 9: (0,49 Ом / 1000 футов) x 320 футов

    Падение напряжения = 44 ампера x 0,157 Ом

    Падение напряжения = 6,9 В (6,9 В / 240 В = 2,9% падения)

    Рабочее напряжение = 240 В — 6,9 В

    Рабочее напряжение = 233,1 В

    Падение напряжения по методу формул

    Когда проводники цепи уже установлены, напряжение падение проводов можно определить с помощью одного из следующих формулы:

    VD = 2 x K x Q x I x D / CM — однофазный

    VD = 1.732 x K x Q x I x D / CM — трехфазный

    «VD» = падение напряжения: падение напряжения на проводниках цепи. как выражено в вольтах.

    «K» = постоянная постоянного тока: это постоянная, которая представляет сопротивление постоянному току для проводника в тысячу круглых мил длиной в тысячу футов, при рабочей температуре 75º. C. Постоянное значение постоянного тока, используемое для меди, составляет 12,9 Ом. и 21.Для алюминиевых проводов используется 2 Ом. Константа «К» подходит для цепей переменного тока, где жилы не превышает № 1/0.

    «Q» = Коэффициент регулировки переменного тока: Переменный ток цепи № 2/0 и выше должны быть отрегулированы с учетом эффектов самоиндукции. (скин-эффект). Коэффициент корректировки «Q» определяется путем деления сопротивление переменному току, как указано в таблице 9 главы 9 NEC, на сопротивление постоянному току, как указано в главе 9, таблица 8.

    «I» = Амперы: нагрузка в амперах при 100 процентах, а не 125 процентов для двигателей или постоянных нагрузок.

    «D» = Расстояние: расстояние, на котором нагрузка находится от источника питания. питания, а не общую длину проводников цепи.

    «CM» = Circular-Mils: Круговые милы проводника цепи. как указано в главе 9, таблица 8.

    Однофазный пример: каково падение напряжения на проводе № 6 который обеспечивает однофазную нагрузку 44 А, 240 В, расположенную на расстоянии 160 футов из щитка, рисунок 6?

    (а) 4.25 вольт (b) 6,9 вольт (c) 3 процента (г) 5 процентов

    Ответ: (б) 6,9 вольт

    VD = 2 x K x I x D / CM

    K = 12,9 Ом, медь

    I = 44 ампера

    D = 160 футов

    CM = No. 6, 26 240 круговых милов, Глава 9, Таблица 8

    VD = 2 провода x 12,9 Ом x 44 А x 160 футов / 26240 круглых мил

    VD = 6.9 В (6,9 В / 240 В = падение на 2,9%)

    Рабочее напряжение = 240 В — 6,9 В

    Рабочее напряжение = 233,1 В

    Трехфазный Пример: Трехфазная нагрузка 208 В, 36 кВА расположена 80 футов от щитка и соединен алюминиевыми проводниками №1. Какое падение напряжения в проводниках до отключения оборудования, Рисунок 7?

    (а) 3,5 вольт (б) 7 вольт (c) 3 процента (г) 5 процентов

    Ответ: (а) 3.5 вольт

    VD = 1,732 x K x I x D / CM

    K = 21,2 Ом, алюминий

    I = 100 ампер

    D = 80 футов

    CM = № 1, 83690 круговых милов, глава 9, таблица 8

    VD = 1,732 x 21,2 Ом x 100 ампер x 80 футов / 83690 круглых мил

    VD = 3,5 В (3,5 В / 208 В = 1,7%)

    Рабочее напряжение = 208 В — 3,5 В

    Рабочее напряжение = 204,5 В

    Надеюсь, это краткое резюме было полезным.Если вы хотите узнать больше о по этой теме, посетите наш семинар или закажите видео для домашнего обучения программа сегодня.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *