Site Loader

Содержание

Вектор: определение и основные понятия

Определение вектора

Определение. Вектор — это направленный отрезок, то есть отрезок, имеющий длину и определенное направление. Графически вектора изображаются в виде направленных отрезков прямой определенной длины. (рис.1)

Вектор по двум точкам
рис. 1

Обозначение вектора

Вектор началом которого есть точка А, а концом — точка В, обозначается AB (рис.1). Также вектора обозначают одной маленькой буквой, например a.

Длина вектора

Для обозначения длины вектора используются две вертикальные линии слева и справа |AB|.

Нулевой вектор

Определение. Нулевым вектором называется вектор, у которого начальная и конечная точка совпадают.

Нулевой вектор обычно обозначается как 0.

Длина нулевого вектора равна нулю.

Сонаправленные вектора

Определение. Два коллинеарных вектора a и b называются сонаправленными векторами

, если их направления совпадают: a↑↑b (рис. 3).

Сонаправленные вектора
рис. 3

Противоположно направленные вектора

Определение. Два коллинеарных вектора a и b называются противоположно направленными векторами, если их направления противоположны: a↑↓b (рис. 4).

Противоположно направленные вектора
рис. 4

Компланарные вектора

Определение. Вектора, параллельные одной плоскости или лежащие на одной плоскости называют
компланарными векторами
. (рис. 5).
Компланарные вектора
рис. 5

Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.

Равные вектора

Определение. Вектора a и b называются равными, если они лежат на одной или параллельных прямых, их направления совпадают, а длины равны (рис. 6).

Равные вектора
рис. 6

То есть, два вектора равны, если они коллинеарные, сонаправленые и имеют равные длины:

a = b, если a↑↑b и |a| = |b|.

Вектор. Что такое вектор? :: SYL.ru

Такое понятие, как вектор, рассматривается практически во всех естественных науках, причем он может иметь совершенно разное значение, поэтому дать однозначное определение вектора для всех областей невозможно. Но попробуем разобраться. Итак, вектор — что такое?

Понятие вектора в классической геометрии

Вектор в геометрии — отрезок, для которого указано, какая из его точек является началом, а какая — концом. То есть, говоря проще, вектором называется направленный отрезок.

Вектор что такое

Соответственно, обозначается вектор (что такое — рассмотрели выше), как и отрезок, то есть двумя заглавными буквами латинского алфавита с добавлением сверху черты или стрелки, направленной вправо. Также его можно подписать строчной (маленькой) буквой латинского алфавита с чертой или стрелкой. Стрелка всегда направлена вправо и не меняется в зависимости от расположения вектора.

Таким образом, вектор имеет направление и длину.

В обозначении вектора содержится и его направление. Выражается это так, как на рисунке ниже.

Определение вектора

Изменение направления меняет значение вектора на противоположное.

Длиной вектора называется длина отрезка, от которого он образован. Обозначается он как модуль от вектора. Это показано на рисунке ниже.

Вектор в физике

Соответственно, нулевым является вектор, длина которого равна нулю. Из этого следует, что нулевой вектор представляет собой точку, при чем в ней совпадают точки начала и конца.

Длина вектора — величина всегда не отрицательная. Иначе говоря, если есть отрезок, то он в обязательном порядке обладает некоторой длиной или же является точкой, тогда его длина равна нулю.

Само понятие точки является базовым и определения не имеет.

Сложение векторов

Существуют специальные формулы и правила для векторов, с помощью которых можно выполнить сложение.

Правило треугольника. Для сложения векторов по этому правилу достаточно совместить конец первого вектора и начала второго, используя при этом параллельный перенос, и соединить их. Полученный третий вектор и будет равен сложению двух других.

Правило параллелограмма. Для сложения по этому правилу необходимо провести оба вектора из одной точки, а затем провести из конца каждого из них другой вектор. То есть, из первого вектора будет проведен второй, а из второго — первый. В результате получится новая точка пересечения и образуется параллелограмм. Если совместить точку пересечения начал и концов векторов, то полученный вектор и будет результатом сложения.

Похожим образом возможно выполнять и вычитание.

Разность векторов

Аналогично сложению векторов возможно выполнить и их вычитание. Оно базируется на принципе, указанном на рисунке ниже.

Вектор в геометрии

То есть вычитаемый вектор достаточно представить в виде вектора, ему противоположного, и произвести расчет по принципам сложения.

Также абсолютно любой ненулевой вектор возможно умножить на какое-либо число k, это изменит его длину в k раз.

Помимо этих, существуют и другие формулы векторов (например, для выражения длины вектора через его координаты).

Расположение векторов

Наверняка многие сталкивались с таким понятием, как коллинеарный вектор. Что такое коллинеарность?

Коллинеарность векторов — эквивалент параллельности прямых. Если два вектора лежат на прямых, которые параллельны друг другу, или же на одной прямой, то такие векторы называются коллинеарными.

Направление. Относительно друг друга коллинеарные векторы могут быть сонаправленными или противоположно направленными, это определяется направлением векторов. Соответственно, если вектор сонаправлен с другим, то вектор, ему противоположный, противоположно направлен.

На первом рисунке показаны два противоположно направленных вектора и третий, который не коллинеарен им.

После введения вышеуказанных свойств возможно дать определение и равным векторам — это векторы, которые направлены в одну сторону и имеют одинаковую длину отрезков, от которых они образованы.

Во многих науках применяется еще и понятие радиус-вектора. Подобный вектор описывает положение одной точки плоскости относительно другой фиксированной точки (зачастую это начало координат).

Векторы в физике

Предположим, при решении задачи возникло условие: тело движется со скоростью 3 м/с. Это означает, что тело движется с конкретным направлением по одной прямой, поэтому данная переменная будет величиной векторной. Для решения важно знать и значение, и направление, так как в зависимости от рассмотрения скорость может равняться и 3 м/c, и -3 м/с.

В общем случае вектор в физике используется для указания направления силы, действующей на тело, и для определения равнодействующей.

При указании этих сил на рисунке их обозначают стрелками с подписью вектора над ним. Классически длина стрелки так же важна, с помощью нее указывают, какая сила действует сильнее, однако это свойство побочное, опираться на него не стоит.

Вектор в линейной алгебре и математическом анализе

Элементы линейных пространств также называются векторами, однако в данном случае они представляют собой упорядоченную систему чисел, описывающих некоторые из элементов. Поэтому направление в данном случае уже не имеет никакой важности. Определение вектора в классической геометрии и в математическом анализе сильно различаются.

Проецирование векторов

Спроецированный вектор — что такое?

Довольно часто для правильного и удобного расчета необходимо разложить вектор, находящийся в двухмерном или трехмерном пространстве, по осям координат. Данная операция необходима, например, в механике при подсчете сил, действующих на тело. Вектор в физике используется достаточно часто.

Для выполнения проекции достаточно опустить перпендикуляры из начала и конца вектора на каждую из координатных осей, полученные на них отрезки и будут называться проекцией вектора на ось.

формулы векторов

Для подсчета длины проекции достаточно умножить его изначальную длину на определенную тригонометрическую функцию, которая получается при решении мини-задачи. По сути, есть прямоугольный треугольник, в котором гипотенуза является исходным вектором, один из катетов — проекцией, а другой катет — опущенным перпендикуляром.

Векторы на плоскости и в пространстве: основные определения

Определение вектора

В статье пойдет речь о том, что такое вектор, что он из себя представляет в геометрическом смысле, введем вытекающие понятия.

Для начала дадим определение:

Определение 1

Вектор – это направленный отрезок прямой.

Исходя из определения, под вектором в геометрии отрезок на плоскости или в пространстве, который имеет направление, и это направление задается началом и концом.

В математике для обозначения вектора обычно используют строчные латинские буквы, однако над вектором всегда ставится небольшая стрелочка, например a→. Если известны граничные точки вектора – его начало и конец, к примеру A и B, то вектор обозначается так AB→.

Нулевой вектор

Определение 2

Под нулевым вектором 0→ будем понимать любую точку плоскости или пространства.

Из определения становится очевидным, что нулевой вектор может иметь любое направление на плоскости и в пространстве.

Нулевой вектор

Длина вектора

Определение 3

Под длиной вектора AB→ понимается число, большее либо равное 0, и равное длине отрезка АВ.

Длину вектораAB→ принято обозначать так AB→.

Понятия модуль вектора и длина вектора равносильны, потому что его обозначение совпадает со знаком модуля. Поэтому длину вектора также называют его модулем. Однако грамотнее использовать термин «длина вектора». Очевидно, что длина нулевого вектора принимает значение ноль.

Коллинеарность векторов

Определение 4

Два вектора лежащие на одной прямой или на параллельных прямых называются коллинеарными.

Определение 5

Два вектора не лежащие на одной прямой или на параллельных прямых называются неколлинеарными.

Следует запомнить, что Нулевой вектор всегда коллинеарен любому другому вектору, так как он может принимать любое направление.

Коллиниарные в

вектор — Викисловарь

Морфологические и синтаксические свойства[править]

падежед. ч.мн. ч.
Им.ве́кторве́кторы
Р.ве́ктораве́кторов
Д.ве́кторуве́кторам
В.ве́кторве́кторы
Тв.
ве́кторомве́кторами
Пр.ве́ктореве́кторах

ве́к-тор

Существительное, неодушевлённое, мужской род, 2-е склонение (тип склонения 1a по классификации А. А. Зализняка).

Встречается также профессиональный вариант склонения по схеме 1c① с ударением вне основы во мн. ч.: вектора́, векторо́в и т. д.

Корень: -вектор- [Тихонов, 1996].

Произношение[править]

  • МФА: ед. ч. [ˈvʲektər]  мн. ч. [ˈvʲektərɨ]

Семантические свойства[править]

Значение[править]
  1. матем., геометр., физ. направленный отрезок; то, что описывается не только величиной, но и направлением ◆ Два вектора равны лишь в том случае, если у них одинаковы длины и совпадают направления.
  2. матем. упорядоченный набор величин, называемых координатами векторного пространства ◆ Матрица потерь при умножении которой на вектор вероятностей принадлежности классам получается вектор оценок потерь от ошибок классификации; на основе этого вектора можно принимать решения, приводящие к наименьшим потерям.
  3. биол. молекула ДНК, способная к включению чужеродной ДНК и к автономной репликации ◆ Весьма полезными качествами вирусных векторов-носителей является способность многих из них встраиваться в ДНК клетки хозяина, а также легко проникать в клетку путем обычной инфекции.
  4. биол. организм, переносящий паразита от одного хозяина к другому ◆ Паразиты могут быть вектором для переноса весьма опасных инфекций и инвазий.
  5. прогр. одномерный массив ◆ К сожалению, в C++ не предусмотрены средства для определения класса векторов с типом элемента в качестве параметра.
  6. перен. направление, цель ◆ Не отрицая тесное сотрудничество с Россией, наш вектор все-таки западный.
Синонимы[править]
  1. направление, цель
  2. промежуточный хозяин, переносчик
Антонимы[править]
  1. число, скаляр
  2. число
Гиперонимы[править]
  1. геом. отрезок, множ.кортеж, рел. алг.отношение
  2. молекула
  3. хозяин
  4. массив
Гипонимы[править]
  1. бра-вектор, кет-вектор

Родственные слова[править]

Этимология[править]

От лат. vector «несущий, перевозчик», из vehere «носить, нести» (восходит к праиндоевр. *wegh- «идти, везти»).

Фразеологизмы и устойчивые сочетания[править]

Перевод[править]

Анаграммы[править]

Метаграммы[править]

Interrobang.svg
Для улучшения этой статьи желательно:
  • Добавить все семантические связи (отсутствие можно указать прочерком, а неизвестность — символом вопроса)
  • Добавить хотя бы один перевод для каждого значения в секцию «Перевод»

Морфологические и синтаксические свойства[править]

вектор

Существительное.

Корень: .

Произношение[править]

Семантические свойства[править]

Interrobang.svg
Значение[править]
  1. матем. вектор ◆ Отсутствует пример употребления (см. рекомендации).
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
Гипонимы[править]

Родственные слова[править]

Ближайшее родство

Этимология[править]

От лат. vector «несущий, перевозчик», из vehere «носить, нести» (восходит к праиндоевр. *wegh- «идти, везти»).

Фразеологизмы и устойчивые сочетания[править]

Библиография[править]

Морфологические и синтаксические свойства[править]

вектор

Существительное, мужской род.

Корень: .

Произношение[править]

Семантические свойства[править]

Interrobang.svg
Значение[править]
  1. матем. вектор ◆ Отсутствует пример употребления (см. рекомендации).
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
Гипонимы[править]

Родственные слова[править]

Ближайшее родство

Этимология[править]

От лат. vector «несущий, перевозчик», из vehere «носить, нести» (восходит к праиндоевр. *wegh- «идти, везти»).

Фразеологизмы и устойчивые сочетания[править]

Библиография[править]

Морфологические и синтаксические свойства[править]

вектор

Существительное.

Корень: .

Произношение[править]

Семантические свойства[править]

Interrobang.svg
Значение[править]
  1. матем. вектор ◆ Отсутствует пример употребления (см. рекомендации).
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
Гипонимы[править]

Родственные слова[править]

Ближайшее родство

Этимология[править]

От

Вектор (геометрия) — это… Что такое Вектор (геометрия)?

Под направленным отрезком \overrightarrow{AB} в геометрии понимают упорядоченную пару точек, первая из которых — точка A — называется его началом, а вторая — B — его концом.

Определение

Вектором в простейшем случае называется направленный отрезок, а в других случаях различные векторы — это разные классы эквивалентности направленных отрезков, определяемые неким конкретным отношением эквивалентности. Причем отношение эквивалентности может быть разным, определяя тип вектора («свободный», «фиксированный» итд). Проще говоря, внутри класса эквивалентности все входящие в него направленные отрезки рассматриваются как совершенно равные, и каждый может равно представлять весь класс.

Учитывая изоморфизм между множеством свободных векторов и множеством их параллельных переносов пространства, если операцию сложения отождествить с композицией переносов, можно использовать множество параллельных переносов пространства даже для определения вектора.

Большую роль играют векторы в изучении бесконечно малых трансформаций пространства.

  • Вектор, начало которого совпадает с его концом, называют нулевым: \overrightarrow{AA} = \vec{\mathbf{0}}.
  • Вектор \overrightarrow{BA} называют противоположным вектору \overrightarrow{AB}.
  • Длиной вектора, или модулем вектора, называют длину соответствующего направленного отрезка: \overrightarrow{AB}.

Свободные, скользящие и фиксированные векторы

Иногда, вместо того, чтобы рассматривать в качестве векторов множество всех равных направленных отрезков, берут только некоторую модификацию этого множества (фактормножество). Так, говорят о «свободных» (когда отождествляются все равные по длине и направлению направленные отрезки, считаясь полностью равными или одним и тем же вектором), «скользящих» (отождествляются между собой все направленные отрезки, равные в смысле свободных векторов, начала и концы которых расположены на одной прямой) и «фиксированных» векторах (по сути дела, просто о направленных отрезках, когда разное начало означает уже неравенство векторов).

Определение. Говорят, что свободные векторы \overrightarrow{AB} и \ \overrightarrow{CD} равны, если найдутся точки E и F такие, что четырёхугольники ABFE и CDFE — параллелограммы.

  • Замечание. «Ухищрение» (введение дополнительных точек) в определении равенства касается, прежде всего, случая, когда точки A,B,C,D располагаются на одной прямой. В противном случае определение выглядит проще:

Определение. Говорят, что свободные векторы \overrightarrow{AB} и \ \overrightarrow{CD}, не лежащие на одной прямой, равны, если четырёхугольник ABDC — параллелограмм.

Определение. Говорят, что скользящие векторы \overrightarrow{AB} и \ \overrightarrow{CD} равны, если

  • точки A,B,C,D располагаются на одной прямой,
  • векторы \overrightarrow{AB} и \ \overrightarrow{CD} равны между собой как свободные векторы.

Неформально говоря, скользящему вектору разрешено двигаться вдоль его прямой без изменения величины и направления.

  • Замечание. Скользящие векторы особо употребимы в механике. Простейший пример скользящего вектора в механике — сила. Перенос такого начала вектора вдоль прямой, на котой он лежит, не меняет момента силы ни относительно какой точки; перенос же его на другую прямую, даже если не менять величины и направления вектора, может вызвать изменение его момента (скорее даже почти всегда вызовет): поэтому нельзя рассматривать силу как свободный вектор.

Определение. Говорят, что фиксированные векторы \overrightarrow{AB} и \ \overrightarrow{CD} равны, если попарно совпадают точки A и C, B и D.

Операции над векторами

Сложение векторов

\ \overrightarrow{CD}

Два вектора u, v и вектор их суммы

Сложение двух свободных векторов можно осуществлять как по правилу параллелограмма, так и по правилу треугольника.

Правило треугольника. Для сложения двух векторов \vec{u} и \vec{v} по правилу треугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора.

Правило параллелограмма. Для сложения двух векторов \vec{u} и \vec{v} по правилу параллелограмма оба эти вектора переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала.

Сложение двух скользящих векторов определено лишь в случае, когда прямые, на которых они расположены, пересекаются. Тогда каждый из векторов переносится вдоль своей прямой в точку пересечения этих прямых, после чего сложение осуществляется по правилу параллелограмма.

Сложение двух фиксированных векторов определено лишь в случае, когда они имеют общее начало. Их сложение в этом случае осуществляется по правилу параллелограмма.

Сложение коллинеарных скользящих векторов

Если скользящие векторы параллельны, то при их сложении главная трудность состоит в определении прямой, на которой будет расположена их сумма. (Величину и направление вектора суммы было бы естественно определить точно так же, как и в случае сложения свободных векторов.) В механике при изучении статики для решения вопроса о сложении параллельных сил, которые, как известно, задаются скользящими векторами, вводится дополнительная гипотеза: к системе векторов можно добавить два вектора, равных по величине, противоположных по направлению и расположенных на одной прямой, пересекающей прямые, на которых расположены данные вектора. Пусть, например, надо сложить скользящие векторы \vec{a} и \vec{b}, расположенные на параллельных прямых. Добавим к ним векторы \vec{c} и -\vec{c}, расположенные на одной прямой. Прямые, на которых расположены векторы \vec{a} и \vec{c}, \vec{a} и -\vec{c} пересекаются. Поэтому определены векторы

\vec{a}

Прямые, на которых расположены векторы \vec{a} и \vec{b}, пересекаются всегда, за исключением случая, когда векторы \vec{a} и \vec{b} равны по величине и противоположны по направлению, в котором говорят, что векторы \vec{a} и -\vec{a} образуют пару (векторов).

Таким образом, под суммой векторов \vec{a} и \vec{b} можно понимать сумму векторов \vec{a} и \vec{b}, и эта сумма векторов определена корректно во всех случаях, когда векторы \vec{a} и \vec{b} не образуют пару.

Произведение вектора на число

Произведением вектора \vec{a} и числа λ называется вектор, обозначаемый \lambda\vec{a}(или \vec{a}\lambda), модуль которого равен \vec{a}\lambda, а направление совпадает с направлением вектора \vec{a}, если \lambda>0 \,, и противоположно ему, если \lambda<0 \,. Если же \lambda=0 \,, или вектор \vec{a} нулевой, тогда и только тогда произведение \lambda\vec{a} — нулевой вектор.

  • Обычно принято в записи произведения числа и вектора число записывать слева, но в принципе допустим и обратный порядок, хотя все же обычное соглашение состоит в том, чтобы его избегать, если нет прямой необходимости. Так или иначе, \lambda\vec{a} = \vec{a}\lambda.

Из определения произведения вектора на число легко вывести следующие свойства:

  1. если \vec{b} = \vec{a}\lambda, то \vec{b}. Наоборот, если \vec{b}, то при некотором λ верно равенство \vec{b}=\vec{a}\lambda;
  2. всегда \vec{a}=°, то есть каждый вектор равен произведению его модуля на орт.

Скалярное произведение

Скалярным произведением векторов \vec{a} и \vec{b} называют число, равное \vec{b}, где \varphi \, — угол между векторами \vec{a} и \vec{b}. Обозначения: (\vec{a},\vec{b}) или \vec{a}\cdot\vec{b}.

Если один из векторов является нулевым, то несмотря на то, что угол \varphi не определён, произведение равно нулю.

Свойства скалярного произведения векторов:

  1. \vec{a}\cdot\vec{b}=\vec{b}\cdot\vec{a}\, — коммутативность.
  2. \vec{a}\cdot(\vec{b}+\vec{c})=\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}\, — дистрибутивность.
  3. (\alpha\vec{a},\vec{b})=\alpha (\vec{a},\vec{b}) — линейность по отношению к умножению на число.
  4. (\vec{a},\vec{a})= — норма вектора.

Геометрически скалярное произведение есть произведение длины одного из сомножителей на ортогональную проекцию другого на направление первого (или наоборот). Скалярное произведение какого-то вектора \vec{a} с единичным вектором есть ортогональная проекция вектора \vec{a} на направление единичного вектора.

Векторное произведение

Векторным произведением вектора a на вектор b называется вектор c, удовлетворяющий следующим требованиям:

  • длина вектора c равна произведению длин векторов a и b на синус угла φ; между ними


\left

  • вектор c ортогонален каждому из векторов a и b
  • вектор c направлен так, что тройка векторов abc является правой.

Обозначение:  \vec c = \left[ \vec a \vec b \right] = \left[ \vec a, \vec b \right] = \vec a \times \vec b

Геометрически векторное произведение \vec a \times \vec b есть ориентированная площадь параллелограмма, построенного на векторах \vec a, \vec b, представленная псевдовектором, ортогональным этому параллелограмму.

Свойства векторного произведения:

  1. При перестановке сомножителей векторное произведение меняет знак (антикоммутативность), т.е
 \vec a \times \vec b = -(\vec b \times \vec a)
  1. Векторное произведение обладает сочетательным свойством относительно скалярного множителя, то есть
\lambda(\vec a \vec b) = (\lambda \vec a) \times \vec b = \vec a \times (\lambda \vec b)
  1. Векторное произведение обладает распределительным свойством:
(\vec a + \vec b) \times \vec c = \vec a \times \vec c + \vec b \times \vec c

Смешанное произведение

Сме́шанное произведе́ние  ( \vec{a}, \vec{b}, \vec{c} ) векторов \vec{a}, \vec{b}, \vec{c} — скалярное произведение вектора \vec{a} на векторное произведение векторов \vec{b} и \vec{c}:

(\vec{a}, \vec{b}, \vec{c}) = \left(\vec{a}, [\vec{b}, \vec{c}]\right) = \vec{a}\cdot\left(\vec{b}\times\vec{c}\right)

(равенство записано для разных обозначений скалярного и векторного произведения).

Иногда смешанное произведение называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее — псевдоскаляр).

Геометрически смешанное произведение  ( \vec{a}, \vec{b}, \vec{c} ) есть (ориентированный) объем параллелепипеда, построенного на векторах \vec{a}, \vec{b}, \vec{c}.

Условие перпендикулярности векторов

Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.

Пример

Даны два вектора \vec a(x_1;y_1) и \vec b(x_2;y_2). Эти векторы будут перпендикулярны, если выражение x1x2 + y1y2 = 0.

Условие коллинеарности векторов

Векторы являются коллинеарными тогда и только тогда, когда их векторное произведение равно нулю.

Пример

Даны два вектора \vec a=(x_1;y_1) и \vec b=(x_2;y_2). Эти векторы коллинеарны, если x1 = λx2 и y1 = λy2, где \lambda \in \mathbb R

См. также

Ссылки

Wikimedia Foundation. 2010.

Значение слова ВЕКТОР. Что такое ВЕКТОР?

  • ВЕ́КТОР, -а, м. Мат. Изображаемая отрезком прямой математическая величина, характеризующаяся численным значением и направлением.

    [От лат. vector — везущий, несущий]

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

  • Ве́ктор (лат. vector — везущий, несущий).

Источник: Википедия

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: бережение — это что-то нейтральное, положительное или отрицательное?

Положительное

Отрицательное

Векторы: определение и основные понятия

Графически вектор изображается в виде направленного отрезка прямой определенной длины. Вектор, начало которого находится в точке , а конец – в точке , обозначается как (рис. 1). Также вектор можно обозначать одной маленькой буквой, например, .

Если в пространстве задана система координат, то вектор можно однозначно задать набором своих координат. То есть под вектором понимается объект, который имеет величину (длину), направление и точку приложения (начало вектора).

Начала векторного исчисления появились в работах в 1831 году в работах немецкого математика, механика, физика, астронома и геодезиста Иоганна Карла Фридриха Гаусса (1777-1855). Работы, посвященные операциям с векторами, опубликовал ирландский математик, механик и физик-теоретик, сэр Уильям Роуэн Гамильтон (1805-1865) в рамках своего кватернионного исчисления. Ученый предложил термин «вектор» и описал некоторые операции над векторами. Векторное исчисление получило свое дальнейшее развитие благодаря работам по электромагнетизму британского физика, математика и механика Джеймса Клерка Максвелла (1831-1879). В 1880-х годах увидела свет книга «Элементы векторного анализа» американского физика, физикохимика, математика и механика Джозайя Уилларда Гиббса (1839-1903). Современный векторный анализ был описан в 1903 году в работах английского ученого-самоучки, инженера, математика и физика Оливера Хевисайда (1850-1925).

Длина (модуль) вектора

Основные виды векторов

Нулевым вектором называется вектор , у которого начальная точка и конечная точка совпадают. Длина нулевого вектора равна нулю.

Вектора, параллельные одной прямой или лежащие на одной прямой, называют коллинеарными (рис. 2).

Два коллинеарных вектора называются сонаправленными, если их направления совпадают.

На рисунке 2 – это векторы и . Сонаправленность векторов обозначается следующим образом: .

Два коллинеарных вектора называются противоположно направленными, если их направления противоположны.

На рисунке 3 – это векторы и . Обозначение: .

Три вектора, параллельные одной плоскости или лежащие в одной плоскости, называют компланарными (рис. 3).

Два вектора и называются равными, если они являются сонаправленными и их длины равны (рис. 4):

   

Единичным вектором или ортом называется вектор единичной длины.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *