Site Loader

Содержание

Трансформатор — Вікіпедія

Трансформатор Силовий трансформатор 110/35/10кВ потужністю 63МВА

Трансформа́тор (від лат. transformo — перетворювати) — пристрій для перетворення параметрів (амплітуд і фаз) напруг і струмів[1].

Трансформатор — статичний електромагнітний пристрій, що має дві або більше індуктивно зв’язані обмотки і призначений для перетворення за допомогою електромагнітної індукції однієї або кількох систем (напруг) змінного струму в одну або декілька інших систем (напруг) змінного струму без зміни частоти системи (напруги) змінного струму[2].

Трансформатори широко застосовуються в лініях електропередач, в розподільних та побутових пристроях. При високій напрузі й малій силі струму передача електроенергії відбувається з меншими втратами. Тому, зазвичай лінії електропередач є високовольтними. Водночас побутові й промислові машини вимагають великої сили струму й малої напруги, тому перед споживанням електроенергія перетворюється в низьковольтну. Трансформатори знайшли застосування також у різних випрямних, підсилювальних, сигналізаційних та інших пристроях.

Коефіцієнт корисної дії сучасних трансформаторів, особливо підвищеної потужності, вельми високий і досягає значень 0,95…0,996.

У 1831 році англійським фізиком Майклом Фарадеєм при проведенні ним основоположних досліджень було відкрите явище електромагнітної індукції, що лежить в основі принципу роботи електричного трансформатора.

Вперше трансформатори, як такі були продемонстровані в 1882 році[3], хоча ще в 1876 році Яблочков П. М. запатентував (патент Франції № 115793 від 30 листопада 1876 року[4]) аналогічний пристрій для створених ним освітлювальних пристроїв — «свічок Яблочкова»[5][6]. Це був трансформатор з розімкнутим осердям, у вигляді стрижня, на який намотувались обмотки.

Трансформатор силовий ОСМ1-0,63 380/220-24-12-5; Однофазний Сухий Багатоцільового призначення потужністю 0,63 кВА

У 1885 р. угорські інженери фірми «Ganz factory» Отто Блаті, Карл Зіперновскі і Мікша Дері винайшли трансформатор із замкнутим магнітопроводом, що зіграло важливу роль у подальшому розвитку конструкцій трансформаторів[7].

Велику роль для підвищення надійності трансформаторів зіграло застосування масляного охолодження (кінець 1880-х років, Джордж Свінберн). Свінберн розташовував трансформатори у керамічних посудинах, заповнених оливою, що суттєво підвищувало надійність ізоляції обмоток.[8].

Винахід трансформатора був важливим фактором у так званій війні струмів — конкурентній боротьбі за те, який електричний струм, постійний чи змінний ефективніший для масового користування.

З винайденням трансформатора виник технічний інтерес до змінного струму. Електротехнік російського походження М. О. Доліво-Добровольський у 1889 р. розробив для німецької фірми «Allgemeine Elektricitäts-Gesellschaft» перший трифазний трансформатор

[9]. На електротехнічній виставці у Франкфурті-на-Майні у 1891 р. Доліво-Добровольський демонстрував дослідну високовольтну електропередачу трифазного струму на відстань 175 км. Трифазний генератор мав потужність 230 кВт при напрузі 95 В.

У 1891 році Нікола Тесла винайшов резонансний трансформатор для генерування високої напруги при високій частоті[10][11][12].

Схематична будова ідеального трансформатора
Підключення трансформатора у схемі

Найпростіший трансформатор складається з двох обмоток на спільному осерді. Одна з обмоток під’єднана до джерела змінного струму. Ця обмотка називається первинною. Інша обмотка, вторинна, служить джерелом струму для навантаження. Створений струмом у первинній обмотці змінний магнітний потік викликає появу е.р.с. у вторинній обмотці, оскільки обидві обмотки мають спільне осердя. Співвідношення е.р.с. у вторинній обмотці й напруги на первинній залежить від кількості витків у обох обмотках. В ідеальному випадку

USUP=NSNP=IPIS{\displaystyle {\frac {U_{S}}{U_{P}}}={\frac {N_{S}}{N_{P}}}={\frac {I_{P}}{I_{S}}}},

де індексом P позначені величини, що стосуються первинної обмотки, а індексом S — відповідні величини для вторинної обмотки, U — напруга, N — кількість витків, I — сила струму.

Таким чином, перетворення напруги й сили струму в трансформаторі визначається кількістю витків у первинній та вторинній обмотках. Напруга пропорційна кількості витків, тоді як сила струму обернено пропорційна їй.

У реальних трансформаторах енергія передається від первинного кола до вторинного з втратами. Існує низка фізичних причин, що їх зумовлюють.

Однією з причин втрат є активний опір обмоток. При протіканні струму через трансформатор, він нагрівається і віддає тепло навколишньому середовищу. При збільшенні частоти опір обмоток збільшується через скін-ефект та ефект близькості, які зменшують площу перерізу провідника, через який протікає струм.

Ще одна причина втрат — перемагнічування осердя внаслідок гістерезису. Ці втрати для конкретної речовини осердя пропорційні частоті й залежать від пікового значення потоку магнітного поля через осердя.

Інша причина втрат — струми Фуко. Змінне магнітне поле в осерді породжує змінне вихрове електричне поле, яке викликає додаткові вихрові струми, що теж призводять до нагрівання. Для зменшення струмів Фуко осердя виготовляють із тонких сталевих пластинок, оскільки втрати, пов’язані зі струмами Фуко, обернено квадратично залежать від товщини матеріалу. На високих частотах для виготовлення осердь використовують феромагнітні матеріали, які завдяки більшому опору, мають значно менші втрати.

Частина енергії втрачається на механічні коливання. Феромагнітний матеріал осердя розширюється і стискається у змінному магнітному полі завдяки явищу магнітострикції. Цим пояснюється гудіння трансформатора, що супроводжує його роботу. Додатково, первинна й вторинна обмотка притягаються й відштовхуються у змінному магнітному полі, змушуючи також коливатися і корпус трансформатора.

Магнітний потік, що виходить за межі осердя, сам по собі не призводить до втрати енергії, але він може призводити до появи вихрових струмів Фуко в металевих деталях корпусу й кріплення, що теж зумовлює невеликі втрати енергії.

Загалом, великі трансформатори мають коефіцієнт корисної дії до 98%[13]. Трансформатори з надпровідних матеріалів можуть збільшити цей коефіцієнт до 99,85%[14].

Втрати у трансформаторах залежать від навантаження. Втрати без навантаження зумовлені в основному опором обмоток, тоді як причиною втрат при повному навантаженні зазвичай є гістерезис та вихрові струми. Втрати при відсутності навантаження можуть бути значними, тому навіть, якщо до вторинної обмотки нічого не підключено, трансформатори повинні задовольняти умовам економної роботи. Конструювання трансформаторів із малими втратами вимагає великого осердя, високоякісної електротехнічної сталі, товстіших провідників, що збільшує початкові затрати, але окупається при експлуатації

[15].

Режими роботи трансформатора[ред. | ред. код]

Режим холостого ходу[ред. | ред. код]

Трансформатор може працювати в режимі холостого ходу, коли вторинне коло розімкнене (навантаження відсутнє), тобто ZS=∞;IS=0{\displaystyle Z_{S}=\infty ;I_{S}=0}. За допомогою дослідження холостого ходу можна визначити ККД трансформатора, коефіцієнт трансформації, а також втрати в осерді.

У режимі холостого ходу для трансформатора з сердечником з магнітом’якого матеріалу струм холостого ходу характеризує величину втрат в осерді (на вихрові струми і на гістерезис) та реактивну потужність перемагнічування магнітопроводу. Потужність втрат можна обчислити, помноживши активну складову струму холостого ходу на напругу, що подається на трансформатор.

Для трансформатора без феромагнітного осердя втрати на перемагнічування відсутні, і струм холостого ходу визначається опором індуктивності первинної обмотки, який пропорційний до частоти змінного струму та величини індуктивності.

Режим короткого замикання[ред. | ред. код]

Режим короткого замикання можна отримати в результаті замикання вторинної обмотки накоротко. Це аварійний режим, що може призвести до виходу з ладу трансформатора. При цьому струм у вторинній обмотці може бути у 20…30 разів більшим за номінальний. Тому слід відрізняти режим короткого замикання від досліду короткого замикання. За допомогою останнього можна визначити втрати корисної потужності на нагрівання проводів в колі трансформатора.

При дослідженні режиму короткого замикання, на первинну обмотку трансформатора подається змінна напруга невеликої величини, виводи вторинної обмотки закорочують. Величину напруги на вході встановлюють такою, щоб струм короткого замикання дорівнював номінальному (розрахунковому) струму трансформатора. У таких умовах величина напруги короткого замикання характеризує втрати в обмотках трансформатора, втрати на омічний опір. Потужність втрат можна обчислити помноживши напругу короткого замикання на струм короткого замикання.

Даний режим широко використовується у вимірювальних трансформаторах струму.

Режим навантаження[ред. | ред. код]

Режим роботи трансформатора при якому вторинна обмотка замкнута на опір називається режимом роботи трансформатора під навантаженням. При такому режимі роботи у вторинній обмотці буде протікати струм IS, який створить свій магнітний потік ΦS, який за правилом Ленца має зменшити зміни магнітного потоку в осерді. Це призводить до автоматичного збільшення сили струму в колі первинної обмотки. Збільшення сили струму в колі первинної обмотки відбувається згідно із законом збереження енергії:

IP⋅UP≈IS⋅US{\displaystyle I_{P}\cdot U_{P}\approx I_{S}\cdot U_{S}} або UPUS≈ISIP{\displaystyle {\frac {U_{P}}{U_{S}}}\approx {\frac {I_{S}}{I_{P}}}}.

Це означає, що підвищуючи за допомогою трансформатора напругу у кілька разів, ми в стільки ж разів зменшуємо силу струму (та навпаки). Отже, трансформатор перетворює змінний струм таким чином, що добуток сили струму на напругу приблизно однаковий у первинній і вторинній обмотках.

Умовні графічні позначення силових трансформаторів
circuit symbol Трансформатор з двома обмотками на феромагнітному осерді
circuit symbol
Трансформатор з трьома обмотками. Крапками позначені початки обмоток, стосовно напрямку намотування
circuit symbol Трансформатор з електростатичним екраном для усунення ємнісного зв’язку між обмотками

Силовий трансформатор[ред. | ред. код]

Силовий трансформатор — стаціонарний прилад з двома або більше обмотками, який за допомогою електромагнітної індукції перетворює систему змінної напруги та струму в іншу систему змінної напруги та струму, як правило, різних значень при тій же частоті з метою передачі електроенергії без зміни її потужності при передаванні[16][17].

Силовий трансформатор використовується для перетворення параметрів електричної енергії в електричних мережах і устаткуванні, що застосовуються для приймання та споживання електричної енергії

[18]. Силовий трансформатор застосовується у складі комплектних трансформаторних підстанцій для пониження напруги при подачі електроенергії населеним пунктам.

Термін «силовий» вказує на роботу даного виду трансформаторів з великими потужностями. Необхідність застосування силових трансформаторів зумовлена ​​різною величиною робочих напруг ліній електропередач (35…750 кВ), міських електромереж (як правило 6…10 кВ), напруги що подається кінцевим споживачам (0,4 кВ, вони ж 380/220 В) та напруги, необхідної для роботи електромашин і електроприладів (у досить широкому діапазоні від одиниць вольт до сотень кіловольт).

Силові трансформатори поділяються на сухі, найчастіше використовуються в електромережах і в джерелах живлення різних приладів, і масляні, що працюють при напругах від 6кВ і вище. Масляні трансформатори відрізняються від сухих тим, що як ізоляційне та охолоджувальне середовище застосовується спеціальна трансформаторна олива. Силові масляні трансформатори переважно призначаються для пониження напруги електромереж.

circuit symbol Умовна графічна познака автотрансформа- тора з трьома виводами

Автотрансформатор[ред. | ред. код]

Автотрансформатор — трансформатор, дві або більше обмоток якого мають спільну частину[19]. Це є варіант виконання силового трансформатора, в якому первинна і вторинна обмотки сполучені безпосередньо, і мають за рахунок цього не тільки електромагнітний зв’язок, а й електричний. Обмотка автотрансформатора має декілька виводів (як мінімум 3), при підключенні до яких, можна отримувати різні напруги.

Перевагою автотрансформатора є вищий ККД, оскільки лише частина потужності піддається перетворенню — це особливо суттєво, коли вхідна і вихідна напруги відрізняються незначно. Недоліком є відсутність електричної ізоляції (гальванічної розв’язки) між первинним і вторинним колом. У промислових мережах, де наявність заземлення нульового проводу обов’язкова, цей чинник ролі не грає, зате суттєвою є менша витрата сталі для осердя, міді для обмоток, менша вага і габарити, і в результаті — менша вартість.

Застосування автотрансформаторів економічно виправдане замість звичайних трансформаторів для сполучення ефективно заземлених мереж з напругою 110 кВ і вище при коефіцієнтах трансформації не більших за 3…4.

Узгоджувальний трансформатор[ред. | ред. код]

Узгоджувальний трансформатор (англ. matching transformer) — трансформатор, призначений для вмикання між двома колами з різними імпедансами з метою оптимізації потужності сигналу, що пересилається[1]. Одночасно узгоджувальний трансформатор забезпечує створення гальванічної розв’язки між ділянками схем.

Узгоджувальні трансформатори за особливостями використання поділяють на вхідні, вихідні та проміжні.

Вимірювальний трансформатор[ред. | ред. код]

circuit symbol

Вимірювальний трансформатор (англ. instrument transformer[20]) — трансформатор, призначений для пересилання інформаційного сигналу вимірювальним приладам, лічильникам, пристроям захисту і (або) керування[21]. Вимірювальні трансформатори поділяються на трансформатори струму і трансформатори напруги.

Трансформатор струму — вимірювальний трансформатор, в якому за нормальних умов роботи вторинний струм практично пропорційний первинному і зсув фаз між ними близький до нуля[21].

Вимірювальний трансформатор струму — трансформатор, який призначений для перетворення струму до значення, зручного для виміру. Первинна обмотка трансформатора струму включається послідовно у коло зі змінним струмом, що вимірюється. А у вторинну включаються вимірювальні прилади. Струм, що протікає по вторинній обмотці трансформатора струму, пропорційний струму, що протікає у його первинній обмотці.

Трансформатори струму широко використовуються для вимірювання електричного струму й у пристроях релейного захисту електроенергетичних систем, у зв’язку з чим на них накладаються високі вимоги по точності. Трансформатори струму забезпечують безпеку вимірювань, ізолюючи вимірювальні кола від первинного кола з високою напругою, яка часто складає сотні кіловольт.

Зазвичай, трансформатор струму виготовляється з двома і більше групами вторинних обмоток: одна використовується для підключення пристроїв захисту, інша, точніша — для підключення засобів обліку і вимірювання (наприклад, лічильників електроенергії).

Трансформатор напруги — вимірювальний трансформатор, у якому за нормальних умов використання вторинна напруга пропорційна первинній напрузі та за умови правильного вмикання зміщена відносно неї за фазою на кут, близький до нуля[21].

Трансформатор напруги використовується для перетворення високої напруги в низьку в колах релейного захисту та контрольно-вимірювальних приладів і автоматики. Застосування трансформатора напруги дозволяє ізолювати логічні кола захисту і кола вимірювання від кіл високої напруги.

Імпульсний трансформатор[ред. | ред. код]

Імпульсний трансформатор — трансформатор з феромагнітним осердям, для перетворення імпульсів електричного струму або напруги з тривалістю імпульсу до десятків мікросекунд з мінімальним спотворенням форми імпульсу. Імпульсні трансформатори в радіолокації, імпульсному радіозв’язку, автоматиці і обчислювальній техніці служать для узгодження джерела імпульсів з навантаженням, зміни полярності імпульсів, розділення електричних кіл по постійному і змінному струму, додавання сигналів, запалювання імпульсних ламп тощо.

Робота імпульсного трансформатора істотно відрізняється під час формування фронту і вершини імпульсу. Для кращої передачі фронту і спаду імпульсу необхідно, щоб міжвиткова ємність обмоток, паразитні ємності монтажу і індуктивність розсіяння імпульсного трансформатора були мінімальними. Зменшення міжвиткових ємностей досягається використанням сердечників малих розмірів, відповідним намотуванням і взаємним розташуванням обмоток, а також зменшенням числа витків (при цьому знижується коефіцієнт трансформації). В імпульсних трансформаторах застосовують сердечники з пермалою, кремнистої трансформаторної сталі, феритів та інших матеріалів з високою магнітною проникністю.

Резонансний трансформатор[ред. | ред. код]

Резонансний трансформатор — трансформатор, що працює на резонансній частоті коливального контура утвореного однією або декількома із його обмоток підключенням до електричного конденсатора. У резонансного трансформатора зазвичай вторинна обмотка виконує роль індуктивності у коливальному контурі, утвореному разом з конденсатором. Коли на первинну обмотку подати періодичний струм у вигляді прямокутних чи пилкоподібних імпульсів на резонансній частоті, кожен імпульс струму дає поштовх коливанням індукованого струму у вторинній котушці. У зв’язку з резонансом можуть досягатись великі значення напруги, поки вона не буде обмежена якимось процесом, таким як електричний пробій. Такі пристрої використовуються для створення високої змінної напруги, що не може бути досягнутою на таких електростатичних машинах, як електростатичний генератор Ван де Граафа чи електрофорна машина.

Приклади:

Застосування трансформаторів[ред. | ред. код]

circuit symbol Трифазний розподільний трансформатор.

Найчастіше трансформатори застосовуються в електромережах та в джерелах живлення різних приладів.

Застосування в електромережах[ред. | ред. код]

Оскільки втрати на нагрівання дроту пропорційні квадрату струму, що проходить через дріт, при передачі електроенергії на великі відстані вигідно використовувати дуже великі напруги і невеликі струми. З міркувань безпеки та для зменшення маси ізоляції в побуті бажано використовувати менші напруги. Тому для найбільш вигідного транспортування електроенергії в електромережі багаторазово застосовують силові трансформатори: спочатку для підвищення напруги генераторів на електростанціях перед транспортуванням електроенергії, а потім для зниження напруги лінії електропередач до прийнятного для споживачів рівня.

Оскільки в електричній мережі три фази, для перетворення напруги застосовують трифазні трансформатори, або групу з трьох однофазних трансформаторів, з’єднаних за схемою зірки або трикутника. У трифазного трансформатора сердечник для всіх трьох фаз загальний.

Незважаючи на високий ККД трансформатора (для трансформаторів великої потужності — понад 99%), в дуже потужних трансформаторах електромереж виділяється велика потужність у вигляді тепла (наприклад, для типової потужності блоку електростанції 1 ГВт на трансформаторі може виділятися потужність до декількох мегават). Тому трансформатори електромереж використовують спеціальну систему охолодження: трансформатор поміщається в бак, заповнений трансформаторним маслом або спеціальною негорючою рідиною. Масло циркулює під дією конвекції або примусово між баком і потужним радіатором. Іноді масло охолоджують водою. «Сухі» трансформатори використовують при відносно малій потужності.

Застосування в джерелах електроживлення[ред. | ред. код]

Компактний мережевий трансформатор.

Для живлення різних вузлів електроприладів потрібні найрізноманітніші напруги. Блоки електроживлення у пристроях, які потребують кілька напруг різної величини, містять трансформатори з декількома вторинними обмотками або містять у схемі додаткові трансформатори. Наприклад, в телевізорі за допомогою трансформаторів отримують напруги від 5 вольт (для живлення мiкросхем і транзисторів) до декількох кіловольт (для живлення анода кінескопа через помножувач напруги).

У схемах живлення сучасних радіотехнічних та електронних пристроїв (наприклад в блоках живлення персональних комп’ютерів) широко застосовуються високочастотні імпульсні трансформатори. В імпульсних блоках живлення змінну напругу мережі спершу випрямляють, а потім за допомогою інвертора перетворюють на високочастотні імпульси. Система управління за допомогою широтно-імпульсної модуляції (ШІМ) дозволяє стабілізувати напругу. Після чого імпульси високої частоти подаються на імпульсний трансформатор, на виході з якого, після випрямлення і фільтрації отримують стабільну постійну напругу.

У минулому мережевий трансформатор (на 50-60 Гц) був однією з найважчих деталей багатьох приладів. Справа в тому, що лінійні розміри трансформатора визначаються його потужністю, причому виявляється, що лінійний розмір мережевого трансформатора приблизно пропорційний потужності в степені 1/4. Розмір трансформатора можна зменшити, якщо збільшити частоту змінного струму. Тому сучасні імпульсні блоки живлення при однаковій потужності є значно легшими.

Трансформатори на 50-60 Гц, незважаючи на свої недоліки, продовжують використовувати в схемах живлення, в тих випадках, коли необхідно забезпечити мінімальний рівень високочастотних перешкод, наприклад при високоякісному звуковідтворенні.

  1. а б ДСТУ 2815-94 Електричні й магнітні кола та пристрої. Терміни та визначення.
  2. ↑ ГОСТ 16110-82 Трансформаторы силовые. Термины и определения.
  3. ↑ Allan, D.J. (Jan. 1991). Power Transformers – The Second Century. Power Engineering Journal 5 (1): 5–14. 
  4. ↑ Iablochkov, Pavel Nikolaevich Архівовано 25 червня 2013 у Wayback Machine. на сайті TheFreeDictionary.com Farlex, Inc.
  5. ↑ Stanley Transformer. Los Alamos National Laboratory; University of Florida. Архів оригіналу за 2013-06-25. Процитовано Jan. 9, 2009. 
  6. ↑ De Fonveille, W. (Jan. 22, 1880). Gas and Electricity in Paris. Nature 21 (534): 283. Процитовано Jan. 9, 2009. 
  7. Hughes, Thomas P. Networks of Power: Electrification in Western Society, 1880–1930. Baltimore: The Johns Hopkins University Press, 1993. — p. 95. ISBN 0-8018-2873-2.
  8. Савинцев Ю. М Силовые трансформаторы: основные вехи развития.
  9. ↑ Neidhöfer, Gerhard; in collaboration with VDE «History of Electrical Engineering» Committee (2008). Michael von Dolivo-Dobrowolsky and Three-Phase: The Beginnings of Modern Drive Technology and Power Supply (German) (вид. 2). Berlin: VDE-Verl. ISBN 978-3-8007-3115-2. 
  10. ↑ Uth, Robert (Dec. 12, 2000). Tesla Coil. Tesla: Master of Lightning. PBS.org. Архів оригіналу за 2013-06-25. Процитовано 2008-05-20. 
  11. ↑ Tesla, Nikola. System of Electrical Lighting. U.S. Patent 454 622, issued June 23, 1891. Архів оригіналу за 2013-06-25. Процитовано 2019-05-09. 
  12. ↑ Патент США № 568 176 від 22 вересня 1896. Apparatus for producing electric currents of high frequency and potential. Опис патенту на сайті Бюро по реєстрації патентів і торгових марок США.
  13. ↑ Kubo, T.; Sachs, H.; Nadel, S. (2001). Opportunities for new appliance and equipment efficiency standards (PDF). American Council for an Energy-Efficient Economy. с. 39. Архів оригіналу за травень 31, 2009. Процитовано June 21, 2009. 
  14. ↑ Riemersma, H., et al.; Eckels, P.; Barton, M.; Murphy, J.; Litz, D.; Roach, J. (1981). Application of Superconducting Technology to Power Transformers. IEEE Transactions on Power Apparatus and Systems. PAS-100 (7): 3398. doi:10.1109/TPAS.1981.316682. Архів оригіналу за 1 вересень 2007. Процитовано 13 лютий 2011. 
  15. ↑ Heathcote, Martin (November 3, 1998). J & P Transformer Book, Twelfth edition. Newnes. с. 41–42. ISBN 0750611588. 
  16. ↑ ДСТУ ГОСТ 30830-2003 (IEC 60076-1-93) Трансформатори силові. Частина 1. Загальні положення (ГОСТ 30830-2002 (IEC 60076-1-93). IDT)
  17. ↑ «Power transformer» у Міжнародному електротехнічному словнику (IEV 421-01-01)
  18. ↑ ДСТУ 2790-94 Системи електропостачальні номінальною напругою понад 1000 В: джерела, мережі, перетворювачі та споживачі електричної енергії. Терміни та визначення.
  19. ↑ ДСТУ 3270-95 Трансформатори силові. Терміни та визначення.
  20. ↑ «Instrument transformer» в IEV ref 321-01-01
  21. а б в ДСТУ 2976-94 Трансформатори струму й напруги. Терміни та визначення.
  • Загірняк М. В., Невзлін Б. І. Електричні машини : підручник. — К. : Знання, 2009. — 399 с. — ISBN 978-966-346-644-6.
  • Кучерук І. М., Горбачук І. Т., Луцик П. П. Загальний курс фізики : навч. посібник у 3-х т. — Київ : Техніка, 2006. — Т. 2 : Електрика і магнетизм.
  • Монтаж, наладка і експлуатація електрообладнання. Конспект лекцій (для студентів 5 курсу денної і 6 курсу заочної форм навчання спеціальності 7.0906003 — «Електричні системи електроспоживання») / А. В. Хитров — Харків : ХНАМГ, 2009. — 328 с.
  • Трансформатори. Монтаж, обслуговування та ремонт / М. В. Принц, В. М. Цимбалістий. — Л. : Оріяна-Нова, 2007. — 184 c. — (Професійно-технічна освіта України). — ISBN 978-966-2128-03-1
  • Сивухин Д. В. Общий курс физики. — Москва : Наука, 1977. — Т. 3 : Электричество. (рос.)
  • Захист трансформаторів та автотрансформаторів : Навч. посіб. для студ. напрямів «Системи упр. вир-вом та розподілом електроенергії», «Електр. системи та мережі», «Електр. станції» / В. П. Кідиба, Т. М. Шелепетень ; Нац. ун-т «Львів. політехніка». — Л. : Вид-во Нац. ун-ту «Львів. політехніка», 2004. — 177 c. — Бібліогр.: 26 назв.

Сварочный трансформатор — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 февраля 2014; проверки требуют 14 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 февраля 2014; проверки требуют 14 правок.

Сварочный трансформатор — трансформатор, предназначенный для различных видов сварки.

Сварочный трансформатор с регулированием напряжения при помощи изменения величины зазора между катушками

Сварочный трансформатор преобразует напряжение сети (220 или 380 В) в низкое напряжение, а ток из низкого — в высокий, до тысяч ампер.

Сварочный ток регулируется благодаря изменению величины либо индуктивного сопротивления, либо вторичного напряжения трансформатора, что осуществляется посредством секционирования числа витков первичной или вторичной обмотки. Это обеспечивает ступенчатое регулирование тока.

Сварочные трансформаторы классифицируются следующим образом:

  • По количеству обслуживаемых рабочих мест
  • По фазности напряжения в сети: однофазные, трехфазные.
  • По конструкции: с регулировкой вторичного напряжения магнитным рассеянием, регулировкой переключением количества витков, с регулируемым выходным напряжением посредством дросселя насыщения.

К характеристикам сварочных трансформаторов относятся:

  • Коэффициент мощности
  • Напряжение сети
  • Вторичное напряжение
  • Мощность
  • Пределы регулирования тока

Для надежного зажигания дуги вторичное напряжение сварочных трансформаторов должна быть не менее 60-65 В; напряжение дуги при ручной сварке обычно не превышает 20-30 В.

Для сварки переменным током широко применяют однофазные трансформаторы, которые понижают напряжение с 220 В до величины не более 70 В. В промышленности чаще всего используют трехфазные сварочные трансформаторы, где напряжение с 380 В понижается до величины не более 70 В. Бывают и двухфазные (с объединенными в две фазы по 220 в) сварочные трансформаторы, которые понижают напряжение с 380 в до 70 В. Они отличаются между собой только величиной коэффициента преобразования напряжения и тока, вследствие разницы во входных напряжениях и, соответственно, в построении первичной обмотки; в трехфазных есть три первичные обмотки, а в однофазных и двухфазных есть только одна первичная обмотка, только с той разницей, что витков на этой обмотке в двухфазных больше, соответственно с напряжением, в первых 220 В, а во вторых 380 В.

Вольт-амперная характеристика вторичной цепи трансформаторов, должна обеспечивать ведение устойчивого сварочного процесса, учитывает статическую характеристику сварочной дуги.

Наличие индуктивного сопротивления необходимой расчетной величины обеспечивает в трансформаторах стабилизацию дуги и ее восстановление при частой смене полярности переменного тока.

  1. Источники питания сварочной дуги: Учебник. — М.: Высш. школа, 1982. — 182 с, ил. 40 к.
  2. Алексєєв Е. Д., Мельник В. І. Зварювання в промисловому будівництві. — Стройиздат, 2000. — 377 с.
  3. Альошин Н. П., Щербинский В. Г. Контроль якості зварювальних робіт. — М.: Вища. школа, 2006. — 167 с.
  4. Безпека виробничих процесів/Под ред. С. В. Бєлова — М.: Машинобудування, 1995. — 448 с.
  5. Блінов A. H., Лялін К. В — Організація і виробництво зварювально-монтажних робіт, — М: Стройиздат, 1998. — 343 с.
  6. Думова С. І. Технологія електричного зварювання плавленням. — Л.: Машинобудування, 2007. — 468 с.

https://web.archive.org/web/20140226095245/http://www.sibelektrod.ru/publ/svarochnye_transformatory/svarochnyj_transformator_prakticheskij_spravochnik/2-1-0-71

http://www.autowelding.ru/index/0-27

Разделительный трансформатор — Википедия

Материал из Википедии — свободной энциклопедии

Разделительный трансформатор — трансформатор, первичная обмотка которого отделена от вторичных обмоток при помощи защитного электрического разделения цепей: двойной или усиленной изоляции, или основной изоляции и защитного экрана. (пп. 1.7.44 и 1.7.49 ПУЭ).

Безопасный разделительный трансформатор — разделительный трансформатор, предназначенный для питания цепей с наибольшим рабочим напряжением не более 50 В переменного и 120 В постоянного тока (п. 1.7.85. ПУЭ).

Трансформатор будет являться разделительным, если его вторичная обмотка не заземлена. Обычно используются трансформаторы с коэффициентом трансформации 1.

Разделительные трансформаторы применяются там, где необходима гальваническая развязка первичной и вторичной (нагрузка) цепей, а также изоляция подключаемого оборудования от контура заземления. Для повышения электробезопасности электрооборудование рекомендуется подключать в сеть через разделительный трансформатор.

Например, согласно «Правилам устройства электроустановок», ванные комнаты входят в категорию особо опасных помещений из-за наличия повышенной влажности, текущей воды и обилия изделий из металла, имеющих неустойчивое заземление. Установка розеток на 220 В допускается только в определенной зоне таких помещений, причём должны быть выполнены особые меры защиты от поражения электрическим током, в частности допускается включение розеток через разделительный трансформатор.

Применение такого подключения электроприемника существенно снижает вероятность поражения электрическим током, так как токи, возникающие в случае пробоя изоляции, имеют небольшое значение, что обусловлено гальванической изоляцией вторичных цепей трансформатора от цепей заземления.

Для обеспечения электропитания в помещениях с требованием повышенной электробезопасности (мед.учреждения, влажные помещения) используются разделительные трансформаторы с контролем изоляции и выносным постом дистанционного контроля ПДК.

Кроме того, малогабаритные (обычно высокочастотные) разделительные трансформаторы применяются во входных сигнальных цепях различных устройств и интерфейсов (например, Ethernet).

Импульсный трансформатор — Википедия

Импульсный трансформатор (ИТ) — трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе.

Импульсные трансформаторы, предназначенные для трансформирования коротких импульсов с минимальными искажениями и работающие в режиме переходных процессов, находят применение в различных импульсных устройствах[1][2]. Импульсные трансформаторы позволяют изменить уровень и полярность формируемого импульса напряжения или тока, согласовать сопротивление генератора импульсов с сопротивлением нагрузки, отделить потенциалы источника и приёмника импульсов, получить на нескольких раздельных нагрузках импульсы от одного генератора, создать обратную связь в контурах схемы импульсного устройства. Импульсный трансформатор может быть также использован и как преобразовательный элемент, например дифференцирующий трансформатор.

Генерация мощных импульсов современных параметров невозможна без применения высоковольтных импульсных трансформаторов. Получаемая форма выходных импульсов во многом определяется свойствами ИТ, особенно при большом коэффициенте трансформации. Применение выходных повышающих ИТ позволяет резко сократить габариты, вес и стоимость генерирующих устройств[3], хотя и негативно влияет на форму квазипрямоугольных импульсов, увеличивая относительные длительности фронта, среза и неравномерность вершины. В связи с этим величина коэффициента трансформации современных выходных ИТ при длительности импульсов в единицы и десятки микросекунд возрастает до 10 — 20 и более.

Наибольшее распространение получили ИТ, трансформирующие импульсы, по форме близкие к прямоугольным, которые обладают крутым фронтом и постоянством напряжения вершины импульса, необходимыми для работы широкого класса нагрузок. Импульс прямоугольной формы должен быть трансформирован с малыми искажениями, длительность фронта импульса должна быть значительно меньше длительности импульса и переходные процессы при трансформации фронта и вершины импульса рассматриваются раздельно. Эквивалентные схемы ИТ при раздельном рассмотрении переходных процессов упрощаются и позволяют установить связь между параметрами эквивалентных схем и конструктивными параметрами ИТ и найти такие соотношения между ними, при которых удовлетворяются требования к длительности фронта и скосу вершины импульса[4]

Трансформация фронта импульса с малыми искажениями достигается при малых значениях индуктивности рассеяния и распределенной ёмкости трансформатора, которые уменьшаются с уменьшением числа витков обмоток и сечения магнитопровода ИТ. В то же время для трансформации вершины импульса с малым спадом следует стремиться к увеличению индуктивности намагничивания трансформатора, возрастающей с увеличением числа витков и сечения магнитопровода.

Удовлетворение одновременно нескольким поставленным требованиям при расчёте ИТ потребует нахождения компромиссного решения. Оно должно быть принято в зависимости от значимости того или иного поставленного требования.

Расчеты ИТ производятся на основе приближённой эквивалентной схемы с сосредоточенными параметрами. Индуктивный эффект и потери в проводах обмоток можно учитывать с помощью известной Т-образной эквивалентной схемы.

Эквивалентная Т-образная схема импульсного трансформатора

Параметры схемы:

Lμ{\displaystyle L_{\mu }} — индуктивность намагничивания трансформатора, учитывающая запасание энергии в основном потоке взаимной индукции магнитопровода при приложении напряжения к первичной обмотке. С потоком в сердечнике связан ток намагничивания, протекающий по первичной обмотке;

Ls1,Ls2{\displaystyle L_{s1},L_{s2}} — индуктивности рассеяния обмоток, учитывающие запасание энергии в потоках рассеяния, связанных с протеканием по обмоткам тока нагрузки;

R1,R2{\displaystyle R_{1},R_{2}} — активные сопротивления проводов обмоток, учитывающие потери при протекании по ним тока нагрузки;

RB{\displaystyle R_{B}} — эквивалентное сопротивление, учитывающие потери энергии в магнитопроводе на гистерезис и вихревые токи.

Наряду с запасанием энергии в магнитных полях, а также потерями в проводах обмоток в ИТ необходимо учитывать запасание энергии в электрических полях между обмоткой и магнитопроводом и между слоями обмоток. Учёт этой энергии производят введением трех ёмкостей, образующих П-образную структуру: C1{\displaystyle C_{1}} — ёмкость первичной обмотки, C2{\displaystyle C_{2}} — ёмкость вторичной обмотки, C1,2{\displaystyle C_{1,2}} — ёмкость между обмотками.

Получившаяся эквивалентная схема ИТ описывается уравнением высокого порядка, что затрудняет анализ в общем виде:

C_{{1,2}} Эквивалентная схема ИТ шестого порядка

Однако без внесения заметной погрешности можно упростить схему, если иметь в виду следующее:

1. Намагничивающий ток составляет обычно небольшую часть тока нагрузки и поэтому можно пренебречь его влиянием на поток рассеяния. Это позволяет перейти от Т-образной схемы из индуктивных ветвей к Г-образной схеме.

2. Так как электрическая энергия пропорциональна квадрату напряжения, то основная её часть запасается в обмотке высшего напряжения. Поэтому П-образная схема ёмкостных элементов замещается одной эквивалентной ёмкостью, подключенной параллельно обмотке высшего напряжения.

3. Число витков обмоток ИТ мало и, следовательно, можно пренебречь при расчётах наиболее важных электрических характеристик сопротивлением обмоток, полагая R1=R2=0{\displaystyle R_{1}=R_{2}=0}. Сопротивление обмоток учитывается при определении потерь.

В результате указанных упрощений, фронт анализируется на основе эквивалентной схемы 2-го порядка с сосредоточенными индуктивностью и ёмкостью, определяемыми из энергетических соображений:

R_{{1}}=R_{{2}}=0 Эквивалентная схема формирования фронта 2-го порядка

Она хотя и удобна для математического описания, но не отражает в полной мере процессы, происходящие при передаче импульса, так как при этом считается, что большая часть электрической энергии паразитной ёмкости запасается в обмотке высшего напряжения.

Между тем использование такой схемы недопустимо при соизмеримости приведенных ёмкостей обмоток, включающих в себя паразитные ёмкости нагрузки и генератора, так как нельзя отдать предпочтение ни одной из ёмкостей. Кроме того, при резком различии приведенных ёмкостей, когда, казалось бы, можно ограничиться одной из них, возможно формирование фронта с паразитными колебаниями, наложенными на самом фронте, а не на вершине. Такие колебания должны быть исключены, например, при импульсной модуляции мощных магнетронных генераторов. Но схема 2-го порядка не только не позволяет определить условия их появления, но даже исключает само их существование. В работах вышеупомянутых авторов такой вид искажения фронта прямоугольного импульса отсутствует. Поэтому надо как минимум учитывать разделение ёмкостей обмоток индуктивностью рассеяния. Следовательно, предпочтительнее рассматривать эквивалентную схему 3-го порядка, как это сделано в работе[5]:

R_{{1}}=R_{{2}}=0 Эквивалентная схема формирования фронта 3-го порядка

L{\displaystyle L} — индуктивность рассеяния;

R{\displaystyle R} — сопротивление обмоток, включающее приведенное сопротивление вторичной обмотки;

Ri{\displaystyle R_{i}} — сопротивление генератора импульсов;

C1{\displaystyle C_{1}} — эквивалентная ёмкость первичной обмотки, включающая выходную ёмкость генератора;

C2{\displaystyle C_{2}} — эквивалентная приведённая ёмкость вторичной обмотки включающая паразитную ёмкость нагрузки.

Все конструктивные схемы можно свести к четырём основным[2]:

  1. Стержневой
  2. Броневой
  3. Бронестержневой
  4. Тороидальный
  1. Матханов П. Н., Гоголицын Л. З. Расчет импульсных трансформаторов. — Энергия, 1980.
  2. 1 2 Вдовин С. С. Проектирование импульсных трансформаторов 2-е изд. перераб. и доп. — Энергоатомиздат. Ленингр. отд-ние, 1991. — 208 с. с. — ISBN 5-283-04484-X.
  3. Каштанов В. В., Сапрыгин А. В. Возможности снижения массы и габаритов мощных микро-миллисекундных импульсных модуляторов // Вопросы прикладной физики. — 1997. — Т. 3. — С. 75 – 78.
  4. Ицхоки Я. С. Импульсные устройства. — Сов.Радио, 1959. — 729 с.
  5. Каштанов В. В. Анализ фронта выходных импульсов трансформатора. — Радиотехника, 1995. — Т. 12. — С. 38 — 40.

Трансформатор Теслы — Википедия

Разряды с провода на терминале

Трансформа́тор Те́слы, или кату́шка Те́слы (англ. Tesla coil) — устройство, изобретённое Николой Теслой и носящее его имя. Является резонансным трансформатором, производящим высокое напряжение высокой частоты. Прибор был запатентован 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала»[1].

Трансформатор Теслы основан на использовании резонансных стоячих электромагнитных волн в катушках. Его первичная обмотка содержит небольшое число витков и является частью искрового колебательного контура, включающего в себя также конденсатор и искровой промежуток. Вторичной обмоткой служит прямая катушка провода. При совпадении частоты колебаний колебательного контура первичной обмотки с частотой одного из собственных колебаний (стоячих волн) вторичной обмотки вследствие явления резонанса во вторичной обмотке возникнет стоячая электромагнитная волна и между концами катушки появится высокое переменное напряжение[2].

Работу резонансного трансформатора можно объяснить на примере обыкновенных качелей. Если их раскачивать в режиме принудительных колебаний, то максимально достигаемая амплитуда будет пропорциональна прилагаемому усилию. Если раскачивать в режиме свободных колебаний, то при тех же усилиях максимальная амплитуда вырастает многократно. Так и с трансформатором Теслы — в роли качелей выступает вторичный колебательный контур, а в роли прилагаемого усилия — генератор. Их согласованность («подталкивание» строго в нужные моменты времени) обеспечивает первичный контур или задающий генератор (в зависимости от устройства).

Схема простейшего трансформатора Теслы

Простейший трансформатор Теслы включает в себя входной трансформатор, катушку индуктивности, состоящую из двух обмоток — первичной и вторичной, разрядник (прерыватель, часто встречается английский вариант Spark Gap), конденсатор, тороид (используется не всегда) и терминал (на схеме показан как «выход»).

Первичная обмотка обычно содержит всего несколько витков медной трубки или провода большого диаметра, а вторичная около 1000 витков провода меньшей площади сечения. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от обычных трансформаторов, здесь нет ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у трансформаторов с ферромагнитным сердечником. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник.

Разрядник, в простейшем случае, обыкновенный газовый, представляет собой два массивных электрода с регулируемым зазором. Электроды должны быть устойчивы к протеканию больших токов через электрическую дугу между ними и иметь хорошее охлаждение.

Вторичная катушка также образует колебательный контур, где роль конденсатора, главным образом, выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.

Терминал может быть выполнен в виде диска, заточенного штыря или сферы и предназначен для получения предсказуемых искровых разрядов большой длины.

Таким образом, трансформатор Теслы представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов. Для полноценной работы трансформатора эти два колебательных контура должны быть настроены на одну резонансную частоту. Обычно в процессе настройки подстраивают первичный контур под частоту вторичного путём изменения ёмкости конденсатора и числа витков первичной обмотки до получения максимального напряжения на выходе трансформатора.

Трансформатор Теслы рассматриваемой простейшей конструкции, показанной на схеме, работает в импульсном режиме. Первая фаза — это заряд конденсатора до напряжения пробоя разрядника. Вторая фаза — генерация высокочастотных колебаний в первичном контуре. Разрядник, включённый параллельно, замыкая источник питания (трансформатор), исключает его из контура, иначе источник питания вносит определенные потери в первичный контур и этим снижает его добротность. На практике это влияние может во много раз уменьшить длину разряда, поэтому в схеме трансформатора Теслы разрядник всегда ставится параллельно источнику питания.

Заряд[править | править код]

Заряд конденсатора производится внешним источником высокого напряжения на базе повышающего низкочастотного трансформатора. Ёмкость конденсатора выбирается таким образом, чтобы вместе с индуктором она составляла резонансный контур с частотой резонанса, равной высоковольтному контуру. Однако ёмкость будет отличаться от расчетной, так как часть энергии тратится на «накачку» второго контура. Напряжение заряда ограничено напряжением пробоя разрядника, которое, (в случае воздушного разрядника), можно регулировать, изменяя расстояние между электродами или их форму. Обычно напряжение заряда конденсатора лежит в диапазоне 2-20 киловольт. Знак напряжения при заряде конденсатора имеет значение в том смысле, что он не должен сильно «закорачивать» конденсатор, на котором напряжение постоянно меняет знак — Колебательный контур тут

Генерация[править | править код]

После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. После разряда конденсатора, напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда (ионов). Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Колебания постепенно затухают, в основном, из-за потерь в разряднике и ухода электромагнитной энергии на вторичную катушку, но продолжаются до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания напряжения пробоя разрядника существенно меньшего, чем амплитуда напряжения колебаний в LC контуре. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.

Во всех типах трансформаторов Теслы основной элемент трансформатора — первичный и вторичный контуры — остается неизменным. Однако, одна из его частей — генератор высокочастотных колебаний может иметь различную конструкцию.

На данный момент существуют:

SGTC (Spark Gap Tesla Coil) — классическая катушка Теслы — генератор колебаний выполнен на искровом промежутке (разряднике).

Для мощных трансформаторов Теслы наряду с обычными разрядниками (статическими) используются более сложные конструкции разрядника.

Например, RSG (от англ. Rotary Spark Gap, можно перевести как роторный/вращающийся искровой промежуток) или статический искровой промежуток с дополнительными дугогасительными устройствами. В этом случае, частоту работы промежутка целесообразно выбирать синхронно частоте подзарядки конденсатора, и схема в этом случае ближе к картинке, а не тому, как она здесь описана. В конструкции роторного искрового промежутка используется двигатель (обычно это электродвигатель), вращающий диск с электродами, которые приближаются, (или просто замыкают), к ответным электродам для замыкания первичного контура. Скорость вращения вала и расположение контактов выбираются исходя из необходимой частоты следования пачек колебаний. Различают синхронные и асинхронные роторные искровые промежутки в зависимости от управления двигателем. Также использование вращающегося искрового промежутка сильно снижает вероятность возникновения паразитной дуги между электродами. Иногда обычный статический разрядник заменяют многоступенчатым статическим разрядником. Для охлаждения разрядников, их иногда помещают в жидкие или газообразные диэлектрики, например, в масло. Типовой прием для гашения дуги в статическом разряднике — это продувка электродов мощной струей воздуха. Иногда классическую конструкцию дополняют вторым, защитным разрядником. Его задача — защита питающей (низковольтной части) от высоковольтных выбросов.

VTTC (Vacuum Tube Tesla Coil) (рус. ЛКТ) — ламповая катушка Теслы. В ней в качестве генератора ВЧ колебаний используются электронные лампы. Обычно, это мощные генераторные лампы, такие как ГУ-81, однако встречаются и маломощные конструкции. Одна из особенностей — отсутствие необходимости в высоком напряжении. Для получения сравнительно небольших разрядов достаточно 300—600 Вольт. Также VTTC практически не издает шума, появляющегося при работе катушки Теслы на искровом промежутке.

SSTC (Solid State Tesla Coil) — генератор выполнен на полупроводниках. Он включает в себя задающий генератор (с регулируемой частотой, формой, длительностью импульсов) и силовые ключи (мощные полевые MOSFET транзисторы). Данный вид катушек Теслы является самым интересным по нескольким причинам: изменяя тип сигнала на ключах, можно кардинально изменять внешний вид разряда. Также ВЧ сигнал генератора можно промодулировать звуковым сигналом, например музыкой — звук будет исходить из самого разряда. Впрочем, аудиомодуляция возможна (с небольшими доработками) и в VTTC. К прочим достоинствам, можно отнести низкое питающее напряжение и отсутствие шумного искрового разрядника, как в SGTC.

DRSSTC (Dual Resonant Solid State Tesla Coil) — за счёт двойного резонанса, разряды у такого вида катушек значительно больше чем у обычной SSTC. Для накачки первичного контура используется генератор на полупроводниковых ключах — IGBT или MOSFET транзисторах.

В аббревиатурах названий катушек Теслы, питаемых постоянным током, часто присутствуют буквы DC, например DCSGTC.

QCW DRSSTC (Quasi Continious Wave) — особый тип транзисторных катушек Теслы, характеризующийся, так называемой, плавной накачкой: постепенным и плавным, (а не резким ударным, как в обычных катушках), нарастанием ряда параметров, (а именно: напряжения первичного контура и тока первичного контура, и, возможно, напряжения вторичного контура). В классической импульсной катушке Теслы рост тока в первичной обмотке обычно происходит в течение времени, сравнимым с длительностью периода (от 2—3 до 7—10 и более периодов) резонансной частоты, то есть, за время порядка десятков — сотен микросекунд. В QCW время нарастания составляет десятки миллисекунд, то есть, больше примерно на два порядка. Простым примером около-QCW являются ламповые катушки Теслы с шифтером. Из-за 50-герцового синуса на его выходе возникает эффект полуплавной накачки, которая обеспечивает довольно внушительный прирост длины разряда относительно типичного жёсткого прерывания (по катоду, или сетке). В результате данного приёма достигается характерный вид молний в виде длинных и практически прямых, мечевидных разрядов, длина которых многократно превышает длину намотки вторичной обмотки. Дело в том, что полное напряжение на терминале QCW DRSSTC никогда не достигает пробойного для вторички: оно всегда остаётся довольно небольшим, десятки киловольт или типа того. Возникший на небольшом напряжении стример продолжает подпитываться энергией в течение всего времени накачки, и поэтому растёт вверх, по силовым линиям поля, вместо того, чтобы пробиваться сбоку тороида на страйкринг. Именно для этого и делается плавная накачка в катушках Теслы. За счёт такого приёма достигается следующий эффект: вначале появляется небольшой разряд, который затем растёт не с высокой скоростью, пробивая плазменный канал в случайном направлении, а с низкой (так, что этот процесс развития можно даже заснять обычными видеокамерами), что обусловливает его неразветвление и огромную относительно длины вторичной обмотки длину. По сути, мы постоянно подогреваем небольшой возникший разряд, который удлиняется по мере перекачки энергии во вторичную обмотку. Но напряжение на выходе такой катушки Теслы невелико и не превышает десятков киловольт.

В отдельную категорию также относят магниферные катушки Теслы.

Разряд трансформатора Теслы Разряд с конца провода

Выходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт. Это напряжение в частоте минимальной электрической прочности воздуха способно создавать внушительные электрические разряды в воздухе, которые могут иметь многометровую длину. Эти явления очаровывают людей по разным причинам, поэтому трансформатор Теслы используется как декоративное изделие.

Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление), беспроводной передачи данных (радио) и беспроводной передачи энергии. В начале XX века трансформатор Теслы также нашёл популярное использование в медицине.[3][4] Пациентов обрабатывали слабыми высокочастотными токами, которые, протекая по тонкому слою поверхности кожи, не причиняли вреда внутренним органам (см.: скин-эффект, Дарсонвализация), оказывая при этом «тонизирующее» и «оздоравливающее» влияние.

Неверно считать, что трансформатор Теслы не имеет широкого практического применения. Он используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах. Тем не менее, основное его применение в наши дни — познавательно-эстетическое. В основном это связано со значительными трудностями при необходимости управляемого отбора высоковольтной мощности или тем более передача её на расстояние от трансформатора, так как при этом устройство неизбежно выходит из резонанса, а также значительно снижается добротность вторичного контура.

Эффекты, наблюдаемые при работе трансформатора Теслы[править | править код]

Во время работы катушка Теслы создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Многие люди собирают трансформаторы Теслы ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Теслы производит 4 вида разрядов:

  1. Стримеры (от англ. Streamer) — тускло светящиеся тонкие разветвлённые каналы, которые содержат ионизированные атомы газа и отщеплённые от них свободные электроны. Протекает от терминала (или от наиболее острых, искривлённых ВВ-частей) катушки прямо в воздух, не уходя в землю, так как заряд равномерно стекает с поверхности разряда через воздух в землю. Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.
  2. Спарк (от англ. Spark) — это искровой разряд. Идёт с терминала (или с наиболее острых, искривлённых ВВ частей) непосредственно в землю или в заземлённый предмет. Представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвлённых полосок — искровых каналов. Также имеет место особый вид искрового разряда — скользящий искровой разряд.
  3. Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности.
  4. Дуговой разряд — образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга (иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние). Особенно это свойственно ламповым катушкам Теслы. Если катушка недостаточно мощна и надёжна, то спровоцированный дуговой разряд может повредить её компоненты.

Часто можно наблюдать (особенно вблизи мощных катушек), как разряды идут не только от самой катушки (её терминала и т. д.), но и в её сторону от заземлённых предметов. Также на таких предметах может возникать и коронный разряд. Редко можно наблюдать также тлеющий разряд. Интересно заметить, что некоторые ионные химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, ионы натрия меняют обычный окрас спарка на оранжевый, а бора — на зелёный.

Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление этого явления связано с превращением стримеров в искровые каналы (см. статью искровой разряд), который сопровождается резким возрастанием силы тока и количества энергии, выделяющейся в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры.

Являясь источником высокого напряжения, трансформатор Теслы может быть смертельно опасен. Особенно это касается сверхмощных ТТ с управлением на лампах или полевых транзисторах. В любом случае, даже для маломощных трансформаторов Тесла характерен выброс высоковольтной высокочастотной энергии, способной вызвать локальные повреждения кожного покрова в виде плохо заживающих ожогов. Для трансформаторов Тесла средней мощности (50-150 Ватт), такие ожоги могут привести к повреждению нервных окончаний и значительное повреждение подкожных слоев включая повреждение мышц и связок. Трансформаторы Тесла с искровым возбуждением менее опасны с точки зрения ожогов, однако, высоковольтные разряды следующие с паузами, наносят больший вред нервной системе и способны вызвать остановку сердца (у людей с проблемами сердца). В любом случае, вред, который могут нанести высокочастотные мощные генераторы, к которым относятся Трансформаторы Тесла, сугубо индивидуален и, зависит от особенностей организма и психического состояния конкретного человека.

Замечен факт, что женщины наиболее остро реагируют на излучения мощных радиочастотных устройств, соответственно и реакция на ТТ у женщин острее чем у мужчин[источник не указан 576 дней]. К трансформатору Теслы, как к любому электроприбору, нельзя допускать детей без присмотра взрослых.

Однако существует и другое мнение[источник не указан 1941 день], касающееся некоторых видов трансформаторов Теслы. Так как высокочастотное высокое напряжение имеет скин-эффект, то несмотря на потенциал в миллионы вольт, разряд в тело человека не может вызвать остановку сердца или другие серьёзные повреждения организма, несовместимые с жизнью.

В противоположность этому другие высоковольтные генераторы, например, высоковольтный умножитель телевизора и иные бытовые высоковольтные генераторы постоянного тока, имеющие несравненно меньшее выходное напряжение (порядка 25 кВ), могут являться смертельно опасными. Всё это потому, что в вышеуказанных преобразователях используется частота в 50 герц (в умножителе классического телевизора частота около 15кГц, в мониторах еще выше), следовательно, скин-эффект отсутствует, или исчезающе слаб, и ток потечёт через внутренние органы человека (опасным для жизни считается ток в десятки мА).

Несколько другая картина со статическим электричеством, которое может очень чувствительно ударить током при разряде (при прикосновении к металлу), но при этом не смертельно, так как статический заряд сравнительно небольшой, и протекающий ток не успеет нанести вред человеку (заряд равен произведению тока и времени).[источник не указан 1941 день]Еще одна опасность, которая подстерегает при использовании трансформатора Теслы, — это избыток озона в крови, который может повлечь за собой головные боли, так как при работе устройства производятся большие порции этого газа.

В фильмах[править | править код]

В фильме Джима Джармуша «Кофе и сигареты» один из эпизодов строится на демонстрации трансформатора Теслы. По сюжету, Джек Уайт, гитарист и вокалист группы «The White Stripes» рассказывает Мег Уайт, барабанщице группы, о том, что земля является проводником акустического резонанса (теория электромагнитного резонанса — идея, которая занимала ум Теслы многие годы), а затем «Джек демонстрирует Мэг машину Тесла».

В фильме «Престиж» Кристофера Нолана, для победы одного иллюзиониста над другим в мастерстве «телепортации», Роберт Энджер (Хью Джекман), обращается к Николе Тесле за помощью. Никола же в свою очередь сделал ему машину, с трансформатором Теслы, у которой оказалась одна недоработка — она не телепортировала, а клонировала. Телепортация же была побочным эффектом.

В фильме «Ученик чародея» в одном из эпизодов демонстрируется музыкальное свойство катушек. Этот эффект достигается уменьшением и увеличением частоты.

В японском фильме «Легенда о маске» также присутствует трансформатор Теслы.

В фильме Три икса (xXx) в цитадели преступной организации, ночном клубе используют огромные трансформаторы Теслы, дающие внушительные разряды по всёму помещению, с декоративной целью.

В телесериале «Хранилище 13» главные герои используют трансформатор в виде оружия.

В фильме «Звуки шума» один из барабанщиков пробует играть на только что сделанной барабанной установке которая выдает электрические дуги в такт ударам по ней.

В фильме «Metallica: Сквозь невозможное» при исполнении песни «Ride the Lightning (песня)» были использованы трансформаторы Теслы для подачи разряда к подвешенному над сценой креслу, модель которого изображена на обложке альбома «Ride the Lightning».

В мультсериале «Смешарики: Пин-код» один из главных героев, Лосяш, создаёт аналог трансформатора Теслы — «Генератор Лосяша».

В компьютерных играх[править | править код]

В игре Kingdom Rush можно проапгрейдить обычную пушку до трансформатора Теслы.

В серии игр Command & Conquer: Red Alert советская сторона может строить оборонительное сооружение в виде башни со спиралевидным проводом (катушка Теслы), которая поражает противника мощными электрическими разрядами. Ещё в игре присутствуют танки (танк Теслы) и пехотинцы (солдат Теслы), использующие эту технологию. В игре Command & Conquer Red Alert 3 — Uprising есть скаты, это боевые амфибии оснащенные орудиями Тесла. Также в игре Tremulous люди (Humans) могут строить трансформаторы Теслы для защиты своих баз.

В играх серии Wolfenstein есть оружие, именуемое «Орудие Тесла», поражающее противника электрическим разрядом на большом расстоянии.

В игре Tomb Raider: Legend на одном из уровней есть статичные «установки Тесла» их можно использовать для притягивания и поднятия тяжелых объектов (почти также, как в «Half-Life 2»). А также с помощью одной из них можно умертвить огромного монстра-босса.

В модификации Half-Life 2 Dystopia также существует оружие «Tesla Gun», способное создавать разряды и в режиме альтернативной стрельбы — шаровые молнии. Состоит из цевья и металлического шара вместо дула, внешне похожего на сферическую астролябию.

В игре Fallout присутствует броня Теслы, также она есть и в игре Arcanum, также в загружаемом дополнении «Broken Steel» для игры «Fallout 3» присутствует пушка Теслы и сама катушка Теслы. В игре Fallout New Vegas это оружие можно приобрести в некоторых магазинах, например у Ван Граффов или у оружейников, в дополнении Fallout: New Vegas — Old World Blues, мозг главного героя заменили на катушку Теслы передающею сигналы мозга героя.

В игре Arcanum (жанр RPG) существуют соответствующие запчасти (Tesla coil и т. п.) и виды вооружения (Tesla rod, Tesla gun и т. п.), различные электрические щиты и т. п. Они имеют свойство наносить особый тип повреждений — electric damage.

В первой редакции игры Blood также присутствовало оружие под названием Tesla, поражавшее противника либо молниевидным разрядом, либо неким подобием шаровой молнии.

В игре Вивисектор присутствует оружие, называемое «Тесла», бьющее электрическим разрядом по противнику.

В игре Quake 4 есть оружие Lightning Gun, генерирующее электрический разряд, аннигилирующий слабых противников.

В игре Nancy Drew: Secret of the Old Clock, используется как вход в «тайный» чердак.

В игре Assassin’s Creed 2 при прохождении Истины рассказывается выдуманная история о Никола Тесле, якобы он получил всемогущий артефакт, но позже его отняли потомки тамплиеров. Также во время прохождении Истины появляются 2 фотографии трансформатора Теслы.

В игре Xenus: Точка кипения при прохождении последних заданий, в одной из комнат стоит огромная катушка Теслы.

В игре SCP-Containment Breach в коридорах могут сгенерироваться Тесла-ворота, которые при приближении к ним сразу убивают игрока.

В игре Minecraft с дополнением (модом) IndustrialCraft можно скрафтить катушку Теслы, которая вызывает смерть всем существам, находящимся в радиусе 4 блоков от катушки, а с дополнением (модом) GregTech можно скрафтить посох Теслы, который сжигает заряд брони другого игрока.

В игре Dishonored есть ТТ на различных уровнях, также есть миссия связанная с этим трансформатором

В игре Nancy Drew: The Deadly Device сюжет завязывается вокруг трансформатора Теслы, от которого погибает учёный.

В игре Clash of Clans есть защитное сооружение «Потайная Тесла», которая бьет нападающие войска электрическими разрядами, также в игре Clash Royal от разработчиков Clash of Clans существует персонаж Спарки (Sparky) который стреляет шаром электричества.

В игре Overwatch один из персонажей Винстон использует оружие, напоминающие катушку Тесла. Механика подразумевает бой на ближних дистанциях, из-за не дальнобойности электрических молний. Так же, такое оружие бьет сквозь любые барьеры и щиты, что обуславливается особенностями электрических молний.

В игре Alien Swarm присутствует катушка тесла, которая и поражает приближающихся противников электрическими разрядами, а также пушка тесла.

В музыкальном искусстве[править | править код]

Российская группа Tesla Musiс Band записала первый в мире музыкальный альбом с оригинальным звучанием музыкального трансформатора Теслы[5]. Также группа Tesla Music Band использует музыкальные трансформаторы Теслы в создании шоу[6].

Американская группа ARC ATTACK использует трансформаторы Теслы в качестве источника звуков. То есть разряд, создаваемый трансформатором, может звучать, «петь».

Российская команда Tesla-FX утверждает, что впервые[7][нет в источнике] сыграла гимн России[8] на созданном ими музыкальном трансформаторе Теслы.

(ещё гимн России на трансформаторе Теслы: https://www.youtube.com/watch?v=QFFgeQ3ptLQ)

Для записи песни «Thunderbolt» с альбома Biophilia певица Бьорк также использовала катушку Теслы для создания звуков, имитирующих разряды молний[9].

В шоу-бизнесе[править | править код]

Трансформатор Теслы может применяться для создания спецэффектов в различных шоу. Шоу Full-Moon-Party с использованием двух трансформаторов Теслы прошло в ночь с 13 на 14 августа 2011 года в Москве в клубе Arena-Moscow[10][11]. Первое в России шоу[12] с трансформаторами Теслы состоялось 21 мая 2011 г. на презентации нового Ferrari FF в подмосковной Барвихе.

Согласующий трансформатор — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 января 2012; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 января 2012; проверки требует 1 правка.

Согласующий трансформа́тор — трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем.

Обычно согласующие трансформаторы применяются для подключения низкоомной нагрузки к каскадам электронных устройств, имеющим высокое входное или выходное сопротивление. Часто согласующий трансформатор выступает в качестве выходного трансформатора для ламповых усилителей звуковых частот.

Эквивалентное сопротивление трансформатора с подключенной нагрузкой (по переменному току) можно выразить формулой:

Re=K2⋅RL{\displaystyle R_{e}=K^{2}\cdot R_{L}}

Где:

K{\displaystyle K} — коэффициент трансформации (отношение числа витков первичной обмотки к числу витков вторичной),
RL{\displaystyle R_{L}} — Сопротивление нагрузки.

Необходимо рассчитать коэффициент трансформации для согласующего трансформатора в ламповом усилителе. Трансформатор согласует низкоомную нагрузку (динамическую головку) с высоким внутренним сопротивлением лампы выходного каскада.

Исходные данные:

Решение: Так как максимальную мощность в нагрузку можно передать только при условии равенства внутреннего сопротивления источника сигнала сопротивлению нагрузки, то необходимо, чтобы величина сопротивления нагрузки лампы была равна внутреннему сопротивлению самой лампы.

Для этого используем трансформатор, коэффициент трансформации которого можно определить по формуле: K=R0RL{\displaystyle K={\sqrt {\frac {R_{0}}{R_{L}}}}}

Подставив численные значения, получим K{\displaystyle K}=35.

Тольяттинский трансформатор — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 августа 2017; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 августа 2017; проверки требуют 3 правки.

ООО «Тольяттинский трансформатор» — российское предприятие электротехнической промышленности, расположенное в городе Тольятти, Самарская область. С 1956 по 1964 носило название «Ставропольский завод ртутных выпрямителей», с 1964 по 1974 год — «Тольяттинский электротехнический завод» (ТЭЗ).[1]

1956 год — Совет Министров СССР распоряжением № 4022 обязал Министерство электротехнической промышленности СССР приступить к строительству завода ртутных выпрямителей в г. Ставрополь, Куйбышевской области (ныне Тольятти).
1961 год — выпуск первой продукции, трансформатор мощностью 5 600 кВА.
1964 год — переименование предприятия → в «Тольяттинский электротехнический завод» («ТЭЗ»).
1974 год — преобразование предприятия → в «Средневолжское производственное объединение Трансформатор».
1993 год — приватизация государственного предприятия → в частную собственность, создание акционерного общества ОАО «Трансформатор» — владелец руководство самого предприятия.
2003 год — смена владельца, преобразование → в ООО «Тольяттинский Трансформатор» в составе РАО ЕЭС России
2006 год по настоящее время предприятие входит в состав ЗАО «Инвестиционный холдинг Энергетический союз» под руководством Аркадия Евстафьева.[2] Генеральным директором ООО «Тольяттинский Трансформатор» с 2010 года является — первый заместитель генерального директора энергетического холдинга Владимир Чистяков[3]

Холдинг контролирует 100 % акций саратовского ЗАО «Банк Агророс» — пакет акций которого распределён между подконтрольными холдингу компаний и предприятием ООО Тольяттинский Трансформатор.[4]

В советский период из стен предприятия вышли будущие градоначальники города Прасолов,Русаков, Дубцов, Микель, Фадеев, Уткин.

Здание заводоуправления «Тольяттинский Трансформатор», г. Тольятти, ул. Индустриальная, 1

ООО «Тольяттинский Трансформатор» изготавливает силовые высоковольтные трансформаторы с установленной производственной мощностью до 30 000 000 кВА. Номенклатуру предприятия составляют трансформаторы общего и специального назначения классов напряжений от 35 до 500 кВ, мощностью в диапазоне от 2 500 до 400 000 кВА.[5] Также ООО «Тольяттинский Трансформатор» производит распределительные трансформаторы ТМГ класса напряжения 6 и 10 кВ мощностью от 100 до 2500 кВА.[источник не указан 2141 день]

В номенклатуру предприятия входят также управляемые шунтирующие реакторы трансформаторного типа (УШРТ), сейсмостойкие трансформаторы, реакторы компенсирующие масляные трехфазные двухобмоточные.[источник не указан 2141 день]

В Советском Союзе было два самых крупных завода по производству трансформаторов — в г. Тольятти и г. Запорожье. После Распада СССР ООО «Тольяттинский Трансформатор» является крупнейшим электротехническим предприятием России и производит все виды трансформаторного оборудования, востребованные на рынке России и зарубежья.[6]

Для решения задач монтажа, ввода в эксплуатацию, технического обслуживания (в том числе обеспечение запасными частями и комплектующими) и диагностики трансформаторного оборудования, производимого компанией ООО «Тольяттинский Трансформатор» (а также другими заводами-изготовителями), было создано предприятие ООО «Сервисный центр — Тольяттинский Трансформатор».[7]

С 2012 года на территории завода расположено дочернее производство ООО «Анвис Рус» — немецкой группы компании «Anvis Group GmbH» выпускающая автокомплектующие автомобильных подвесок.

Дочерние компании[править | править код]

Завод разбит на множество дочерних компаний:

Наименование Деятельность Доля владения акциями
ООО «МСЧ № 6» медсанчасть завода 100 %
ООО «Волгопромэнерго» пр-во и монтаж электро-двигателей, генераторов, трансформаторов 100 %
ООО «Спецавтоматика» пр-во и монтаж электро-распределительной и регулирующей различной аппаратуры 100 %
ООО «ТТ-Энергострой» Дочерняя компания ТТ-Энергострой строительство и реконструкция подстанций 100 %
ООО СЦ-ТТ Дочерняя компания Сервисный центр-Тольяттинский Трансформатор] сервисный центр-Тольяттинский Трансформатор 100 %
ООО ЧОП ТТ охранное предприятие 100 %

Так же на территории завода расположены проектно-строительное предприятие энергосберегающих источников ООО «Теплопроект» и про-во металлоконструкций ОАО «ТТЦ Индустриальный» → контролируемое Борисовым Алексеем Николаевичем — являющийся до 2013 года параллельно заместителем генерального директора по развитию и корпоративным связям ООО «Тольяттинский Трансформатор». ООО «Теплопроект».

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *